STATISTICAL RESEARCH DIVISION REPORT SERIES Statistical Research Report Number: CENSUS/SRD/RR-86/08

Nonresponse Adjustment for The National Sample of the National Crime Survey

by

Leroy Bailey Statistical Research Division U.S. Bureau of the Census Rm. 3565, F.O.B. #3 Washington, D.C. 20233

(301) 763-7916

This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The view reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.

Report Issued: March 21, 1986

Nonresponse Adjustment for The National Sample of the National Crime Survey

1. Prefatory Remarks

The following is a summary of observations and recommendations based on research on the National Crime Survey (NCS) nonresponse adjustment procedure during the past year. Uncertainty regarding the nature of the NCS design in the fairly near future, which persisted throughout the project, encumbered the identification of a specific focus of the nonresponse research. Various observations and discussions with others involved in NCS work suggested that substantial changes in the nonresponse adjustment procedure would not be considered until more definitive decisions were made regarding to the prospect of a "redesign" of the survey during the next two-three years. Therefore our research focused essentially on general aspects of nonresponse adjustment for which recommended changes could most likely be achieved with minimum effort. Moreover we also presented alternative procedures that would be applicable if the current design is continued, but opted not to pursue such alternatives in great detail in light of pending decisions on NCS design changes.

2. Household Nonresponse Adjustment

Defining Weighting Classes

For its computational simplicity, general applicability, and rather modest safeguards against model misspecifications, it was recommended that a weighting procedure be continued as the means of compensating for unit nonresponse in the NCS. In addition, the potential detrimental effects of the relatively small NCS household nonresponse rate are assumed to be rather minimal. However, our empirical research suggests that several other considerations can be introduced in the formulation and evaluation of the nonresponse adjustment or weighting classes. Based on 1983 data from the NCS national sample, it appears that the overall type A noninterview rates for the four census regions are comparable (see Table 1). In the selection of weighting classes, designed to compensate for nonresponse, it is generally desirable to achieve dissimilar cells that are as homogeneous as possible within.

Table 1. Regional Household Nonresponse Rates (Type A Noninterview) - First Quarter, 1983

Region	Household Nonresponse Rate (%)
Northeast	3.4
Midwest	3.5
South	3.2
West	3.5

Consequently, John Blondell investigated the potential for lower levels of geographic aggregation as the designated level within which the nonresponse adjustment classes (cells) are constructed. Table 2 provides 1983 overall type A rates by census division and by state within division. Note that the divisional rates varied from 2.4 percent to 3.9 percent, and that the corresponding range of the percentages at the state level was 1.6 to 5.1. These results, coupled with a desire to improve the level of within weighting class homogeneity, occasioned the preliminary recommendation that additional "geographic specificity" be included in the criteria for the formation of nonresponse adjustment cells. That is, it was recommended that consideration be given to the creation of household nonresponse adjustment cells either within each state or within the nine census divisions. In Memorandum 1 (Noninterview Adjustment Research for NCS - Geographic Definition of Housing Unit Noninterview Adjustment Clusters; From Blondell to Bailey; February, 1, 1985) of his NCS Nonresponse Adjustment Memoranda Series, John Blondell suggested a set of nonresponse adjustment clusters defined within state or selected groupings of states. However, we note that the construction was not free of subjectivity, but that the principal concern of the exercise was to demonstrate the feasibility of producing weighting cells with more geographic specificity, and to suggest potential advantages of the revised procedure.

The final stage in determining a set of household nonresponse weighting cells involved the division of the "state clusters" into cells defined by other characteristics or classifiers available for both respondents and nonrespondents. As was the case with the CPS, the empirical research conducted by John Blondell provided evidence that the benefits derived from the cross classification of the nonresponse clusters by race and residence could be essentially achieved through one variable reflective of the size of a substate area. In Memoranda 2 through 4 of the NCS Memoranda Series, SMSA size, as well as subgroups of the urban/rural residential categories, were offered as plausible alternatives. Thus the final set of recommended NCS household clusters would be within the individual states or small groupings of states that would be further divided according to specified size categories. In addition to the potential advantages alluded to in the memoranda series, the suggested procedure is expected to lead to a substantial reduction in the number of weighting classes without causing a statistically significant diminution in data quality. Again we note that the specifications of a final set of weighting cells would be subjective and if derived only from the empirical research effort cited earlier, it would be based almost solely on 1983 data. Therefore the household nonresponse research has provided

indications of aspects of the current weighting procedure that warrant modifications and general guidelines that should govern the introduction of those modifications.

-

Division/States	Household Nonresponse Rates (%)
New England	3.7
Vermont	5.1
Massachusetts	5.0
New Hampshire	3.3
Rhode Island	3.1
Connecticut	2.7
Maine	1.8
Middle Atlantic	3.2
New York	4.2
New Jersey	3.4
Pennsylvania	1.6
East North Central	3.9
Illinois	4.8
Ohio	4.1
Indiana	4.1
Michigan	3.8
Wisconsin	1.8
West North Central	2.4
Nebraska	3.8
Kansas	2.8
Missouri	2.7
Iowa	2.6
North Dakota	1.7
South Dakota	1.2
Minnesota	1.2
South Atlantic	3.2
North Carolina	4.9
District of Columbia	4.0
Virginia	3.6
Delaware	3.3
South Carolina	2.9
Maryland	2.8
Georgia	2.8
Florida	2.7
West Virginia	1.5

.

Table 2. Household Nonresponse Rates by Census Division and State within Division

Division/States	Household Nonrespons Rates (%)
East South Central	2.6
Mississippi	4.1
Kentucky	2.6
Tennes see	2.1
Alabama	2.0
West South Central	3.4
Louisiana	4.7
Oklahoma	4.0
Texas	3.4
Arkansas	1.4
Mountain	2.5
Montana	3.6
Colorado	3.6
Wyoming	2.4
Idaho	2.1
Arizona	2.1
Utah	2.1
New Mexico	1.7
Nevada	1.5
Pacific	3.8
Washington	4.0
California	4.0
Hawaii	3.9
Alaska	3.0
Oregon	2.8

Table 2. Household Nonresponse Rates by Census Divisionand State within Division - Continued

Current and Future Research

There are still several relevant concerns regarding the NCS nonresponse adjustment for household nonresponse. Initially we reemphasize that the choice of classifiers for the NCS weighting classes is limited inasmuch as it must be restricted to characteristics for which information is available for both responding and nonresponding households. Moreover, to the extent that differences in the characteristics of respondents and nonrespondents are not properly accounted for by an adjustment procedure under these constraints, bias is introduced in the survey estimates. There remains a need to acquire

more insight into the potential effects of nonresponse engendered by these differences. It is virtually impossible to determine the exact extent of this bias: however, it is conceivable that more information can be gleaned from the historical survey data regarding the relationships between household response status and household characteristics that are not currently used or being considered in the definition of household nonresponse weighting classes. This information could in turn be used to characterize specific components of the bias associated with the use of the current nonresponse adjustment or cell balancing factors, and to design methodologies to compensate for those biases. For example, empirical evaluations of recurring surveys data by both the Bureau of the Census and Statistics Canada show evidence of a fairly discernible relationship between household response status and household size. It seems very reasonable to assume that difficulties in contacting households decrease with increasing household size, and the NCS nonresponse research data (Quarters 1-4, 1983) seem to support this assumption. The overall household nonresponse rate for households of size one was 4.5 percent; that for households of size five or more was 2 percent. Consequently, if we view weighting class nonresponse rates as survey estimates of the corresponding population nonresponse rates, then the nonresponse adjustment factors for large nonrespondent households are ostensibly too large, while those for the smaller nonrespondents may be too small. We are therefore evaluating household size as a potential classifier for unit nonresponse weighting procedures for the NCS as well as other recurring demographic surveys. Furthermore, it has been suggested that revisions to household adjustment factors to account for variation in household size be developed and evaluated empirically. Specific correlation structures of type Z households (responding households for which at least one of the eligible occupants fail

to respond to his/her personal victimization items) have also been mentioned as possible sources for identifying appropriate adjustments to the household factors.

Efforts are still under way to 1) refine response probability models within "traditionally defined" weighting classes, and 2) use the response probability models in the definition of alternative weighting classes (response propensity stratification). Relative to modeling weighting class response rates, we have been gathering historical data to study the effects and merits of two procedures. The first procedure entails the collection of NCS response/nonresponse rates for a five-year period (1981-86) and attempting to specify estimators of the population response rates for designated weighting classes based on those data and attending analyses. The second approach involves the development and evaluation of logit models relating unit response status with a set of covariates or predictors (\vec{X}) . The following is a general expression for the models under study.

logit $p(r|X,\beta) = \beta'X = \beta_1 x_1 + \beta_2 x_2 + \dots \beta_p x_p$. Here $p(r|X,\beta)$ is the conditional probability distribution of the response indicator variable r; logit $p = \log \frac{p}{1-p}$ is the logistic function; the x's are known cateogorical or dichotomized numerical variables; and the β 's are unknown regression coefficients. The inverse of the estimated response probabilities $[P(r|X,\beta)]^{-1}$, stemming from this procedure, constitutes an alternative to the currently employed nonresponse adjustment factors. Variables that are either currently being used or will be used for the procedure include household size, size of residential area, race, family income, age of "householders", and employment status of householders.

A final area slated for future research is that of studying the effects of variability in weighting class response rates on the overall NCS estimation process. Further discussion of this topic will be deferred until the end of the presentation of the final section of the report.

3. Within Household Adjustment

Review of Principal Concerns

Since perceivable changes in the within household nonresponse adjustment procedure were deemed likely to entail substantive procedural modifications, our recommendations in this area are restricted to general encouragement to pursue comprehensively several seemingly promising adjustment or imputation options.

Unlike the household adjustment process, enough relevant data are available for the type Z households to seriously consider item imputation as an alternative to weighting. The objectives of the two procedures could conflict. The weighting approach could result in a set of weighting classes defined by variables with strong functional relationships with unit response On the other hand, the selected imputation scheme will seek a set of status. imputation cells defined by variables thought to be good predictors of the principal survey variable(s). Under an ideal set of survey conditions we are able to define weighting classes (imputation cells) that achieve both objectives. If forced to choose between weighting and imputation, a frequent concern is how to establish a set of criteria that would facilitate the choice. Clearly there are practical considerations that can be easily addressed, such as cost, simplicity, and computing convenience. However, establishing and comparing the statistical properties of the two procedures are not as tractable. The recently completed research effort did not include

those objectives, but we obtained results that may be useful when efforts are directed toward an evaluation of the statistical properties.

Major Findings

The NCS within household nonresponse research focused on three major activities:

- Identifying potential functional relationships between survey variables and selected covariates and between unit response status and corresponding covariates;
- Developing logit/probit analysis models for possible use in weighting and/or imputation schemes; and
- 3) Exploring the potential for type Z households as predictors for the unit nonrespondents or as a source to develop improvements in the household nonresponse adjustment.

A review of some of the characterizations of the nonrespondent (type A and Z households) and interviewed populations selected for the project disclosed that the distributions of these populations differed relative to several major characteristics. The interviewed population was older, more likely to be married, widowed, separated or divorced, and related to the survey reference person. In addition, females responded at a higher rate than males; blacks responded at a lower rate than other racial groups; and the two distributions are similar relative to educational attainment. Recall that the NCS within household nonresponse adjustment cells are defined by age, race and relationship to householder. The observed differences in the distributions of the respondents and nonrespondents over these categories lend support to the manner in which the weighting cells were constructed. However the inclusion or substitution of marital status and sex as potential classifiers warrants further consideration.

In tables 1-6 of the appendix, we can observe that the persons who were victims of personal crime during the first quarter of 1983 were younger (than the nonvictimized survey units), more likely to be unmarried; about as

educated as the rest of the population; and less likely to be related to the reference person. Moreover, males were victimized more than females, but blacks and whites were victimized at about the same rate.

These results suggest the following:

- 1) The subgroups more likely to be interviewed are less likely to be victimized. Unless this is accounted for in the design, the within household adjustment may be upwardly biasing the victimization estimates.
- 2) If in general, perceived differences between respondents and nonrespondents extend to personal victimizations, this too is a source of nonresponse adjustment-related bias that should be reviewed.
- 3) For the marital status categories the large disparity betwen the victimized and nonvictimized percentages suggests the need to determine the advantage of using marital status as a weighting/imputation cell classifier.

Numerous regression computer runs were made, and crosstabulations involving measures of uncertainty and association were developed in an effort to identify relationships between NCS survey variables and other accessible data, and between unit response status and other variables. The variables which frequently surfaced as the variables most related to criminal victimization and response status were family income, relation to reference person, marital status, age, and sex. This speaks rather well for the design of the current within household nonresponse weighting. These variables were in turn used, to varying degrees, to identify logistic regression models. A general investigation of these models is in progress. As we mentioned earlier, the models offer some promise for improvements in estimators of weighting class response/nonresponse rates, and in the construction of weighting classes.

Future Research

Although our commitment to the NCS nonresponse research project has been informally completed, in addition to the subsequent and ongoing research mentioned in section 2, as work schedules merit, we expect to

- 1) Pursue a general comparative study of weighting and imputation strategies in the context of the NCS.
- 2) Engage in research on imputation schemes conducive to both weighting and imputation.
- 3) Complete the evaluation of the existing logit analysis models on an expanded set of research data.

As with the household adjustment there is a concern about the effect of household size on estimates based on the current within household weighting scheme. If the larger households tend to have smaller type Z nonresponse (noninterview) rates, and if household size is also a resonably good predictor of the occurrence of personal victimization, the present NCS within household adjustment scheme permits household size-related biases associated with both differential response patterns and within cell differences between respondents and nonrespondents. Again we urge support of theoretical work and experimentation to adequately describe this problem and to advance remedial techniques.

We also eventually expect to become involved in the study of the effects of nonresponse in the NCS on sampling variability. This is an area that has been talked about extensively, but very few practical results have appeared in the literature.

