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1 . INTRODUCTION 

The subjects of this paper are two relatively unrelated 

problems in variance estimation. Research into these problems 

was motivated by their applicability to the demographic surveys 

conducted by the Census Bureau, but their potential applications 

are more general. The first problem, which is the subject of 

Section 2, is the development of a methodology for pairing strata 

in one PSU per stratum designs, which minimizes the bias of the 

resulting variance estimator when using a collapsed stratum 

estimator of variance. The current designs of the Current 

Pwulation Survey, the National Crime Survey and the American 

Housing Survey are examples of one PSU per stratum designs. 

The second problem, which is the subject of Section 3, is 

the development of an alternative to the standard unbiased 

variance estimator for two PSU’s per siratum, without replacement 

designs, that will have greater precision. The current design of 

the Survey of Income and Program Participation is essentially 

this type of design. 
. 

Since these two problems are quite different, discussion of 

them will take place separately in Sections 2 and 3. 
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2. OBTAINING- A COLLAPSING THAT MINIMIZES THE BIAS OF THE 

COLLAPSED STRATUM VARIANCE ESTIMATOR 

To obtain variance estimators for one PSU per stratum 

designs, a collapsed stratum variance estimator is generally 

employed, as explained in Wolter (1985). The first step in using 

such an estimator is the partitioning, or “collapsing”, of the 

set of all strata into group3 of two or more strata. Most 

commonly, each such group of strata consists of two actual 

strata, and the discussion in this section will be confined to 

this special case. The main purpose of this section will be to 

describe how the collapsing can be done in a fashion that in 

prtctice appears to be close to optimal in terms of minimizing - 

the bias of the corresponding variance estimator. 

We first present the collapsed stratum variance estimator, 

employing for the most part the notatiqn of Wolter (1985). 

Consider a p’opulation total Y to be estimated by a linear 
A L 

estimator of the form Yh= C 
h=l 

$,, where L denotes the number of 
1 

strata, which is assumed to be even, and Yh is an unbiased 

estimator of the total in the h-th stratum. The collapsing 

results in G = L/2 group3 of strata, with gl and g2 denoting the 

two strata in the g-th group. The collapsed stratum variance 

estimator i(i) of V-(Y), as given in Hansen, Hurwitz and Madow 

(19531, or Wolter (19851, reduces in the case of two strata per 

group to 

G 2A 2A 
t31 -------- 

= ’ ,( A 
g=l l!31 

:‘A 
----e--m 

g2 
‘g, - A 

gl 
+ A 

g2 
ig212, (2.1) 



3 

where A,,-i3 a known measure associated with stratum gh that 

tends to be well correlated with Ygh. Commonly used values of 

Agh ’ which will be discussed later in this section, include: 

(i) 1 for all g,h, and 

(ii) the population of the gh-th stratum from the most recent 

census. 

We will simplify (2.1) by substituting 

2A 2A 
k ET2 i31 

gl 
= SigT-I-Sig2 , kg2 = Si--y-T-Ag;? , 

. 

which yields 

* (kglig, - kg2ig212 (2.2) 

Note that kg1 + kg2 - 2. 

To obtain an expression for Bias V(Y), we observe that 

Ecj&l = 6 (V(k ; - k i 
l31 gl k32 82) 

+ [E(ig,ig, - kg2Yg2H2) (2.3) 

=H 
C(k;,t& + ki2ui2) + (kglYgl - kg2Yg2)21* 

2 
A 

where (J 
gh 

= V(Ygh) . Since V(i) = h (IY,~, + ci2 1, it follows that 

Bias i(i) = ~~ (kih - lb2 + 
gh 8 (kglYg1 - kg2Yg2)2 

We observe the- following about (2.4) in the two cases 

mentioned previously. In case (i), (2.4) reduces to 

Bias i(q) - g(Yg, - Yg212 (2.5) 

since kgh=l, while in case (ii> both terms of (2.4) are generally 

present. However, in case (ii> If Agh and Ygh are well 

correlated then the second term in (2.4) generally tends to be 

(2.4) 
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smaller than in case (i >, and disappears altogether if Agh is 

proportional to ygh. Also note that if IJ~ = 
2 

f31 %2 
for all g, then 

the first term in (2.4) is nonnegative since k 
2 

+ k 
2 

gl g2 
I 2 , but 

that in general it is possible for the first term of (2.4), and 

(2.4) itself to be negative, as is illustrated by examples in 

Hartley, Rao and Kiefer (1969). 

