BUREAU OF THE CENSUS STATISTICAL RESEARCH DIVISION REPORT SERIES
SRD Research Report Number: CENSUS/SRD/RR-86-09
REPORT ON THE IMPUTATION RESEARCH FOR THE MONTHLY RETAIL TRADE SURVEY
by
Elizabeth T. Huang
Statistical Research Division
Bureau of the Census
Room 3524, F.O.B. \#3
Washington, D.C. 20233 U.S.A.

This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The views reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy of practice. Inquiries may be addressed to the authors(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.

Recommended by: Nash Monsour
Report completed: February 26, 1986
Report issued: February 26, 1986

Attachment

Distribution List
J. Garrett (BUS)
C. Konschnik (BUS)
K. Wolter
N. Monsour
(SRD)
C. Isaki
(SRD)

Report on the Imputation Research for the Monthly Retail Trade Survey

by
Elizabeth T. Huang
Statistical Research Division
Bureau of the Census

February 1986

The bias of the estimated totals using different ratio type imputation procedures was examined under models and a Monte Carlo study. In addition the mean square error was computed in the Monte Carlo study.

The current imputation procedure for estimating current month sales is $p \xi$ - unbiased under the ratio model with model variance either proportional to the previous month sales or to the square of the sales.

Under the assumption that the data are missing at random, the bias and MSE for estimating total current month sales from the given data by using different ratio and regression imputation procedures were derived. An optimum ratio imputation procedure was also derived. The reported data for 9 SIC's of the 1982 Monthly Retail Trade Survey were used for the Monte Carlo study.

The results of the Monte Carlo study showed that the current ratio imputation procedure is competitive with the optimum ratio procedure and better than other comparable procedures studied. Under the current ratio imputation procedure, a better set of imputation cells can be formed by using sales quantiles as cutoffs within groups as opposed to the current procedure that uses fixed sales cutoffs. For example, the decrease in MSE in 6 of 9 SIC's ranges from 12% to 59% by using $1 / 8$ quantiles. We recommend that changes in the current imputation cell definitions be considered.

Table of Contents

Page
I. Introduction. 1
II. Examining the Trend, and Error Variance of the Ratio Models Under Alternative Imputation Cell Definitions. 1
III. Examining the Error Variance of the Weighted Ratio Models. 4
IV. Properties of the Estimated Total or Trend Using the Current Imputation Procedure Under Models A or B and the Current Sampling Design 6
A. $\mathrm{p} \xi$ - Unbiasedness Criterion of the Estimated Total. 8

- B. Incomplete Data Bias Criterion of the Estimated Total. 11
C. Incomplete Data, Bias of Trend Under Models A or B 12
D. Variance of the Estimated Total Under Models A or B. 13
V. Monte Carlo Study 17
VI. Summary 34
VII. Acknowledgement 36
VIII. References. 37
IX. Tables 38

Report on the Imputation Research for the Monthly Retail Trade Survey

I. Introduction

In a previous study (Huang (1984)), we examined and evaluated the current imputation procedures and made recommendations on possible ways to improve them given the current methodology. In this study, we followed up some of the recommendations. We examined different alternative imputation cell definitions and some alternative criteria to evaluate different imputation procedures for the same data set previously used.

II. Examining the Trend, and Error Variance of the Ratio Models Under

Alternative Imputation Cell Definitions

In Huang (1984), the Retail Trade Survey data - December 1982 - SIC 562 were examined under the current imputation cell definition (group size (I, II) x previous month sales size ($\$ 50,000$ cutoff)). It was concluded that for each imputation cell of the reported data, the error variance of the linear regression model of the current month sales (y) with the previous month sales (x) was approximately $x^{2} \sigma^{2}$ instead of $x \sigma^{2}$ (where x denotes the previous month sales). In the present study, we investigated six alternative imputation cells definitions to determine whether or not the reported data of each imputation cell conform more closely to imputation model A or to B, where

$$
\begin{array}{ll}
\text { Model } A: & y=R x+e, e-\left(0, x^{2} \sigma^{2}\right) \\
\text { Model } B: & y=R x+e, e-\left(0, x \sigma^{2}\right) \tag{2.2}
\end{array}
$$

where e_{i} and e_{j} are independent for $i \neq j$.

The least squares estimators of R under models A and B using n_{r} reported units are $\left(n_{r}\right)^{-1} \sum_{i} y_{i} / x_{i}$ and $\sum_{i} y_{i} / \sum_{i} x_{i}$, respectively; and $\left(\Sigma w_{i}\right)^{-1}\left(\Sigma w_{i}\left(y_{i} / x_{i}\right)\right)$ and $\Sigma w_{i} y_{i} / \Sigma w_{i} x_{i}$, respectively when sampling weights w_{i} are used. Note that if $1 / w_{i}=c x_{i} / \Sigma x_{i}, c$ is a constant, then the estimator $\sum w_{i} y_{i} / \Sigma w_{i} x_{i}$ reduces to $\left(n_{r}\right)^{\frac{1}{1}} \sum y_{i} / x_{i}$.

The six alternative imputation cells are

1) SIC x group size x sales size (use median as cutoff)
2) SIC x group size x sales size (use $1 / 4$ or $1 / 8$ quantiles as cutoff)
3) SIC x SMSA x group size
4) SIC x geographic division
5) SIC x firm size x sales size (use median as cutoff)
6) SIC x region x sales size (use median as cutoff)

Another imputation cell definition, SIC x firm size x region x sales size, was also considered initially. However, since the number in each cell was not large enough, we omitted this alternative from further consideration. See Table II. 11.

The statistics of reported data calculated for each imputation cell are mainly the error variance parameters (λ, p), the trend R estimated by four ratio estimation procedures. $\quad\left(R^{(1)}=\sum W_{i} y_{i} / \sum W_{i} x_{i}, R^{(2)}=\sum y_{i} / \Sigma x_{i}\right.$, $\left.R^{(3)}=\Sigma w_{i}\left(y_{i} / x_{i}\right) / \Sigma w_{i}\right), R^{(4)}=\left(1 / n_{r}\right) \Sigma\left(y_{i} / x_{i}\right)$, and the simple correlation coefficient r between the current month sales y and the previous month sales (x). See Tables II. 1 -II. 10. In preparing the estimation of (λ, p), the reported list sample data of SIC 562 of the December 1982 Retail Trade Survey for each imputation cell were sorted by the previous month sales and then
grouped with generally 20 units (sometimes 10,7 , or 5 units) in each class. The class variances of y and the means of x were $f i t t e d$ by least squares using a 108 transformation of the following equation
$\left(s_{y}^{2}\right)_{i}=\lambda \bar{x}_{i}^{\rho}, i=1, \ldots, k$.
i.e., $\log \left(s_{y}^{2}\right)_{i}=\log \lambda+\rho \log \bar{x}_{i}$.
where k is the number of groups.
The outliers from regression and the number of establishments in each group have a definite effect on all statistics calculated. For the alternative imputation cell definition (SIC x group size x sales size) using median sales or $1 / 4$ or $1 / 8$ quantile sales will ensure an approximately equal number of establishments in each imputation cell. To examine the effects of using different quantile sales as sales cutoffs, group II data from SIC 562 December 1982 were used. The correlation coefficients appear to be decreasing function of the number of quantiles. The correlation coefficients of current month sales with previous month sales using $1 / 8$ quantiles sales as cutoffs are much smaller than using $1 / 4$ quantiles as sales size cutoffs (see Table II.3), and the correlations using $1 / 4$ quantiles sales are smaller than using the median. Also, outliers have more impact on all statistics calculated when fewer establishments are in the imputation cell. In the particular imputation cell of group $2 x$ sales size $[1 / 8$ quantile, $1 / 4$ quantile], there are 12 units with the same reported values after deleting one outlier $(x, y)=(\$ 25,043$, $\$ 162,257$). Using 7 units or 10 units to form groups, there is always one group with the same reported values and hence zero group variance. This
affects the estimates of λ and ρ. In Table II. 3 , the parameter ρ calculated after deleting outliers ranges from 0.2028 to 2.7172 when $1 / 8$ quantile sales are used as cutoffs. Using regions, SMSA's or geographic divisions as imputation cells (see Tables II. $4,5,9$), the correlations between current month sales (y) and previous month sales (x) are fairly high for most imputation cells and ρ 's are nearer to 2 than to 1 . From the criterion we used - the estimated $\rho^{\prime} s$, it seems that most of the data within the cells conform more closely to model A than B. Using quantiles within Group II, firm sizes and regions, some of the cell's data conform more to model B than A. (See Tables II. $2 \& 3$, Tables II. $6,7, \& 8$, and Tables II. $9 \& 10$).

III. Examining the Error Variance of the Weighted Ratio Models

As mentioned before, the least squares estimate of R of model B is $\sum_{i} y_{i} / \Sigma x_{i}$, and not $\sum w_{i} y_{i} / \Sigma w_{i} x_{i}$, where w_{i} is the sampling weight. In the following, we study 4 ratio models that use weighted data and which are distinguished by their model variances.

The imputation model is
$\frac{y_{i}}{\pi_{i}}=R \frac{x_{i}}{\pi_{i}}+e_{i}, e_{i}-\left(0, v_{i}\right), i=1, \ldots, n$
where π_{i} is the sampling inclusion probability, the sampling weight w_{i} is the inversion of π_{i}, and the model variances v_{i} are defined as follows:

$$
\begin{equation*}
\text { 1. } v_{i}=\sigma^{2} x_{i} / \pi i \tag{2.5}
\end{equation*}
$$

2. $v_{i}=\sigma^{2} x_{i}^{2} / \pi_{i}$,
3. $v_{i}=\sigma^{2} x_{i}^{2} / \pi_{i}^{2}$,
4. $v_{i}=\sigma^{2} x_{i} / \pi_{i}^{2}$.

The least squares estimates of R of the above models using n_{r} reported units are

$$
\text { 1. } \hat{R}=\left(\underset{i}{\pi_{i}}\right) /\left(\Sigma \frac{x_{i}}{\pi_{i}}\right) \text {, }
$$

2. $\hat{R}=\left(\sum_{i} \frac{1}{\pi_{i}} \frac{y_{i}}{x_{i}}\right) /\left(\underset{i}{\pi_{i}}\right)$,
3. $\hat{R}=\frac{1}{n_{r}} \sum_{i=1}^{n}\left(y_{i} / x_{i}\right)$,
4. $\hat{R}=\left(\underset{i}{ } y_{i}\right) /\left(\underset{i}{i} x_{i}\right)$
respectively.
The ratio of identicals of the reported data of the current imputation procedure is of the form $\left(\underset{i}{ } \frac{y_{i}}{\pi_{i}}\right) /\left(\sum \frac{x_{i}}{\pi_{\dot{x}}}\right)$, hence we may argue that the current imputation model is (2.4) with $v_{i}=\frac{x_{i}}{\pi_{i}} \sigma^{2}$ instead of model B in (2.2). That is, the weighted observations of the current month sales (y) have linear relationship with the weighted observations of the previous month sales (x) with model variance $\left(x_{i} / \pi_{i}\right) \sigma^{2}$. We can rewrite (2.4) and (2.5) as
$y^{\prime}=R x^{\prime}+e, e-\left(0, x^{\prime} \sigma^{2}\right)$
where $y^{\prime}=y / \pi, x^{\prime}=x / \pi$.

Using the same methodology as before, we sorted the weighted data according to x^{\prime}, and calculated (λ, ρ) using weighted data (y^{\prime}, x^{\prime}). Under the current imputation cell definition, the (λ, ρ) 's are tabulated in Table II. 12 for each imputation cell of the monthly data of SIC 562 of December 1982 and February 1983. All ρ 's are closer to 2 than to 1 . If $\pi_{i}=c x_{i} / \sum_{i} x_{i}$ for a constant c, model (2.4) with $v_{i}=\left(x_{i}^{2} / \pi_{i}^{2}\right) \sigma^{2}$ reduces to model A.
IV. Properties of the Estimated Total or Trend Using the Current Imputation Procedure Under Models A or B and the Current Sampling Design

- The current imputation procedure for the missing item y (current month sales) is

$$
\hat{y}=\hat{R} x
$$

where
$\hat{R}=\left(\sum_{i=1}^{n} y_{i} / \pi_{i}\right) /\left(\sum_{i=1}^{n} x_{i} / \pi_{i}\right)$,
x is the previous month sales, and it is assumed that all the x 's are known in the sample, n_{r} is the number of cases with reported data in the sample, and π_{i} is the sampling inclusion probability. The sampling design for the Monthly Retail Trade Survey is a stratified random sampling design.

We investigated the properties of the estimated total where the missing items are imputed by the current procedures under models A or B using the two criteria below.
(1) $p \xi$ - unbiasedness (see Cassel, Sarndal and Wretman (1979)). An estimate \hat{T} is $P \xi$ - unbiased for population parameters I in the nonresponse set up if $E_{\hat{p}} E_{\xi}(\hat{T}-T)=0$, where E_{p} is the expectation with respect to the sampling distribution, and E_{ξ} is the expectation with respect to the model.
(2) Incomplete data bias (Schaible (1979))

When sample data are missing, the incomplete data bias in an estimator $\hat{T}_{n_{1}}$ can be expressed as the total bias in the estimator minus the bias that would occur if the sample were complete. The incomplete data bias for an estimator $\hat{T}_{n_{1}}$ may be defined as

$$
E_{\xi}\left(\hat{T}_{n_{1}}-T\right)-E_{\xi}\left(\hat{T}_{n}-T\right)=E_{\xi}\left(\hat{T}_{n_{1}}-\hat{T}_{n}\right)
$$

where $\hat{T}_{n}\left(\hat{T}_{n_{1}}\right)$ is an estimator of T based on values of Y from $n\left(n_{1}\right)$ units, and $n_{1} \leq n$. The expectation is taken with respect to the superpopulation model of y.

We now show that the estimated total monthly sales by the HorvitzThompson estimator is $p \xi$ - unbiased under models A or B and there is no incomplete data bias when the current imputation procedure, or the alternative ratio imputation procedures are used. The four imputation procedures for imputing the missing items y are $\hat{y}_{i}=\hat{R}^{(j)} x_{i}, j=1, \ldots, 4$, where $\hat{R}^{(j)}$ is as follows:

1. $\quad \hat{R}^{(1)}=\left(\underset{i}{\left.\left(y_{i} / \pi_{i}\right) / \underset{i}{\left(\sum\right.} x_{i} / \pi_{i}\right)}\right.$
2. $\quad \hat{R}^{(2)}=\sum_{i} y_{i} / \sum_{i} x_{i}$
3. $\quad \hat{R}^{(3)}=\left(\sum_{i} \frac{1}{\pi_{i}} \frac{y_{i}}{x_{i}}\right) /\left(\sum_{i} \frac{1}{\pi_{i}}\right)$
4. $\quad \hat{R}^{(4)}=\frac{1}{n_{r}} \sum_{i=1}^{n} r\left(y_{i} / x_{i}\right)$

All summations are over the number of reported units n_{r}.
A. $\quad \mathrm{p} \xi$ - Unbiasedness Criterion of the Estimated Total

When nonresponse occurs, under the current stratified sample design and the current imputation procedure, the estimated total \hat{Y} of monthly sales from all sample units (reported or imputed) by the Horvitz-Thompson estimator is
$\hat{Y}=\sum_{K} \hat{Y}_{k}$
$=\sum_{k} \sum_{h} \frac{1}{\pi_{h}}\left[\sum_{i=1}^{n} k h r_{k h i}+\sum_{i=n_{k h r+1}}^{n_{k h}} \hat{y}_{k h i}\right]$
where
$\hat{\mathbf{Y}}_{k}$ is the estimated total from each imputation cell k,
$\hat{y}_{k h i}=\hat{R}_{k}^{(1)} x_{k h i}$, is the imputed value for missing item $y_{k h i}$, where
$\hat{R}_{k}^{(1)}=\left(\sum_{h i=1}^{\sum_{i}^{n h r}} y_{k h i} / \pi_{h}\right) /\left(\sum_{n} \sum_{i=1}^{n} k h r x_{k h i} / \pi_{n}\right)$,
$n_{k h r}$ is the number of response sampling units in stratum h and imputation cell k, and
π_{h} is the sampling inclusion probability in stratum h.

We'll show \hat{Y} is $p \xi$ - unbiased under models A or B. For each imputation cell k, and stratum h, model B is defined as follows:
$y_{k h i}=R_{k} x_{k h i}+e_{k h i}, e_{k h i}-\left(0, x_{k h i} \sigma^{2}\right)$
$k=1, \ldots, K$,
$h=1, \ldots, H$,
$i=1, \ldots, N_{k h}$.
where
K is the number of imputation cells,
H is the number of strata,
$N_{k h}$ is the number of units in cell k and stratum h.

Note that $E_{\xi_{B}}(\hat{Y}-Y)=\sum_{k}^{K} R_{k}\left(\hat{X}_{k}-X_{k}\right) \neq 0$. i.e., \hat{Y} is not ξ_{B} unbiased.

Under model $B, \quad E_{\xi_{B}}\left(\hat{R}_{k}^{(1)}\right)=R_{k}$, and
$E_{p} E_{\xi_{B}}\left(\hat{Y}_{k}\right)=R_{k} E_{p} \sum_{h} \sum_{i=1}^{n_{k h}} \frac{x_{k h i}}{\pi_{h}}=R_{k} X_{k}$.