For a preliminary consideration let n denote the NCS sample size from a population of size N. Associated with each of the N units in the population there is a selection probability Π_i , i= 1, 2,...N. Furthermore, we will

assume that among the n sample units, m are nonrespondents and $n_R = n-m$ are respondents. Thus, the NCS estimator for the population total after adjusting for unit nonresponse takes the following form.

$$\hat{Y}_{NCS} = \sum_{j=1}^{M} \sum_{k=1}^{P} (z_{j}w_{k})^{-1} \sum_{\ell=1}^{n} \frac{y_{Rjk\ell}}{\pi_{jk\ell}}$$
(2.1)

where for sample units in the kth within household and jth household weighting classes,

- $y_{Rjkl} = value of the l th sample repondent$ $n_{Rjk} = number of sample respondents$ $n_{jk} = number of sample cases$ $z_{j} = the estimated household response rate$ $w_{k} = the estimated within household response rate$ $\Pi_{ikl} = selection probability for the l th sample respondent$
 - P = total number of within household nonresponse weighting classes
 - M = total number of household nonresponse weighting classes.

Implicit in the formation of the NCS nonresponse weighting classes, as well as those for other demographic surveys, are the following assumptions:

- There is "significant" correlation between the principal survey variables and the covariates used to define noninterview clusters.
- 2. Within each weighting class $E \overline{y}_{Rj} = E \overline{y}_{Rj}$, where \overline{y}_{Rj} and \overline{y}_{Rj} are the means for the sample respondents and nonrespondents, respectively, in the jth weighting class. Similarly $E \overline{y}_{Rk} = E \overline{y}_{Rk}$.

The overall selection probability for the NCS is approximately the same for all units in the population, thus equation (2.1) can be rewritten

as

$$(\hat{Y}_{NCS}) = \left(\frac{1}{\pi_0}\right) \sum_{j=1}^{M} \sum_{k=1}^{P} (z_{j}w_{k})^{-1} \sum_{\ell=1}^{n_{Rjk}} y_{Rjk\ell}, \qquad (2.2)$$

where

 $\Pi_{jkl} = \pi_{o \forall j, k, and l.}$

Therefore, assuming that the covariances between the weighted sums associated with different weighting classes are negligible, we have

$$\operatorname{Var}(\hat{Y}_{NCS}) = \left(\frac{1}{\Pi_{o}}\right)^{2} \sum_{j=1}^{M} \sum_{k=1}^{P} \operatorname{Var}\sum_{l=1}^{n_{Rjk}} (z_{j}w_{k})^{-1} y_{Rjkl}$$
$$= \left(\frac{1}{\Pi_{o}}\right)^{2} \sum_{j=1}^{M} \sum_{k=1}^{P} \operatorname{Var}y_{R}^{\prime\prime} (z_{j}w_{k})^{-1}, \qquad (2.3)$$

where

$$y'_{R} = \sum_{\ell=1}^{H_{Rjk}} y_{Rjk\ell}$$

Using the approximations

$$E \left(\frac{1}{z_{j}}\right) \doteq \frac{1}{z_{j}} \div \frac{1-z_{j}}{n_{j}z_{j}^{2}}$$
$$Var\left(\frac{1}{z_{j}}\right) \doteq \frac{1-z_{j}}{n_{j}z_{j}^{3}},$$

and

we have

$$Var (z_{j}w_{K})^{-1} y_{R}^{*} = E [Var (z_{j}w_{K})^{-1} y_{R} | y_{R}^{*}, w_{k}, n_{j})]$$

$$+ Var [E(z_{j}w_{K})^{-1} y_{R} | y_{R}^{*}, w_{k}^{*}, n_{j})]$$

$$= E \left\{ \left[\left(\frac{y_{R}}{w_{k}} \right)^{2} \left(\frac{1-z_{j}}{n_{j}z^{3}} \right) \right] + Var \left[\frac{y_{R}}{w_{k}} \left(\frac{1}{z_{j}} + \frac{1-z_{j}}{n_{j}z^{2}} \right) \right] \right]$$

$$= E \left\{ E \left[\left(\frac{y_{R}}{w_{k}} \right)^{2} \left(\frac{1-z_{j}}{n_{j}z^{3}} \right) | n_{j}, n_{k}^{*}, y_{R}^{*} \right] \right\}$$

$$+ E \left\{ Var \left[\frac{y}{w_{k}} \left(\frac{1}{z_{j}} + \frac{1-z_{j}}{n_{j}z_{j}^{2}} \right) | n_{j}, n_{k}, y_{R} \right] \right\}$$
$$+ Var \left\{ E \left[\frac{y}{w_{k}} \left(\frac{1}{z_{j}} + \frac{1-z_{j}}{n_{j}z_{j}^{2}} \right) | n_{j}, n_{k}, y_{R} \right] \right\}$$
(2.4)

Equations (2.3) and (2.4), used in conjunction with accessible ancillary data and empirical research, could provide some indication of the possible effects of the nonresponse weighting scheme on the variability of the survey estimates. Moreover, they could also be used to evaluate the utility of the NCS nonresponse weighting classes relative to the ability to approximate specific levels of accuracy for acceptable costs.

General Conclusion

The results relating to the aspects of the NCS nonresponse adjustment procedures addressed in our research suggest that the methodology currently in use is reasonably good. However with a little more emphasis on the apparent functional relationships which underlie the procedures, slight improvements can be realized. We have therefore suggested modest changes in the criteria used to define both sets of nonresponse weighting classes and the adjustment factors. However, we believe that more significant improvements are possible through the pursuit of the more rigorous approaches to which we have just alluded. The NCS provides a vehicle for a number of interesting estimation research problems. We hope that over the next several years decisions will be made which will facilitate a systematic approach to these problems.

Appendix

Crosstabulation of Relation by Unit Response Status -First Quarter, 1983

	COUNT ROW PCT COL PCT			ROW
	TOT PCT	NONINTERVIEW	INTERVIEW	TOTAL
Relation				
Reference Person	1	310 2.0 38.5 .9	14868 98.0 45.8 44.7	15178 45.6
Husband	2	33 5.5	569 94.5	602 1.8
•		4.1 .1	1.8 1.7	
Wife	3	106 1.3 13.2 .3	8201 98.7 25.2 24.6	8307 25.0
Own Child	4	235 3.4 29.2 .7	6631 96.6 20.4 19.9	6866 20.6
Parent	5	4 1.7 .5 .0	227 98.3 .7 .7	231 .7
Brother-Sister	6	13 4.7 1.6 .0	265 95.3 .8 .8	278 .8
Other Relative	7	. 32 4.6 4.0 .1	662 95.4 2.0 2.0	694 2.1
Non-Relative	8	73 6.5 9.1 .2	1057 93.5 3.3 <u>3.2</u>	1130 3.4
Column Total		806 2.4	32480 97.6	33286 100.0

.

Crosstabulation of Age by Unit Response Status -First Quarter, 1983

	COUNT ROW PCT COL PCT TOT PCT	NONINTERVIEW	INTERVIEW	ROW TOTAL
Age 12 to 15	1	43 1.6 5.3 .1	2653 98.4 8.2 8.0	2696 8.1
16 to 19	. 2	105 3.8 13.0 .3	2657 96.2 8.2 8.0	2762 8.3
20 t o 24	3	121 3.6 15.0 .4	3273 96.4 10.1 9.8	3394 10.2
25 to 34	4	162 2.4 20.1 .5	6612 97.6 20.4 19.9	6774 20.4
35 to 49	5	190 2.6 23.6 .6	7051 97.4 21.7 21.2	7241 21 . 8
50 to 64	6	135 2.3 16.7 .4	5799 97.7 17.9 17.4	5934 17.8
65 and over	7	50 1.1 6.2 	4435 98.9 13.7 <u>13.3</u>	4485 13.5
Column Total		806 2.4	32480 97.6	33286 100.0

.

.

.

.

Crosstabulation of Marital Status by Unit Response Status -First Quarter, 1983

	COUNT ROW PCT COL PCT TOT PCT	NONINTERVIEW	INTERVIEW	ROW TOTAL
Marital Status Married	1	419 2.3 52.0 1.3	17922 97.7 55.2 53.8	18341 55.1
Widowed	2	15 .7 1.9 .0	2283 99.3 7.0 6.9	2298 6.9
Divorced	3	30 1.6 3.7 .1	1894 98.4 5.8 5.7	1924 5.8
Separated	4	12 1.5 1.5 .0	8.5 98.5 2.5 2.4	827 2.5
Not Married	5	302 3.1 37.5 .9	9497 96.9 29.2 28.5	9799 29.4
Residue	8	28 28.9 3.5 .1	69 71.1 .2 .2	97 •3
Column Total		806 2.4	32480 97.6	33286 100.0

••

Crosstabulation of Sex by Unit Response Status -First Quarter, 1983

		COUNT ROW PCT COL PCT TOT PCT	NONINTERVIEW	INTERVIEW	ROW TOTAL
Sex					
Male		1	523	15111	15634
			3.3	96.7	47.0
			64.9	46.5	
			1.6	45.4	
Female		. 2	283	17369	17652
			1.6	98.4	53.0
*			35.1	53.5	
			.9	52.2	
	Column		806	32480	33286
•	Total		2.4	97.6	100.0

••

Crosstabulation	of	Educational	Attainme	nt	by	Unit	Response	Status	-
		First	Quarter,	19	83				

	COUNT ROW PCT COL PCT TOT PCT	NONINTERVIEW	INTERVIEW	ROW TOTAL
Educational Attainment O thru 4th	1	12 1.8 1.5 .0	667 98.2 2.1 2.0	679 2.0
5th thru 7th .	2	25 1.1 3.1 .1	2155 98.9 6.6 6.5	2180 6.5
8th _	3	50 2.1 6.2 .2	2345 97.9 7.2 7.0	2395 7.2
9th thru 11th	4	146 2.6 18.1 .4	5388 97.4 16.6 16.2	5534 16.6
12th	5	275 2.4 34.1 .8	10984 97.6 33.8 33.0	11259 33.8
1-3 College	6	122 2.1 15.1 .4	5565 97.9 17.1 16.7	5687 17.1
4 ⁺ College	7	108 2.1 13.4 3	5139 97.9 15.8 15.4	5247 15.8
Residue	8	68 22.3 8.4 .2	237 77.7 .7 .7	305 .9
Column Total		806 2.4	32480 97.6	33286 100.0

Crosstabulation	of	Race	ЪУ	Unit	Response	Status	
	Fir	st Qu	art	er, 1	983		

	COUNT ROW PCT COL PCT TOT PCT	NONINTERVIEW	INTERVIEW	ROW TOTAL
Race				
White	1	636 2.2 78.9 1.9	28347 97.8 87.3 85.2	28983 87.1
Black .	2	160 4.5 19.9 .5	3397 95.5 10.5 10.2	3557 10.7
Indian, Aleut, Eskimo	3	1 .8 .1 .0	130 99.2 .4 .4	131 .4
Asian, Pacific Islander	4	9 1.5 1.1 .0	606 98.5 1.9 1.8	615 1.8
Column Total		806 2.4	32480 97.6	33286 100.0

- •

٠

.....

.

Crosstabulation of Relation by Personal Crime -First Quarter, 1983

	COUNT ROW PCT COL PCT TOT PCT	NONVICTIM	VICTIM	ROW TOTAL
Relation				
Reference Person	1	14471 95.3 45.8 43.5	707 4.7 42.4 2.1	15178 45.6
Husband .	. 2	586 97.3 1.9 1.8	16 2.7 1.0 .0	602 1.8
Wife	3	8036 96.7 25.4 24.1	271 3.3 16.3 .8	8307 25.0
Own Child	4	6370 92.8 20.1 19.1	496 7.2 29.8 1.5	6866 20.6
Parent	5	225 97.4 .7 .7	6 2.6 .4 .0	231 .7
Brother-Sister	6	267 96.0 .8 .8	11 4.0 .7 .0	278 .8
Other Relative	7	653 94.1 2.1 2.0	41 5.9 2.5 .1	694 2.1
Non-Relative	8	1012 89.6 3.2 3.0	118 10.4 7.1 .4	1130 3.4
Column Total		31620 95.0	1666 5.0	33286 100.0

.

.

.

-

Crosstabulation of Age by Personal Crime -First Quarter, 1983

~

.

•

.

	COUNT ROW PCT COL PCT TOT PCT	NONVICTIM	VICTIM	ROW TOTAL
Age 12 to 15	1	2477 91.9 7.8 7.4	219. 8.1 13.1 .7	2696 8.1
16 to 19	. , 2	2524 91.4 8.0 7.6	238 8.6 14.3 .7	2762 8.3
20 bo 24	3	3088 91.0 9.8 9.3	306 9.0 18.4 .9	3394 10.2
25 to 34	4	6371 94.1 20.1 19.1	403 5.9 24.2 1.2	6774 20.4
35 to 49	5	6953 96.0 22.0 20.9	288 4.0 17.3 .9	7241 21.8
50 to 64	6	5783 97.5 18.3 17.4	151 2.5 9.1 .5	5934 17.8
65 and over	7	4424 98.6 14.0 13.3	61 1.4 3.7 .2	4485 13.5
Colum Tota		31620 95.0	1666 5.0	33286 100.0

.

...

Crosstabulation of Marital Status by Personal Crime -First Quarter, 1983

	COUNT ROW PCT COL PCT TOT PCT	NONVICTIM	VICTIM	ROW TOTAL
Marital Status				
Married	1	17694 96.5 56.0 53.2	647 3.5 38.8 1.9	18341 55.1
Widowed .	. 2	2260 98.3 7.1 6.8	38 1.7 2.3 .1	2298 6.9
Divorced	3	1802 93.7 5.7 5.4	122 6.3 7.3 .4	1924 5.8
Separated	4	766 92.6 2.4 2.3	61 7.4 3.7 .2	827 2.5
Not Married	5	9003 91.9 28.5 27.0	796 8.1 47.8 2.4	9799 29.4
Residue	8	95 97.9 .3 .3	2 2.1 .1 .0	97 •3
Column Total		31620 95.0	1664 5.0	33286 100.0

••

Crosstabulation of Sex by Personal Crime -First Quarter, 1983

	COUNT ROW PCT COL PCT TOT PCT	NONVICTIM	VICTIM	ROW TOTAL
Sex				
Male	1	14761	873.	15634
		94.4	5.6	47.0
		46.7	52.4	
		44.3	2.6	
Female	· 2	16859	793	17652
		95.5	4.5	53.0
-		53.3	47.6	
		50.6	2.4	
	Column	31620	1666	33286
•	Total	95.0	5.0	100.0

••

. .