In order to. obtain a collapsing that minimizes (2.41, the 

value of (2.4) must be known for each possible pairing. If (2.4) 

only involves PSU or stratum totals then such information is 

assumed known at the time,of the most recent census for any 

characteristic tabulated in the census. (Of course these values 
* 

generally change between the time of the census and the time that - 

the survey is conducted. This problem will be ignored for now, 

but returned to at the end of this section.) In case (i>, only 

stratum totals are involved, 90 that the condition is met. In 

case (ii> there are several possible approaches. If Agl is 

sufficiently close to Ag2 for all g, then one might choose to 

ignore the first term of (2.4). If that is not acceptable, 

another possibility is to first rewrite (2.4) by replacing 
L 

a 
gh 

by oihw + a2 where Q 2 2 
ishb ghw, ‘ghb 

denote the within and between PSU 

variance respectively for the gh-th stratum. Then 

Bias ~(y)=CgZh(k~h-l)~~hwl+CgCh(k~h-l)U~hb+ &(kglygl-kg2Yg2)21* (2*6) 
P f 

The terms within the second set of brackets in (2.6) meet 

the requirement of involving only PSU and stratum totals. 

However, census data alone cannot be used to obtain a value for 

the term within the first set of brackets, since u2 
ghw 

depends on 
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an estimator 
^2 2 

ghw 
of 

ghw 
could 

particular within sampling procedure Instead, 

be directly from 

sample, and estimator 

a,- 
V(Y) = ii,;, +gEh (l-k;h 

, ) ‘;hw (2.7) 

used in place of i(i) to estimate V(Y). 
-2 _ 

If u 
ghw 

was an unbiased 

2 A,14 
estimator of u ghw’ then Bias V(Y) would be the terms within the 

second set of brackets of (2.6). Although unbiased estimators of 

within PSU variance are not obtainable for the commonly used 

within PSU sampling procedures that employ systematic sampling, 

it may be possible to consider the bias of i2 
ghw 

small enough to 
* 

be ignored. 

Whatever approach is chbsen, it ,is assumed that for any 

collapsing, the contribution to the bias of the variance 

estimator from each pair of strata is k,nown and nonnegative, and 

we turn to the key question of this section: Given the set of L 

strata, how should they be paired in order to minimize the bias 

of the variance estimator. In an attempt to answer this 

question, the problem will be formulated as a mathematical 

programming problem. First let the constants cij, i<j, 

i ,j=l ,...,L, denote the contribution to the bias of the variance 

estimator from the pair of strata i,j, if i and j are paired 

together. For example if the bias is given by (2.5), then 

cij=(Yi-Yj)2. The total bias of the variance estimator 

corresponding to any collapsing would be 

(2.8) 
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where 

‘ij = 
1 8 if strata i and j are paired together, 

= 0, otherwise. 

Then minimizing the bias of the variance estimator is equivalent 

to minimizing (2.8) subject to the constraints 

*ij = 0 or 1 for all i,j, i<j, (2.9) 

and that for each i exactly one member of the sequence 

is equal to 1, or equivalently, 
* 

i-l L 

j41 
Xji + jfi+,xij = 1, i=l,..., L . (2.10) 

The problem defined by (2.8 - 2.10) is an integer 

programming problem. If L is 3ufficie;tly small, an optimal 

solution could be obtained by using any standard software for 

solving integer programming problems. Unfortunately, the 

solution time for such problems increases rapidly with increasing 

L, and’ if L is fairly large it would be impractical to solve the 

problem in this fashion. 

It would be desirable if this integer programming problem 

could be transformed into a different form of mathematical 

programming problem that would be more efficient 

computationally. TO this end, we define cij=cji if i>j and Cii=M 

for each i, where M is a suitably large constant, as will be 

explained. We then seek to minimize 

E 
i ,j 

‘ij’ij ’ 
(2.11) 
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_- 
subject to the constraints 

E xij = 1, i=l,...L, (2.12) 

j 

c x 1, j=l,...L, (2.13) 
i ij = 

(2.14) 

The problem (2.11 - 2.14) is an assignment problem. 

Software exists for solving assignment problems in reasonable 

time even for quite large L. The key question is whether an 

optimal solution to the assignment problem (2.11 - 2.14) leads to 

. an optimal solution to the original integer programming problem 

(2.8 - 2.10). The answer would be yes if the following 

cohditions were true for an optimal solution to this assignment . 

problem: 

X 
ii 

10, i =l,...,L ? (2.15) 

X 
ij = x.., i,j = 1,. - l , L ? ’ (2.16) 

J1 

For, if these conditions were satisfied, then as a result of the 

symmetry in both the cij '9 and Xij ‘9, the subset of the optimal 

xijf3 for the assignment problem for which i<j would satisfy 

(2.10) and the corresponding value of (2.8) would be l/2 the 

value of (2.11). Furthermore, the set Xij, i<j minimizes (2.8) 

subject to (2.91, (2.101, since if xij , i<.l , also satisfied 

(2.91, (2.10) and if we let xij=xii for i>j, xii=O, then the 
. 

entire set of xij '9 would satisfy (2.12 - 2.14) with 

, 1 , 

i!j 

1 
‘ij’ij = 2 iFjcijxij ’ Z i!j ‘ij’ij = i!j ‘ij’ij l 

i<j 
i<j 

Thus the value of (2.8) for X’ 
ij ’ 

i<j is not less than (2.8) for 



the set xi,, i<j.. 