Hence
$\left.E_{p} E_{\xi_{B}}(\hat{Y})=E_{p} E_{B} \quad \begin{array}{c}K \\ \left(\Sigma \hat{Y}_{k}\right)\end{array}\right)=\sum_{k}^{K} R_{K} X_{k}$

Now

$$
\begin{aligned}
E_{\xi_{B}}(Y) & =E_{\xi_{B}} \sum_{k} \sum_{h} \sum^{k h} y_{k h i} \\
& =\sum_{k} R_{k} \sum_{k} \sum^{N}{ }^{k h} x_{k h i} \\
& \\
& =\sum_{k} R_{k} X_{k}
\end{aligned}
$$

Hence we have
*

$$
E_{p} E_{\xi_{B}}(\hat{Y}-Y)=0 .
$$

We can also show that \hat{Y} is $p \xi$ - unbiased under model A, where model A is the same as model B except the error variance is $x^{2} \sigma^{2}$ instead of $x \sigma^{2}$. This is because $E_{\xi_{A}}\left(\hat{R}_{k}^{(1)}\right)=R_{k}$, and $E_{p} E_{\xi_{A}}\left(\hat{Y}_{k}\right)=R_{k} X_{k}$.

If alternative imputation ratios are used, for example:

$$
\begin{align*}
& R_{k}^{(2)}=\sum_{n}^{\sum \sum_{i=1}^{n_{k h r}} y_{k h i} / \sum_{n i=1}^{\sum_{k h r}^{k}} x_{k h i},} \tag{3.7}\\
& R_{k}^{(3)}=\underset{n}{\left(\sum_{i} \sum_{k} \frac{1}{\pi_{k}}\right)^{-1} \sum_{n} \sum_{i=1}^{n_{k h r}} \sum_{\pi_{k}}^{\sum_{k h i}} \frac{y_{k h i}}{x_{k h}},} \tag{3.8}
\end{align*}
$$

$$
\begin{equation*}
R_{k}^{(4)}=\left(\sum_{h} n_{k h r}\right)^{-1} \sum_{h} \sum_{i=1}^{n_{k h r}} \frac{y_{k h i}}{x_{k h i}} \tag{3.9}
\end{equation*}
$$

the estimated total \hat{Y} using $\hat{R}_{k}^{(i)} x, i=2,3,4$, to impute missing y, will still
be $p \xi$ - unbiasedness under models A or B, because $\hat{R}_{k}^{(i)}, i=2,3,4$ are model unbiased under models A or B.

If the imputation model is (2.4) with any model error defined in (2.5) (2.8), the estimated total \hat{Y} by using $\hat{R}_{k}^{(i)} x, i=1, \ldots, 4$, is also $p \xi-$ unbiased.
B. Incomplete Data Bias Criterion of the Estimated Total

In the following, Schaible's (1979) incomplete data bias is used to assess the current imputation procedure. Recall, the incomplete data bias in an estimator $\hat{T}_{n_{1}}$ is the bias in the estimator $\hat{T}_{n_{1}}$ minus the bias in the estimator T_{n} that would occur if the sample were complete, i.e.,

$$
E_{\xi}\left(\hat{T}_{n_{1}}-\hat{T}_{n}\right)=E_{\xi}\left(\hat{T}_{n_{1}}-T\right)-E_{\xi}\left(\hat{T}_{n}-T\right)
$$

In the monthly retail trade survey, $\hat{T}_{\mathrm{n}_{1}}$ is the estimated total using all the sample unit values (reported or imputed),
$\hat{T}_{n_{1}}=\sum_{k h^{\prime}} \frac{1}{\pi_{n}}\left[\sum_{i=1}^{n_{k h r}} y_{k h i}+\sum_{i=n_{k h r+1}}^{n_{k h}} \hat{y}_{k h i}\right]$,
where
$\hat{y}_{k h i}=\hat{R}_{k}^{(1)} x_{k h i}$,
$\hat{R}_{k}^{(1)}$ is the ratio estimator defined in (3.5) using reported data,
\hat{T}_{n} is the estimated totals using all sample units as if they were all reported data.
$\hat{T}_{n}=\sum_{k} \sum_{h} \frac{1}{\pi_{h}} \sum_{i=1}^{n_{i n h}^{k h}} y_{k n i}$.

Since $E_{\xi}\left(\hat{R}_{K}^{(1)}\right)=R_{k}$, under models A or B, hence
$E_{\xi}\left(\hat{T}_{n_{1}}\right)=\sum_{k} \sum_{n} \frac{1}{\pi_{n}} R_{k} \sum_{i=1}^{n h} x_{k h i}=E_{\xi}\left(\hat{T}_{n}\right)$,
where E_{ξ} is the expectation under models A or B. Hence $E_{\xi}\left(\hat{T}_{n_{1}}-\hat{T}_{n}\right)=0$ under models A or B using current imputation ratio. This is also true for the other 3 ratio imputation procedures, since $E_{\xi}\left(\hat{R}_{k}^{(j)}\right)=R_{k}, j=2,3,4$.
C. Incomplete Data Bias of Trend Under Models A or B

The monthly trend is defined to be the ratio of the total estimates of the current month sales by the previous month sales

where

$$
\begin{aligned}
& \hat{\mathbf{x}}_{k h i}=\hat{\beta}_{k} z_{k h i}, \hat{\beta}_{k}=\left(\sum_{k} \sum_{h} \sum_{i \varepsilon r_{2}} \frac{x_{k h i}}{\pi_{h}}\right) /\left(\sum_{k \neq}^{\sum} \sum_{i \varepsilon r_{2}} \frac{z_{k h i}}{\pi_{h}}\right)
\end{aligned}
$$

r_{1} is the sample units of the reported y (current month sales) data, \bar{r}_{1}, is the sample units of the nonreported y,
r_{2} is the sample units of the reported x (previous month sales) data, \bar{r}_{2} is the sample units of the nonreported x,
z is the previous month sales of 3 month's ago data for the rotating panel.

Since x's are always imputed before imputing y's, we can assume all x's are fixed and are available for all sample units when we impute y, hence \hat{T} can be written as

The trend estimate using a complete data set is

The incomplete data bias of trend is zero under models B or A, because

$$
E_{\xi}\left(\hat{T}-\hat{T}_{c}\right)=\left(\sum_{k} R_{k} \hat{X}_{k} / \sum_{k} \hat{X}_{k}\right)-\left(\sum_{k} R_{k} \hat{X}_{k} / \sum_{k} \hat{X}_{k}\right)=0 .
$$

D. Variance of the Estimated Total Under Models A or B

So far we have considered the model unbiasedness of the estimated totals or trend when we have nonresponse under models A or B. We found that all four
ratio type imputation procedures give $\mathrm{p} \xi$ - unbiased estimated totals under models A or B , and zero incomplete data bias.

We now present the variance of the estimated total using four imputation procedures under models A or B .

The monthly estimated total \hat{Y} using any of the four ratio type imputation procedures is
$\hat{Y}^{(j)}=\sum_{k} \hat{Y}_{K}^{(j)}$

$$
=\sum_{k}\left(\sum_{h} \sum_{i=1}^{n_{k h r}} \frac{y_{k h i}}{\pi_{h}}+\sum_{h} \sum_{i=n_{k h r+1}}^{n_{k h}} \frac{\hat{y}_{k h i}^{(j)}}{\pi_{h}}\right)
$$

where

$$
\begin{aligned}
& \hat{y}_{k h i}^{(j)}=\hat{R}_{k}^{(j)} x_{k h i}, \quad j=1,2,3,4, \\
& \hat{R}_{k}^{(j)} \text { is defined in (3.5), (3.7)-(3.9). }
\end{aligned}
$$

$\hat{Y}^{(j)}$ is a $p \xi$ - unbiased estimate of total Y under models A or B, where $Y=\sum_{k} Y_{k}=\sum_{k} \sum_{h i}^{N_{k h}} \sum_{k h i}$.

The variance of $\hat{Y}^{(j)}$ under models A or B is defined to be $V_{\xi}\left(\hat{Y}^{(j)}-Y\right)$, and

$$
V_{\xi}\left(\hat{Y}^{(j)}-Y\right)=V_{\xi}\left(\sum_{k} \hat{Y}_{k}^{(j)}-\sum_{k} Y_{k}\right)=\sum_{k} V_{\xi}\left(\hat{Y}_{k}^{(j)}-Y_{k}\right) .
$$

For each imputation cell k, we have
$V_{\xi}\left(\hat{Y}_{k}^{(j)}-Y_{k}\right)$

$$
\begin{aligned}
& \left.=v_{\xi} \underset{h i=1}{\left(\sum_{i}^{n} k h r\right.} \frac{y_{k h i}}{\pi_{h}}+\sum_{h i=n_{k h r}}^{\sum_{k h}^{n_{k h}}} \frac{\hat{y}_{k h i}^{(j)}}{\pi_{h}}-\sum_{h}^{\sum_{i=1}^{N h}} y_{k h i}\right) \\
& =\sum_{h} \sum_{i=1}^{n_{k h r}} \frac{v_{k h i}}{\pi_{h}^{2}}+\sum_{h} \sum_{i=1}^{N_{k h}} v_{k h i}+\sum_{h} \sum_{i=n_{k h r}+1}^{n_{k h}} \frac{v_{\xi}\left(\hat{R}_{k}^{(j)}\right) x_{k h i}^{2}}{\pi_{h}^{2}} \\
& +2 \sum_{h} \sum_{i=1}^{n_{k h r}} \operatorname{Cov}_{\xi}\left(\frac{e_{k h i}}{\pi_{h}}, \hat{R}_{k}^{(j)} \sum_{h} \sum_{i=n_{k h r}+1}^{n_{k h}} \frac{x_{k h i}}{\pi_{h}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{h} \sum_{i=1}^{n} n_{k h r}^{v_{k h i}} \frac{\sum_{h}^{2}}{\sum_{h}^{2}} \sum_{i=1}^{N_{k h}} v_{k h i}+v_{\xi}\left(\hat{R}_{k}^{(j)}\right) \underset{h}{\sum_{i=n_{k h r}}^{n_{k h}}} \frac{x_{k h i}^{2}}{\pi_{h}^{2}}-2 \sum_{h}^{\sum} \sum_{i=1}^{n_{k h r}} \frac{v_{k h i}}{\pi_{h}} \\
& +2\left(\sum_{h}^{\sum} \sum_{i=n_{k h r}+1}^{n_{k h}} \frac{x_{k h i}}{\pi_{h}}\right)\left[\sum_{h i=1}^{\sum_{i=1}^{k h r}} \operatorname{Cov}_{\xi}\left(\frac{e_{k h i}}{\pi_{h}}, \hat{R}_{k}^{(j)}\right)-\sum_{h i=1}^{\sum_{k h}} \operatorname{Cov}_{\xi}\left(e_{k h i}, \hat{R}_{k}^{(j)}\right)\right]
\end{aligned}
$$

where

$$
\begin{aligned}
v_{k h i} & =x_{k h i}^{2} \sigma^{2} & & \text { for model } A \\
& =x_{k h i} \sigma^{2} & & \text { for model } B .
\end{aligned}
$$

To compare variances of any two estimators $\hat{Y}_{k}^{(1)}, \hat{Y}_{k}^{(m)}$ in each imputation cell k, we have

$$
\begin{aligned}
& V_{\xi}\left(\hat{Y}_{k}^{(1)}-Y_{k}\right)-V_{\xi}\left(\hat{Y}_{k}^{(m)}-Y_{k}\right) \\
& =\sum_{h} \sum_{i=n_{k h r}+1}^{n_{k h}} \frac{x_{k h i}^{2}}{\pi_{h}^{2}}\left(V_{\xi}\left(\hat{R}_{k}^{(1)}\right)-V_{\xi}\left(\hat{R}_{k}^{(m)}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +2\left(\sum_{h}^{\sum_{i=n_{k h r}}^{n_{k h}}} \frac{x_{k h i}}{\pi_{h}}\right) \sum_{h} \sum_{i=1}^{n_{k h r}}\left[\operatorname{Cov}_{\xi}\left(\frac{e_{k h i}}{\pi_{h}}, \hat{R}_{k}^{(1)}\right)-\operatorname{Cov}_{\xi}\left(\frac{e_{k h i}}{\pi_{h}}, \hat{R}_{k}^{(m)}\right)\right] \\
& -2\left(\sum_{h} \sum_{i=n_{k h r}+1}^{n_{k h}} \frac{x_{k h i}}{\pi_{h}}\right) \sum_{h} \sum_{i=1}^{N_{k h}}\left[\operatorname{Cov}_{\xi}\left(e_{k h i}, \hat{R}_{k}^{(1)}\right)-\operatorname{Cov}_{\xi}\left(e_{k h i}, \hat{R}_{k}^{(m)}\right)\right] \text {, } \\
& 1 \neq m=1, \ldots, 4,
\end{aligned}
$$

where

$$
\begin{aligned}
& V_{\xi}\left(\hat{R}_{k}^{(1)}\right)=\left(\sum_{h i=1}^{\sum_{k h r}^{n}} \frac{v_{k h i}}{\pi_{h}^{2}}\right) /\left(\sum_{h}^{\sum_{i=1}^{n}}{ }_{k h r}^{x_{k h i}} \frac{\pi_{h}}{\pi_{h}},\right. \\
& =V_{\xi}\left(\hat{R}_{k}^{(2)}\right)=\left(\sum_{h} \sum_{i=1}^{n} k h r v_{k h i}\right) /\left(\sum_{h}^{\sum_{i=1}^{n h r}} x_{k h i}\right)^{2},
\end{aligned}
$$

$$
\begin{aligned}
& V_{\xi}\left(\hat{R}_{k}^{(4)}\right)=\frac{1}{n_{k h r}^{2}} \sum_{h} \sum_{i=1}^{n_{k h r}} \frac{v_{k h i}}{x_{k h i}^{2}}, \\
& \operatorname{Cov}_{\xi}\left(\frac{e_{k h i}}{\pi_{h}}, \hat{R}_{k}^{(1)}\right)=\left(\nu_{k h i} / \pi_{h}^{2}\right) /\left(\sum_{h} \sum_{i=1}^{n_{k h r}} x_{k h i} / \pi_{h}\right) \\
& \operatorname{Cov}_{\xi}\left(\frac{e_{k h i}}{\pi_{h}}, \hat{R}_{k}^{(2)}\right)=\left(\nu_{k h i} / \pi_{h}\right) /\left(\sum_{h i} \sum_{k h i} x_{k}\right) \\
& \operatorname{Cov}_{\xi}\left(\frac{e_{k h i}}{\pi_{h}}, \hat{R}_{k}^{(3)}\right)=\left(v_{k h i} / \pi_{h}^{2} x_{k h i}\right) /\left(\sum_{n i} \frac{1}{\pi_{h}}\right) \\
& \operatorname{Cov}_{\xi}\left(\frac{e_{k h i}}{\pi_{h}}, \hat{R}_{k}^{(4)}\right)=\left(\nu_{k h i} / \pi_{h} x_{k h i}\right) /\left(\sum_{h} n_{k h r}\right)
\end{aligned}
$$

V. Monte Carlo Study

In Huang (1984), a Monte Carlo study was carried out to evaluate different imputation procedures based on a given set of complete data (reported list sample from SIC 562 in the December 1982 Retail Trade Survey). Five sets of incomplete data were generated from the complete data. Missing items of incomplete data were randomly suppressed from each imputation cell of complete data according to its current imputation rate for each of the five sets. The reader is cautioned that since only five incomplete data sets were used, the results of the comparisons may not give an accurate picture. Insthe following, the bias and MSE of the estimated total for a given complete data set were derived under the assumption that the missing data are a random sample of the complete data set.

Without loss of generality, only one imputation cell is assumed. A sample of size n is assumed to be drawn from a population of size N. The sampling unit i has inclusion probability π_{i}. In a sample of size n, there are n_{r} units reported, and \bar{n}_{r} units not reported. In the following we treat these reported n_{r} units as our complete data set. Assuming the nonresponse mechanism is ignorable, i.e., the data are missing at random, the incomplete data sets are generated in which $n^{\prime} \bar{r}$ units are suppressed randomly from the complete data set of n_{r} units, and different ratio type imputation procedures are used to impute $n^{\prime} \bar{r}$ missing units of y values using the auxiliary variable x, which is available for all n_{r} units.

Let Y be the estimated total using the complete data of n_{r} units

$$
Y=\sum_{i=1}^{n} y_{i} / \pi_{i}
$$

Let \hat{Y} be the estimated total using incomplete data of n_{r} units, of which n_{r} units are reported, and $n_{r} \bar{r}$ units are imputed, i.e.,

$$
\hat{Y}=\sum_{i=1}^{n^{\prime}} r y_{i} / \pi_{i}+\sum_{i=1}^{n^{\prime}} \bar{r} \hat{y}_{i} / \pi_{i}
$$

where

$$
\hat{y}_{i}=\hat{R}_{n_{r}^{\prime}} x_{i}, \quad i=1, \ldots, n^{\prime} \bar{r}
$$

$$
n_{r}=n_{r}^{\prime}+n^{\prime} \bar{r},
$$

$\hat{R}_{n}{ }_{r}$ is one of the four ratio type estimators in (3.1)-(3.4) using all $n^{\prime} r$ units.