Crosstabulation of Educational Attainment by Personal Crime -First Quarter, 1983

	COUNT ROW PCT COL PCT TOT PCT	NONVICTIM	VICTIM	ROW TOTAL
Educational Attainment O thru 4th	1	670 98.7 2.1 2.0	9 1.3 .5 .0	679 2.0
5th thru 7th ·	2	2081 95.5 6.6 6.3	99 4.5 5.9 .3	2180 6.5
8 th -	3	2301 96.1 7.3 6.9	94 3.9 5.6 .3	2395 7.2
9th thru 11th	4	5197 93.9 16.4 15.6	337 6.1 20.2 1.0	5534 16.6
12th	5	10797 95.9 34.1 32.4	462 4.1 27.7 1.4	11259 33.8
1-3 College	6	5364 94.3 17.0 16.1	323 5.7 19.4 1.0	5687 17.1
4 ⁺ College	7	4914 93.7 15.5 14.8	333 6.3 20.0 1.0	5247 15.8
Residue	8	296 97.0 .9 .9	9 3.0 .5 .0	305 •9
Column Total		31620 95.0	1666 5.0	33286 100.0

Crosstabulation of Race by Personal Crime -First Quarter, 1983

	COUNT ROW PCT COL PCT TOT PCT	NONVICTIM	VICTIM	ROW TOTAL
Race				
White	1	27533	1450	28983
		95.0	5.0	87.1
		87.1	87.0	
		82.7	4.4	
Black .	. 2	3381	176	3557
		95.1	4.9	10.7
-		10.7	10.6	
		10.2	•5	
Indian, Aleut,	3	117	14	131
Eskimo		89.3	10.7	. 4
		•4	.8	
		• 4	.0	
Asian, Pacific	4	587	26	615
Islander		95.8	4.2	1.8
		1.9	1.6	
		<u> </u>	.1	
Column		31620	1666	33286
Total		95.0	5.0	100.0

- •

.

...

·· · .

Attachment A

February 1, 1985

MEMORANDUM FOR Leroy Bailey Principal Researcher Statistical Research Division

> John Blondell 🖂 Statistical Research Division

Subject:

From:

Noninterview Adjustment Research for NCS Redesign: MEMO 1 - Geographic Definition of Housing Unit Noninterview Adjustment Clusters

INTRODUCTION

No new noninterview adjustment strategy is envisioned here. As is currently done in the NCS (undated, mimeographed Bureau of the Census document entitled "National Crime Survey, National Sample, Survey Documentation," pages (I)2-2&3, and pages (I)I-2 thru 5): (a) noninterview adjustment clusters and, within them, noninterview adjustment cells are formed on the basis of geographic and characteristics data; (b) a noninterview adjustment factor is computed for each cell; and (c) the factor is applied, as a case weight, to each of the <u>interviewed</u> cases within the cell.

While the noninterview adjustment strategy is the same as that in current use, numerous changes are made in (the details of) its implementation. The first change, and perhaps the main one, is to follow recent CPS redesign work (November 2, 1984 memorandum from Charles D. Jones to Thomas C. Walsh entitled "1980 CPS Redesign: Specifications for Computing Noninterview Adjustment Factors Beginning January 1985) in placing greater and initial emphasis on the <u>geographic</u> definition of clusters. In the NCS source, cited above, "within household noninterview factors" are defined separately for each region, while no mention of geographic level is made in discussing "household noninterview factors."

Indebtedness to Joseph Grill and John Powell for obtaining the NCS source data, to Albert Wong and Zigmund Krivitsky for doing the file design and manipulations, and to Lynn Weidman for an introduction to BMDP, is gratefully acknowledged.

CROSS CLASSIFICATION APPROACH TO CLUSTER AND CELL FOR MATION

The veracity of the first part of the noninterview adjustment strategy, outlined above, is dependent upon the adequacy of the data available for forming clusters and cells, as well as on the methodology used to form them. The fundemental aim of the first part of the strategy is to classify <u>both</u> interviewed and A noninterview housing units into the <u>same</u> set of clusters and cells, so that the housing units are more similar (alike) within then they are between (among) clusters and cells. Implementation of this aim necessitates the <u>assumption</u> that the NCS provided data on <u>both</u> kinds of cases are, in fact, adequate for the purpose. And, this assumption, in turn, <u>assumes</u> an underlying commonness among the cases classified together, one that exists in spite of the interview status differences among them. Since these assumptions cannot be empirically verified with the available data, they are accepted as working premises, so that cluster and cell formation can proceed.

Cluster and cell formation is treated as a simultaneous, hierarchic, multiple cross classification problem, as follows: (a) clusters are defined in terms of geographic categories (in this memorandum); (b) within the geographic categories, clusters are further defined in terms of residence categories (in the next memorandum); and (c) within the geographic-residence categories, clusters are further defined in terms of SM SA size categories (in the third memorandum). What is envisioned, then, is a complex cross classification of interviewed <u>plus</u> A noninterview housing units. The available NCS data, for the <u>first quarter of 1983</u>, include 30,400 interviewed housing units and 1,055 A noninterview housing units, which gives and "A" NONINTERVIEW RATE (ANIR) of 3.4 [= 100 (1,055/(30,400 + 1,055)],

At each stage of cross classification the following three factors are taken into account in cluster or cell formation: (a) DANIR, i.e., the <u>absolute difference</u> in ANIR between categories of the classifier being introduced; (b) the cluster or cell frequency, i.e., the number of cases (interviewed <u>plus</u> A noninterview housing units) in the clusters

or cells; and (c) the order explicit in the categories of the classifier being introduced, i.e., the geographic contiguity of states, the dimensions of the definition of the residence categories and the magnitude of the SMSA size categories. In actuality, the data at each stage of cross classification are inspected, and classification into clusters and cells is done on a trial and error basis. During this process, in which the three factors may provide inconsistent (conflicting) prescriptions for cluster and cell formation, lower limits or criteria for their use evolve, and the relative importance of the factors may be judgementally changed. In general, at a given stage of cross classification, clusters and cells are first defined in terms of DANIR, and then, if necessary, the initial definitions are modified by frequency and order considerations. Since the process of cluster and cell formation, at each stage of cross tabulation, is complex, empirical and judgmental, it will be presented in detail so that the reader can form his own reaction to its efficacy.

The three factors of cluster and cell formation guide a pragmatic effort to be true to the enabling assumptions mentioned at the top of this section. Where clusters or cells are formed across categories with large DANIR, very different frequency and without regard to their explicit ordering, one might indeed intuitively think that the implementation voids the assumptions upon which it is based, even as an acceptable, practical "make do."

REGION AND DIVISION AS CLASSIFIERS

The data are presented in table 1. The criterion used in reading the data is a DANIR = 0.5 +, i.e., an absolute difference between regions and divisions of 0.5 or more in the ANIR. The ANIR is the "A" NONINTERVIEW RATE, which is shown in the last column of the table. The ANIR is defined as the quotient of the number of A noninterview housing units divided by the <u>sum</u> of the number of interviewed housing units plus the number of A noninterview housing units, times 100. The region data are as follows:

Region	ANIR	DANIR
Northeast	3.4	0.1
Midwest	3.5	0.3
South	3.2	0.3
West	3.5	

Since the DANIR criterion is not met, region is considered an <u>ineffective</u> classifier. The interpretation is that below criterion differences indicate the interviewed and A noninterview housing units are <u>not</u> more similar (alike) within regions then between regions.

The division data are as follows:

Division		ANIR	DANIR
New Englar	nd	3.7	0.5
Middle Atla	ntic	3.2	
East North	Central	3.9	1.5
West North	Central	2.4	
South Atlar	ntic	3.2	0.6
East South	Central	2.6	0.8
West South	Central	3.4	
Mountain		2.5	1.3
Pacific		3.8	

Since the DANIR criterion is always met, division is considered an <u>effective</u> classifier. The interpretation is that criterion level differences indicate interviewed and A noninterview housing units are more similar within then among divisions, a finding which is Midden by the regional classification.

STATE AS A CLASSIFIER

The frequency (base 2) and ANIR ("A" NONINTERVIEW RATE) data are presented in table 2. Since it was found above that each division (within its respective region) is an

effective classifier, each state (grouping) is defined within its respective division. In otherwords, state is a geographic <u>subclassifier</u> within division. DANIR, frequency and geographic contiguity are taken into account in defining state groupings, but their application is tailored to the data for each division.

The <u>New England</u> data are ordered by ANIR as follows:

STATE	ANIR	DANIR	Frequency	Class
Vermont	5.1	0.1	79	I
Massachusetts	5,0	1.7	781	I
New Hampshire	3.3	0.2	121	п
Rhode Island	3.1	0.4	131	п
Connecticut	2.7	0.9	550	Π
Maine	1.8		224	п

Vermont and Massachusetts are combined to form class I since the DANIR = 0.1 and they are contiguous. New Hampshire, Rhode Island and Connecticut are combined to form class II, in spite of geographic discontiguity, since the DANIR's are less then 0.5 among them. Maine is added, in spite of a 0.9 DANIR with Connecticut (since geographic contiguity is already breached) to maintain frequency.

The <u>Middle Atlantic</u> data are ordered by ANIR as follows:

State	ANIR	DANIR	Frequency	Class
New York	4.2	0.8	2,329	I
New Jersey	3.4	1.8	1,080	Π
Pennsylvania	1.6		1,567	Ш

Since the DANIR's exceed 0.5 and the frequencies are large, each state defines a class.

State	ANIR	DANIR	Frequency	Class
Ninois	4.8	0.7	1,445	I
0 тіо	4.1	0.0	1,545	п
Indiana	4.1	0.3	774	ш
Michigan	3.8	2_0	1,348	IV
Wisconsin	1.8		653	V

The East North Central data are ordered by ANIR as follows:

In spite of DANIR's of 0.0 and 0.3, and even though geographic contiguity would be preserved, Ohio, Indiana and Michigan each define a class, since the frequencies are large. At the next stage of cross classification, residence is introduced and clusters are defined on the basis of division, state and residence. At that juncture, it may be appropriate to combine any two or all of these states.

State	ANIR	DANIR	Frequency	Class
Nebraska	3.8	1.0	213	I
Kansas	2.8	0,1	317	I
Missoyri	2.7	0.1	748	Ι
Iowa	2.5	0.9	423	I
North Dakota	1.7	0.5	121	Π
South Dakota	1.2	0.0	86	П
Minnesota	1.2		514	п

The West North Central data are ordered by ANIR as follows:

Nebraska is combined with the contiguous states of Kansas, Missouri and Iowa to form a class, in spite of a 1.0 DANIR with Kansas, to maintain frequency. North Dakota is combined with the contiguous states of South Dakota and Minnesota, in spite of a 0.5 DANIR with South Dakota, to maintain frequency.

State	ANIR	DANIR	Frequency	Class
North Carolina	4.9	0.9	792	I
District of Columbia	4.0	0.4	101	Ш
Virginia	3.6	0.3	781	п
Delaware	3.3	0.4	92	ш
South Carolina	2.9	0.1	341	IV
Maryland	2 . 8	0.0	667	ш
Georgia	2.8	0.1	773	IV
Florida	2.7	0.8	1,318	۷
West Virginia	1.5		194	ш

The South Atlantic data are ordered by ANIR as follows:

The District of Columbia is combined with Virginia to maintain frequency without geographic discontiguity. Delaware is combined with Maryland and West Virginia to preserve geographic contiguity and maintain frequency, in spite of a 0.5 DANIR with Maryland and a 1.8 DANIR with West Virginia. South Carolina is combined with Georgia to maintain frequency and geographic contiguity, since the DANIR is 0.1. In spite of DANIR's of 0.1 and 0.2 with Georgia and South Carolina, and even though geographic continuity would be preserved, Florida defines a class, since its frequency is large. In spite of a 0.1 DANIR with Florida and South Carolina and a 0.0 DANIR with Georgia, the Maryland (class) is not combined with them since the frequency is large and geographic contiguity would be breached. At the next stage of cross classification, when residence is introduced, it may be appropriate to combine any two or all of these classes.

The East South Central data are ordered by ANIR as follows:

State	ANIR	DANIR	Frequency	Class
Mississippi	4.1	1.5	365	I
Kentucky	2.5	0.5	494	I
Tennessee	2.1	0.1	578	П
Alabama	2.0		508	п

Mississipi and Kentucky are combined, in spite of a 1.5 DANIR and geographic discontiguity, to increase frequency. Tennessee is combined with Alabama since the DANIR is 0.1 and they are contiguous.

The <u>West South Central</u> data are ordered by A NIR as follows:

State	ANIR	DANIR	Frequency	Class
Louisiana	4.7	0.7	506	I
Oklahoma	4.0	0.6	302	I
Texas	3.4	2.0	1,997	п
Arkansas	1.4		370	Π

Louisiana and Oklahoma are combined, in spite of a 0.7 DANIR and geographic discontinuity, to maintain frequency. Texas and Arkansas, contiguous states, are combined in spite of a 2.0 DANIR, to maintain frequency.

State	ANIR	DANIR	Frequency	Class
Montana	3.6	0.0	112	I
Colorado	3 . 6	1.2	418	I
Wyoming	2.4	0.3	42	п
Idaho	2.1	Q.0	190	п
Arizona	2.1	0.0	477	Π
Utah	2.1	0.4	144	Π
New Mexico	1.7	0.2	178	Π
Nevada	1.5		67	п

The Mountain data are ordered by ANIR as follows:

*Montana and Colorado are combined, in spite of geographic discontiguity, and because of a 0.0 DANIR, to increase frequency. The remaining states are contiguous and lack of DANIR of 0.5 or more among them.