Now (2.15) always holds if M is set sufficiently large. For 

example, any M > L'maXICij. *i<j) would certainly suffice. 

One might believe that (2.16) also always holds since 

cU'cji 
for all i,j. However, this is false, as is established 

by the following counterexample. Let ~36 and take 

'ij 
= 0, if i,jS;3 or i,jZ4, i*j, 

> 0, otherwise, 

that is Cij =0 for all elements of the array in the upper left or 

lower right quadrants of the array that are not on the main 

dpagonal. Then the following set of xij'3 satisfies (2.12 - 

2.14) and yields a value of 0 for (2.111, and hence is an optimal 

solution to the assignment problem: 

X12-X 23-3, =~~5’~5fj’~64=~, 

xij=O for all other i,j. 

Clearly this solution does not satisfy (2.16). Nor are there any 

other feasible solutions to this problem for whic'h (2.16) holds 

and (2.11) is 0. To see why, observe that if a set of x. 
1J 

'3 is a 

feasible solution to (2.11 - 2.14) and if x,~-x~,-~ then x3j=1 

for j-4,5 or 6 and-hence (2.11) would be positive. Similiarly, 

any other feasible solution to this assignment problem for which 

xU'xji 
-1 for some i,j with Cija0, immediately forces x 

iljl 
- 1 

for some i,,j, for which ci,j, >o. 

Although an optimal solution to (2.11 - 2.14) doea not in 

general lead to an optimal solution to (2.8 - 2.101, it i3 



believed that a nearly optimal solution can generally be obtained 

in an efficient manner by combining both of these problems as 

follow3. First obtain an optimal solution to the assignment 

problem and let S, denote the set of strata i for which there 

exists a j satisfying x..=x..=l, 
15 J1 

while the set of all remaining 

strata is denoted by S2. The pairing for the strata in S, is 

defined by this optimal solution to the assignment problem, that 

is, the i-th and j-th strata are paired if Xij'Xji'l. If S2 is 

sufficiently small then the elements in it can be paired by 

obtaining an optimal solution to a problem like (2.8 - 2.101, but 

with S2 no.w viewed as the set of all strata. If s2 is still too 
* 

large for this purpose, it can be partitioned into a collection - 

of say t subsets S2,,...,S2t, such that each such subset S2k 

contain3 an even number of elements; each S2k is small enough to 

efficiently obtain a solution to (2.8 7 2.10) with S2k viewed as 

the set of all strata: and strata 1 and j are in the same S2k if 

either xij=l or Xji'1 in the optimal solution to the assignment 

problem, provided this last requirement can be met without any of 

the S2k becoming too large. (The rationale for grouping strata 

i,j for which either xij-1 or xji-1 in the same S2k is that such 

a grouping tends to put together pairs of strata which would have 

a small contribution to the bias of the variance estimator.) The 

elements of s2k are then paired by the optimal solution of (2.8 - 

2.10) restricted to S2k. 

The procedure just described results in an optimal pairing 

of strata in S, and either an optimal pairing of strata in S2 or, 

if S2 is partitioned, an optimal pairing of strata in each of the 
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s2k’s. Hbwever, it is not necessarily an optimal pairing for the 

entire set of L strata, since such a pairing may require that a 

stratum in one subset be paired with a stratum in another. 

Although it does not in general yield an optimal solution, it is 

believed that this approach would provide a good approximate 

solution in an efficient manner. 

Remark: All of the preceding work has been with respect to 

a single characteristic Y. Since, as a practical matter, the 

same collapsing would generally be used for variance estimates 

for all characteristics, the collapsing criteria could be taken 

to be the minimization of the weighted average of the biases of 

tG variance estimator for several key characteristics instead of. 

the bias of a single charact’eristic, .that is, 

’ ‘k 
k 

Bias j(Yk), (2.17) 

,x 
where Yk is an unbiased estimator of Yk’ If all of these 

characteristics are considered of equal importance then wk would 

be some value that would serve as a scaling factor. (One 

possible scaling factor is presented in the example below.) If 

some variables are more important than others, then wk could be 

taken to be something greater than the corresponding scaling 

factor for the more important variables and less than the scaling 

factor for the less important variables. 