We also assume that the nonresponse rate is such that

Lemma 1. Under above notations and assumptions, for large n_{r},

$$
\begin{aligned}
E\left((\hat{Y}-Y) \mid n_{r}\right) & \doteq-\left(n^{\prime} r^{\prime} n_{r}\right) \sum_{i=1}^{n}\left(\hat{e}_{i} / \pi_{i}\right), \\
& =0, \text { if } \hat{R}_{n_{r}^{\prime}}=\hat{R}_{r}^{(1)}
\end{aligned}
$$

where

$$
\hat{e}_{i}=y_{i}-\hat{R}_{n_{r}} x_{i}
$$

$\hat{R}_{n_{r}}$ is any of the four ratio type estimators (3.1)-(3.4) using the complete data of size n_{r},
$E\left(\cdot \mid n_{r}\right)$ is the expectation over all possible samples of size $n^{\prime} \bar{r}$ drawn from n_{r}.

Proof:
$E\left((\hat{Y}-Y) \mid n_{r}\right)$
$=E\left(\left(\sum_{i=1}^{n^{\prime}}{ }^{r} y_{i} / \pi_{i}+\sum_{i=1}^{n^{\prime}} \bar{r}^{r} \hat{y}_{i} / \pi_{i}-\sum_{i=1}^{n_{r}} y_{i} / \pi_{i}\right) \mid n_{r}\right)$
$=n^{\prime} \bar{r} E\left(\left.\left(\frac{1}{n^{\prime}} \bar{r} \sum_{i=1}^{n^{\prime}} \bar{r}\left(\hat{y}_{i}-y_{i}\right) / \pi_{i}\right) \right\rvert\, n_{r}\right)$

Since $\hat{y}_{i}=\hat{R}_{n^{\prime}}^{r}{ }_{x_{i}}$, we'll prove in the following that $\hat{R}_{n^{\prime}}=\hat{R}_{r}+O_{p}\left(n_{r}^{\prime}{ }^{-1 / 2}\right)$ for $\hat{R}_{n_{r}^{\prime}}$ being any form defined in (3.1)-(3.4), we then have
$E\left(\frac{1}{n^{\prime} \frac{r}{r}} \sum_{i=1}^{n^{\prime}} \vec{r}_{\left.\left(\hat{y}_{i} / \pi_{i}\right) \mid n_{r}\right)}\right.$
$\equiv E\left(\left.\frac{1}{n^{\prime} \bar{r}} \sum_{i=1}^{n^{\prime} \bar{r}}\left(x_{i} / \pi_{i}\right) \hat{R}_{n_{r}} \right\rvert\, n_{r}\right)$

To prove $\hat{R}_{n_{r}^{\prime}}=\hat{R}_{n_{r}}+O_{p}\left(n_{r}^{\prime-1 / 2}\right)$, e.8.,
if $\hat{R}_{n_{r}^{\prime}}$ is $\hat{R}^{(2)}$ (ratio of means) defined in (3.2) using n_{r}^{\prime} units,
$E\left(\hat{R}_{n_{r}^{\prime}} \mid n_{r}\right)=\hat{R}_{n_{r}}+\frac{1-p}{n_{r}^{\prime}}\left(C_{x x}\left(n_{r}\right)-C_{y x}\left(n_{r}\right)\right) \hat{R}_{n_{r}}$
$\lim _{n_{r}} E\left(\hat{R}_{n^{\prime}} \mid n_{r}\right)=\hat{R}_{n_{r}}$
and $V\left(\hat{R}_{n_{r}^{\prime}} \mid n_{r}\right)=0\left(n_{r}^{\prime-1}\right)$
where $\hat{R}_{n_{r}}$ is the same form of $\hat{R}^{(2)}$, but using the complete reported data set of size n_{r},
$c_{x x}\left(n_{r}\right)=\frac{s_{x}^{2}\left(n_{r}\right)}{\bar{x}_{n_{r}}^{2}}$,
$c_{y x}\left(n_{r}\right)=\frac{s_{y}\left(n_{r}\right) s_{x}\left(n_{r}\right)}{\bar{x}_{n_{r}} \bar{y}_{n_{r}}}$,
$f=n^{\prime} r^{\prime} n_{r}$.
By corollary 5.1.3.2 in Fuller (1976), we have $\hat{R}_{n_{r}^{\prime}}=\hat{R}_{n_{r}}+o_{p}\left(n_{r}^{\prime} r^{-1 / 2}\right)$

If $\hat{R}_{n^{\prime}}$ is $\hat{R}^{(1)}$ or $\hat{R}^{(3)}$ (defined in (3.1) and (3.3)), it can al so be treated as a ratio of means and has a similar bias term as above with slightly different target and auxiliary variables. For example, for $\hat{R}^{(1)}$, the target variable is y_{i} / π_{i}, the auxiliary variable is x_{i} / π_{i}; for $\hat{R}^{(3)}$, the target variable is $y_{i} / x_{i} \pi_{i}$, and the auxiliary variable is $1 / \pi_{i}$.

If $\hat{R}_{n^{\prime}}$ is of form $\hat{R}^{(4)}$ (mean of ratios) defined in (3.4) but using n_{r}^{\prime} units, we have

$$
E\left(\hat{R}_{n_{r}^{\prime}} \mid n_{r}\right)=\left(n_{r}\right)^{-1} \sum_{i=1}^{n_{r}}\left(y_{i} / x_{i}\right)=\hat{R}_{n_{r}} .
$$

Thus we have
$E\left((\hat{Y}-Y) \mid n_{r}\right)$
$=-\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n} \frac{1}{\pi_{i}}\left(y_{i}-\hat{R}_{n_{r}} x_{i}\right)$
where $\hat{R}_{n_{r}}$ is any of four ratio estimators (3.1) - (3.4) using a complete data set of size n_{r}.
When $\hat{R}_{n_{r}}$ is a form of $\hat{R}^{(1)}, \sum_{i=1}^{n_{r}} \frac{1}{\pi_{i}}\left(y_{i}-\hat{R}_{n_{r}} X_{i}\right)=0$ and hence $E\left((\hat{Y}-Y) \mid n_{r}\right)=0$

Lemma 2. Under the notation and assumptions defined in this section, for large $n^{\prime} r$,
$=E\left((\hat{Y}-Y)^{2} \mid n_{r}\right)$

$$
=\frac{n^{\prime} \bar{r}}{n_{r}}\left(\sum_{i=1}^{n_{r}} \frac{\hat{e}_{i}^{2}}{\pi_{i}^{2}}+\frac{\left(n^{\prime} \bar{r}-1\right)}{\left(n_{r}-1\right)} \sum_{i \neq j}^{n_{r}} \frac{\hat{e}_{i}}{\pi_{i}} \frac{\hat{e}_{j}}{\pi_{j}}\right)
$$

where

$$
\hat{e}_{i}=y_{i}-\hat{R}_{n_{r}} x_{i}
$$

$$
\begin{aligned}
& \hat{R}_{n_{r}} \text { is an estimator defined in (3.1)-(3.4) using the complete data set } \\
& \text { of size } n_{r} \text {. }
\end{aligned}
$$

Proof:

$$
E\left((\hat{Y}-Y)^{2} \mid n_{r}\right)
$$

$=E\left(\left(\sum_{i=1}^{n^{\prime}} \bar{r}\left(\hat{y}_{i}-y_{i}\right) / \pi_{i}\right)^{2} \mid n_{r}\right)$
$=E\left(\sum_{i=1}^{n^{\prime}} \bar{r}\left(\left(y_{i}-\hat{y}_{i}\right) / \pi_{i}\right)^{2} \mid \dot{n_{r}}\right)$
by the fact that $\hat{y}_{i}=\hat{R}_{n}{ }_{r} x_{i}$, and $\hat{R}_{n_{r}^{\prime}}=\hat{R}_{n_{r}}+O_{p}\left(n_{r}^{\prime}{ }^{-1 / 2}\right)$ for \hat{R}_{n}, being any forms defined in (3:1)-(3.4).

$$
\text { Let } \hat{y}_{c i}=\hat{R}_{n_{r}} x_{i}, i=1, \ldots, n_{r} \text {, we have }
$$

$$
E\left((\hat{Y}-Y)^{2} \mid n_{r}\right)
$$

$$
=\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n} \cdot\left[\frac{y_{i}^{2}}{\pi_{i}^{2}}-2 \frac{y_{i} \hat{y}_{c i}}{\pi_{i}^{2}}+\frac{\hat{y}_{c i}^{2}}{\pi_{i}^{2}}\right]
$$

$$
+\frac{n^{\prime}-\left(n^{\prime} \bar{r}-1\right)}{n_{r}\left(n_{r}-1\right)} \sum_{i \neq j}^{n} r\left(\frac{y_{i} y_{j}}{\pi_{i} \pi_{j}}-\frac{\hat{y}_{c i} y_{j}}{\pi_{i} \pi_{j}}-\frac{y_{i} \hat{y}_{c j}}{\pi_{i} \pi_{j}}+\frac{\hat{y}_{c i} \hat{y}_{c j}}{\pi_{i} \pi_{j}}\right)
$$

$$
=\frac{n^{\prime} \bar{r}}{n_{r}}\left[\sum_{i=1}^{n} r\left(\frac{y_{i}-\hat{y}_{c i}}{\pi_{i}}\right)^{2}+\frac{\left(n^{\prime}-\bar{r}-1\right)}{\left(n_{r}-1\right)} \sum_{i \neq j}^{n} \frac{\left(y_{i}-\hat{y}_{c i}\right)}{\pi_{i}} \frac{\left(y_{j}-\hat{y}_{c j}\right)}{\pi_{j}}\right]
$$

$$
=\frac{n^{\prime} \bar{r}}{n_{r}}\left(\sum_{i=1}^{n} \frac{\hat{e}_{i}^{2}}{\pi_{i}^{2}}+\frac{\left(n^{\prime} \vec{r}^{2}-1\right)}{\left(n_{r}-1\right)} \sum_{i \neq j}^{n} \frac{\hat{e}_{i}}{\pi_{i}} \frac{\hat{e}_{j}}{\pi_{j}}\right)
$$

$$
\begin{aligned}
& +E\left(\sum_{i \neq j}^{n^{\prime}} \bar{r}\left(\left(y_{i}-\hat{y}_{i}\right) / \pi_{i}\right)\left(\left(y_{j}-\hat{y}_{j}\right) / \pi_{j}\right) \mid n_{r}\right) \\
& \left.\left.=E\left(n^{\prime}-\bar{r} \frac{1}{n^{r} \bar{r}} \sum_{i=1}^{n^{\prime} \bar{r}}{ }_{\left(\frac{y_{i}^{2}}{2}\right.}^{\pi_{i}^{2}}-2 \frac{y_{i} \hat{y}_{i}}{\pi_{i}^{2}}+\frac{\hat{y}_{i}^{2}}{\pi_{i}^{2}}\right) \right\rvert\, n_{r}\right) \\
& +E\left(\left.n^{\prime} \bar{r}\left(n^{\prime} \bar{r}-1\right) \frac{1}{n^{\prime} \bar{r}\left(n^{\prime} \bar{r}-1\right)} \underset{i \neq j}{n^{\prime} \bar{r}}\left(\frac{y_{i} y_{j}}{\pi_{i} \pi_{j}}-\frac{\hat{y}_{i} y_{j}}{\pi_{i} \pi_{j}}-\frac{y_{i} \hat{y}_{j}}{\pi_{i} \pi_{j}}+\frac{\hat{y}_{i} \hat{y}_{j}}{\pi_{i} \pi_{j}}\right) \right\rvert\, n_{r}\right) \\
& =\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n_{r}}\left(\frac{y_{i}^{2}}{\pi_{i}^{2}}-2 \frac{y_{i} x_{i}}{\pi_{i}^{2}} \hat{R}_{n}+\frac{x_{i}^{2}}{\pi_{i}^{2}} \hat{R}_{n_{r}}^{2}\right) \\
& +\frac{n^{\prime} \bar{r}\left(n^{\prime} \bar{r}-1\right)}{n_{r}\left(n_{r}-1\right)} \sum_{i \neq j}^{n_{r}}\left\{\frac{y_{i} y_{j}}{\pi_{i} \pi_{j}}-\left(\frac{y_{j} x_{i}}{\pi_{j} \pi_{i}}+\frac{y_{i} x_{j}}{\pi_{i} \pi_{j}}\right) \hat{R}_{n_{r}}\right. \\
& \left. \pm \frac{x_{i} x_{j}}{\pi_{i} \pi_{j}} \hat{R}_{n_{r}}^{2} \quad \right\rvert\,
\end{aligned}
$$

Note that if $\hat{R}_{n_{r}}$ is of form of $R^{(1)}$, then
$\sum_{i=1}^{n} \frac{\hat{e}_{i}^{2}}{\pi_{i}^{2}}=-\sum_{i \neq j}^{n} \frac{\hat{e}_{i}}{\pi_{i}} \frac{\hat{e}_{j}}{\pi_{j}}$, because $\sum_{i=1}^{n_{r}} \frac{e_{i}}{\pi_{i}}=0$.

Lemma 3. Under the notation and assumptions defined in this section, redefine

$$
\hat{y}_{i}=R x_{i} \text { for } i=1, \ldots, n^{\prime} \bar{r} \text {, where } R \text { is a preassigned value, then }
$$

(1) $E\left((\hat{Y}-Y) \mid n_{r}\right)=-\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n} \frac{1}{\pi_{i}}\left(y_{i}-R x_{i}\right)$,
(2) $\left.E\left((\hat{Y}-Y) \mid n_{r}\right)\right)=0$, eff $R=\left(\sum_{i=1}^{n^{r}} \frac{y_{i}}{\pi_{i}}\right) /\left(\sum_{i=1}^{n^{r}} \frac{x_{i}}{\pi_{i}}\right)$,
(3) $\left.E\left((\hat{Y}-Y)^{2} \mid n_{r}\right)\right)$

$$
\begin{aligned}
& =\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n} \frac{1}{\pi_{i}^{2}}\left(y_{i}-R x_{i}\right)^{2} \\
& +\frac{n^{\prime} \bar{r}\left(n^{\prime} \bar{r}-1\right)}{n_{r}\left(n_{r}-1\right)} \sum_{i \neq j}^{n} \frac{1}{\pi_{i} \pi_{j}}\left(y_{i}-R x_{i}\right)\left(y_{j}-R x_{j}\right),
\end{aligned}
$$

(4) The value of R that minimizes (3) is

$$
\begin{equation*}
\hat{R}_{o p t}=\frac{\left(\sum_{i=1}^{n} \frac{x_{i} y_{i}}{\pi_{i}^{2}}+\frac{\left(n^{\prime} \bar{r}-1\right)}{\left(n_{r}-1\right)} \sum_{i=j}^{n} \frac{x_{i} y_{j}}{\pi_{i} \pi_{j}}\right)}{\left(\sum_{i=1}^{n} \frac{x_{i}^{2}}{\pi_{i}^{2}}+\frac{\left(n^{\prime} \bar{r}^{2}-1\right)}{\left(n_{r}-1\right)} \sum_{i \neq j}^{n} \frac{x_{i} x_{j}}{\pi_{i} \pi_{j}}\right)} \tag{5.1}
\end{equation*}
$$

Proof:
(1) $E\left((\hat{Y}-Y) \mid n_{r}\right)$

$$
\begin{aligned}
& =E\left(\left.\left(\sum_{i=1}^{n^{\prime}} \frac{y_{i}}{\pi_{i}}+\sum_{i=1}^{n^{\prime}} \bar{r} \frac{R x_{i}}{\pi_{i}}-\sum_{i=1}^{n_{r}^{r}} \frac{y_{i}}{\pi_{i}}\right) \right\rvert\, n_{r}\right) \quad \text { and } n_{r}=n_{r}^{\prime}+n^{\prime} \bar{r} \\
& =-E\left(\left.\sum_{i=1}^{n^{\prime} \bar{r}} \frac{1}{\pi_{i}}\left(y_{i}-R x_{i}\right) \right\rvert\, n_{r}\right) \\
& =-\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n} \frac{1}{\pi_{i}}\left(y_{i}-R x_{i}\right)
\end{aligned}
$$

(2) It is clear that

$$
E\left((\hat{Y}-Y) \mid n_{r}\right)=0 \text { if and only if } R=\left(\sum_{i=1}^{n} \frac{y_{i}}{\pi_{i}}\right) /\left(\sum_{i=1}^{n} \frac{x_{i}}{\pi_{i}}\right) .
$$

$$
(3) E\left((\hat{Y}-Y)^{2} \mid n_{r}\right)
$$

$$
=E\left(\left(\sum_{i=1}^{n^{\prime}} \bar{r}-\left(y_{i}-R x_{i}\right) / \pi_{i}\right)^{2} \mid n_{r}\right)
$$

$$
\left.=E\left(\sum_{i=1}^{n^{\prime} \bar{r}}\left(y_{i}-R x_{i}\right)^{2} / \pi_{i}^{2}+\sum_{i \neq j}\left(y_{i}-R x_{i}\right)\left(y_{j}-R x_{j}\right) / \pi_{i} \pi_{j}\right) \mid n_{r}\right)
$$

$$
=\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n} \frac{1}{\pi_{i}^{2}}\left(y_{i}-R x_{i}\right)^{2}
$$

$$
+\frac{n^{\prime} \bar{r}\left(n^{\prime} \bar{r}-1\right)}{n_{r}\left(n_{r}-1\right)} \sum_{i \neq j}^{n} n_{i} \frac{1}{\pi_{i} \pi_{j}}\left(y_{i}-R x_{i}\right)\left(y_{j}-R x_{j}\right)
$$

(4) Minimize (3) with respect to R, we have

$$
\begin{aligned}
& 2 \frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n} \frac{1}{\pi_{i}^{2}}\left(y_{i}-R x_{i}\right)\left(-x_{i}\right) \\
& +\frac{n^{\prime} \bar{r}\left(n^{\prime} \bar{r}-1\right)}{n_{r}\left(n_{r}-1\right)} \sum_{i \neq j}^{n} \frac{1}{\pi_{i} \pi_{j}}\left[\left(-x_{i}\right)\left(y_{j}-R x_{j}\right)+\left(y_{i}-R x_{i}\right)\left(-x_{j}\right)\right]=0,
\end{aligned}
$$

and
$\hat{R}_{\text {opt }}=\frac{\sum_{i=i}^{n} \frac{x_{i} y_{i}}{\pi_{i}^{2}}+\frac{\left(n^{\prime}-1\right)}{\left(n_{r}-1\right)} \sum_{i \neq j}^{\sum_{i=1}^{r}} \frac{x_{i} y_{j}}{\pi_{i} \pi_{j}}}{n_{i} \frac{x_{i}^{2}}{2}+\frac{\left(n^{\prime} \bar{r}-1\right)}{\left(n_{r}-1\right)} \sum_{i \neq j}^{r} \frac{x_{i} x_{j}}{\pi_{i} \pi_{j}}}$

Lemma 4. The bias and MSE of the estimated total \hat{Y} given n_{r}, by using $\hat{R}_{\text {opt }}$ to impute missing y_{i}, is
$E\left((\hat{Y}-Y) \mid n_{r}\right)=-\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n_{r}^{r}} \frac{1}{\pi_{i}}\left(y_{i}-\hat{R}_{o p t} x_{i}\right) \quad$,
$E\left((\hat{Y}-Y)^{2} \mid n_{r}\right)=\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n_{r}} \cdot \frac{1}{\pi_{i}^{2}}\left(y_{i}-\hat{R}_{o p t} x_{i}\right)^{2}$
$+\frac{n^{\prime} \bar{r}\left(n^{\prime} \bar{r}-1\right)}{n_{r}\left(n_{r}-1\right)} \sum_{i=j}^{n_{r}} \frac{1}{\pi_{i} \pi_{j}}\left(y_{i}-\hat{R}_{o p t} x_{i}\right)\left(y_{j}-\hat{R}_{o p t} x_{j}\right)$.