The Pacific data are ordered by A NIR as follows:

State	ANIR	DANIR	Frequency	Class
Washington	4.0	0.0	599	I
California	4.0	0.1	3,396	п
Hawaii	3.9	0.9	103	II
Alaska	3.0	0_2	33	Ш
Oregon	2.8		468	Ш

Hawaii is combined with California to preserve frequency, and the same holds for combining Alaska with Oregon. Even though the DANIR is O.O., Washington is not combined with California, since the frequency is large and geographic contiguity would be breached. At the next stage of cross classification, when residence is introduced, it may be appropriate to combine the two.

SUMMARY

A sum mary of these results is a list of the 26 states (groupings) which define the geographic context of subsequent noninterview adjustment work, as follows:

State (groupings)	"A" N O NIN TE R VIE W R A TE	Number of interviewed <u>plus</u> A noninterview housing units
NEW ENGLAND Vermont, Massachusetts New Hampshire, Rhode Island, Connecticut, Maine	5.0 2.6	86Ò 1,026
MIDDLE ATLANTIC New York New Jersey Penasylvanta	4.2 3.4 1.6	2,329 1,080 1,567
EAST NORTH CENTRAL Nhinois Omio Indiana Michigan Wisconsin	4.8 4.1 4.1 3.8 1.8	1,445 1,545 774 1,348 653
WEST NORTH CENTRAL Nebraska, Kansas,Missouri, Iowa Minnesota, North Dakota, South Dakota	2.8 1.2	1,701 721
SO UTH ATLANTIC North Carolina District of Columbia, Virginia South Carolina, Georgia Florida Delaware, Maryland, West Virginia	4.9 3.6 2.9 2.7 2.6	792 882 1,114 1,318 953
EAST SOUTH CENTRAL Mississippi, Kentucky Tennessee, Alabama	3.3 2.0	859 1,086
WEST SOUTH CENTRAL Louisiana, Oklahoma Texas, Arkansas	4.5 3.1	808 2,367
MOUNTAIN Montana, Colorado Wyoming,Idaho, Arizona, Utah, New Mexico, Nevada	3.6 2.0	530 1,098
PACIFIC Washington California, Hawaii Alaska, Oregon	4.0 4.0 2.8	599 3,499 501

			lu lu	terview status ^a			"A"
	- -		Δ	B	<u> </u>	1	NONIN TERVIEW
Region and division	Base ^b	loterviews			noninterview	Base2C	BATE
NATION	(36,287)	83.8	2.9	12.7	0.6	(31,455)	3.4
NORTHEAST	(7,921)	83.7	2.9	12.9	0.5	(6,862)	3.4
New England	(2,174)	83.5	3.2	12.9	0.4	(1,886)	3.7
Niddle Atlantic	(5,747)	83.8	2.8	12.9	0,5	(4,976)	3.7 3.2
MIDWEST	(9.266)	85.3	3.1	11.2	0.4	(8,187)	3.5
East North Central	6,503)	85.2	3,5	10.9	0.4	(5,765)	3.9
West North Central	(2,763)	85.6	2.0	11.9	0.5	(2,422)	2.4
SOUTH	(12,075)	81.6	2.7	14.9	0.8	(10,179)	3.2
South Atlantic	(5,971)	82.0	2.7	14.5	0.8	(5,059)	3.2
East South Central	(2,276)	83.2	2.2	13.7	0.9	(1,945)	2.6
West South Central	(3,828)	80.1	2.8	16.3	0.8	(3,175)	3.4
WEST	(7,025)	85.5	3.1	10.7	0.7 .	(6,227)	3.5
Hountain	(1,889)	84.0	2.2	13.1	0.7	(1,628)	2.5
Pacific	(5,136)	86.1	3.5	9.8	0.6	(4,599)	3.8

TABLE 1. INTERVIEN STATUS PERCENT DISTRIBUTION AND "A" NONINTERVIEN RATE BY REGION AND DIVISION FOR FIRST QUARTER 1983

.

^aA noninterviews are occupied housing units, eligible for the survey, for which an interview could not be completed.

B noninterviews are unoccupied housing units, or those occupied by persons where usual residence is elsewhere.

C noninterviews are housing units in the sample by mistake, or no longer in existence, or no longer inhabitable.

^bBase 1, the base of the interview status percent distribution, is the expected number of housing units in the sample.

CBase 2, the base of the "A" NO NIN TERVIEW RATE, is the number of interviewed housing units <u>plus</u> the number of A noninterview housing units.

d+A+ NONINTERVIEW RATE = 100 (no. of A noninterviewed II U's no. of interviewed HU's + no. of A noninterviewed HU's)

Interview status ^a	State					
NEW ENGLAND	NE .	NH	VT	NA	RI	CT
Base 1 ^b	(314)	(164)	(108)	(826)	(158)	(604)
Interviews	70.1	71.4	69.4	89,8	80.4	88.6
A noninterviews	1.3	2.4	3.7	4.7	2.5	2.5
B noninterviews	28.3	25.0	26,9	4.9	17.1	8 .9
C noninterviews	0.3	1.2	0.0	0.6	0.0	0.0
Base 2 ^C	(224)	(121)	(79)	(781)		(550)
"A" NONINTERVIEW RATEd	1,8	3.3	5.1	5.0	3,1	2.1
MIDDLE ATLANTIC	NY		NJ	PA		
Base 1 ^b	(2,733)	(1,	,199)	(1,815)		
Interviews	81.6	8	7.0	85.0		
A noninterviews	3.6		3.1	1.4		
B noninterviews	14.0		9.6	13.3		
C noninterviews	0.8		0.3	0.3		
Base 2 ^C	(2,329)	(1	,080)	(1,567)		
"A" NONINTERVIEW RATEd	4.2		3.4	1.6		
EAST NORTH CENTRAL	OH	11	_11_	<u> </u>	MI	<u> </u>
Base I ^b	(1,698)	(919)	(1,6	05)	(1,564)	(717)
Interviews	87.3	80.7	85	.7	82.9	89.4
A noninterviews	3.7	3.5	4	.3	3.3	1.7
B noninterviews	8.6	15.2	9	.4	13.7	8.5
C noninterviews	0.4	0,6	0	.6	0,1	0.4
Base 2 ^C	(1,545)	(774)	(1,4	45)	(1,348)	(653)
"A" NONINTERVIEW RATEd	4.1	4.1		.8	3,8	1.8

÷

Table 2. INTERVIEW STATUS DISTRIBUTION AND "A" NONINTERVIEW RATE BY STATE FOR FIRST QUARTER \$983

.

.

.

۲

٠

•

.

.

Table 2. INTERVIEW STATUS DISTRIBUTION AND "A" NONINTERVIEW RATE BY STATE FOR FIRST QUARTER 1983-4Continued

4

Δ.

WEST NORTH CENTRAL	MN	<u>_1A</u>	HO	ND	SD	NE	KS		
Base 1 ^b	(581)	(474)	(888)	(133)	(106)	(243)	(338)		
Interviews	87.4	86.9	82.0	89.5	80,2	84.4	91.1		
A noninterviews	1.0	2.3	2.2	1.5	0.9	3.3	2.7		
B noninterviews	11.2	10.4	15.1	9.0	18.9	11.5	5.9		
C noninterviews	0.4	0.4	0.7	0.0	0.0	0.8	0.3		
Base 2 ^C	(514)	(423)	(748)	(121)	(86)	(213)	(317)		
"A" NONINTERVIEW RATEd	1.2	2.6	2.7	1.7	1.2	3.8	2.8		
SO UTH ATLANTIC	DE	MD	DC	<u> </u>	WY	NC	<u>SC</u>	GA	<u>FL</u>
Base 1 ^b	(119)	(712)	(121)	(873)	(237)	(931)	(424)	(872)	(1,682)
Interviews	74.8	91.0	80.2	86.3	80.6	80.9	78.1	86.1	76.2
A noninterviews	2.5	2.7	3,3	3.2	1.3	4.2	2.3	2.5	2.1
B noninterviews	20.2	6.2	16.5	10.2	16.0	13.8	18.9	10.8	20.6
C noninterviews	2.5	0.1	0.0	0.3	2.1	1.1	0.7	0.6	1.1
Base 2 ^C	(92)	(667)	(101)	(781)	(194)	(792)	(314)	(773)	(1,318)
"A" NONINTERVIEW RATE ^d	3.3	2.8	4.0	3.6	1.5	4.9	2,9	2.8	2.1
EAST SOUTH CENTRAL	KY	TN	AL	<u>HS</u>					
Base 1 ^b	(570)	(676)	(595)	(435)					
Interviews	84.4	83.7	83,7	80,5					
A noninterviews	2.3	1.8	1.7	3,4					
B noninterviews	12.4	13.9	13.1	15.6					
C noninterviews	0.9	0.6	1.5	0.5					
Base 2 ^C	(494)	(578)	(508)	(365)					
"A" NONIN TERVIEW RATEd	2.6	2.1	2.0	4.1					

٠

.

.

Table 2. IN TERVIEW STATUS DISTRIBUTION AND "A" NONINTERVIEW RATE BY STATE FOR FIRST QUARTER 1983 - Continued

.

WEST SOUTH CENTRAL	AR	LA	OK	TX				
Base 1 ^b	(428)	(619)	(339)	(2,442)				
Interviews	85.3	17.8	85.6	79.0				
A noninterviews	1.2	3.9	3.5	2.8				
B noninterviews	12.4	17.8	10.6	17.4				
C noninterviews	1.1	0.5	n. 3	8,0		•		
Base 2 ^C	(370)	(506)	(302)	(1,997)				
"A" NONINTERVIEW RATEd	1.4	4.7	4.0	3.4				
MOUNTAIN	MT	10	WY	<u>co</u>	NM	<u>A2</u>	UT	NV
Base 1 ^b	(140)	(215)	(43)	(464)	(194)	(590)	(166)	(77)
Interviews	77.1	86.5	95.4	86.9	90.2	79 <i>.</i> 2	84.9	85.7
A noninterviews	2.9	1.9	2.3	3.2	1.5	1.7	1.8	1.3
B noninterviews	20.0	10.2	2,3	9.5	6.7	18.6	11.5	13.0
C noninterviews	0.0	1.4	0.0	0.4	1.6	0.5	1.8	0.0
Base 2 ^C	(112)	(190)	(42)	(418)	(178)	(477)	(144)	(67)
"A" NONINTERVIEW RATEd	3.6	2.1	2,4	3.6	1.7	2.1	2.1	1.5
PACIFIC	NA	OR	<u> </u>	AK	HI			
Base 1 ^b	(718)	(534)	(3,728)	(42)	(114)			
Interviews	80.1	85.2	87.5	76.2	86.8			
A noninterviews	3.3	2.4	3.6	2.4	3.5			
B noninterviews	15.2	11.6	8.4	21.4	8.8			
C noninterviews	1.4	0,8	0.5	0.0	0,9			
Base 2 ^C	(599)	(468)	(3,396)	(33)	(103)			
"A" NONINTERVIEW RATEd	4.0	2.8	4.0	3.0	` 3.9			

^aA noninterviews are occupied housing units, eligible for the survey, for which an interview could not be completed. B noninterviews are unoccupied housing units, or those occupied by persons where usual residence is elsewhere. C noninterviews are housing units in the sample by mistake, or no longer in existence, or no longer inhabitable.

^bBase 1, the base of the interview status percent distribution, is the expected number of housing units in the sample.

^CBase 2, the base of the "A" NONINTERVIEW RATE, is the number of interviewed housing units <u>plus</u> the number of <u>A noninterview housing units</u>.

d*A* NONINTERVIEW RATE = 100 (no. of A noninterviewed HU's no. of Interviewed HU's + no. of A noninterviewed HU's)

_ _

-- -

Attachment B

February 27, 1985

MEMORANDUM FOR	Leroy Bailey Principal Researcher Statistical Research Division
From:	John Blondell J Statistical Research Division
Subject:	Noninterview Adjustment Research for NCS Redesign: MEMO 2 - Definition of Housing Unit Noninterview Adjustment Clusters by State and Residence

IN TRO-DUCTION

This memorandum continues the work done in MEMO 1. To the clusters defined in terms of state (groupings) in that memorandum, subclassification by residence is added in this memorandum, so that noninterview adjustment clusters are defined by residence categories within state.

The residence source variable offers two dimensions for ordering the residence categories of a given state as follows:

	<u>A11</u>	Urban	Rural
A11		U	R
SMSA	S		
СС	Sc	Uc	
Not CC	Snc	Unc	
Not SM SA	NS		

with the SMSA category further dichotomized as central city/not central city.

CHOICE OF RESIDENCE DIMENSION

The data base, for the state-by-state choice of residence dimension, is presented in table 1, which gives the ANIR ("A" NONINTERVIEW RATE) and the base (denominator) of the ANIR for every possible residence category, for every state.

Since it is preferable to follow the lead of already implemented CPS redesign work (November 2, 1984 memorandum from Charles D. Jones to Thomas C. Walsh entitled "1980 CPS Redesign: Specifications for Computing Noninterview Adjustment Factors Beginning January 1985"), priority is given to the use of the SMSA/not SMSA dimension. over the urban/rural dimension, unless there is clear evidence to the contrary. The clear, contrary evidence, indicating that the urban/rural rather than the SMSA/nct SMSA dimension should be used for a given state, involves two criteria, both of which must be met. Each criterion is the result of a comparison. First, the urban minus rural DANIR (the absolute difference in the "A" NONINTERVIEW RATE) must exceed the SMSA minus not SMSA DANIR for the whole state. (In terms of the insert on the first page, the absolute value of U minus R must exceed S minus NS.) And, second, the urban central city minus not central city DANIR must exceed the state central city minus not central city DANIR. (In terms of the insert on the first page, the absolute value of Uc minus Unc must exceed Sc minus Snc.) The results of these two comparisons and the choice of the residence dimension to be used in classification for each state are presented in table 2. Note (last column of table 2) that in New Jersey, Ohio, District of Columbia-Virginia, Florida, Tennessee-Alabama, and Wyoming-Idaho-Arizona-Utah-New Mexico-Nevada, the evidence is clear for using the urban/rural instead of the SMSA/not SMSA dimension, for defining residence categories.