IllUStratiVe ExamDle 

The present design of the Current Population Survey (CPS) is 

used to illustrate this work. This survey has a one PSU per 

stratum design with 379 nonself-representing strata. (There are 



11 

also self--representing strata that are not subject to a collapsed 

strata procedure since there is no between PSU variance for such 

strata). Because L is odd, one stratum was arbitrarily dropped 

for this illustration. After the remaining 378 strata are 

paired, the discarded stratum could then be grouped with one of 

the 189 pairs resulting in 188 pairs and one groip of three 

strata. The pair that this strata is grouped with could be 

chosen to minimize the bias of the total collapsing by computing 

the bias for each of the 189 possible such groupings that could 

be created and choosing the grouping with smallest bias. 

The comparison criterion is the value of (2.17) where the 
I 

eight characteristics used were 

Unemployed, Total Civilian Labor Force, Total 

Black * Black 

Hispanic Hispanic 

Teenage (16-19) Agriculture Employment 

To obtain wk, a random pairing was first selected and then for 

each k, wk was taken to be (1/8)Bias i(ik) corresponding to the 

random pairing. The minimization of the objective function with 

this wk amounts to obtaining a particular pairing for which the 

average, over the eight characteristics, of the ratio of the bias 

for this pairing to the bias for the random pairing is minimized. 

For each k, Bias i(Yk) was computed separately for the cases 

(i) and (ii>, defined earlier, both for obtaining wk and then for 

computing the objective function. For case (11, (2.5) was of 
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course us&d in this computation while for case (ii), the second 

term only of (2.4) was used to obtain Bias icy,). 1980 census 

data was used for all computations. In case (i), the procedure 

resulted in sets S, and S2 containing 316 and 62 strata 

respectively. S2 was partitioned into 3 subsets. S2,, S22, S23 

S2 

oned in 

consisting of 18, 20 and 24 strata. In case (iij, S, and 

contained 278 and 100 strata respectively. S2 was partit 

case (ii) into 4 sets of 26, 26, 24 and 24 strata. (The 

assignment problems were solved with software written by 

. Fagan, while Sperry’s Functional Mathematical Programming 

was used to solve the integer programming problems.) 
* 

James 

System 

The value of the objective function (2.8) corresponding to . 

the final pairing obtained from this.procedure for each case is 

presented in the first column of numbers in Table 2.1. The 

numbers in columns 2 - 4 provide an in\ication of the 

effectiveness of this procedure. Each value in the second column 

is l/2 the corresponding minimum value of the assignment problem 

(2.11 - 2.141, which is a lower bound on the minimum value for 

the integer programming problem (2.8 - 2.10). The numbers in the 

third column are the values of (2.8) corresponding to a pairing 

by strata size, that is with the strata ordered in increasing 

size based on 1980 population, and the smallest stratum paired 

with the next smallest stratum, etc. The fourth column presents 

the values of (2.8) averaged over 10 random pairings independent 

of the random pairing used in computing the wk’3* The fact that 

this number is reasonably close to 1 in both cases provides an 

indication that results similar to these in this table would be 
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expected if some. other random pairing had been used to compute 

the Wk13. The table indicates that the procedure described in 

this section yields, for this set of data, a pairing with a bias 

reasonably close to optimal, and substantially below that 

obtained by either random pairings or pairings by strata size. 

As previously noted, the biases of the variance estimator 

for any pairing change over time. Since a pairing for the 

current design of the CPS would be based on 1980 census data, but 

might be used for a time span that roughly averages 10 years away 

from 1980, it would be instructive to consider the bias of the 

variance estimator for the pairings used in constructing Table 

2.7 with 1990 census data substituted for 1980 census data. 

Since 1990 data is not available, 1970 data was used instead on 

the assumption that the results from going backwards a decade 

would be indicative of the results going forwards a decade. The * 

results are presented in Table 2.2. Column3 1, 3 and 4 of this 

table were obtained by using the same pairings as for the 

corresponding entries in Table’ 2.1, but with 1970 census data 

substituted for 1980 data. Column 2 was obtained by minimizing 

the assignment problem (2.11 - 2.14) with 1970 census data and 

multiplying the result by l/2 to get a lower bound on the bias of 

the variance estimator for 1970. The table indicates that while 

the bias reduction deteriorates over time, as would be expected, 

it is still substantial for this set of data after 10 years. 
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-Table 2.1 Bias Measure with 1980 Census Data 