Proof:
$\hat{R}_{\text {opt }}$ is a function of n_{r} units of a complete data set which is the population that the incomplete data samples are randomly generated in the Monte Carlo study. For a given complete data set of size $n_{r}, \hat{R}_{o p t}$ is a fixed value. Following the same proof as in Lemma 3, we have the results.

An estimator of $\hat{R}_{\text {opt }}$ by using n_{r}^{\prime} reported units in the Monte Carlo study 13

$$
\begin{align*}
& \frac{1}{n_{r}^{\prime}}\left(\sum_{i=1}^{n^{\prime}} r \frac{x_{i}^{2}}{\pi_{i}^{2}}+\frac{n^{\prime} r_{r}-1}{n_{r}^{\prime}-1} \sum_{i \neq j}^{n^{\prime}} r \frac{x_{i} x_{j}}{\pi_{i} \pi_{j}}\right) \tag{5.2}
\end{align*}
$$

Lemma 5. The bias and MSE of the estimated total \hat{Y} given n_{r}, by using $\bar{R}_{o p t}$ to Impute missing y_{i} is

$$
\begin{aligned}
=E\left((\hat{Y}-Y) \mid n_{r}\right) \equiv & -\frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n_{r}} \frac{1}{\pi_{i}}\left(y_{i}-\hat{R}_{o p t} x_{i}\right) \\
E\left((\hat{Y}-Y)^{2} \mid n_{r}\right) & \doteq \frac{n^{\prime} \bar{r}}{n_{r}} \sum_{i=1}^{n_{r}} \frac{1}{\pi_{i}^{2}}\left(y_{i}-\hat{R}_{o p t} x_{i}\right)^{2} \\
& +\frac{n^{\prime} \bar{r}\left(n^{\prime} \bar{r}-1\right)}{n_{r}\left(n_{r}-1\right)} \sum_{i \neq j}^{n_{r}} \frac{1}{\pi_{i} \pi_{j}}\left(y_{i}-\hat{R}_{o p t} x_{i}\right)\left(y_{j}-\hat{R}_{o p t} x_{j}\right) .
\end{aligned}
$$

Proof:

Following the similar proofs in lemmas 1 and 2, we only need to prove for large n'r,

$$
\tilde{R}_{o p t}=\hat{R}_{o p t}+O_{p}\left(n_{r}^{\prime-1 / 2}\right)
$$

Let $\bar{R}_{o p t}=\frac{N_{n^{\prime}} r}{D_{n^{\prime}}{ }_{r}}$, and $\hat{R}_{\text {opt }}=\frac{N_{n_{r}}}{D_{n_{r}}}$
The numerator of $\tilde{R}_{\text {opt }}$ is
$N_{n^{\prime}}=\frac{1}{n^{\prime}}{ }_{r} \sum_{i=1}^{n^{\prime}} r \frac{x_{i} y_{i}}{\pi_{i}^{2}}+\frac{\left(n^{\prime} \bar{r}-1\right)}{n_{r}^{\prime}\left(n_{r}^{\prime}-1\right)} \sum_{i \neq j}^{n^{\prime}} r \frac{x_{i} y_{j}}{\pi_{i} \pi_{j}}$,
$E\left(N_{n^{\prime}{ }_{r}} \mid n_{r}\right)=\frac{1}{n_{r}} \sum_{i=1}^{n_{r}} \frac{x_{i} y_{i}}{\pi_{i}^{2}}+\frac{\left(n^{\prime}-r^{\prime}-1\right)}{n_{r}\left(n_{r}-1\right)} \sum_{i \neq j}^{n_{r}} \frac{x_{i} y_{j}}{\pi_{i} \pi_{j}} \equiv N_{n_{r}}$
and $\mathrm{N}_{\mathrm{n}_{\mathrm{r}}}$ denotes the numerator of $\hat{\mathrm{R}}_{\text {opt }}$.

The denominator of $\tilde{\mathrm{R}}_{\text {opt }}$ is
$D_{n^{\prime}}=\frac{1}{n^{\prime}}{ }_{r} \sum_{i=1}^{n^{\prime}} r \frac{x_{i}^{2}}{\pi_{i}^{2}}+\frac{\left(n^{\prime}-\bar{r}-1\right)}{n_{r}^{\prime}{ }_{r}{ }^{\prime}{ }^{\prime}{ }_{r}{ }^{-1)}} \sum_{i \neq j}^{n^{\prime}} r \frac{x_{i} x_{j}}{\pi_{i} \pi_{j}}$
$E\left(D_{n^{\prime}} \mid n_{r}\right)=\frac{1}{n_{r}} \sum_{i=1}^{n_{r}} \frac{x_{i}^{2^{\prime}}}{\pi_{i}^{2}}+\frac{\left(n^{\prime}-\bar{r}-1\right)}{n_{r}\left(n_{r}-1\right)} \sum_{i \neq j}^{n_{r}} \frac{x_{i} x_{j}}{\pi_{i} \pi_{j}} \equiv D_{n_{r}}$
and $D_{n_{r}}$ denotes the denominator of $\hat{R}_{o p t}$.
Now by the Taylor series expansion

$$
\begin{aligned}
& D_{n_{r}^{\prime}}^{-1}=D_{n_{r}}^{-1}-D_{n_{r}}^{-2}\left(D_{n_{r}^{\prime}}-D_{n_{r}}\right)+O_{p}\left(\frac{1}{n_{r}^{\prime}}\right) \\
& V\left(D_{n_{r}^{\prime}} \mid n_{r}\right)=\frac{s_{n_{r}}^{2}\left(\frac{x^{2}}{\pi^{2}}\right)}{n_{r}^{\prime}}+\frac{\left(n^{\prime} r_{r}-1\right)^{2}}{n_{r}^{\prime}\left(n^{\prime} r_{r}-1\right)} s_{n_{r}}^{2}\left(\frac{x_{i} x_{j}}{\pi_{i} \pi_{j}}\right)=O\left(\frac{1}{n^{\prime} r_{r}}\right) \\
& D_{n_{r}^{\prime}}^{-1}=D_{n_{r}}^{-1}+O_{p}\left(\frac{1}{V n_{r}^{\prime}}\right) \\
& \tilde{R}_{o p t}^{-}=\frac{N_{n_{r}^{\prime}}}{D_{n_{r}}}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \lim _{n_{r}^{\prime} \rightarrow \infty} E\left(\tilde{R}_{o p t} \mid n_{r}\right)=\frac{N_{n_{r}}}{D_{n_{r}}}=\hat{R}_{\text {opt }} \\
& V\left(\tilde{R}_{\text {opt }} \mid n_{r}\right) \doteq \frac{V\left(N_{n_{r}^{\prime}}^{r}\right.}{D_{n_{r}}^{2}}=O\left(\frac{1}{n_{r}^{\prime}}\right), \text { and } \\
& \tilde{R}_{\text {opt }}=\hat{R}_{o p t}+O_{p}\left(n_{r}^{\prime-1 / 2}\right)
\end{aligned}
$$

To use $\tilde{R}_{\text {opt }}$ we need to know the number of nonresponse items $n^{\prime} \bar{r}$, and the number of response items. $n^{\prime}{ }_{r}$ in the sample. If the factor
$\left(n^{\prime} \bar{r}^{-1}\right)\left(n_{r}^{\prime}-1\right)^{-1}$ is not used in $\tilde{R}_{o p t}$, then
$\tilde{n}_{o p t}=\frac{\sum_{i=1}^{n^{\prime}} r \frac{x_{i} y_{i}}{\pi_{i}^{2}}+\sum_{i \neq j}^{n^{\prime}} r \frac{x_{i} y_{j}}{\pi_{i} \pi_{j}}}{\sum_{i=1}^{n^{\prime}} r \frac{x_{i}^{2}}{\pi_{i}^{2}}+\sum_{i \neq j}^{n^{\prime}} r \frac{x_{i} x_{j}}{\pi_{i} \pi_{j}}}=\frac{\left[\sum_{i=1}^{n^{\prime} r} \frac{x_{i}}{\pi_{i}}\right]\left[\sum_{i=1}^{n^{\prime}} r \frac{y_{i}}{\pi_{i}}\right]}{\left[\sum_{i=1}^{n^{\prime}} r \frac{x_{i}}{\pi_{i}}\right]\left[\sum_{i=1}^{n^{\prime}} r \frac{x_{i}}{\pi_{i}}\right]}=\frac{\sum_{i=1}^{n^{\prime}} r \frac{y_{i}}{\pi_{i}}}{\sum_{i=1}^{n^{\prime}} r \frac{x_{i}}{\pi_{i}}}$.
$\tilde{R}_{o p t}$ is reduced to the current imputation ratio $R^{(1)}$.
Another estimator of $\hat{R}_{\text {opt }}$ is

$$
\begin{equation*}
R^{(5)}=\left(\sum_{i=1}^{n^{\prime}} r \frac{x_{i} y_{i}}{\pi_{i}^{2}}\right) /\left(\sum_{i=1}^{n^{\prime}} r \frac{x_{i}^{2}}{\pi_{i}^{2}}\right) . \tag{5.3}
\end{equation*}
$$

It can be shown that when $R^{(5)} x_{i}$ is used to impute missing y_{i}, for large $n^{\prime} r_{r}$, the bias and MSE of \hat{Y} for a given complete data set n_{r} are given in lemma 1 and 2 , where

$$
\hat{R}_{n_{r}}=\left(\sum_{i=1}^{n} \frac{x_{i} y_{i}}{\pi_{i}^{2}}\right) /\left(\sum_{i=1}^{n} \frac{x_{i}^{2}}{\pi_{i}^{2}}\right)
$$

If the inclusion probability π is not used in (5.3), we have

$$
\begin{equation*}
R^{(\sigma)}=\left(\sum_{i=1}^{n^{\prime} r} x_{i} y_{i}\right) /\left(\sum_{i=1}^{n^{\prime}} r x_{i}^{2}\right) \tag{5.4}
\end{equation*}
$$

which is the least squares estimate of R of the ratio model with constant error variance (i.e., $y=R x+e$, e is independently identically distributed with mean zero and variance σ^{2}).

It can be shown that the bias and MSE of \hat{Y} for a given complete data set are given in lemma 1 and 2 with

$$
\hat{R}_{n_{r}}=\left(\sum_{i=1}^{n} x_{i} y_{i}\right) /\left(\sum_{i=1}^{n} x_{i}^{2}\right)
$$

If the ordinary regression estimator is used to impute missing item y_{i}, $i=1, \ldots, n^{\prime} \bar{r}$,

$$
\hat{y}_{i}=\hat{\alpha}_{n_{r}^{\prime}}+\hat{\beta}_{n^{\prime}} x_{i}
$$

where

$$
\begin{align*}
& \hat{a}_{n_{r}^{\prime}}=\bar{y}_{n^{\prime}}-\hat{\beta}_{n_{r}^{\prime}} \bar{x}_{n_{r}^{\prime}}, \tag{5.5}\\
& \bar{y}_{n_{r}^{\prime}}=\frac{1}{n^{\prime}} \sum_{\sum_{i=1}^{n^{\prime}}}^{r_{i}} y_{i}, \\
& \bar{x}_{n_{r}^{\prime}}=\frac{1}{n_{r}^{\prime}} \sum_{i=1}^{n^{\prime}} r_{i},
\end{align*}
$$

$$
\begin{equation*}
\hat{\beta}_{n^{\prime}}=\sum_{i=1}^{n^{\prime} r}\left(x_{i}-\bar{x}_{n^{\prime}}\right)\left(y_{i}-\bar{y}_{n^{\prime}}^{r}\right) / \sum_{i=1}^{n^{\prime} r}\left(x_{i}-\bar{x}_{n^{\prime}}^{r}\right)_{r}^{2}, \tag{5.6}
\end{equation*}
$$

then the bias and MSE of \hat{Y} for a given complete data set n_{r} are given in lemma 1 and 2, with
$\hat{e}_{i}=y_{i}-\hat{\alpha}_{n_{r}}-\hat{\beta}_{n_{r}} x_{i}$, and
$\hat{\alpha}_{n_{r}}=\bar{y}_{n_{r}}-\hat{\beta}_{n_{r}} \bar{x}_{n_{r}}$,
$\bar{y}_{n_{r}}=\frac{1}{n_{r}} \sum_{i=1}^{\sum_{r}^{r}} y_{i}$,
$-\bar{x}_{n_{r}}=\frac{1}{n_{r}} \sum_{i=1}^{n}{ }^{r} x_{i}$,

$$
\hat{B}_{n_{r}}=\sum_{i=1}^{n_{r}^{r}}\left(x_{i}-\bar{x}_{n_{r}}\right)\left(y_{i}-\bar{y}_{n_{r}}\right) / \sum_{i=1}^{n}\left(x_{i}-\bar{x}_{n_{r}}\right)^{2}
$$

The above results can be extended to more than one imputation cell if we generate the incomplete data set from the complete data set independently for each imputation cell.

Let \hat{Y}_{k}, Y_{k} be the estimated totals of the incomplete data and the complete data respectively from imputation cell $k, k=1, \ldots, K$. Then

$$
\hat{Y}=\sum_{K=1}^{K} \hat{Y}_{k}, \quad Y=\sum_{K=1}^{K} Y_{K} .
$$

Let $n_{r_{k}}$ be the sample size of the reported data of imputation cell k, and we randomly suppress $n^{\prime} \bar{r}_{k}$ units from this complete data set.
Let n_{r} be the sample size of the complete data set from all K imputation cells, and $n_{r}=\sum_{k=1} n_{r_{k}}$.

The bias of the estimated total \hat{Y} given the complete data set is
$E\left((\hat{Y}-Y) \mid n_{r}\right)$
$=\sum_{k=1}^{K} E\left(\left(\hat{Y}_{k}-Y_{k}\right) \mid n_{r_{k}}\right)$
$\doteq-\sum_{k=1}^{K} \frac{n^{\prime} \bar{r}_{k}}{n_{r_{k}}} \sum_{i=1}^{n_{k}} \frac{1}{\pi_{k i}} \hat{e}_{k i} \quad$,
where

$$
\hat{e}_{k i}=y_{k i}-\hat{R}_{n_{r_{k}}} x_{k i}, k=1, \ldots, k, i=1, \ldots, n_{r_{k}} .
$$

$\hat{R}_{n_{r}}$ is a ratio estimator of (3.1) to (3.4) and (5.2)-(5.3) using the complete data set of size $n_{r_{k}}$ from each imputation cell k. For the regression estimator defined in (5.5), (5.6), \hat{e}_{i} is defined in (5.7) for each imputation cell.

Similarly, the mean square errors of the estimated total \hat{y} given the complete data set can be written as
$E\left((\hat{Y}-Y)^{2} \mid n_{r}\right)$
$=\sum_{k=1}^{K} E\left(\left(\hat{Y}_{k}-Y_{k}\right)^{2} \mid n_{r_{k}}\right)$
$=\sum_{k=1}^{K} \frac{n^{\prime} \bar{r}_{k}}{n_{r_{k}}}\left(\sum_{i=1}^{n} r_{k} \frac{\hat{e}_{k i}^{2}}{\pi_{k i}^{2}}+\frac{\left(n^{\prime} \bar{r}_{k}-1\right)}{\left(n_{r_{k}}-1\right)} \sum_{i \neq j}^{n} r_{k} \frac{e_{k i}}{\pi_{k i}} \frac{\hat{e}_{k j}}{\pi_{k j}}\right)$.