CHOICE OF INDIVIDUAL STATE RESIDENCE CATEGORIES

More often then not, the dimension of residence classification indicated in the last column of table 2 is the best one for forming residence categories for the given state. It seems unnecessary to discuss the choice of residence categories in states where this is true. The base data are reported in table 1 and, what the residence categories are, is reported in table 3. It is only where this is <u>not</u> true, or where combining of categories proves necessary, that the residence category formation process of given, individual states is discussed below. The three factors (identical to those used in MEMO 1), taken

into account in the individual state residence category formation process are: (a) DANIR, i.e., the <u>absolute difference</u> in ANIR ("A" NONINTERVIEW RATE) between residence categories; (b) category frequency, i.e., the number of interviewed <u>plus</u> A noninterviewed housing units in the category; and (c) the order explicit in the residence categories.

The <u>New Jersey</u> data (table 1) by urban/rural are combined, in spite of DANIR's of 0.7 (between urban central city and not central city) and of 1.7 (between rural SMSA-not cc and not SMSA), to maintain frequency, as follows:

Residence	ANIR	DANIR	Base
Urban, SMSA	3.8	0.9	654
Urban, not SMSA	4.7	3.4	190
Rural	1.3		236

The <u>Ohio</u> data (table 1) by urban/rural are combined, in spite of DANIR's of 0.5 (between urban SMSA, not central city and not SMSA) and of 0.3 (between rural SMSA- not cc and not SMSA), to maintain frequency, as follows:

<u>Residence</u>	ANIR	DANIR	Base
Urban, SM SA, cc	3.8	1.1	450
Urban, SMSA, not cc			
and not SMSA	4.9	2.0	716
Rural	2.9		379

The <u>Wisconsin</u> data (table 1) for total SMSA, not cc and not SMSA are combined, in spite of adequate frequencies, because of a 0.0 DANIR, as follows:

Residence	ANIR	DANIR	Base
SM SA, cc	0.4	2.2	227
SMSA, not cc			
and not SMSA	2.6		426

The <u>North Dakota-South Dakota-Minnesota</u> data (table 1) for SMSA, central city and not central city are combined, in spite of a 0.6 DANIR, to maintain frequency, as follows:

<u>Residence</u>	ANIR	DANIR	Base
SMSA	0.8	0.9	371
Not SMSA	1.7		350

The <u>North Carolina</u> data (table 1) for SMSA, central city and not central city are combined, in spite of a 4.2 DANIR, to maintain frequency, as follows:

Residence	ANIR	DANIR	Base
SMSA	5.8	1.6	359
Not SMSA	4.2		433

The <u>District of Columbia-Virginia</u> data (table 1) by urban/rural are combined, in spite of DANIR's of 0.6 (between urban, SMSA, not central city and not SMSA) and of 0.4 (between rural SMSA-not cc and not SMSA), to maintain frequency, as follows:

Residence	ANIR	DANIR	Base
Urban, SMSA, cc	3.5	1.3	259
Urban, SM SA, not cc			
and not SMSA	4.8	2.4	330
Rural	2.4		293

The <u>South Carolina-Georgia</u> data (table 1) for total, SMSA, cc and not cc are combined, in spite of a DANIR of 0.8, to maintain frequency. Since this results in a DANIR of 0.1 between total, SMSA and not SMSA, and in spite of adequate frequency, these two categories are combined, leaving no residence categories, but only the state total.

The <u>Florida</u> data (table 1) for urban, SMSA, not cc and not SMSA are combined, in spite of a 1.2 DANIR, to maintain frequency as follows:

Residence	ANIR	DANIR	Base
Urban, SMSA, cc	2.0	0.6	295
Urban, SMSA, not cc			625
and not SMSA	2.6	0.9	
Rural	3.5		398

The <u>Delaware-Maryland-West Virginia</u> data (table 1) for total, SMSA, central city, and not cc are combined, in spite of a 2.1 DANIR, to maintain frequency as follows:

Residence	ANIR	DANIR	Base
SMSA	2.9	0.8	626
not SM SA	2.1		327

The <u>Mississippi-Kentucky</u> data (table 1) for total, SMSA, central city and not cc are combined, in spite of a 2.0 DANIR, to maintain frequency as follows:

<u>Residence</u>	ANIR	DANIR	Base
SMSA	4.1	1.4	339
Not SMSA	2.7		520

The <u>Tennessee-Alabama</u> data (table 1) for urban, SMSA, central city and not cc are combined, in spite of a 2.6 DANIR, to maintain frequency as follows:

Residence	ANIR	DANIR	Base
Urban, SMSA	2.0	1.5	357
Urban, not SMSA	3.5	1.1	227
Rural	1.4		502

The Louisiana-Oklahoma data (table 1) for total, SMSA, central city and not cc are combined, in spite of adequate frequencies, because of a 0.0 DANIR as follows:

Residence	ANIR	DANIR	<u>Base</u>
SMSA	5.1	1.6	491
Not SMSA	3.5		317

The <u>Montana-Colorado</u> data (table 1) for total, SMSA, not cc and not SMSA are combined, in spite of a 0.7 DANIR, to maintain frequency as follows:

<u>Residence</u>	ANIR	DANIR	Base
SMSA,cc	3.9	0.5	232
SMSA, not cc			
and not SMSA	3.4		298

The <u>Wyoming-Idaho-Arizona-Utah-New Mexico-Nevada</u> data (table 1) for urban, SMSA, not cc and not SMSA are combined, in spite of adequate frequencies, because of a 0.3 DANIR as follows:

Residence	ANIR	DANIR	Base
Urban, SM SA, cc	2.1	1.3	292
Urban, SMSA, not cc			
and not SMSA	0.8	3.1	497
Rural	3.9		309

The <u>Washington</u> data (table 1) for total, SMSA, central city, and not cc are combined, in spite of a 1.2 DANIR, to maintain frequency as follows:

Residence	ANIR	DANIR	Base
SMSA	3.1	2.7	391
Not SMSA	5.8		208

The <u>Alaska-Oregon</u> data (table 1) for total, SMSA, central city and not cc are combined, in spite of a 2.0 DANIR, to maintain frequency as follows:

Residence	ANIR	DANIR	<u>Base</u>
SMSA	2.1	1.6	282
Not SM SA	3.7		219

SUMMARY

A sum mary of these results (table 3) is a listing of the 26 states (groupings) by the residence category pattern used to define noninterview adjustment clusters, as follows:

Residence category pattern	State
SMSA, cc/SMSA, not cc/	Vermont-Massachusetts/New Hampshire-
not SMSA (3 categories)	Rhode Island-Connecticut-Maine/
	New York/Pennsylvania/Illinois/Indiana/
	Michigan/Nebraska-Kansas-Missouri-Iowa/Texas-
• •	Arkansas/California-Hawaii (10 states)

Urban, SM SA/urban, not SM SA/rural (3 categories)

Urban, SMSA, cc/Urban, SMSA, not cc <u>and</u> not SMSA/ rural (3 categories)

SMSA, cc/SMSA not cc <u>and not SMSA</u> (2 categories)

SMSA/not SMSA (2 categories)

No residence categories (zero categories) New Jersey/Tennessee-Alabama (2 states)

Ohio/District of Columbia-Virginia/ Florida/Wyoming-Idaho-Arizona-Utah-New Mexico-Nevada (4 states)

Wisconsin/Montana-Colorado (2 states)

North Dakota-South Dakota-Minnesota/ North Carolina/Delaware-Maryland-West Virginia/Mississippi-Kentucky/Louisiana-Oklahoma/Washington/Alaska-Oregon (7 states)

South Carolina- Georgia (1 state)

Table 1. "A" NONINTERVIEW RATE AND BASE BY STATE AND RESIDENCE FOR FIRST QUARTER 1983^a

• •

.

Residence			Stat	e		
NEW ENGLAND	VT,	MA	NH, RI,	<u>CT, ME</u>		
Total	5.0	860	2.6	1,026		
SMSA	5.4	667	2.9	611		
СС	6,3	255	2.6	235		
Not CC	4.9	412	3.2	376		
Not SMSA	3.6	193	2.2	415		
Urban	5.3	675	2.4	633		
SMSA	5.6	604	2.7	479		
CC	6.3	255	2.6	235		
Not CC	5.2	349	2.9	244		
Not SMSA	2.8	71	1.3	154		
Rural	3.8	185	3.1	393		
SMSA-not CC	3.2	63	3.8	132		
Not SMSA	4.1	122	2.7	261		
MIDDLE ATLANTIC	N	Y	<u>_</u>	NJ	P	A
Total	4.2	2,329	3.4	1,080	1.6	1,567
SMSA	4.1	2,070	3.5	714	1.9	1,242
СС	5.0	1,198	3.2	94	1.2	408
Not CC	2.9	872	3.5	620	2.3	834
Not SMSA	5.0	259	3.3	366	0.3	325
Urban	4.4	2,005	4.0	844	1.6	1,081
SMSA	4.3	1,901	3.8	654	1.8	951
C C	5.0	1,198	3.2	94	1.2	408
Not CC	3.0	703	3.9	560	2.2	543
Not SMSA	6.7	104	4.7	190	0.0	130
Rural	3.1	324	1.3	236	1.6	486
SMSA-not CC	2.4	169	0.0	60	2.4	291
Not SMSA	3.9	155	1.7	176	0.5	195

,

Table 1. "A" NONINTERVIEW RATE AND BASE BY STATE AND RESIDENCE FOR FIRST QUARTER 1983^a-Continued

Residence						State	•			
EAST NORTH CENT	<u>ral</u>	IL		<u>0 H</u>	Ī	N		MI		WI
Total	4.8	1,445	4.1	1,545	4.1	774	3.8	1,348	1.8	653
SMSA	4.7	1,114	4.1	1,229	3.2	439	3.3	980	1.5	459
CC	6.8	425	3.8	450	4.9	225	4.2	284	0.4	227
Not CC	3.3	689		· 779	1.4	214	2.9	696	2.6	232
Not SMSA	5.1	331	4.1	316	5.4	335	5.2	368	2.6	194
Urban	5.0	1,152	4.5	1,166	4.2	476	3.6	900	1.7	471
S M S A	5.0	1,007	4.3	997	3.5	339	3.7	758	1.1	378
C C	6.8	425	. 3.8	450	4.9	225	4.2	284	0.4	227
Not CC	3.6	582	4.8	547	0.9	114	3.4	474	2.0	151
Not SMSA	5.5	145	5.3	169	5.8	137	2.8	142	4.3	93
Rural	3.8	293	2.9	379	4.0	298	4.2	448	2.2	182
SMSA-not CC	1.9	107	3.0	232	2.0	100	1.8	222	3.7	81
Not SMSA	4.8	186	2.7	147	5.1	198	6.6	226	1.0	101
WEST NORTH CEN	TRAL N	IE, KS, M	0, IA	ND, SD,	MN					
Total		2.8	1,701	1.2	721					
S M S A		3.5	832	0.8	371					
СС		3.2	409	1.1	185					
Not C C		3.8	423	0.5	186					
Not SMSA		2.2	869	1.7	350					
Urban		3.2	1,080	1.2	484					
S M S A		3.1	737	0.9	345					
СС		3.2	409	1.1	185					
Not CC		3.7	328	0.6	160					
Not SMSA		2.9	343	2.2	139					
Rura]		2.1	621	1.3	237					
SMSA-not CC		4.2	95	0.0	26					
Not SMSA		1.7	526	1.4	211					

.

Table 1. "A" NONINTERVIEW RATE AND BASE BY STATE AND RESIDENCE FOR FIRST QUARTER 1983^a-Continued

.

Residence			Stat	e			٠			
SOUTH ATLANTIC	-	NC	DC,	VA	SC	<u>, GA</u>		<u>FL</u>	<u>DE, 1</u>	1D, WV
Total	4.9	792	3.6	882	2.9	1,114	2.7	1,318	2.6	953
S M S A	5.8	359	4.0	656	2.9	544	2.5	884	2.9	626
СС	3.6	166	3.5	259	2.4	167	2.0	295	- 4.5	133
Not CC	7.8	193	4.3	397	3.2	377	2.7	589	2.4	493
Not SMSA	4.2	433	2.7	266	2.8	570	3.2	434	2.1	327
Urban	4.2	359	4.2	589	2.7	558	2.4	920	3.2	53 9
SMSA	4.1	217	4.2	542	2.7	373	2.6	743	3.4	473
C C	3.6	166	3.5	259	2.4	167	2.0	295	4.5	133
Not CC	5.9	51	4.9	283	2.9	206	2.9	448	2.9	340
Not SMSA	4.2	142	4.3	47	2.7	185	1.7	177	1.5	66
Rural	5.5	433	2.4	293	3.1	556	3.5	398	1.9	414
SMSA-not CC	8.5	142	2.6	114	3.5	171	2.1	141	1.3	153
Not SMSA	4.1	291	2.2	179	2.9	385	4.3	257	2.3	261
EAST SOUTH CENT	RAL	MS,	<u>K Y</u>	TN	<u>, Al</u>					
TOTAL		3.3	859	2.0	1,086					
SM SA		4.1	339	1.6	494					
СС		3.2	185	2.6	274					
Not C C		5.2	154	0.5	220					
Not SMSA		2.7	520	2.4	592					
Urban		3.8	443	2.6	584					
SM SA		4.0	297	2.0	357					
СС		3.2	185	2.6	274					
Not CC		5.4	112	0.0	83					
Not SMSA		3.4	146	3.5	227					
Rural		2.6	416	1.4	502					
SMSA-not CC		4.8	42	0.7	137				:	
Not SMSA		2.4	374	1.6	365					

.