Mathematical Lower Bound Pairing by Average of 
Programming on Optimal Strata 10 Random 
Pairing Solution Size Pairing3 

Agh = 1 . 0620 . 0462 . 6455 1.0522 

Agh = POP .0582 . 0468 1 .3987 1.0551 

Table 2.2 Bias Measure with 1970 Census Data, but same 

Pairings as Table 2.1 

Mathematical Lower Bound Pairing by Average of 
* Programming on Optimal Strata 10 Random 

Pairing Solution Size Pairing3 

Agh = 1 .I134 . 0489 .6613 1.0499 

Agh = POP .1874 .0428 1.3226 1.0545 
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3. AN UNBI’ASED ESTIMATOR OF VARIANCE WITH INCREASED PRECISION 

FOR MULTI-STAGE WITHOUT REPLACEMENT SAMPLING 

The standard estimator of variance for n(L2) PSU’s per 

stratum, multi-stage designs, with the PSU’s chosen without 

replacement, as presented in Raj (1968), can itself have a large 

variance. In this section an alternative unbiased variance 

estimator is developed for the case n=2 that will in general have 

greater precision. 

We proceed to explain this problem in detail. The variance 

w estimator in Raj (1968) will first be presented. All expressions 

will be given in the special case of a single stratum, since the 

ge*neralization to more than one stratum is routine. 

The following notation .will be used. Let 7ri be the 

probability that the i-th PSU is in a sample of n PSU’s out 

of N, 
and let =u 

be the probability that both the i-th and 
. 

j-th PSU’s are in sample. Let ii be an unbiased estimator of 

the i-th PSU total, Yi’ based on sampling at the second and 

2 
subsequent stages, with V(y,li) - ui, A 2 and let ai denote an 

unbiased estimator of 
2 

u 1’ 
Then an unbiased estimator of the 

population total Y is given by 

with 

N 
2 

V(i) - c (n Il.-m 
yi 

i,j lJ 

yJ 2 + ; 2, ij I(;-- - n-1 
i j i-l 'i 

i<j 

(3.1) 

A 

and an unbiased estimator i(Y) of V(i) given by 
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A 
^2 

i(i) = ; (--- 
YI -Y n 

“i”L2LL)(-i A)2 + 1 “L , 

i ,J 
71 

ij 
71 

i 3 i-1 ‘1 

i<j 

(3.2) 

The focus of this section will be on reducing the 

contribution to the variance of (3.2) that arises from the 

factor (a.lr -71 lj ij 
I/n 

ij ’ 
which from now on will be abbreviated by 

d ij * Although dij is nonnegative for procedures to select PSU’s 

such as the procedure of Brewer (1963) and Durbin (1967) for n-2 

and its generalization for n>2 by Sampford (19671, dij in general 
w 

does not have any upper bound and its variability can result in 

anWundesirably large variance of (3.2). 

To understand what can be done to alleviate this problem, 

first observe what each of the terms’of (3.2) estimates. From 

the proof given in Raj (1968, Theorem 6.3) it follows that 

n yi 
EC Z dij+ - 

i ,j 1 =j i,J 
(nil-n > 

ij ij 

Y f U2 
yj)2 + ; (1-n ) i -- - -- 

II 
i ‘j i-1 i <’ 

i<j i<j 

while 
-A 
2 

EC 2 2) a “c a2 
i-l =i i-l i 

. 

Thus the expected value of the first term in (3.2) is the entire 

first term in (3.1)‘ (the between PSU variance > Plus part of the 

second term (the within PSU variance), while the expected value 

of the second term in (3.2) is the remainder of the within PSU 

variance. 

A superior alternative to estimating the between PSU 

variance by the first term in (3.2) does not appear to exist. 
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A 
However, a general class of unbiased estimators of V(Y) exists, 

which includes (3.21, from which a specific estimator can be 

chosen that reduces the variability associated with the 

estimation of the within PSU variance. This class of estimators 

has the form 

‘k 
ij 

i<j 

(3.3) 

where the kij ‘3 are constants. (It is understood that i=j is 

excluded from the second summation in (3.3) and in all other w 

expressions in this section.) Note that (3.2) is a special case 

of*(3.3) with k 
ij 

- ri/(n-1 1, and that in general k * k 
ij ji’ 

Furthermore, in order for (3.3) to be an unbiased estimator of 

(3.1) restrictions must be placed on the kijts. To establish 

what these restrictions are, note that the expected value of 

(3.3) conditioned on the specific set df sample PSU’s is 

n Y. 
Cd. +--> ‘L2+; (d 

2 
U. 

i,j ‘j ‘1 “j i,j lJ 
+ kij) -$ ; 

i<.l 
“1 

(3.4) 

consequently, 

E[jk &I 
N yi - E (“i”j-llijH,- - 2)2 + ; 