Under the assumption that the data are missing at random, we have already shown that the bias and MSE of the estimated total given the complete data set using various ratio and regression imputation procedures are-functions of residuals of the complete data, and the nonresponse rate of each imputation cell. To compare different ratio and regression imputation procedures defined in (3.1) - (3.4) and (5.2) - (5.6) empirically, we can thus compute these biasses and MSE's using Monthly Retail Trade Survey reported data and current nonresponse rates without randomly generating all possible incomplete samples.

The Monthly Retail Trade Survey reported data of December 1982 for nine SIC's were used to compare the bias and MSE of the estimated totals of the diferent ratio and regression type imputation procedures. The trends $\left(\hat{R}_{n_{r}}\right)$ calculated from the reported data of each imputation cell by these r different estimators are tabulated in Table 4.1. The trends calculated by the optimum ratio procedure $\left(\hat{R}_{\text {opt }}\right)$ and the current imputation procedure ($\hat{R}^{(1)}$) are fairly close for most SIC's. The bias and MSE of the estimated totals by using these different imputation procedures are tabulated in Tables 4.2 and 4.3, respectively. Algebraically, we have already shown that given the complete data set, the current imputation procedure is unbiased with respect to the estimated reported total for each imputation cell, and so are the empirical results. The relative oiases of the other ratio imputation procedures are relatively small, less than 3% for most data.

The optimum ratio imputation procedure, $\overline{\mathrm{R}}_{\text {opt }}$, gave the minimum mean square error among all the ratio type imputation procedures. However, the gain in mean square error of $\vec{R}_{\text {opt }}$ in comparing with the current imputation procedure is at most 0.002 . The current imputation procedure is fairly competitive with the optimum ratio imputation procedure and is easier to compute.

Note that all the inferences of the Monte Carlo study are restricted to the data we used. The derivations of the bias and MSE are based on the assumption that the data are missing at random. The data used for the Monte Carlo study were examined to investigate the validity of this assumption. The imputation rates by sales classes of each imputation cell were tabulated in Table 4.4. There is no apparent relationship between item nonresponse rates and sales classes. The imputation rates by regions of each imputation cell were also tabulated in Table 4.5. The imputation rates are different for different regions but there is no specific pattern.

Based on the current imputation procedure, we also used mean square error (MSE) criterion to evaluate different imputation cell definitions, e.g., to answer the question of what quantiles (median, $1 / 4$ or $1 / 8$ or $1 / 16$ quantiles) should be used for the cutoff of sales size if sales sizes are used within each group (group I and II) for imputation cell definition as opposed to the current fixed cutoff. The reported data of 9 SIC's of December 1982 were used. The empirical results showed that for SIC 562 the smaller the imputation cell is, the better the MSE. However, the most drastic reduction in MSE is the cell definition using $1 / 4$ quantiles as sales cutoffs. There was an approximate 44% reduction in MSE as compared to the MSE under the current imputation cell definition. Using $1 / 8$ quantiles as sales cutoffs a further 6% reduction over $1 / 4$ quantiles was observed; and using $1 / 16$ quantiles a further 3% reduction over $1 / 8$ quantiles was observed. (See Table 4.6) Overall, the empirical results varied by SIC's. In 6 of 9 SIC's, the reductions in MSE ranged from $12 \%(-3 \%)$ to $59 \%(44 \%)$ by using $1 / 8(1 / 4)$ quantiles instead of the current fixed cutoff. Most of these reductions in MSE came from group II. For SIC's 541, 551, and 5813, there was little gain in using any of the quantiles considered. (See Table 4.7)
VI. Summary

We have evaluated the bias of the estimated totals using four ratio type imputation procedures (including the currently used imputation procedure) under models and a Monte Carlo study for a given data set.

Under models A or B in (3.6) and the current sample design, the estimators of total using four ratio type imputation procedures defined in (3.5), (3.7) - (3.9) when nonresponse occurs are $p \xi$ - unbiased. The difference of the variances of estimated totals for each imputation cell using any of two ratio type imputation procedures under the model was derived.

- The incomplete data bias of the estimated total using any of four imputation procedures defined in (3.5), (3.7) - (3.9) is zero under models A or B.

Under the assumption that the data are missing at random, the bias and MSE of the estimated total using different ratio type imputation procedures with respect to the estimated reported total were derived for the given reported data. An optimum ratio imputation estimator was also derived along with several variants. The bias and MSE were calculated for each of nine SIC's using December 1982 retail sales data. For the given data set, the empirical results showed that the estimated total using the current imputation procedure is unbiased and has the second smallest MSE among all ratio type imputation procedures in the study.

Since the gain of the MSE by using the optimum imputation procedure is trivial, and extra computation and information are needed to implement this optimum imputation procedure, we do not recommend any changes of the current ratio type imputation procedure in the Monthly Retail Trade Survey.

For the given data set, there is no apparent relationship of nonresponse rate with sales within each imputation cell for all nine SIC's.

By using different imputation cell definitions, the data of Retail Trade Survey of December 1982 of SIC 562 were used to examine the validity of two models A or B. That is, whether the error variance of the ratio model of current month sales y is proportional to previous month sales x or x^{2}. In Huang (1984), with the current imputation cell definition, it is x^{a}, where $1.25 \leq a \leq 2.21$. In this study, different imputation cell definitions were used, and the error variance of the ratio model of each imputation cell is proportional to x^{b} where b is as follows:

Imputation Cells

1. GP
2. GP x sales (use median as cutoff)
3. GP II x sales (use $1 / 4$ quantiles)
4. GP II x sales (use $1 / 8$ quantiles)
5. SMSA
6. SMSA x GP
7. Geographic division
8. Firm
9. Firm x sales (use median as cutoff)
10. Firm $2 \times$ sales (use $1 / 4$ quantiles)
11. Region
12. Region x sales (use median as cutoff)

No. of Cells

2

4
$4 \quad 1.46 \leq b \leq 2.21$
$8 \quad 0.34 \leq b \leq 2.72$
2
$1.81 \leq b \leqq 1.94$
$1.88 \leq b \leq 2.23$
$1.83 \leq b \leq 2.45$
$1.79 \leqq b \leq 2.32$
$1.43 \leqq b \leqq 2.49$
$0.47 \leqq b \leqq 2.82$
$1.83 \leq b \leq 2.05$
$1.27 \leqq b \leqq 2.52$

In the current imputation cells, for some SIC's, the number of establishments of Group II dominates Group I; for other SIC's, the number of
establishments of Group I dominates Group II. However, the number of establishments in each region seems more evenly distributed for the data we examined. Using region by sales size (with the median as cutoff) as an alternative imputation cell definition will double the current imputation cells (8 instead of 4), and give much more even numbers of establishments within the cell. However, many big chain stores are spread over all regions in the country and reports often cover more than 1 region. Thus, using regional breakdowns for imputation cell definitions would cause problems to implement in practice. The empirical results suggested that for some SIC's of December 1982's data, we can do better by using alternative imputation cells, i.f., use sales quantiles as cutoffs within groups as opposed to the current fixed sales cutoffs. The decrease in MSE in 6 of 9 SIC's ranges from 12% to 59\% by using $1 / 8$ quantiles. We recommend that changes in the current imputation cells definition be considered, especially where empirical studies show that a significant reduction in the MSE can be achieved by increasing the number of imputation cells. We also suggest further similar empirical study be carried out on recent monthly data to provide further bases for changes in cell definitions. This will tell us whether there is a gain in using alternative imputation cells and what quantiles to use for a given SIC in a given month.

VII. Acknowledgement

The author gratefully acknowledges the helpful comments and criticisms of Cary Isaki, Nash Monsour and Carl Konshnick. Appreciation is also given to Linda Moore for computing Table 4.7.
VIII. References

1. Cassel, C.M., SändaI, C.E., and Wretman, J.H. (1979). "Some Uses of Statistical Models in Connection with the Nonresponse Problem," Symposium on Incomplete Data: Preliminary Proceedings, pp. 188-215.
2. Cochrian, W.G. (1977). Sampling Techniques. John Wiley and Sons, New York.
3. Fuller, W.A. (1976). Introduction to Statistical Time Series. John Wiley and Sons, New York.
4. Huang, E.T. (1984). "An Imputation Study for the Monthly Retail Trade Survey," Proceedings of the American Statistical Association, Section on Survey Research Methods, pp. 610-615.
5. Schaible, W.L. (1979). "Estimation of Finite Population Totals from Incomplete Sample Data: Prediction Approach," Symposium on Incomplete Data: Preliminary Proceedings, pp. 170-187.

TABLE II. 1 The Estimated Trends by Four Ratio Procedures, Correlation Coefficients, and Error Variance Parameters (λ, ρ) for Each Imputation Cell (Group x Sales - $\$ 50,000$ as Cutoff) December 1982 - SIC 562

Current Imputation Cell											
Group		Sales	n	$\mathrm{R}^{(1)}$	$R^{(2)}$	R ${ }^{(4)}$	$R(3)$	r	r^{2}	λ	ρ
Group 1	$<$	\$50,000	430 (20)	1.420	1.445	1.502	1.380	0.93294	0.87037	1.808576	1.77976
Group 1	\geqslant	\$50,000	$\begin{aligned} & 355 \\ & 354 \end{aligned}(20)$	$\begin{aligned} & 1.396 \\ & 1.427 \end{aligned}$	$\begin{aligned} & 1.334 \\ & 1.505 \end{aligned}$	$\begin{aligned} & 1.497 \\ & 1.500 \end{aligned}$	$\begin{aligned} & 1.477 \\ & 1.478 \end{aligned}$	$\begin{aligned} & 0.76495 \\ & 0.95845 \end{aligned}$	$\begin{aligned} & 0.58514 \\ & 0.91862 \end{aligned}$	$\begin{aligned} & 0.039531 \\ & 0.014775 \end{aligned}$	$\begin{aligned} & 2.12919 \\ & 2.21910 \end{aligned}$
Group 2	く	\$50,000	$\begin{aligned} & 249(20) \\ & 247(20) \end{aligned}$	$\begin{aligned} & 1.666 \\ & 1.634 \end{aligned}$	$\begin{aligned} & 1.722 \\ & 1.662 \end{aligned}$	$\begin{aligned} & 1.731 \\ & 1.682 \end{aligned}$	$\begin{aligned} & 1.627 \\ & 1.605 \end{aligned}$	$\begin{aligned} & 0.65477 \\ & 0.85129 \end{aligned}$	$\begin{aligned} & 0.42873 \\ & 0.72470 \end{aligned}$	$\begin{aligned} & 8.48059 \\ & 358.03 \end{aligned}$	$\begin{aligned} & 1.65939 \\ & 1.25194 \end{aligned}$
Group 2	2	\$50,000	411 (20)	1.521	1.541	1.617	1.613	0.98741	0.97498	0.05136	2.07087

In cell (Group 1 , Sales $>\$ 50,000)$, the outlier is $(x, y)=(\$ 8,168,230, \$ 3,120,007)$.
In cell (Group 2, Sales $<\$ 50,000$), the outliers are $(x, y)=(\$ 40,868, \$ 370,307)(\$ 25,043, \$ 162,257)$, where y is the current month sdes and x is the previous month sales.

TABLE 11.2 The Estimated Trends by Four Ratio Procedures, Correlation Coefficients, and Error Variance Parameters (λ, ρ) for Each Imputation Cell (Group x Sales (Use Median as Cutoff)) December 1982 - SIC 562

Imputation Cell										
Group	Sales	n	$\mathrm{R}^{(1)}$	$\mathrm{R}^{(2)}$	$R^{(4)}$	$R^{(3)}$	r	r^{2}	λ	ρ
Group 1	$\begin{gathered} \text { < Median } \\ (\$ 41,590) \end{gathered}$	392 (20)	1.410	1.429	1.498	1.375	0.94061	0.88475	1.0275	1.84316
Group 1	$\begin{aligned} & \Rightarrow \text { Median } \\ & (\$ 41,590) \end{aligned}$	$\begin{aligned} & 393(20) \\ & 392(20) \end{aligned}$	$\begin{aligned} & 1.408 \\ & 1.438 \end{aligned}$	$\begin{aligned} & 1.341 \\ & 1.507 \end{aligned}$	$\begin{aligned} & 1.502 \\ & 1.505 \end{aligned}$	$\begin{aligned} & 1.491 \\ & 1.491 \end{aligned}$	$\begin{aligned} & 0.76558 \\ & 0.95912 \end{aligned}$	$\begin{aligned} & 0.58611 \\ & 0.91991 \end{aligned}$	$\begin{aligned} & 0.0878 \\ & 0.0343 \end{aligned}$	$\begin{aligned} & 2.05 \\ & 2.14324 \end{aligned}$
Group 2	$\begin{gathered} \text { < Median } \\ (\$ 80,100) \end{gathered}$	$\begin{array}{ll} 330 \\ 327 & (20) \\ \hline 20) \end{array}$	$\begin{aligned} & 1.666 \\ & 1.620 \end{aligned}$	$\begin{aligned} & 1.683 \\ & 1.640 \end{aligned}$	$\begin{aligned} & 1.708 \\ & 1.666 \end{aligned}$	$\begin{aligned} & 1.633 \\ & 1.603 \end{aligned}$	$\begin{aligned} & 0.7869 \\ & 0.8954 \end{aligned}$	$\begin{aligned} & 0.61918 \\ & 0.8017 \end{aligned}$	$\begin{aligned} & 32.16 \\ & 61.70 \end{aligned}$	$\begin{aligned} & 1.5262 \\ & 1.4304 \end{aligned}$
Group 2	$\begin{aligned} & z \text { Median } \\ & (\$ 80,100) \end{aligned}$	330 (20)	1.496	1.538	1.612	1.581	0.9868	0.9737	0.0178	2.1494

In Cell 3 (Group 2, Sales < Median), the outliers are $(x, y)=(\$ 40,868, \$ 370,307),(\$ 65,906, \$ 208,776),(\$ 25,043, \$ 162,257)$. The low ρ in this cell was caused by 12 same reported values which lowered the group variance.

In Cell 2 (Group 1, Sales $>$ Median) the outliers is $(x, y)=(\$ 8,168,230, \$ 3,120,007)$.

TABLE 1I. 3 The Estimated Trends by Four Ratio Procedures, Correlation Coefficients, and Error Variance Parameters (λ, ρ) for Imputation Cells--Group II x Sales Size (Use Quantiles as Cutoff) December 1982 - SIC 562

Imputation Cell

Group	Sales	n	$R^{(1)}$	$R^{(2)}$	$R(4)$	$R^{(3)}$	r	r^{2}	λ	ρ
A. Use $1 / 4$ (1) Group 2	Quantiles as sales size (3/4 Quantile, ∞)	$\begin{aligned} & \text { cutoff } \\ & 165 \text { (20) } \end{aligned}$	1.429	1.521	1.577	1.428 ${ }^{\circ}$	0.98393	0.96812	0.0065	2.2119
(2) Group 2	(median, 3/4 Quantile)	165 (20)	1.627	1.639	1.648	1.635	0.76799	0.58981	3.6163	1.7033
(3) Group 2	(1/4 Quantile, median)	$\begin{aligned} & 165(20) \\ & 163(20) \end{aligned}$	$\begin{aligned} & 1.687 \\ & 1.623 \end{aligned}$	$\begin{aligned} & 1.669 \\ & 1.622 \end{aligned}$	$\begin{aligned} & 1.682 \\ & 1.627 \end{aligned}$	$\begin{aligned} & 1.693 \\ & 1.629 \end{aligned}$	$\begin{aligned} & 0.51390 \\ & 0.72415 \end{aligned}$	$\begin{aligned} & 0.26409 \\ & 0.52439 \end{aligned}$	$\begin{aligned} & 1690542 \\ & \quad 10.4596 \end{aligned}$	$\begin{array}{r} 0.5330 \\ 1.5903 \end{array}$
(4) Group 2	(0, 1/4 Quantile)	$\begin{aligned} & 165(20) \\ & 164(20) \end{aligned}$	$\begin{aligned} & 1.616 \\ & 1.614 \end{aligned}$	$\begin{aligned} & 1.720 \\ & 1.685 \end{aligned}$	$\begin{aligned} & 1.734 \\ & 1.705 \end{aligned}$	$\begin{aligned} & 1.583 \\ & 1.581 \end{aligned}$	$\begin{aligned} & 0.67547 \\ & 0.77251 \end{aligned}$	$\begin{aligned} & 0.45626 \\ & 0.59676 \end{aligned}$	$\begin{aligned} & 10.2717 \\ & 48.50 \end{aligned}$	$\begin{aligned} & 1.6302 \\ & 1.4576 \end{aligned}$
B. Use $1 / 8$ (1) Group 2	Quantiles as sales size (7/8 Quantile, ∞)	$\begin{aligned} & \text { cutoff } \\ & 83(7) \end{aligned}$	1.405	1.507	1.572	1.347	0.97948	0.95939	17.1295	1.6219
(2) Group 2	(3/4 Quantile, 7/8 Quan	$\begin{aligned} & \text { antile) } \\ & 82(10) \end{aligned}$	1.493	1.578	1.581	1.484	0.73324	0.53764	0.0002	2.4984
(3) Group 2	(5/8 Quantile, 3/4 Quan	ntile) $83(10)$	1.559	1.596	1.594	1.559	0.62553	0.39131	43605332	0.3368
(4) Group 2	(Median, 5/8 Quantile)	82 (10)	1.659	1.706	1.703	1.657	0.57586	0.33161	0.00027	2.7172
(5) Group 2	(3/8 Quantile, median)	$\begin{aligned} & 83(10) \\ & 82 \quad(7) \end{aligned}$	$\begin{aligned} & 1.679 \\ & 1.615 \end{aligned}$	$\begin{aligned} & 1.633 \\ & 1.614 \end{aligned}$	$\begin{aligned} & 1.640 \\ & 1.622 \end{aligned}$	$\begin{aligned} & 1.679 \\ & 1.617 \end{aligned}$	$\begin{aligned} & 0.40704 \\ & 0.43485 \end{aligned}$	$\begin{aligned} & 0.16083 \\ & 0.18909 \end{aligned}$	$\begin{array}{r} 9830.16 \\ 661.78 \end{array}$	$\begin{aligned} & 0.9810 \\ & 1.2095 \end{aligned}$
(6) Group 2	(1/4 Quantile, $3 / 8$ Quan	$\begin{aligned} & \text { antile) } \\ & 82(10) \\ & 81 \quad(7) \end{aligned}$	1.697 1.633	1.723 1.635	1.723 1.633	1.704 1.640	0.20679 0.49465	0.04276 0.24468	9.6849 72.3634	$\begin{array}{r} -0.5334 \\ 1.3849 \end{array}$