Table 1. "A" NONINTERVIEW RATE AND BASE BY STATE AND RESIDENCE FOR FIRST QUARTER 1983^a-Continued

.

٠

۲

I.

•

٠

•

.

Residence		·			State
WEST SOUTH CEN	TRAL	LA,	<u>0 K</u>	TX	<u>, A R</u>
Total		4.5	808	3.1	2,367
SM SA		5.1	491	3.6	1,528
C C		5.1	275	4.0	933
Not C C		5.1	216	3.0	
Not SMSA		3.5	317	2.1	839
Urban		4.3	558	3.1	1,724
S M S A		4.6	413	3.5	1,355
C C [5.1	275	4.0	933
Not C C		3.6	138	2.4	422
Not SMSA		3.4	145	1.9	369
Rural		4.8	250	3.0	643
SMSA-not CC		7.7	78	4.6	173
Not SMSA		3.5	172	2.3	470
MOUNTAIN	MT	<u>, C O</u>	<u>WY,I</u>	D, AZ,	, UT, NM, NV
Total	3.6	530	2	.0	1,098
SM SA	3.7	427		.6	550
C C	3.9	232	2	.1	292
Not CC	3.6	195	1	.2	258
Not SMSA	2.9	103	2	.4	548
Urban	3.5	423	1	.3	789
SMSA	3.8	394		.6	489
СС	3.9	232		.1	292
Not CC	3.7	162		.0	197
Not SM SA	0.0	29		.7	300
Rural	3.7	107	3	.9	309
SM SA-not C C	3.0	33		.6	61
Not SMSA	4.1	74		.4	248

:

,

.

Table 1. "A" NONINTERVIEW RATE AND BASE BY STATE AND RESIDENCE FOR FIRST QUARTER, 1983^a-Continued

•

•

8

,

Residence	State						
PACIFIC	WA		<u>C</u>	<u>A, HI</u>	AK, OR		
Total	4.0	599	4.0	3,499	2.8	501	
S M S A	3.1	391	3.9	3,281	2.1	282	
C C	3.8	158	4.8	1,315	0.9	112	
Not CC	2.6	233	3.4	1,966	2.9	170	
Not SMSA	5.8	208	4.6	218	3.7	219	
Urban	3.8	369	4.1	3,136	1.0	302	
SMSA	3.1	295	4.2	3,016	0.9	217	
C C	3.8	158	4.8	1,315	0.9	112	
Not CC	2.2	137	3.7	1,701	1.0	105	
Not SMSA	6.8	74	3.3	120	1.2	85	
Rural	4.3	230	2.5	363	5.5	199	
SMSA-not CC	3.1	96	1.1	265	6.2	65	
Not SMSA	5.2	134	6.1	98	5.2	134	

τ

a"A" NONINTERVIEW rate = 100 (# A noninterview HU/(# A noninterview HU + # interviewed HU)). The base is the denominator of the rate.

Table 2. COMPARISON OF SELECTED, ABSOLUTE RESIDENCE DIFFERENCES IN "A" NONINTERVIEW RATE BY STATE FOR FIRST QUARTER 1983^a

State	Total SMSA minus Not SMSA	vs.	Urban minus rural	Centr min not cer Total		-	Residence dimension used in classification
NEW ENGLAND VT, MA NH, RI, CT, ME	1.8 0.7	>=	1.5 0.7	1.4 0.6	> >	1.1 0.3	SMSA/not SMSA SMSA/not SMSA
MIDDLE ATLANTIC NY NH PA	0.9 0.2 1.6	< < >	1.3 2.7 0.0	2.1 0.3 1.1	> < >	2.0 0.7 1.0	SM SA/not SM SA Urban/rural SM SA/not SM SA
EAST NORTH CENTRAL IL OH IN -MI WI	0.4 0.0 2.2 1.9 1.1	< < > >	1.2 1.6 0.2 0.6 0.5	3.5 0.4 3.5 1.3 2.2	> < > >	3.2 1.0 4.0 0.8 1.6	SM SA/not SM SA Urban/rural SM SA/not SM SA SM SA/not SM SA SM SA/not SM SA
WEST NORTH CENTRAL NE, KS, MO, IA ND, SD, MN	1.3 0.9	> >	1.1 0.1	0.6 0.6	> >	0.5 0.5	SM SA/not SM SA SM SA/not SM SA
SOUTH ATLANTIC NC DC, VA SC, GA FL DE, MD, WV	1.6 1.3 0.1 0.7 0.8	> < < < <	1.3 1.8 0.4 1.1 1.3	4.2 0.8 0.8 0.7 2.1	> < > < >	2.3 1.4 0.5 0.9 1.6	SMSA/not SMSA Urban/rural SMSA/not SMSA Urban/rural SMSA/not SMSA
EAST SOUTH CENTRAL MS, KY TN, AL WEST SOUTH CENTRAL	1.4 0.8	> <	1.2 1.2	2.0 2.1	< <	2.2 2.6	SMSA/not SMSA Urban/rural
LA, OK TX, AR	1.6 1.5	> >	0.5 0.1	0.0 1.0	« «	1.5 1.6	SMSA/not SMSA SMSA/not SMSA
MOUNTAIN MT, CO WY, ID, AZ, UT, MN, NV	0.8 0.8	> <	0.2 2.6	0.3 0.9	> <	0.2 1.1	SMSA/not SMSA Urban/rural
PACIFIC WA CA, HI AK, OR	2.7 0.7 1.6	> < <	0.5 1.6 4.5	1.2 1.4 2.0	< > >	1.6 1.1 0.1	SM SA/not SM SA SM SA/not SM SA SM SA/not SM SA

^a Source data are presented in table 1.

Table 3. "A" NONINTERVIEW RATE AND BASE OF HOUSING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE AND RESIDENCE FOR FIRST QUARTER 1933^a

31

State	SM	SA,CC	Residence SMSA	e not C C	Not	SMSA
NEW ENGLAND Vermont, Massacnusetts	6.3	255	4.9	412	3.6	193
New Hampshire, Rhode Island,	0.5	233	4.3	712	3.0	195
Connecticut, Maine	2.6	235	3.2	376	2.2	415
MIDDLE ATLANTIC						
New York	5.0	1,198	2.9	872	5.0	259
New Jersey ^b	3.8 ^D	654 408	4.7 ^D	190 834	1.3 ^b	236 325
Pennsylvania	1.2	408	2.3	834	0.3	325
EAST NORTH CENTRAL						
Ninois	6.8	425	3.3	689	5.1	331
0 mio ^C	3.8 ^c	450	4.9 ^C	716	2.9 ^C	
Indiana	4.9 4.2	225	1.4	214	5.4	335 368
Michigan Wisconsin ^d	4.2 0.4d	284 227	2.9 2.6 ^d	696 426	5.2	200
WISCONSIII -	0.7		2.00	4LU		
WEST NORTH CENTRAL						
Nebraska, Kansas, Missouri,						
Iowa	3.2	409	3.8	423	2.2	869
North Dakota, South Dakota, Minnesota ^e	0.8 ^e	371	1.7 ^e	350		
Minnesota	0.0	3/1	Te/	330		
SOUTH ATLANTIC			•			
North Carolina ^e	5.8e	359	4.2 ^e	433		_
District of Columbia, Virginia ^C	3.5 ^C	259	4.8 ^C	330	2.40	293
South Carolina, Georgia ^T	2.9 ^f 2.0 ^c	1,114 295	2.6 ^C	625	3.5 ^C	398
Florida ^C Delaware-Maryland-West Virginia ^e	2.0° 2.9 ^e	626	2.1 ^e	327	JeJ	290
Delaware-Maryland-west virginia	2	020		527		
EAST SOUTH CENTRAL				_		
Mississippi-Kentucky ^e	4.1 ^e	339	2.7 ^e	520	• •b	
Tennessee-Alabama ^D	2.0 ^D	357	3.5 ^D	227	1.4 ^b	502
WEST SOUTH CENTRAL						
Louisiana-Oklahomae	5.1 ^e	491	3.5 ^e	317		
Texas-Arkansas	4.0	933	3.0	595	2.1	839
4 0 UN 7 1 VN						
MOUNTAIN Montana-Colorado ^d	3.9d	232	3.4d	298		
Montana-Colorado- W yoming-Idaho-Arizona-Utah-	5.5	. J E	J.7	230		
New Mexico-Nevada ^C	2.1 ^c	292	0 .8^c	497	3.9 ^c	309
PACIFIC			·			
Washington ^e	3.1 ^e	391	5.8 ^e	208		
California-Hawaii	4.8	1,315	3.4	1,966	4.6	218
Alaska-Oregon ^e	2.1 ^e	282	3.7e	219		

- .

^aSource data are presented in table 1. ^bResidence categories are urban, SMSA; urban, not SMSA; rural. ^cResidence categories are urban, SMSA, CC; urban, SMSA, not CC <u>and</u> not SMSA; rural. ^dResidence categories are SMSA, CC; SMSA, not CC <u>and</u> not SMSA. ^eResidence categories are SMSA; not SMSA. ^fNo residence categories, only the state level.

Attachment C

ì

March 1, 1985

MEMORANDUM FOR Leroy Bailey Principal Researcher Statistical Research Division

From: John Blondell = Statistical Research Division

Subject: Noninterview Adjustment Research for NCS Redesign: MEMO 3 -Definition of Housing Unit Noninterview Adjustment Clusters by State, Residence and SMSA Size

INTRODUCTION

This memorandum continues the work done in MEMO 1 and MEMO 2, and concludes the first stage in the synthesis of the noninterview adjustment clusters. Stage one entails the use of the 1980 CPS redesign classifiers (state, SMSA status and size, and residence), without consideration of the alternative measures of size and residence provided on the NCS source file. While the 1980 CPS redesign classifiers are used in stage one, differences are found in their operational definitions and in the details of implementation, i.e., their actual use in cross classification to form clusters (January 14, 1985 Susan Campbell memorandum for documentation entitled "1980 CPS Redesign: Assignment of Noninterview Cluster Codes to 1980 Design PSUs and 1970 Design PSUs (Series #K-31)).

SMSA SIZE AS A CLASSIFIER

The database, upon which the choice of SMSA size categories for forming clusters is based, is presented in table 1. Table 2 presents the first stage clusters. The reader is asked to compare entries, line-by-line, between the two tables, in order to see how the SMSA size categories were used to form first stage clusters (within each cluster as already defined by state and residence). Inspection of the data should show that, in general, a SMSA size category forms a first stage cluster if it has a DANIR (absolute difference in "A" NONINTERVIEW RATE) of 0.5 or more with the next smaller size category and if it has a frequency of 100 or more. Where it is necessary to combine SMSA size categories (within a state and residence defined cluster) to obtain a frequency of 100 or more, categories (including "not SMSA", if present) are combined in descending SMSA size order, regardless of DANIR. After the frequency criterion has been met, categories are further combined in descending order, where the DANIR is less than 0.5 between contiguous categories.

SUMMARY

Division	Total number	Range in "A" NONINTERVIEW RATE	Number with frequency of 250 or more
N A TIO N	109	0.0 to 8.7	45
New England	10	1.6 to 8.3	2
Middle Atlantic	16	0.3 to 5.5	8
East North Central	22	0.0 to 6.8	10
West North Central	6	0.8 to 4.0	4
South Atlantic	18	0.6 to 8.7	6
East South Central	7	0.7 to 5.1	3
West South Central	11	0.4 to 6.9	4
Mountain	7	0.8 to 4.8	3
Pacific	12	1.5 to 5.8	5

A summary of the table 2 results for first stage clusters is as follows:

Table 1. "A" NONINTERVIEW RATE AND BASE BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^a

State and Residence	3 + M	1 to 3 M	SMSA size 1/2 to 1 M	1/4 to 1/2M	< 1/4 M	Not SM SA	Total
VT, MA SMSA, CC SMSA, not CC Not SMSA		11.0/82 5.2/305	3.9/51 9.4/32	3.3/30 0.0/15	4.3/90 1.7/60 3.6/193		6.3/255 4.9/412
NH, RI, CT, ME SMSA, CC SMSA, not CC Not SMSA	v		2.5/80 3.5/143	6.1/33 2.7/73	1.6/122 3.1/160	2.2/415	2.6/235 3.2/376
NY SMSA, CC SMSA, not CC Not SMSA	5.5/999 4.6/153	4.6/65 3.1/456	1.0/97 2.0/200	2.7/37 0.0/63		5.0/259	5.0/1,198 2.9/872
NJ Urban, SMSA Urban, not SMSA Rural	4.3/117 0.0/25	3.8/420 0.0/11	2 . 5/81 0 . 0/12	5.6/36 0.0/12		4.7/190 1.7/176	3.8/654 1.3/236
<u>PA</u> SMSA, CC SMSA, not CC Not SMSA	1.8/219 1.9/260	0.0/67 3.5/230	2.4/42 2.3/44	0.0/65 1.5/270	0.0/15 3.3/30	0.3/325	1.2/408 2.3/834
IL SMSA, CC SMSA, not CC Not SMSA	7.3/383 3.8/559	0.0/67	•	2.4/42 3.2/63		5.1/331	6.8/425 3.3/689
OH Urban, SMSA, CC Urban, SMSA, not CC & not SMSA Rural		5.1/136 4.4/227 0.0/44	3.0/234 5.3/243 4.7/128	2.4/41 4.5/44 5.0/20	5.1/39 3.0/33 0.0/40	5.3/169 2.7/147	3.8/450 4.9/716 2.9/379

3

.