U2 

’ 
f 

ij 1 SJ 1 2 i#J 
ijtdij+ kij) (3.5) 

i<j - 

Comparison of (3.5) with (3.1) shows that (3.3) is an unbiased 

estimator of V(i) if and only if 

N 
E nij(dij + kij) - “i , i-l , . . . N. 
j 

(3.6) 

Furthermore, since by the proof in Raj (1968, Theorem 6.3) 
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N .’ 
-d 

2 
Z Tij ij = ‘1 - ‘1’ i=l t l - l * N, 
j 

(3.6) can be rewritten in the alternate form 

N 2 
c ?T i=l,...,N . 
j 

ijkij = ys 

(3.7) 

(3.8) 

Although (3.8) is clkarsly satisfied by k 
ij 

7 lQ/(n-l), 

the (d + k 
ij 

ij)‘3 can be quite variable for fixed i with this set 

of kijts because of the variability in the dij ‘3. An alternate 

set of kij ‘9 which clearly satisfies (3.6) and completely removes 

the variability of the (dij + kij)‘s is given by 

k 
I 

* 
ij ‘n-7 - dij* (3.9) 

However, since dij can exceed l/(n-11, (3.9) can be negative for 

some i,j’s and negative estimates of variance can result. To 

avoid this possibility, a second set of constraints on the k..‘s, 1J 

k 
ij 2 0, i,j-1 ,..., N, i*j (3.10) 

is added to (3.61, and the set of kij’s defined by (3.q) will not 

be considered further in unmodified form. 

One method of modifying (3.9) to satisfy (3.10) is to let 

1 1 
kij - n-i 

- dij if dij < ci 9 

- 0 otherwise. 

(3.11) 

This method was suggested by Robert Fay of the Bureau of the 

Census (personal communication). However, this set of kijV3 does 

not in general satisfy (3.6) and consequently yields a biased 

variance estimator. 

From now on, we consider only the case where n=2 and present 
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what i3 the major focus Of this section, a Set of kij '9 which 

satisfies (3.61, (3.10) and which for each i minimizes the 

deviation of dij + kij from 1 in the sense that for each p > 1, 

N 
E(ldij+kij-l[' : i is in sample) = Z II :i.i 1 d 

ij 
+ k. 

1.j 
- 1p (3.12) 

j i 

is minimized subject to (3.61, (3.10). (The expectation in 

(3.12) is with respect to the other sample PSU j.) Deviations 

from 1 are considered because it follows from (3.6) that for 

fixed i this is the expected value of dij + kij given that the 

w i-th PSU is in sample. To define this set of kijls for fixed 1, 

we first relabel the sequence dil,...,di(i-f),di(i+l)‘““diN to 

tr*ansform it into a nondecreasing sequence. Then let 

N 
ri - I: 

a 
ij = 

t=J+l 
Titdit 

------a -a------ 
J 

, i,j=l ,..., N, i*j. (3.13) 

' 'it 
t-1 

. 

Next, let mi be the largest integer for which dim < aim , and 
1 i 

finally, let 

kij = aimi-dij if jSmi, 

(3.14) 

- 0 otherwise. 

Roughly, the mbtivation for (3.11) is that for each i, 

dij + kij becomes a constant function of j except for those j 

which would require a negative k ij to accomplish this. In fact, 

if dij 5 1 for all i,j, it can be shown that aimi = ’ for a11 i9 

mi = N for i*N, mN - N-l, and (3.14) then reduces to (3.9) with 

n=2. 
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We proceed to establish that the kij '3 satisfy the stated 

conditions, that is (3.6) and (3.10) are satisfied and (3.12) is 

minimized subject to these constraints. However, in order for mi 

and hence (3.14) to be well defined it first must be shown that 

the set of j’s for which dij < aij is nonempty for each i. To 

prove this for i+l, we establish that dil < ails, that is 

N 
E(nn-7r 1 “1’1’ '11 < ‘i - J=2 ---me---- ----w 1 i iJ ------ ---- -. 

-IT 
il =i1 

N 
This is equivalent to showing that 1 (n.n - IT 

1 J 
ij) < IT., which 

j 
1 

follows immediately from (3.7). Similarly, for i-l it can be 

smwn that d12 < a12. 

Now (3.6) follows, since by (3.13), (3.14), 

N mi 
N 

E II 
j=l 

ij(dij+ kij 1 = aim ( C nij) + Z 
i j-l j-rfli+l 

nijdij 

N N 
I (a - E 

1 
II 

ijdij > + E 
j=mi+l 

‘ijdij = 'II., 
jami+ 

1 

while (3.10) is immediate because 

kiJ a aimi- dijL aimi - dim 
1 

1 0 for j 4 ml. 