11. 3 - continued

Group	Sales	n	$R^{(1)}$	$R^{(2)}$	$R^{(4)}$	$R^{(3)}$	r	r^{2}	λ	ρ
(7) Group 2	(1/8 Quantile, $1 / 4$ Quantile)									
		83 (10)	1.716	1.722	1.669	1.654	0.25765	0.06638	508291 $1.1226-8$	0.5661 3.4585
		82 (7)	1.665	1.664	1.664	1.649	0.19085	0.43687	1.1226-8	3.4585
		82 (10)	1.665	1.664	1.664	1.649	0.43687	0.19085	0.00017	2.4496
		70 (10)	1.663	1.624	1.624	1.646	0.46121	0.21272	18260667	0.2028
(8) Group 2	(0, 1/8 Quantile)	82 (10)	1.542	1.727	1.746	1.534	0.64509	0.41614	0.1198	2.0988

TABLE 11.4 The Estimated Trends by Four Ratio Procedures, Correlation Coefficients and Error Variance Parameters (λ, ρ) for Each Imputation Cell (SMSA \times GP) December 1982 - SIC 562

Imputation Cell	n	$R^{(1)}$	$R^{(2)}$	$R^{(4)}$	$R(3)$	r	r^{2}	λ	ρ
Collapsed Cell									
1. Non-SMSA	730 (20)	1.519	1.550	1.611	1.479	0.99091	0.98190	0.38991	1.939
11. SMSA	715 (20)	1.414	1.447	1.534	1.370	0.87927	0.77312	1.444	1.815
Imputation Cell									
1. SMSA GP2	307 (20)	1.532	1.571	1.675	1.627	0.98353	0.96734	0.3055	1.952
2. SMSA GPI	408 (20)	1.300	1.169	1.428	1.285	0.82694	0.68384	1.3467	1.8216
	407 (20)	1.330	1.375	1.431	1.285	0.97397	0.94862	0.7385	1.8820
3. Non-SMSA GP2	353 (20)	1.567	1.522	1.647	1.617	0.99409	0.98821	0.4054	1.94186
4. Non-SMSA GPI	377 (20)	1.486	1.628	1.577	1.449	0.96552	0.93222	0.0172	2.2338

In Cell (SMSA, GP1), the outlier is $(x, y)=(\$ 8,168,230, \$ 3,120,007)$, where y is current month sales, x is previous month sales.

TABLE II. 5 The Estimated Trends by Four Ratio Procedures, Correlation Coefficients, and Error Variance Parameters (λ, ρ) for Each Imputation Cell (Geographic Division) December 1982 - SIC 562

Imputation Cell	n	$R^{(1)}$	$R_{R}(2)$	$R^{(4)}$	$R^{(3)}$	r	r^{2}	λ	ρ
1. New England Div.	83 (20)	1.410	1.629	1.619	1.270	-0.93874	0.88123	0.021116	2.23351
2. Mïddle Atlantic	238 (20)	1.366	1.249	1.488	1.342	0.75515	0.57026	0.249571	2.02213
	237 (20)	1.407	1.487	1.492	1.343	0.94483	0.89271	0.108064	2.10309
3. East North Central	220 (20)	1.515	1.536	1.535	1.436	0.99317	0.98640	0.276366	1.96379
4. West North Central	89 (20)	1.379	1.333	1.390	1.388	0.97822	0.95691	0.159922	2.06205
5. South Atlantic	230 (20)	1.461	1.542	1.585	1.383	0.97333	0.94737	0.045076	2.15520
6. East South Central	71 (20)	1.487	1.570	1.601	1.279	0.98170	0.96374	0.155529	2.06613
7. West South Central	178 (20)	1.549	1.732	1.625	1.591	0.98966	0.97943	1.906025	1.82640
8. Mountain	55 (20)	1.348	1.472	1.394	1.331	0.9927	0.98546	0.004209	2.44826
9. Pacific	281 (20)	1.564	1.485	1.705	1.696	0.99521	0.99044	2.5607+11	-0.63281
	280 (20)	1.568	1.492	1.706	1.696	0.99397	0.98797	0.128111	2.06785

Note:

In Cell 2, Middle Atlantic Division, the outlier is $(x, y)=(\$ 8,168,230, \$ 3,120,007)$.
In Cell 9 , Pacific Division, the low $\rho,-0.63281$ was caused by zero variance in the last group with 1 unit in it.
The resulting $p, 2.06985$, was computed by deleting the last group.

TABLE II. 6 The Estimated Trends by Four Katio Procedures, Correlation Coefficients, and.Error Variance Parameters (λ, ρ) for Each Imputation Cell (Group or Firm) December 1982 - SIC 562

Imputation Cell	n	$\mathrm{R}^{(1)}$	$\mathrm{R}^{(2)}$	R(4)	$R^{(3)}$	r	r^{2}	λ	ρ
I. Full reported data									
Full reported data	$\begin{aligned} & 1445(20) \\ & 1444 \\ & (20) \end{aligned}$	$\begin{aligned} & 1.472 \\ & 1.480 \end{aligned}$	$\begin{aligned} & 1.493 \\ & 1.534 \end{aligned}$	1.573 1.574	1.440 1.440	$\begin{aligned} & 0.92234 \\ & 0.98703 \end{aligned}$	$\begin{aligned} & 0.85071 \\ & 0.97424 \end{aligned}$	$\begin{aligned} & 1.3394 \\ & 1.3663 \end{aligned}$	$\begin{aligned} & 1.8169 \\ & 1.8151 \end{aligned}$
11. GP	785 (20)	1.409	1.356	1.500	1.394	0.76996	0.59284	1.1298	1.8271
	784 (20)	1.423	1.492	1.501	1.395	0.96282	0.92702	0.5363	1.8995
2. GP 2	660 (20)	1.549	1.549	1.660	1.621	0.9884	0.9769	1.8858	1.7873
$111 .$		1.353	1.060	1.399	1.352	0.90949	0.82717	0.7530	1.8921
1. Firm 2	305 (20)	1.372	1.372	1.403	1.352	0.96269	0.92677	1.3562	1.8353
2. Firm 3	267 (20)	1.451	1.479	1.535	1.514	0.95710	0.91604	0.0065	2.32177
3. Firm 4	212 (20)	1.623	1.641	1.600	1.631	0.98766	0.97547	0.0213	2.21442
4. Firm 6	660 (20)	1.549	1.549	1.660	1.621	0.9884	0.9769	1.8858	1.7873

The outlier for the full reported data is $(x, y)=(\$ 8,168,230, \$ 3,120,007)$, which is also in Group 1 and firm 2 .

TABLE 11.7 The Estimated Trends by Four Ratio Procedures, Correlation Coefficients and Error Variance Parameters (λ, ρ) for Each Imputation Cell (Firm size x Sales size (Use Median as Cutoff)) December 1982 - SIC 562

Imputation Cell

Firm	Sales	n	$R^{(1)}$	$\mathrm{R}^{(2)}$	$R^{(4)}$	$R^{(3)}$	r	r^{2}	λ	p
1. Firm 2	$\begin{aligned} & (0, \text { Median }) \\ & (0, \$ 33,800) \end{aligned}$	153 (20)	1.326	1.292	1.381	1.321	0.98167	0.96368	0.200835	2.04874
2. Firm 2	$\begin{aligned} & \text { (Median, } \infty) \\ & (\$ 33,800, \infty) \end{aligned}$	$\begin{aligned} & 153(20) \\ & 152(20) \end{aligned}$	$\begin{aligned} & 1.376 \\ & 1.413 \end{aligned}$	$\begin{aligned} & 1.021 \\ & 1.393 \end{aligned}$	$\begin{aligned} & 1.417 \\ & 1.424 \end{aligned}$	$\begin{aligned} & 1.484 \\ & 1.484 \end{aligned}$	$\begin{aligned} & 0.9225 \\ & 0.9550 \end{aligned}$	$\begin{aligned} & 0.85100 \\ & 0.91203 \end{aligned}$	$\begin{aligned} & 0.011321 \\ & 1.339371 \end{aligned}$	$\begin{aligned} & 2.27264 \\ & 1.81692 \end{aligned}$
3. Firm 3	$\begin{aligned} & (0, \text { Median }) \\ & (0, \$ 43,450) \end{aligned}$	133 (20)	1.451	1.427	1.540	1.526	0.90496	0.81895	0.66633	1.86902
4. Firm 3	$\begin{aligned} & \text { (Median, } \infty) \\ & (\$ 43,450, \infty) \end{aligned}$	134 (20)	1.451	1.491	1.530	1.495	0.95264	0.90753	0.001327	2.48916
5. Firm 4	$\begin{aligned} & (0, \text { Median }) \\ & (0, \$ 58,400) \end{aligned}$	106 (10)	1.673	1.616	1.618	1.652	0.90450	0.81812	21.72	1.5390
6. Firm 4	$\begin{aligned} & \text { (Median } \infty) \\ & (\$ 58,400, \infty) \end{aligned}$	106 (10)	1.572	1.647	1.583	1.578	0.98822	0.97658	0.000934	2.42714
7. Firm 6	$\begin{aligned} & (0, \text { Median }) \\ & (0, \$ 80,100) \end{aligned}$	$\begin{aligned} & 330(20) \\ & 327(20) \end{aligned}$	$\begin{aligned} & 1.666 \\ & 1.620 \end{aligned}$	$\begin{aligned} & 1.683 \\ & 1.640 \end{aligned}$	$\begin{aligned} & 1.708 \\ & 1.666 \end{aligned}$	$\begin{aligned} & 1.633 \\ & 1.603 \end{aligned}$	$\begin{aligned} & 0.7869 \\ & 0.8954 \end{aligned}$	$\begin{aligned} & \mathbf{u . 6 1 9 2} \\ & 0.8017 \end{aligned}$	$\begin{aligned} & 32.16 \\ & 61.70 \end{aligned}$	$\begin{aligned} & 1.5262 \\ & 1.4304 \end{aligned}$
8. Firm 6	$\begin{aligned} & (\text { Median }, \infty) \\ & (\$ 80,100, \infty) \end{aligned}$	330 (20)	1.496	1.538	1.612	1.581	0.9868	0.9737	0.0178	2.1494

In Cell (Firm 6, Sales < Median), after 3 outliers were deleted, there are 12 units with some reported values $(x, y)=(\$ 26,667, \$ 50,710)$, this would lower the group variance and hence the ρ.

TABLE II. 8 The Estimated Trends by Four Ratio Procedures, Correlation Coefficients and Error Variance Parameters (λ, ρ) For Each Imputation Cell (Firm x Sales (Use $1 / 4$ Quantiles as cutoff))

11.8 - continued

TABLE II. 9 The Estimated Trends by Four Ratio Procedures, Correlation Coefficients and Error Variance Parameters (λ, ρ) For Each Imputation Cell (Region)

December 1982 - SIC 562

Imputation Cell									
\quad Region	n	$R^{(1)}$	$R^{(2)}$	$R^{(4)}$	$R^{(3)}$	r	r^{2}	λ	ρ
1. Northeast	$321(20)$	1.378	1.330	1.522	1.323	0.75383	0.56826	$1.4169+15$	-1.3364
	$320(20)$	1.408	1.523	1.525	1.324	0.94396	0.89106	0.1548	2.0427
2. North Central	$309(20)$	1.493	1.510	1.493	1.421	0.99288	0.98582	1.128659	1.82576
3. South	$479(20)$	1.499	1.632	1.602	1.424	0.97665	0.95385	0.559551	1.90275
4. West	$336(20)$	1.518	1.484	1.654	1.623	0.99495	0.98993	0.1519	2.05163

TABLE II. 10 The Estimated Trends by Four Ratio Procedures, Correlation Coefficients and Error Variance Parameters (λ, ρ) For Each Imputation Cell (Region x Sales Size (Use Median as Cutoff))

Region	Sales	n	$R^{(1)}$	$\mathrm{R}^{(2)}$	$\mathrm{R}^{(4)}$	R(3)	r	r^{2}	λ	ρ
1. Northeast	$\begin{aligned} & <\text { Median } \\ & \$ 78,510 \end{aligned}$	160 (20)	1.321	1.454	1.454	1.279	0.92524	0.85607	1.805161	1.83342
2. Northeast	$\begin{aligned} & >\text { Median } \\ & \$ 78,510 \end{aligned}$	$\begin{aligned} & 161 \star(20) \\ & 160(20) \end{aligned}$	$\begin{aligned} & 1.424 \\ & 1.481 \end{aligned}$	$\begin{aligned} & 1.311 \\ & 1.536 \end{aligned}$	$\begin{aligned} & 1.589 \\ & 1.597 \end{aligned}$	$\begin{aligned} & 1.577 \\ & 1.578 \end{aligned}$	$\begin{aligned} & 0.74202 \\ & 0.93327 \end{aligned}$	$\begin{aligned} & 0.55059 \\ & 0.87001 \end{aligned}$	$\begin{aligned} & 4.1262+28 \\ & 0.000575 \end{aligned}$	$\begin{array}{r} -3.69819 \\ 2.51685 \end{array}$
3. North Central	$\begin{aligned} & \text { <Median } \\ & \$ 48,020 \end{aligned}$	154 (20)	1.468	1.424	1.509	1.405	0.93788	0.87962	0.188048	2.01626
4. North Central	$\begin{aligned} & >\text { Median } \\ & \$ 48,020 \end{aligned}$	155 (20)	1.506	1.519	1.477	1.483	0.99196	0.98398	0.068077	2.07287
5. South	$\begin{aligned} & \text { < Median } \\ & \$ 49,780 \end{aligned}$	239 (20)	1.453	1.589	1.610	1.401	0.83725	0.70098	138.10	1.36723
6. South	$\begin{aligned} & \text { > Median } \\ & \$ 49,780 \end{aligned}$	240 (20)	1.554	1.638	1.594	1.567	0.97106	0.94296	0.067503	2.08208
7. West	< Median $\$ 50,000$	$\begin{aligned} & 168(20) \\ & 167(20) \end{aligned}$	$\begin{aligned} & 1.689 \\ & 1.654 \end{aligned}$	$\begin{aligned} & 1.673 \\ & 1.611 \end{aligned}$	$\begin{aligned} & 1.728 \\ & 1.684 \end{aligned}$	$\begin{aligned} & 1.643 \\ & 1.626 \end{aligned}$	$\begin{aligned} & 0.76389 \\ & 0.90678 \end{aligned}$	$\begin{aligned} & 0.58353 \\ & 0.82225 \end{aligned}$	$\begin{array}{r} 51.39 \\ 257.59 \end{array}$	$\begin{aligned} & 1.45591 \\ & 1.26726 \end{aligned}$
8. West	> Median $\$ 50,000$	168 (20)	1.442	1.470	1.580	1.563	0.99483	0.98969	0.145494	2.04225

In Cell (Northeast, Sales > Median), the outlier is $(x, y)=(8,168,230,3,120,007)$.
In Cell (West, Sales \& Median), the outlier is $(x, y)=(40,868,370,307)$.

TABLE II. 11 The Number of Units in Each Cell (Region \times Firm)
December 1982 - SIC 562

	Firm				
Region	2	3	4	6	Total
Northeast	87	46	34	154	321
North Central	74	66	22	147	309
South	90	96	83	210	479
West	55	59	73	149	336
Total	306	267	212	660	1445

The data are reported list sample with current month sales and previous month sales greater than zero.