Table 1. "A" NONINTERVIEW RATE AND BASE BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^a-Continued

• •

State and Residence	3+M	1 to 3 M	SMSA size 1/2 to 1 M	1/4 to 1/2M	< 1/4 M	Not SM SA	Total
IN SMSA, CC SMSA, not CC Not SMSA		2.3/87 1.7/58	12.5/40 1.5/67	3.0/33 2.2/45	4.6/65 0.0/44	5.4/335	4.9/225 1.4/214
MI SMSA, CC SMSA, not CC Not SMSA	6.8/162 3.6/414		4.0/25 2.4/85	0.0/40 2.0/98	0.0/57 1.0/99	5.2/368	4.2/284 2.9/696
<u>WI</u> SMSA, CC SMSA, not CC <u>and</u> not SMSA		0.8/120 0.8/120		0.0/45 1.8/57	0.0/62 7.3/55	2.6/194	0.4/227 2.6/426
NE, KS, MO, IA SMSA, CC SMSA, not CC Not SMSA		1.9/160 3.7/327	6.8/44 4.5/22	2.4/82 8.7/23	4.1/123 2 . 0/51	2.2/869	3.2/409 3.8/423
ND, SD, MN SMSA Not SMSA		1.1/283		0.0/15	0.0/73	1.7/350	0.8/371
NC SMSA Not SMSA			2.8/107	3.8/80	8.7/172	4.2/433	5.8/359
<u>DC, VA</u> Urban, SMSA, CC Urban, SMSA, not CC <u>&</u> not SMSA Rural		4.0/101 5.2/134 0.0/39	3.5/86 5.8/120 6.7/30	3.1/32 0.0/3	2.5/40 0.0/26 2.2/45	4.3/47 2.2/179	3.5/259 4.8/330 2.4/293
<u>SC, GA</u> State		2.9/276		2.7/184	23.6/84	2.8/570	2.9/1,114

.

Table 1. "A" NONINTERVIEW RATE AND BASE BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^a-Continued

,

State and Residence	3 + M	1 to 3 M	SMSA size 1/2 to 1 M	1/4 to 1/2M	< 1/4 M	Not SM SA	Total
<u>FL</u> Urban, SMSA, CC Urban, SMSA, not CC <u>&</u> not SMSA Rural	,	3.6/137 3.4/235 2.9/68	0.0/111 1.1/93 0.0/1	2.6/38 2.8/106 1.7/60	0.0/9 7.1/14 0.0/12	1.7/177 4.3/257	2.0/295 2.6/625 3.5/398
DE, MD, WV SMSA Not SMSA		3.0/532		1.3/79	6.7/15	2.1/327	2.9/626
MS, KY SMSA Not SMSA		3.4/29	5.5/109	1.5/67	4.5/134	2.7/520	4.1/339
TN, AL Urban, SMSA Urban, not SMSA Rural			1 . 8/222 0 . 0/43	3.8/78 2.0/ 51	0.0/57 0.0/43	3.5/227 1.6/365	2 . 0/357 1 .4 /502
LA, OK SMSA Not SMSA		6.9/145	3.7/108	4.7/190	4.2/48	3.5/317	5.1/491
TX, AR SMSA, CC SMSA, not CC Not SMSA		6.2/324 2.3/301	6.7/120 2.5/122	3.2/248 3.0/67	0.4/241 5.7/105	2.1/839	4.0/933 3.0/595
MT, CO SMSA, CC SMSA, not CC <u>&</u> not SMSA		4.8/104 3.8/159			3.1/128 2.8/36		3.9/232 3.4/298

.

Table 1. "A" NONINTERVIEW RATE AND BASE BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^a-Continued

. ,

State and Residence	3 + M	1 to 3 M	SMSA size 1/2 to 1 M	1/4 to 1/2M	< 1/4 M	Not SM SA	Total
WY, ID, AZ, UT, NM, NV Urban, SMSA, CC Urban, SMSA, not CC <u>&</u> not SMSA Rural			1.9/155 1.3/159 0.0/33	2.2/137 0.0/38 3.6/28		0 . 7/300 4 . 4/248	2.1/292 0.8/497 3.9/309
WA SMSA Not SMSA	,	3.0/270		3.3/121		5.8/208	3.1/391
<u>CA, HI</u> SMSA, CC SMSA, not CC Not SMSA	5.0/643 3.9/914	4.8/395 3.4/612	6.1/82 2.8/177	4. 8/124 1.7/180	1.4/71 1.2/83	4.6/218	4.8/1,315 3.4/1,966
AK, OR SMSA Not SMSA		1.8/164			2.5/118	3.7/219	2.1/282

a"A" NONINTERVIEW RATE = 100 (# A noninterview HU/(# A noninterview HU + # interviewed HU)). The base is the denominator of the rate.

ъ

Table 2. "A" NONINTERVIEW RATE AND BASE OF HOUSING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^a . .

.

1/4 to 1 M 1.5/263

State and residence	SMSA size	٠
NEW ENGLAND Vermont, Massachusetts	1/2 to 3M	< 1/2 M
SM SA, C C	8.3/133 1 to 3 M	4.1/122 < 1 M
SMSA, not CC	15.27305} ^b not SM SA	3.7/107
Not SMSA	3.6/193	
New Hampshire, Rhode Island, Connecticut, Maine	4	
SMSA, CC	<u>1/4 to 1 M</u> 3.5/113 1/2 to 1 M	< 1/4 M 1/6/122 < 1/2 M
SMSA, not CC	3.5/143 not SM SA	3.0/233
Not SMSA	[2.27415]	
MIDDLE ATLANTIC New York		
SMSA, CC	<u>1</u> +M [5.5/1,064] 3+M	<u>1/4 to 1 M</u> 1.5/134 1 to 3 M
SM SA, not C C	4.6/153 not SM SA	[3.1/456]
Not SMSA	[5.0/259]	
New Jersey	3 + M	1/4 to 3M
Urban, SM SA	4.3/117 not SMSA	[3.7/537]
Urban, not SMSA	4.7/190 All	
Rural	1.3/236	

• •

Table 2. "A" NONINTERVIEW RATE AND BASE OF HOUSING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^a-Continued

• •

1

•

State and residence	SM SA size	•	
Pennsylvania	3 * M	< 3 M	
SMSA, CC	<u>3 H</u> 1.8/219 3⁺ M	0.5/189 1 to 3 M	<1M
SMSA, not CC	1.9/260 not SM SA	3.5/230	[1.7/344]
Not SMSA	$\frac{100.3138}{0.37325}$		x
EAST NORTH CENTRAL Nlinois	A11		
SMSA, CC	[6.8/425] 3 ⁺ M	1/2 to 3 M	
SMSA, not CC	3.8/559} not SM SA	1.5/130	
Not SMSA	[5.1/331]		
Ohio	1 to 3 M	< 1 M	
Urban, SMSA, CC Urban, SMSA, not CC <u>and</u> not SMSA	5.1/136 1 to 3 M 4.4/227 All	{3.2 /314} <u>< 1M</u> {5.1 /489}	
Rural	[2.9/379]		
Indiana	A11	•	
SMSA, CC	4.9/225 All		
SMSA, not CC	1.4/214 not SM SA		
Not SMSA	[5.4/335]		

.

Table 2. "A" NONINTERVIEW RATE AND BASE OF HOUSING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^a-Continued

....

Ľ

State and residence	SMSA size	•	
Michigan	A		
SMSA, CC	$\frac{3^{+}M}{6.8/162}$	<1M 0.8/122	
SMSA, not CC	$\frac{3^{+}M}{[3,6/414]}$	<u><1M</u> {1.8/282}	
Not SM SA	not SM SA [5.2/368]		
Wisconsin			
SMSA, CC	<u>1 to 3 M</u> 0.8/120	< 1/2 M 0.0/107	
SMSA, not CC <u>and</u> not SMSA	<u>1 to 3 M</u> 0.8/120	$\frac{< 1/4 \text{ to } 1/2 \text{ M}}{4.5/112}$	not SMSA 2.6/194
<u>WEST NORTH CENTRAL</u> Nebraska, Kansas Missouri, Iowa			
neoraska, kansas missoari, towa	1 to 3M	< 1 M	
SMSA, CC	1.9/160	4.0/249	
SMSA, not CC	All [3.8/423]		
Not SM SA	not_SM_SA [2.2/869]		
North Dakota, South Dakota,			

Minnesota

٠

Table 2. "A" NONINTERVIEW RATE AND BASE OF HOUSING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^{af}-Continued

.

.

٠

κ.

		٠	
State and residence	SMSA size		
District of Columbia, Virginia			
Urban, SMSA, CC	$\frac{1 \text{ to } 3M}{4.0/101}$ 1 to 3M	<pre><1M 3.2/158 <1M</pre>	
Urban, SMSA, not CC <u>and</u> not SMSA	5.2/134	4.6/196	
Rural	<u>A11</u> [2.4/293]		
South Carolina, Georgia			
State	<u>All</u> {2.9/1,114}		
Florida			
Urban, SM SA, C C	<u>1 to 3 M</u> 3.6/137 1 to 3 M	<pre>< 1 M 0.6/158 <1/4 to 1 M</pre>	not SMSA
Urban, SMSA, not CC <u>and</u> not SMSA	3.4/235	2.3/213	1.7/177
Rural	<u><1/4 to 3M</u> 2.1/141	not SMSA [4.3/257]	
Delaware, Maryland, West Virginia			
SMSA	All {2.9/626} not SM SA		
Not SMSA	{2.1/327}		
EAST SOUTH CENTRAL Mississippi, Kentucky			
SMSA	1/2 to 3 M 5.1/138 not SM SA	< 1/2 M 3.5/201	
Not SM SA	[2.7/520]		

,

11

. .

Table 2. "A" NONINTERVIEW RATE AND BASE OF HOUSING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^a-Continued

•

.

State and residence	SM SA size	٠		
Tennessee, Alabama				•
Urban, SM SA	All [2.0/357]			
Urban, not SM SA	not SM SA 3.5/227			
Rural	< 1/4 to 1 M 0.7/137	not SM SA [1.6/365]		
<u>WEST SOUTH CENTRAL</u> Louisiana, Oklahoma				
SMSA	<u>1 to 3 M</u> 6.9/145	<u>1/2 to 1 M</u> 3.7/108	<u>< 1/2 M</u> 4.6/238	
Not SMSA	not SM SA {3.5/317}			
Texas, Arkansas				
SM SA, C C	$\frac{1 \text{ to } 3M}{[6.2/324]}$	<u>1/2 to 1 M</u> 6.7/120	<u>1/4 to 1/2 M</u> 3.2/248	< 1/4 M 0.4/241
SMSA, not CC	$\frac{1/4 \text{ to } 3M}{\{2.4/490\}}$	< 1/4 M 5.7/105		
Not SM SA	not SM SA {2.1/839}			
<u>MOUNTAIN</u> Montana, Colorado				
	<u>1 to 3 M</u>	<u>< 1/4 M</u>		
SM SA, C C	4.8/104 < 1/4 to 3 M	3.1/128 not SM SA		
SMSA, not CC <u>and</u> not SMSA	3.6/195	2.9/103		

.

Table 2. "A" NONINTERVIEW RATE AND BASE OF HOUSING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE, RESIDENCE AND SMSA SIZE FOR FIRST QUARTER 1983^a-Continued

.

•

State and residence	SMSA size	٠		
Wyoming, Idaho, Arizona, Utah, New Mexico, Nevada	A 33			
Urban, SMSA, CC	$\frac{A11}{2.1/292}$			
Urban, SMSA, not CC <u>and</u> not SMSA	All {0.8/497} All			
Rural	[3. 9/309]			
PACIFIC Washington				
SMSA	All [3.1/391] not SMSA			
Not SMSA	5.8/208			
California, Hawaii	1/2 ⁺ M	< 1/2 M		
SMSA, CC	1/2 M {5.0/1,120} 3 ⁺ M	< <u>1/2 M</u> 3.6/195 1 to 3 M	1/2 to 1 M	< 1/2 M
SMSA, not CC	$\frac{3.9}{3.9}$ /914}	[3.4/61 2]	2.8/177	{1.5/263}
Not SMSA	4.6/218			
Alaska, Oregon	1 to 2 M	< 1/4 M		
S M S A	<u>1 to 3 M</u> 1.8/164	< <u>1/4 M</u> 2.5/118		
Not SMSA	<u>not SMSA</u> 3.7/219		,	

 ^a A NONINTERVIEW RATE = 100 (# A noninterview HU/(# A noninterview Hu + # interviewed HU)). The base is the denominator of the rate.
 ^bBraces indicate a cluster whose frequency may be large enough (250 or more) to allow

^DBraces indicate a cluster whose frequency may be large enough (250 or more) to allow further subclassification by time in sample or poverty rate or segment type of race of head.

,

Attachment D

May 1, 1985

MEMORANDUM FOR Leroy Bailey Principal Researcher Statistical Research Division

From: John Blondell 🔀 Statistical Research Division

Subject: Noninterview Adjustment Research for NCS Redesign: MEMO 4 - Housing Unit Noninterview Adjustment Clusters and Factors By State and SMSA National Rank and Status

INTRODUCTION

Recent reported changes in the resource situation of this research make it imperative to push rapidly toward useful products, sacrificing some experimenting with ideas of uncertain promise and limiting the depth to which other important ideas are explored.

In the introduction to MEMO 3 of this series, the "stage two" work of introducing other classifiers to further subclassify noninterview adjustment clusters, and exploring the effectiveness of alternative measures of size and residence are implied. This work I now consider of uncertain promise. Some decision about what classifiers to use in defining a "final" set of clusters is the keystone to progressing with the research. The decisions I have made and their implementation are the subject of this memorandum.

Indebtedness to Lynn Weidman and Charles Alexander, for helpful discussions of the ideas that I am trying to implement in these memoranda, is gratefully acknowledged.

CLASSIFIERS

The reader who has been with me through the CPS noninterview adjustment work, as well as the NCS noninterview work, may have some sense of my frustration, which I will dub the "regression experience." From before the very first contact with the data, and over the course of the research, it has become abundently clear that, trying to characterize (find) the relationship between a quantitatively trivial dependent variable (type A noninterview housing units are 3.4 percent) and a set of uninformative, but "available", independent variables, does in fact "degenerate" to no clear or definitive findings. My response to this situation is to recast my concept of the research problem and thus the objective of cluster formation, since I cannot change the data set.