TO show that (-3.14) minimizes (3.12) subject to (3.6) and 

(3.10), again consider i as fixed and view the problem (3.121, 

(3.6), (3.10), as an optimization problem in the variables kij, 

j=l,...,N. Now an optimal solution to this problem may contain 

some j’s for which kij - 0, this is the lower bound for the 

variables. Let S - Ij: k 
ij 

>O}. A minimum value for the problem 

(3.12), (3.6), (3.10) conditioned on S, can be obtained by first 
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minimizing 

x k d. .+ kij- 11’ -- I 
ji5.S ‘i lJ 

subject to 

Za..k.. ==;, - 
jEs 1J 1J 

which i3 equivalent to (3.8) and hence (3.6). 

(3.15) 

The method of Lagrange multipliers yields the unique set of kijfs 

for which 

d + k 
ij ij 

are the same for all jcS (3.16) 

* 

and (3.15) is satisfied, as the only candidate for a minimum 

conditioned on S. Provided this set. of kij’S also satisfies 

kij’0 for jcS, this will be the conditional minimum, while if 

not, there will be no feasible solutioq to (3.121, (3.61, (3.10) 

corresponding to that S. 

Let So- 11 , l l l , ml)-Ill. Corresponding to S-So, the set of 

kij’3 satisfying (3.15) and (3.16) for jcSo, kij’0 otherwise, is 

precisely the set given by (3.14). Consequently, it remain3 to 

show that corresponding to any other S, the set of kij’S 

determined by (3.15) and (3.16) yields no feasible solution with 

lower value of (3.12). To do this we first consider the 

case SocS and let t be the largest element in S. Then, by 

(3.61, 

tdit+ kit) z ‘Qj + C Tijdij - 71.. 
J ES J Ifs 

1 (3.17) 
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Furthermore, 

d 
it 

E T. .+ E lTi 
jES lJ jLS 

since di(m.+,) L ailm i+l> it follows that 
1 

jdi 

m. +1 
.1 d 

i(mi+l). 
i’ 

J 
J=l 

yj+ i 
j=mi+2 

nijdij L ~~~ (3.18) 

(If mi+l=i 9 substitute mi+2 for ml+1 in the previous sentence.) 

Comparing (3.17) and (3.18) it follows that kit 5 0, which 

contradicts the definition of S. Consequently, there is no 

feasible solution to (3.12), (3.61, (3.10) if S,CS. 

Now consider any S for which S,C S does not hold. Let k* 
ij 

be the optimal solution conditioned on S, and choose 
* 

jp s 0 
- S, j2cS. Then 

* * 
k 

ij , 

a d < d. + k.. l 

ij, lj2 lJ2 

This is because, either S C S, , in which case 
U 

* 
d 

ij, 
< aim s d 

1 U 2 + ku2 

or S-So s 0, in which case for any j3c S-So, 

* 

dijls dij3< dij2+ kij2 * 

Next consider the function 

=u 1 =u -- ldij + ku, -1 Ip' --2 ldij + 
II. 

kij -lip, 
1 1 =i 2 2 

subject to the constraint 

* 

‘ij lkij 1 + ‘ij2kij2 a ‘ij2kij2* 

(3.19) 

(3.20) 

(3.21) 
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By solving (3.21 
) for kij2 

in terms of k 

result in (3.20), one obtains a function 

: . 
lJ1 

substituting the 

of k.. 
lJ 1 

only. The first 

derivative of this function is negative when k.. =0 because of 
lJ1 

(3.19), and the function is consequently decreasing for k.. 
‘Jl 

** ** 
sufficiently small. Therefore, if k ,k.. 

ij, 15~ 
satisfies 

(3.211, k;; 
** * 

is sufficiently small and positive, and k..=k 
1 iJ ij 

for 

all j's other than j, and j,, then the k ;;?a satisfy (3.61, 

(3.10) and yield a lower value for (3.12) than the kFjts. This 

shows that if S * S 
0 ’ 

then no set of kij’S for which kij-0 

for j.tfS will be an optimal solution to (3.121, (3.61, (3.101, and 

thi set of k ij'9 defined by (3.12) must be optimal. 