Table II. 12 The Estimated λ, 0 for the Weighted Observation in Each Imputation Cell

December 1982
Group
Sales
n
λ
p
February 1983
λ
p
SIC 562
Imputation Cells

1	2	$>\$ 50,000$	411	0.026606	2.11329	402	0.032087	1.99166
2	2	$<\$ 50,000$	249	0.260983	2.02471	265	0.143026	1.93844
3	1	$>\$ 50,000$	354	0.195763	1.98888	276	8.474825	1.66948
4	1	$<\$ 50,000$	431	0.437924	1.93984	612	0.381239	1.85591

TABLE 4.1 The Trend Estimates from the Reported Data By Using Different Imputation Procedures December 1982 \& February 1983

TABLE 4.1 - continued

TABLE 4.2 The Bias (Relative Bias (\%)) of the Estimated Total By Using Different Imputation Procedures

December 1982 \& February 1983

TABLE 4.3 The MSE of the Estimated Total By Using Different Imputation Procedures (And the Ratio to its Current Imputation Procedure)

December 1982 \& February 1983

SIC	n	$R(1)$	$R^{(2)}$	$R^{(3)}$	$R^{(4)}$	$\mathrm{R}_{\mathrm{opt}}$	$R^{(5)}$	$R^{(6)}$	Regression Estimator
December 1982							,		
562 (Women's Ready-to-Wear Stores)	1445	$122,250,188$ (1)	$\begin{array}{r} 149,423,484 \\ (1.2223) \end{array}$	$\begin{array}{r} 485,083,727 \\ (3.9680) \end{array}$	$\begin{array}{r} 542,620,951 \\ (4.4386) \end{array}$	$\begin{array}{r} 122,151,733 \\ (0.9992) \end{array}$	$\begin{array}{r} 254,714,015 \\ (2.0835) \end{array}$	$\begin{array}{r} 1,384,741,428 \\ (11,327) \end{array}$	$\begin{array}{r} 2,236,292,027 \\ (18.293) \end{array}$
521 (Building Materials Stores)	635	$373,293,260$ (1)	$\begin{array}{r} 508,178,456 \\ (1.3613) \end{array}$	$\begin{array}{r} 634,679,773 \\ (1.7002) \end{array}$	$\begin{array}{r} 810,125,338 \\ (2.1702) \end{array}$	$\begin{array}{r} 373,238,170 \\ (0.9999) \end{array}$	$\begin{array}{r} 405,332,341 \\ (1.0858) \end{array}$	$\begin{array}{r} 425,909,403 \\ (1.1410) \end{array}$	$\begin{array}{r} 482,528,485 \\ (1.2926) \end{array}$
531 (Department Stores)	7557	$148,129,951$ (1)	$\begin{array}{r} 148,187,203 \\ (1.0004) \end{array}$	$\begin{array}{r} 5,362,890,768 \\ (36.204) \end{array}$	$\begin{array}{r} 5,363,246,499 \\ (36.206) \end{array}$	$\begin{array}{r} 148,069,922 \\ (0.9496) \end{array}$	$\begin{array}{r} 6,176,598,292 \\ (41.697) \end{array}$	$\begin{array}{r} 6,178,473,892 \\ (41.710) \end{array}$	$\begin{array}{r} 121,809,138 \\ (0,8223) \end{array}$
541 (Grocery Stores)	2428	$975,155,627$ (1)	$\begin{array}{r} 2,732,057,367 \\ (2.8017) \end{array}$	$\begin{array}{r} 1,383,526,763 \\ (1.4188) \end{array}$	$\begin{array}{r} 2,492,746,633 \\ (2.5563) \end{array}$	$\begin{array}{r} 975,070,021 \\ (0.9999) \end{array}$	$\begin{array}{r} 1,306,876,310 \\ (1.3402) \end{array}$	$\begin{array}{r} 2,902,580,498 \\ (2.9765) \end{array}$	$\begin{array}{r} 2,341,096,627 \\ (2,4007) \end{array}$
551 (Motor Vehicle Dealers)	753	$2,617,510,636$	$\begin{array}{r} 2,906,824,784 \\ (1.1105) \tag{1} \end{array}$	$\begin{array}{r} 4,919,457,310 \\ (1.8794) \end{array}$	$\begin{array}{r} 5,040,731,723 \\ (1.9258) \end{array}$	$\begin{array}{r} 2,610,996,151 \\ (0.9975) \end{array}$	$\begin{array}{r} 4,108,583,221 \\ (1.5697) \end{array}$	$\begin{array}{r} 2,689,858,236 \\ (1.0276) \end{array}$	$\begin{array}{r} 5,023,064,502 \\ (1.9190) \end{array}$
572 (Household Appliances, Radio/TV Stores)	500	$25,604,966$ (1)	$\begin{array}{r} 60,624,441 \\ (2.3677) \end{array}$	$\begin{array}{r} 41,244,917 \\ (1.6108) \end{array}$	$\begin{array}{r} 52,676,300 \\ (2.0573) \end{array}$	$\begin{array}{r} 2 b, 562,855 \\ (0.9984) \end{array}$	$\begin{array}{r} 35,419,411 \\ (1.3833) \end{array}$	$\begin{array}{r} 134,778,334 \\ (5.2638) \end{array}$	$\begin{array}{r} 83,056,483 \\ (3.2438) \end{array}$
5812 (Eating Places)	1531	$410,794,971$	$\begin{array}{r} 477,812,049 \tag{1}\\ (1.1631) \end{array}$	$\begin{array}{r} 1,134,373,917 \\ (2.7614) \end{array}$	$\begin{array}{r} 1,339,936,313 \\ (3.2618) \end{array}$	$\begin{array}{r} 410,512,304 \\ (0.9993) \end{array}$	$\begin{array}{r} 551,848,720 \\ (1.3434) \end{array}$	$\begin{array}{r} 1,168,011,026 \\ (2.8433) \end{array}$	$\begin{array}{r} 669,950,846 \\ (1.6309) \end{array}$
5813 (Drinking Places)	420	$4,150,594$ (1)	$\begin{array}{r} 4,205,883 \\ (1.0133) \end{array}$	$\begin{array}{r} 4,691,465 \\ (1.1303) \end{array}$	$\begin{array}{r} 4,309,152 \\ (1.0382) \end{array}$	$\begin{array}{r} 4,145,352 \\ (0.9987) \end{array}$	$\begin{gathered} 5,229,200 \\ (1.2599) \end{gathered}$	$\begin{array}{r} 4,577,926 \\ (1,1030) \end{array}$	$\begin{array}{r} 8,792,564 \\ (2.1184) \end{array}$
592 (Liquor Stores)	542	$110,351,071$ (1)	$\begin{array}{r} 150,489,266 \\ (1.3637) \end{array}$	$\begin{array}{r} 183,571,784 \\ (1.6635) \end{array}$	$\begin{array}{r} 118,555,857 \\ (1.0744) \end{array}$	$\begin{array}{r} 110,152,107 \\ (0.9982) \end{array}$	$\begin{array}{r} 119,873,690 \\ (1.0863) \end{array}$	$\begin{array}{r} 428,523,608 \\ (3.8833) \end{array}$	$\begin{array}{r} 144,471,410 \\ (1.3092) \end{array}$
```February 1983 562 (Women's Ready-to-Wear Stores)```	1555	$10,231,391$	$\begin{array}{r} 14,006,547  \tag{1}\\ (1.3690) \end{array}$	$\begin{array}{r} 21,046,490 \\ (2.0571) \end{array}$	$\begin{array}{r} 30,399,492 \\ (2.9712) \end{array}$	$\begin{array}{r} 10,229,762 \\ (0.9998) \end{array}$	$\begin{gathered} 12,064,582 \\ (1.1792) \end{gathered}$	$\begin{array}{r} 40,815,179 \\ (3.9892) \end{array}$	$\begin{array}{r} 54,881,884 \\ (5.3641) \end{array}$

TABLE 4.4 The Imputation Rate by Sales Classes of Each Imputation Cell (SIC 562 Women's Ready-to-Wear Storesd December 1982

	Total Number of Establishments ${ }^{1}$				Imputation Rate ${ }^{2}$ (\%)			
Sales Classes	$\begin{gathered} \text { Cell } 1 \\ \text { (GP) 2, Sales } \\ >\$ 50,000) \end{gathered}$	$\begin{aligned} & \text { Cell } 2 \\ & (\text { GP } 2, \text { Sales } \\ & <\$ 50,000) \end{aligned}$	$\begin{gathered} \text { Cell } 3 \\ (\mathrm{GP} 1, \text { Sales } \\ \geqslant \$ 50,000) \end{gathered}$	$\begin{gathered} \text { Cell } 4 \\ (\mathrm{GP} 1, \text { Sales } \\ <\$ 50,000) \end{gathered}$	$\begin{gathered} \text { Cell } 1 \\ (\text { GP } 2, \text { Sales } \\ >\$ 50,000) \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (\mathrm{GP} 2, \text { Sales } \\ (\$ 50.000) \end{gathered}$	$\begin{aligned} & \text { Cell } 3 \\ & (\text { GP } 1, \text { Sales } \\ & >\$ 50,000) \end{aligned}$	$\begin{gathered} \text { Cell } 4 \\ (G P 1, \text { Sales } \\ (\$ 50,000) \end{gathered}$
$1\left(<9 \times \$ 10^{3}\right)$		24		71		58.33		15.5
$2(9-15)$		67		59		41.79		18.6
3 ( $15-20$ )		55		76		49.09		10.5
4 (20-25)		51		62	-	41.18		12.9
5 (25-30)		64		70		34.38		10.0
6 ( $30-35$ )		37		52		24.32		9.6
7 (35-45)		76		78		36.84		11.54
$8 \quad(45-50)$		42		29		21.43		13.80
$9 \quad(50-60)$	43		49		41.86		12.24	
10 (60-75)	63		78		28.57		11.54	
11 (75-85)	31		36		35.48		8.33	
12 (85-95)	318		35		94.65		5.71	
13 (95-110)	52		24		46.15		8.33	
14 (110-130)	48		33		27.08		3.03	
15 (130-150)	34		30		26.47		10.00	
16 ( $150-170$ )	31		21		22.58	1	4.76	
17 (170-180)	11		3		9.09		0.	
18 (180-200)	16		14		25.00		14.29	.
19 (200-220)	16		8		18.75		25.00	
20 (220-240)	16		14		0		7.14	
21 (240-280)	15		11		20.00		0.	
22 (280-300)	9		5		11.11		20.0	
23 (300-500)	55		24		7.27		20.83	
24 (500-1000)	45		22		4.44		63.64	
25 (1000+)	34		10		5.88		70.00	
Total	837	416	417	497	50.30	37.98	14.15	12.68

1 The data used are monthly list sample with current month and previous month sales greater than 0. The establishment totals do not include RICM code $=5$.
2 The imputation rate as calculated by dividing the number of establishments with RICM code $=2$ or 3 by the total number of establishnents (not including RICM code $=5$ ).

TABLE 4.4 The Imputation Rate by Sales Classes of Each Imputation Cell (SIC 521 - Building Materials Stores)

## December 1982

	Total Number of Establishments ${ }^{1}$				Imputation Rate ${ }^{2}$ (\%)			
Sales Classes	$\begin{gathered} \text { Cell } 1 \\ (G P 2, \text { Sales } \\ >\$ 183,333) \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (G P 2, \text { Sales } \\ <\$ 183,333) \end{gathered}$	$\begin{gathered} \text { Cell } 3 \\ (\text { GP } 1, \text { Sales } \\ \geqslant \$ 183,333) \end{gathered}$	$\begin{gathered} \text { Cell } 4 \\ (\text { GP } 1, \text { Sales } \\ <\$ 183,333) \end{gathered}$	$\begin{gathered} \text { Cell } 1 \\ (G P 2, \text { Sales } \\ >\$ 183,333) \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (\mathrm{GP} 2, \text { Sales } \\ <\$ 183.333) \end{gathered}$	$\begin{gathered} \text { Cell } 3 \\ (\text { GP } 1, \text { Sales } \\ >\$ 183,333) \end{gathered}$	$\begin{gathered} \text { Cell } 4 \\ (6 \mathrm{C} 1, \text { Sales } \\ <\$ 183,333) \end{gathered}$
$1\left(<9 \$ 10^{3}\right)$		1		12		100.00		41.67
$2(9-15)$		3		9		66.67		11.11
3 ( $15-20$ )		2		5		50.00		20.00
4 (20-25)		3		8		100.00		25.00
$5 \quad(25-30)$		1		8		0		37.50
6 (30-35)		4		8		25.00		25.00
7 (35-45)		8		19		25.00		15.79
8 (45-50)		3		7		33.33		0
9 ( $50-60$ )		8		24	;	37.50		8.33
10 (60-75)		17		33		17.65		6.06
11 (75-85)		6		19		16.67		5.26
12 (85-95)		6		13		16.67		0
13 (95-110)		6		19		33.33		31.58
14 (110-130)		18		21		38.89		14.29
15 (130-150)		17		24		11.76		8.33
16 (150-170)		40		21		75.00		9.52
17 (170-180)		17		6		82.35		0.
18 (180-200)	40	9	12	2	67.50	88.89	16.67	50.00
19 (200-220)	33		17		63.64		23.53	
20 (220-240)	39		15		58.97		26.67	
21 (240-280)	67		20		62.69		20.00	
22 (280-300)	36		13		77.78		15.38	
23 (300-500)	133		63	\%	64.66		6.35	
24 ( $500-1000$ )	53		57		58.49		8.77	
25 (1000+)	6		25		66.67		20.00	
Total	407	169	222	258	64.37	48.52	13.51	13.95

TABLE 4.4 The Imputation Rate by Sales Classes of Each Imputation Cell (SIC 531 - Department Stores) December 1982

Sales Classes		Total Number of Establishments ${ }^{1}$					Imputation Rate ${ }^{2}$ (\%)		
		$\begin{gathered} \text { Cell } 1 \\ (G P 2, \text { Sales } \\ >\$ 501,667) \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (\text { GP } 2, \text { Sales } \\ <\$ 501,667) \end{gathered}$	$\begin{gathered} \text { Cell } 3 \\ (\text { GP } 1, \text { Sales } \\ >\$ 501,667) \end{gathered}$	$\begin{gathered} \text { Cell } 4 \\ (\text { GP } 1, \text { Sales } \\ <\$ 501,667) \end{gathered}$	$\begin{gathered} \text { Cell } 1 \\ (\text { GP } 2, \text { Sales } \\ \geqslant \$ 501,667) \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (\text { GP } 2, \text { Sales } \\ <\$ 501.667) \end{gathered}$	$\begin{gathered} \text { Cell } 3 \\ (\text { GP } 1, \text { Sales } \\ >\$ 501.667) \end{gathered}$	Cell 4   (GP 1, Sales < $\$ 501,667$ )
	$\left(<9 \times \$ 10^{3}\right)$		2		3		100.00		33.33
	$(9-15)$		0		5		0		0
	(15-20)		0		1		0		0
4	(20-25)		2		4		0		0
	(25-30)		3		3		66.67		0
	(30-35)		3		0		33.33		0
	(35-45)		7		5		57.14		0
	( $45-50$ )		1		2	:	100.00		0
9	(50-60)		9		3		55.56		0
10	(60-75)		15		12		33.33		8.33
11	(75-85)		6		9		133.33		0
	(85-95)		8		10		0		0
13	(95-110)		5		12		- 0		8.33
14	(110-130)		20		14		0		7.14
15	(130-150)		41		30		7.32		13.33
16	(150-170)		64		23		6.25		8.70
17	(170-180)		36		9		8.33		0.17
18	(180-200)		67		24		5.97		4.17 0
19	(200-220)		90		17		5.56		${ }_{8} 0$
20	(220-240)		75		12		12.00		8.33
21	(240-280)		184		33		10.33		3.03
22	(280-300)		121		14		14.05		0
23	(300-500)		1362		114		20.12		8.77
24	(500-1000)	2836	7	85		20.49	42.86	3.53	
25	(1000+)	3477		73		10.87		8.22	
Tot		6313	2128	158	359	15.19	17.06	5.70	6.41

TABLE 4.4 The Imputation Rate by Sales Classes of Each Imputation Cell (SIC 541 - Grocery Stores)

December 1982

Sales Classes	Total Number of Establishments ${ }^{1}$					Imputation Rate ${ }^{2}$ (\%)		
	$\begin{gathered} \text { Cell } 1 \\ (G P 2, \text { Sales } \\ 2 \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (G P 2, \text { Sales } \\ <\$ 146,667) \end{gathered}$	$\begin{gathered} \text { Cell } 3 \\ (\text { GP } 1, \text { Sales } \\ >\$ 146.667) \end{gathered}$	$\begin{gathered} \text { Cell } 4 \\ (G P 1, \text { Sales } \\ <\$ 146,667) \end{gathered}$	$\begin{gathered} \text { Cell } 1 \\ (\text { GP } 2, \text { Sales } \\ >\$ 146,667) \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (\text { GP } 2, \text { Sales } \\ (\$ 146,667) \end{gathered}$	$\begin{gathered} \text { Cell } 3 \\ (\text { GP } 1, \text { Sales } \\ >\$ 146.667) \end{gathered}$	$\begin{gathered} \text { Cell } 4 \\ (\text { GP } 1, \text { Sales } \\ <\$ 146,667) \end{gathered}$
$1\left(<9 \times \$ 10^{3}\right)$		2		29		50.00		34.48
$2(9-15)$		6		31		0		19.35
3 ( $15-20$ )		11		26		0		19.23
4 (20-25)		17		24		41.18		29.17
$5 \quad(25-30)$		22		28		18.18		10.71
6 (30-35)		27		27		14.81		11.11
7 (35-45)		33		36		12.12		2.78
8 ( $45-50$ )		174		19		92.53		10.53
$9 \quad(50-60)$		28		29	;	25.00		27.59
10 (60-75)		25		30		16.00		6.67
11 (75-85)		10		35		0		2.86
12 (85-95)		14		14		50.00		14.29
13 (95-110)		10		15		20.00		20.00
14 (110-130)		17		29		11.76		13.79
15 (130-150)	4	12	4	14	0	25.00	0	0
16 (150-170)	94		18		88.30		5.56	
17 (170-180)	12		5		25.00		0	
18 (180-200)	35		28		25.71		7.14	
19 (200-220)	32		17		28.13		17.65	
20 (220-240)	41		14		12.20		21.43	
21 (240-280)	87		33		26.44		15.15	
22 (280-300)	52		11		30.77		9.09	
23 (300-500)	619		145		30.21		24.14	
24 (500-1000)	1014		190		43.10		14.21	
25 (1000+)	562		156		51.25		8.97	
Total	2552	408	621	370	41.61	50.49	14.65	15.41

TABLE 4.4 The Imputation Rate by Sales Classes of Each Imputation Cell (SIC 551 Motor Vehicle Dealers (Franchised)) December 1982

Total Number of Establishments ${ }^{l}$

## Imputation Rate ${ }^{2}$ <br> (\%)

Sales Classes	$\begin{gathered} \text { Cell } 1 \\ (\text { GP } 2, \text { Sales } \\ >\$ 375,000) \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (G P 2, \text { Sales } \\ <\$ 375,000) \end{gathered}$	Cell 3 (GP 1, Sales $>\$ 375,000)$	Cell 4   (GP 1, Sales $<\$ 375,000)$	Cell 1   (GP 2, Sales > $\$ 375,000$ )	Cell 2   (GP 2, Sales   < $\$ 375,000$ )	$\begin{gathered} \text { Cell } 3 \\ (\text { GP } 1, \text { Sales } \\ >\$ 375,000) \end{gathered}$	Cell 4 (GP 1, Sales < $\$ 375,000$ )
$1\left(<9 \times \$ 10^{3}\right)$		42		42		4.76		4.76
2 (9-15)		1		1.		0		0
3 ( $15-20)$		4		4		0		0
$4 \quad(20-25)$		0		0		0		0
$5 \quad(25-30)$		0		0		0		0
$6 \quad(30-35)$		1		1		0		0
$7 \quad(35-45)$		6		6		16.67		16.67
8 ( $45-50$ )		3		3		0		0
$9 \quad(50-60)$		1	;	1		0		0
10 (60-75)		3		4		0		0
11 (75-85)		0		0		0		0
12 (85-95)		4		4		25.00		25.00
13 (95-110)		5		5		0		0
14 ( $110-130$ )		6		6		16.67		16.67
15 (130-150)		6		6		0		0
16 (150-170)		3		5		0		0
17 (170-180)		3		3		0		0
18 (180-200)		5		5		0		0
19 (200-220)		11		11		9.09		9.09
20 (220-240)		7		7		14.29		14.29
21 (240-280)		18		19		5.56		5.26
22 (280-300)		7		7		14.29		14.29
23 (300-500)	45	32	47	32	11.11	6.25	10.64	6.25
24 (500-1000)	144		156		12.50		14.10	
25 (1000+)	464		479		6.90		8.35	
Total	653	168	682	172	8.42	6.55	9.82	6.40

61

TABLE 4.4 The Imputation Rate by Sales Classes of Each Imputation Cell (SIC 572 - Household Appliance Stores, Radio and TV Stores) December 1982


TABLE 4.4 The Imputation Rate by Sales Classes of Each Imputation Cell (SIC 5812 Eating Places)

December 1982

## Total Number of Establishments ${ }^{1}$

Sales Classes	
1	$\left(<9 \times \$ 10^{3}\right)$
2	(9-15)
3	( $15-20$ )
4	(20-25)
5	(25-30)
6	( $30-35$ )
7	( $35-45$ )
8	( $45-50$ )
9	( $50-60$ )
10	(60-75)
11	(75-85)
12	(85-95)
13	(95-110)
14	(110-130)
15	(130-150)
16	(150-170)
17	(170-180)
18	(180-200)
19	(200-220)
20	(220-240)
21	( $240-280$ )
22	(280-300)
23	( $300-500$ )
24	( $500-1000$ )
25Total	


$\begin{gathered} \text { Cell } 1 \\ \text { (GP } 2, \text { Sales } \\ \geqslant \$ 34,167 \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (\mathrm{GP} 2, \text { Sales } \\ <\$ 34,167) \end{gathered}$	$\begin{gathered} \text { Cell } 3 \\ \left(\begin{array}{c} \text { GP } 1, \text { Sales } \\ \geqslant \$ 34,167) \end{array}\right. \end{gathered}$	$\begin{gathered} \text { Cell } 4 \\ (\text { GP } 1, \text { Sales } \\ <\$ 34,167) \end{gathered}$	$\begin{gathered} \text { Cell } 1 \\ (\text { GP } 2, \text { Sales } \\ \geqslant \$ 34,167) \end{gathered}$	$\begin{gathered} \text { Cell } 2 \\ (\text { GP } 2, \text { Sales } \\ \langle \$ 34,167) \end{gathered}$	$\begin{gathered} \text { Cell } 3 \\ (\text { GP } 1, \text { Sales } \\ 2 \$ 34,167) \end{gathered}$	$\begin{gathered} \text { Cell } 4 \\ (\text { GP } 1, \text { Sales } \\ <\$ 34.167) \end{gathered}$
	53		97		60.38		5.15
	49		93		32.65		5.48
	47		65		40.43		12.31
	65		38		32.31		26.32
	63		47		36.51		8.51
11	70	9	36	45.45	31.43	22.22	13.89
131		83		38.93		3.61	
69		:43		52.17		4.66	
136		72		52.21		8.33	.
170		96		54.71		9.38	
86		41		60.47		9.76	
488		33		94.26		3.03	
92		52		67.39	1	9.62	
79		46		58.23		17.39	
48		32		50.00	.	40.63	.
27		22		44.44		4.55	
- 10		6		40.00		16.67	
15		8		46.67		25.00	
10		10		30.00		10.00	
10		11		40.00		18.18	
14		13		50.00		15.38	
2		4		100.00		0	
25		25		32.00		40.00	
12		7		41.67		14.29	
8		6		25.00		16.67	
1443	347	619	356	66.11	38.33	11.95	10.11


Cell 1	Cell 2	Cell 3	Cell 4	Cell 1	Cell 2	Cell 3	Cell 4
(GP 2, Sales	(GP 2, Sales	(GP 1, Sales	(GP 1, Sales	(GP 2, Sales	(GP 2, Sales	(GP 1, Sales	(GP 1, Sales
$\geqslant \$ 34,167$	$<\$ 34,167)$	2 \$34,167)	$<\$ 34,167)$	$=\$ 34,167)$	$<\$ 34,167)$	$=\$ 34,167)$	$<\$ 34,167)$
	53		97		60.38		5.15
	49		93		32.65		5.48
	47		65		40.43		12.31
	65		38		32.31		26.32
	63		47		36.51		8.51
11	70	9	36	45.45	31.43	22.22	13.89
131		83		38.93		3.61	
69		:43		52.17		4.66	
136		72		52.21		8.33	
170		96		54.71		9.38	
86		41		60.47		9.76	
488		33		94.26		3.03	
92		52		67.39	,	9.62	
79		46		58.23		17.39	
48		32		50.00		40.63	
27		22		44.44		4.55	
- 10		6		40.00		16.67	
15		8		46.67		25.00	
10		10		30.00		10.00	
10		11		40.00		18.18	
14		13		50.00		15.38	
2		4		100.00		0	
25		25		32.00		40.00	
12		7		41.67		14.29	
8		6		25.00		16.67	
1443	347	619	356	66.11	38.33	11.95	10.11


Cell 1	Cell 2	Cell 3	Cell 4	Cell 1	Cell 2	Cell 3	Cell 4
(GP 2, Sales	(GP 2, Sales	(GP 1, Sales	(GP 1, Sales	(GP 2, Sales	(GP 2, Sales	(GP 1, Sales	(GP 1, Sales
> \$34,167	< \$34,167)	2 \$34,167)	< \$34,167)	$=\$ 34,167)$	$<\$ 34,167)$	$>\$ 34,167)$	$<\$ 34,167)$
	53		97		60.38		5.15
	49		93		32.65		5.48
	47		65		40.43		12.31
	65		38		32.31		26.32
	63		47		36.51		8.51
11	70	9	36	45.45	31.43	22.22	13.89
131		83		38.93		3.61	
69		:43		52.17		4.66	
136		72		52.21		8.33	.
170		96		54.71		9.38	
86		41		60.47		9.76	
488		33		94.26		3.03	
92		52		67.39	,	9.62	
79		46		58.23		17.39	
48		32		50.00		40.63	
27		22		44.44		4.55	
- 10		6		40.00		16.67	
15		8		46.67		25.00	
10		10		30.00		10.00	
10		11		40.00		18.18	
14		13		50.00		15.38	
2		4		100.00		0	
25		25		32.00		40.00	
12		7		41.67		14.29	
8		6		25.00		16.67	
1443	347	619	356	66.11	38.33	11.95	10.11

Imputation Rate ${ }^{2}$
(\%)

TABLE 4.4 The Imputation Rate by Sales Classes of Each Imputation Cell (SIC 5813 Drinking Places)

December 1982

## Total Number of Establishments ${ }^{1}$



TABLE 4.4 The Imputation Rate by Sales Classes of Each Imputation Cell ( SIC 592 - Liquor Stores)

## December 1982

## Total Number of Establishments ${ }^{1}$

Imputation Rate ${ }^{2}$ (\%)


TABLE 4.5 The Imputation Rate By Kegion of Each Imputation Cell December 1982

		Total Number of establishments ${ }^{1}$					Imputation Rate ${ }^{2}$				
	,	NE	NC	South	West	Total	NE	NC	South	West	Overall
SIC 562 (Women's Ready-to-Wear Stores)											
Cell 1	(GP2, Sales > \$50,000)	219	243	236	139	1370	44.75	62.14	51.27	36.69	50.30
2	(GP2, Sales < \$50,000)	45	109	151	111	416	22.22	46.79	32.45	43.24	37.98
3	(GP1, Sales > \$50,000)	116	83	133	85	417	30.34	26.51	5.26	3.53	14.15
4	(GP1, Sales < \$50,000)	92	130	159	116	497	13.04	20.77	8.81	8.62	12.68
SIC 521 (Building Materials Stores)											
Cell 1	(GP2, Sales > \$183,333)	58	137	142	70	407	50.00	75.91	74.65	32.86	64.37
2	(GP2, Sales < \$183,333)	18	37	73	41	169	50.00	62.16	57.53	19.51	48.52
3	(GP1, Sales > \$183,333)	33	58	59	72	222	15.15	22.41	13.56	5.56	13.51
4	(GP1, Sales < $\$ 183,333$ )	48	78	94	38	258	14.58	21.79	8.51	10.53	13.95
Cell 1	(GP2, Sales > \$501,667)	1164	1790	2080	1279	6313	14.95	13.69	19.95	9.77	15.19
2	(GP2, Sales < \$501,667)	352	553	1019	204	2128	7.67	11.39	25.02	8.82	17.06
3	(GP1, Sales > \$501,667)	63	35	37	23	158	7.94	5.71	5.41	0	5.70
4	(GP1, Sales < \$501,667)	98	107	127	27	359	3.06	8.41	7.87	3.70	6.41
SIC 541 (Grocery Stores)											
Cell 1	(GP2, Sales > \$146,667)	481	659	630	782	2552	30.71	52.35	23.33	53.96	41.61
2	(GP2, Sales < \$146,667)	35	186	141	46	408	14.29	83.87	24.11	23.91	50.49
3	(GP1, Sales > \$146,667)	102	266	141	112	621	24.51	11.28	9.22	21.43	14.81
4	(GP1, Sales < \$146,667)	90	90	147	43	370	12.22	13.33	17.01	20.93	15.41

1 The data used are monthly list sample with current month and previous month sales greater than 0 . The establishment totals do not include RICM code $=5$.

2 The imputation rate is calculated by dividing the number of establishments with RICM code $=2$ or 3 by the total number of establishments (not including RICM code $=5$ ).

TABLE 4.5 The Imputation Rate By Region of Each Imputation Cell December 1982

4				Total Number of Establishments						Imputation Rate \%			
				NE	NC	South	West	Total	NE	NC	South	West	Overall
SIC 551 (Motor Vehicle Dealers)													
Cell 1	(GP1,	Sales >	\$375,000)	87	139	275	152	653	10.34	15.11	6.91	3.95	8.42
2	(GP1,	Sales <	\$375,000)	36	52	48	32	168	0	5.77	12.50	6.25	6.55
Collapsed	Cell	1 (Sale	s > \$375,000)	87	139	287	670	1183	10.34	15.11	6.97	2.54	5.66
		2 (Sale	s < \$375,000)	37	52	48	35	172	0	5.77	12.50	5.71	6.83
SIC 572 (Household Appliance Stores)													
Cell 1	(GP2,	Sales ${ }^{\text {a }}$	\$58,333)	46	59	48	34	187	45.65	25.42	20.83	0	24.60
2	(GP2,	Sales <	(558,333)	4	8	10	1	23	50.00	25.00	30.00	0	30.43
3	(GP1,	Sales >	\$58,333)	72	57	93	49	271	33.33	14.04	11.83	4.08	16.61
4	(GP1,	Sales <	\$58,333)	46	43	- 54	26	169	30.43	13.95	20.37	7.69	19.53
SIC 5812													
Cell 1	(GP2,	Sales >	\$34,167)	312	184	812	135	1443	78.21	45.65	73.52	21.48	66.11
2	(GP2,	Sales <	\$34,167)	19	94	117	57	347	56.96	50.00	21.37	28.07	38.33
3	(GP1,	Sales >	\$34,167)	130	165	191	133	619	18.46	12.12	12.57	4.51	11.95
4	(GP1,	Sales <	\$34,167)	77	107	124	48	356	1.30	13.08	14.52	6.25	10.11
SIC 5813													
Cell 1	(GP1,	Sales 2	\$7,500)	79	109	66	72	326	1.27	5.50	13.64	9.72	7.06
2	(GP1,	Sales	\$7,500)	23	24	16	8	71	4.35	0	6.25	0	2.82
Collapsed	Cell	1 (Sale	s > \$7,500)	83	112	89	93	371	3.61	5.36	11.24	7.53	6.90
Coltapsed	-1.	2 (Sale	s < $\$ 7,500$ )	83	113	89	93	378	3.61	5.31	11.24	7.53	6.88
SIC 592													
Cell 1	(GP2,	Sales	\$32,500)	33	80	57	68	238	15.15	88.75	3.50	47.06	46.22
2	(GP2,	Sales	(\$32,500)	3	7	6	18	34	0	42.86	0	0	8.82
3	(GP1,	Sales	\$32,500)	56	63	95	62	276	7.14	3.17	7.37	12.90	7.61
4	(GP1,	Sales	(\$32,500)	28	37	49	34	148	25.00	5.41	4.08	14.71	10.81

TABLE 4.6 The MSE of Estimated Total by Usind Current Imputation Procedure for Selected Imputation Cells Definition - December 1982

## Imputation Cell

SIC 562

No. of Cells


## MSE

 $\left(\$ 10^{6}\right)$Ratio of
$\qquad$

1. Current cells

GP x Sales (Use $\$ 50,000$ as cutoff)
2. Alternative cells
a. GP $\times$ Sales (Use median)
b. GP $x$ Sales (Use $1 / 4$ Quantiles)
c. GP $\times$ Sales (Use $1 / 8$ Quantiles)
d. GP $\times$ Sales (Use $1 / 16$ Quantiles)

8
$(330,330)$
$(393,392)$
$(165,165)$
(196, 197)
$4 \quad(411,249)$
(354, 431)

4

16 :
$(82,83)$
$(98,99)$
$(41,42)$
$(49,50)$
$1,636,658,834$
122,250,188
$119,566,417$
$68,342,418$

61,021,393

57,783,350
0.55904
0.49915

1 0.978050.49915
0.47267

TABLE 4.1 The MSE of the Estimated Totals by Using Current Imputation Procedure
Unit $=U . S . \$ 10^{6}$ for Selected Imputation Cells Uefinitions - December 1982


				69					
					-				
5812 (Eating Places)									
G1		203,465,246.	1	294,987,982	1.4498	276,687,952	1.3599	235,945,661	1.1596
G2		207,329;724	1	183,271,236	0.8839	56,074,361	0.2705	42,320,846	0.2041
Total	1531	410,794,971	1	478,259,218	1.1642	332,762,313	0.8100	278,266,507	0.6774
5813 (Drinking Places) Total	420	4,150,594	1	4,101,101	0.9881	4,218,577	1.0164	4,817,800	1.1607
592 (Liquor Stores)									
G1		29,888,405	1	$30,699,921$ $83,199,618$		$30,219,902$ $76,610,800$		$26,297,719$ $48,256,563$	0.8798 0.5997
G2		80,462,665	1	83,199,618	1.0340	$76,610,800$ $106,830,702$	0.9521 0.9681	$48,256,563$ $74,554,781$	0.5997 0.6756
Total	542	119,351,071	1	113,890,539	1.0321	106,830,702	0.9681	74,554,781	0.6756