Illustrative Example 

We will compare numerically our va;riance estimator, defined 

by (3.3)s (3.14), with two other estimators previously described, 

the method given in Raj (1968) and defined by (3.2), and the 

estimator suggested by Fay and defined by (3.31, (3.11). These 

three variance estimators will be referred to as the conditional 

unbiased (CU>, unconditional unbiased (VU), and conditional 

biased (CB) estimators respectively. ("Conditional" indicates 

that kij is conditioned on j.> 

The survey used in the comparison was the original 1980 

census based design for the Survey of Income and Program 

Participation (SIPP). (A sample cut took place before this 

design was ever implemented in which some sample PSU’s were 

dropped, but this cut is not considered here.) There were 95 
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strata in-that design from which two PSU’s were selected without 

replacement. There were also 91 self-representing strata and 

eight nonself-representing strata from which one PSU was selected 

per stratum which will not be considered in this example. 

The comparison criterion will be one component of the 

squared error of (3.31, namely the MSE of the second term in 

(3.41, which we denote by W, that is 

2 2 
ui 

W = (d + k ) -2 + (dij+ kji ij ij 
*i =j 

where 1 and j are the sample PSU’s. To simplify our 

computations, it will be assumed that u: is proportional 

to Tf . Furthermore, since the compari,son would not be affected 

by the constant of proportionality, we take 0:1=:-l for all i, 

and thus W reduces to 

W-2d +k 
ij ij + kji* 

Now from (3.6) it follows that 

N 
E(W) -q-2 

1 

for the CU and UU procedures, which is also the value for the 

second term in (3.2). For the CB procedure we have 

E(W) 
aiT, “id 

max {dij ,l I. 

Furthermore, for all three procedures 
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N 
V(W) = z 

i *j 
‘ij 

(2dij+ kij+ kji)* - E(Wj2. 

i<j 

In addition, for the CB procedure only 

Bias W = E(W) - 2, - 

(3.22) 

(3.23) 

while Bias W-O for the other two procedures. 

One modification of this work was necessary. In the actual 

selection of PSU’s for SIPP, some small PSU’s were combined to 

form a l’rotation cluster” in 18 of the strata. In computing the 

joint probabilities, the cluster was initially treated as a 

s;ngle PSU. If the cluster was selected, then at any time during - 

the life of the design one of the PSU’s in the cluster would be 

in sample with probability proportional to size. (This was done 

because a new sample is chosen from the sample PSU’s each year. 

For small PSU’s there is not enough distinct ultimate sampling 

units to last the life of the design. PSU’s in a cluster can be 

rotated in and out of sample to avoid this problem. See 

Alexander, Ernst and Haas (1982) for more details.) As a result 

of this procedure “ij =0 if PSU’s i and j are both in the rotation 

cluster, and unbiased estimators of variance are no longer 

possible. To obtain a class of estimators constructed with the 

goal of being approximately unbiased, the following modif ications 

were made to (3.3) and (3.6). Let T={(i,j):i or j are not in the 

rotation Clusters, Ti={j:(i,j) e T}, 
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z (A 71 -71. .I 
(i,j)eT i j iJ 

* 
and d 

ij 
=fdij, (i,j) E T. Then modify, (3.3), (3.6), by 

* 
substituting d.. for d 

iJ 
ij in these expressions, and only summing 

over j eTi. (The f factor is to compensate for the fact that the 

modified first term in (3.3) is a summation only over 

(i,j) E T.) These same substitutions in (3.11) and (3.14) are 

used to modify the CB and CU procedures. As for the UU 

. procedure, k 
ij’ “i 

would not satisfy the modified (3.6), since 

* 2 * ‘Ilijdij * lY=i 

in general. Instead, take 

* 
IT.’ c 

k 
’ jaTi 

‘ijdij 

ij = 
-------------------- . 

*i 
(3.24) 

It should also be noted that for some i it is possible that 

* 
x ‘ijdij > vi’ 

jETi _ 
in which case no nonnegative set of kij7s could 

satisf.y the modified (3.6). In particular (3.24) would be 

* 
negative and CU would not be defined since d. >a. 

1J 1J 
for all jeTi. 

This problem arose In only 1 of the 95 strata under consideration 

in this illustration and that stratum was dropped from the 

example. 

For each of the remaining 94 strata, V(W) was computed for 

all three methods and the resulting values summed over the 94 

strata to obtain the first column of Table 3.1. Similarly, for 

the UB procedure, Bias W was computed for each stratum with the 
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sum given-in column 2 of this table. Finally, MSE, that is the 

sum of column 1 and the square of column 2, is presented for each 

of these three procedures in column 3. 

TABLE 3.1 

COMPARISON OF THREE VARIANCE ESTIMATORS ON SIPP DATA 

Procedure Variance Bias MSE 

cu 11.6168 0 11.6168 

w uu 20.2374 0 20.2374 

CB 8.2359 4.8941 32.1877 

* 

Thus for this particular design, MSE is smallest for the CU 

procedure. 
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