The new concept is, to drop the singular focus on housing unit noninterview adjustment and, to consider interview status, "responsiveness" and estimating the incidence of household crime as interrelated factors. The former conception was to consider noninterview adjustment discretely, then consider housing unit responsiveness (the reporting or not of family income) discretely, then try to ascertain the relationships between the two, then consider household crime estimation discretely, and finally try to ascertain the three-way relationships. The new conception is to consider all three simultaneously. This reconceptualization greatly enhances the importance of how the clusters, within which these relationships are studies, are formed.

I go back, again and more firmly, to an idea incompletely explored during my CPS noninterview work (MEMO 11 in that series). The key to effective cluster formation is <u>geographic specificity</u>. This idea is not new, indeed it may make a human ecologist, urban sociologist, geopolitician or whatever chuckle, but is borrowed from the census concern with providing data for small

areas. The trick to implementing geographic specificity is to define (identify) areas so that the interrelationship among the three (dependent) variables is adequately described by a singular characterization. The description of the interrelationship among the dependent variables should "fit well" over the <u>entire</u> cluster, not fit perfectly in some subportions, indifferently in other subportions, and not at all in yet other subportions.

While it may be that the "crucial" variable(s) is not included among the classifiers (population density is often mentioned yet unavailable on the NCS source data file), it is necessary to make the best possible use of the available classifiers. I have kept state as a classifier (from MEMOS 1-3), and exchanged residence and SMSA size for SMSA national rank and status. This allows the possibility that some of the 98 largest (1970 population size) SMSAs may form clusters, which is considered a step toward more geographic specificity. This substitution retains a "size measure", which was the only effective classifier identified in my CPS work (MEMO 5 of that series), but replaces an "absolute" one with a "relative" one, i.e., SMSA 1970 population size with respect to (ranked against) all SMSA's nationally.

The absolute size measure, used previously, was represented by SMSA 1970 population size categories (per state) such as 3 million or more, 1 to 3 million, 1/2 to 1 million, 1/4 to 1/2 million, less than 1/4 million, and not an SMSA. The relative (1970 population) size measure, used here, is represented (per state) by such categories as an <u>individual SMSA</u> (from among those SMSA nationally ranked from the largest as first to the ninety eighth largest, as smallest), <u>(other) ranked SMSA</u> (table 2, grouping of individual SMSA, nationally ranked among the ninety eight largest, that do not meet the frequency criterion of 200 cases), <u>unranked SMSA</u> (those which would rank ninety ninth or more, if the national ranking were extended to all SMSA).

(other) SMSA (table 2, grouping of nationally ranked and unranked SMSA to meet the frequency criterion), and not SMSA.

So, the two classifiers used (in table 1) are state and SMSA national rank and status. It is recognized that this set excludes residence. One final matter needs decision and this is the minimum size of cluster. On an intuitive basis, I have simply doubled the size criterion used in MEMO 3 of 100 interviewed plus type A noninterview housing units, which was intuitively arrived at. Hopefully this will provide an adequate number of cases (200) for reliably characterizing the simultaneous relationship between interview status, family income reporting status and household crime reporting status. FORMENG THE CLUSTERS

The data base for the cluster formation process is presented in table 1. Again the process is empirical and judgmental, and no claim is made that the set of clusters arrived at is the best possible, even using the same classifiers. Perhaps the basic facet of the process was to try to have as many individual, nationally ranked SMSAs form clusters as possible. This sometimes meant combining the data for contiguous states, which had the advantage of enabling the formation of other SMSA categories such as "other ranked SMSA", "unranked SMSA" and "not SMSA" as clusters. Within a given state (grouping) "not SMSA" always forms a separate cluster. In general, the same strategy and principles were used here as were used in MEMOS 1-3. The exception is that the DANIR (absolute difference in "A" noninterview rate between categories of a classifier) has been dropped. The frequency criterion is 200 interviewed plus type A noninterview housing units, for a cluster. Where it was necessary to meet the frequency criterion, the "other ranked

SMSA" and the "unranked SMSA" were complined within a state (grouping). Where possible, division boundaries were adhered to in combining states, so that departures from customary aggregation would be minimized.

The clusters actually formed constitute the solumn headings of the parts of table 2. For a detailed understanding of the formation of each cluster, the reader is asked to compare the relevant data between tables 1 and 2. The combinations of categories to form clusters, that seem more judgmental to this researcher, are discussed below.

Even though Maine meets the frequency criterion, it is combined with New Hampshire and Vermont to form a cluster, since they are continguous states and no nationally ranked SMSA is involved. Even after combining, only the "not SMSA" category meets the frequency criterion, so all three states are combined to form a cluster.

Massachusetts, Rhode Island and Connecticut are combined because one nationally ranked SMSA overlaps the first two and another overlaps the second two. The combining generates enough frequency that all three possible SMSA categories can form clusters.

Illinois, Missouri and Kansas are combined (across division boundaries) because they are linked by two high ranking SMSA's, and in order to generate enough frequency for an "other SMSA" cluster and a "not SMSA" cluster from Missouri and Kansas.

Michigan, Wisconsin and Minnesota are combined (across division boundaries) because they are contiguous and to generate enough frequency to form clusters of each of the three generic SMSA categories.

Iowa, North Dakota, South Dakota and Nebraska are combined because they are contiguous and enough frequency is generated to form an "SMSA" cluster.

Delaware and west Virginia are combined with Maryland and Virginia because they are contiguous and to avoid crossing division boundaries.

South Carolina and Georgia are combined because they are contiguous and to generate enough frequency for an "other SMSA" cluster.

Alabama, Mississippi and Louisiana are combined (across division boundaries) because they are contiguous coastal states and to generate enough frequency to form a "ranked SMSA" and an "unranked SMSA" cluster.

Arkansas and Oklahoma are combined because they are contiguous and to generate enough frequency to form "SMSA" and "not SMSA" clusters.

Montana, Idaho, Wyoming and Nevada are combined because they are contiguous and all have below criterion frequency.

Colorado, New Mexico, Arizona and Utah are combined because they are contiguous and to generate enough frequency to form an "other SMSA" cluster.

Washington and Oregon are combined because they are contiguous, have a highly ranked SMSA in common and to generate enough frequency to form "other SMSA" and "not SMSA" clusters.

Alaska and Hawaii are combined with California on the assumption that so doing will have the least effect upon the data for any Pacific coast state.

It might be informative to summarize the clusters formed as follows:

Туре	Number
State	2
Nationally ranked SMSA	28
All other SMSA categories	26
(Other) ranked SMSA	б
Unranked SMSA	5
(Other) SMSA	15
Not SMSA	23
Total	79

which shows some success in forming clusters of individual, nationally ranked SMSAs.

5

NORI. PERVIEW ALGOSIALAS PACTORS

Interview status statistics, including noninterview adjustment factors, are presented in table 2. The statistics (for each cluster) are defined as follows:

- "N" is the sum of the number of type A noninterview housing units plus the number of interviewed housing units.
- "NI" is the number of type A noninterview housing units.
- "I" is the number of interviewed housing units.
- "NI/I" is the ratio of type A noninterview housing units to interviewed housing units. It is the amount by which interviewed housing units are "weighted up to account for type A noninterview housing units." (See following definition of F.)
- "F" is the noninterview adjustment factor. F=1 + (NI/I).
 - "f" is the mean of the "household noninterview factors" on interviewed housing units records, on the analysis file. While I cannot completely reconstruct how these factors were obtained, it is clear that their derivation is different from F.
 - "sef" is the standard error of f.

"F-f" is the arithmetic difference between F and f.

The maximum F minus f difference in table 2 is .024. If differences of <u>+</u>.005 or more are considered large, the percent of clusters in each range may be computed, for clusters classified by region and type, as a summary of the results obtained in table 2. The summary data are presented in table 3. These data show that (a) relative to the national minus range percent of 25.3, the corresponding percent is high for MIDWEST/individual SMSA and SOUTH/other SMSA; and (b) relative to the national plus range percent of 26.6, the corresponding percent is high for MIDWEST/total, SOUTH/individual SMSA, MIDWEST/other SMSA and WEST/not SMSA.

7

56200			d Scatos	
NEW ENGLAND				
Maine	<u>Total</u> 244	Unranked <u>SMSA</u> 74	Not <u>SMSA</u> 140	
New Hampshire	<u>Total</u> 121	Unranked SMSA 28	Not SMSA 93	
Vermont	Not SMSA 79			
Massachusetts	<u>Total</u> 781	Boston 387	Providence, Pawtucket, <u>Warwick^b</u> 13	Springfield, Chicopee, Holyoke ^C 70
•		Worcester 45	Unranked [•] <u>SMSA</u> 152	Not SMSA 114
Rhode Island	<u>Total</u> 131	Providence, Pawtucket, Warwick ^b 103	Unranked SMSA 3	Not <u>SMSA</u> 25
Connecticut	Total 550	Hartford 116	Springfield, Chicopee, Holyoke ^C 4	Bridgeport 62
		<u>New Haven</u> 44	Unranked SMSA 177	Not <u>SMSA</u> 147
MIDDLE ATLANTIC	<u>Total</u> 2,329	New York	Nassau, Suffolk 328	<u>Buffalo</u> 193
		Rochester 115	Albany, Schenectady, <u>Troy</u> 107	<u>Syracuse</u> 75
		Utica, <u>Rome</u> 54	Unranked <u>SMSA</u> 46	Not SMSA 259

٠

Table 1. JUMEER OF TYPE A NONINTERVIEW AND INTERVIEWED HOUSING UNITS BY STATE AND SMSA NATIONAL RANK AND STATUS^a - Continued

•

a da se da ser		EMSA	Matirnal Park in	ان و به از این از ای این این این این این این این این این این
New Jersey	<u>Total</u> 1,080	<u>Philadelphia^d</u> 142	Newark 238	Paterson, Clifton, <u>Passaic</u> 193
		Jersey <u>city</u> 78	Allentown, Bethlehem, <u>Easton^e</u> 15	<u>Wilmington</u> f 12
		Unranked <u>SMSA</u> 36	Not SMSA 366	
Pennsylvania	<u>Total</u> 1,567	Philadelphia ^d 479	Pittsburgh 297	Allentown, Bethlehem, <u>Easton^e</u> 86
		Harrisburg	Wilkes-Barre, <u>Hazelton</u> 43	York 42
		Lancaster 32	Unranked <u>SMSA</u> 191	Not SMSA 325
EAST NORTH CENT		Cleveland	Cincinnatig	Columbus
Ohio	<u>Total</u> 1,545	262	145	148
		Dayton 151	Toledo h 116	Arkon 115
		Youngstown, <u>Warren</u> 75	Canton 60	Unranked <u>SMSA</u> 157
		Not SMSA 316		
Indiana	<u>Total</u> 774	Cincinnati ^g 8	Indianapolis	Louisville ⁱ 27
		Gary, Hammond, East Chicago 80	Unranked <u>SMSA</u> 187	Not SMSA 335

٠

Table 1. NUMBER OF TYPE A NONINTERVIEW AND INTERVIEWED HOUSING UNITS BY STATE AND SMSA NATIONAL RANK AND STATUS^d - Continued

Ì

îtirte,	SMSA National Bank and Status			
Illinois	<u>Total</u> 1,-45	<u>Chicago</u> 942	St. Louis ^j 677	Davenport, Rock Island, <u>Moline^K</u> <u>30</u>
		Peoria 42	Unranked $\frac{SMSA}{33}$	Not <u>SMSA</u> 331
Michigan	<u>Total</u> 1,348	Detroit 576	Toldeo ^h 17	Grand <u>Rapids</u> 93
-		Flint 92	Lansing 46	Unranked <u>SMSA</u> 156
•		Not SMSA 368		
Wisconsin	Total 653	<u>Milwaukee</u> 240	Unranked <u>SMSA</u> 219	Not <u>SMSA</u> 194
WEST NORTH CENT	TRAL			
Minnesota	<u>Toal</u> 514	Minneapolis, St. Paul 283	Unranked <u>SMSA</u> 41	Not <u>SMSA</u> 190
Iowa	<u>Total</u> 423	Omaha ¹ 14	Davenport, Rock Island, <u>Moline^K</u> 19	Unranked <u>SMSA</u> 98
		Not SMSA 292		
Missouri	<u>Total</u> 748	<u>St. Louis^j</u> 268	Kansas <u>City^m</u> 140	Unranked SMSA 71
		Not SMSA 269		

.

Table ... NUMBER OF TYPE A NONINTERVIEW AND DUTERVIEWED HOUSTIG UNITS BY STATE AND SMSA NATIONAL RANK AND STATUS^a - Continued

21 **at**e

•

.

•

-

· · · .

SMSA National Rack and Status

	Total	Unranked <u>SMSA</u>	Not SMSA	
North Dakota	121	47	74	
South Dakota	Not SMSA 86			
Nebraska	Total 213	$\frac{\text{Omaha}^1}{52}$	Not <u>SMSA</u> 161	
Kansas	Total 317	Kansas <u>City^m</u> 79	Wichita 44	Unranked <u>SMSA</u> 47
∉ •		Not <u>SMSA</u> 147		
SOUTH ATLANTIC			••	
Delaware	Total 92	<u>Wilmington^f</u> 57	Not <u>SMSA</u> 35	
Maryland	<u>Total</u> 667	<u>Washingtonⁿ</u> 179	Baltimore 353	Wilmington ^f 4
	•	Not SMSA 131		
District of <u>W</u> Columbia	ashington ⁿ 101			
Virginia	<u>Total</u> 781	Washington ⁿ 173	Norfolk, Portsmouth, 121	Richmond 115
		Unranked <u>SMSA</u> 146	Not SMSA 226	
West Virginia	<u>Total</u> 194	Unranked <u>SMSA</u> 33	Not SMSA 161	

Table 1. JUMBER OF TIPE . GONINTERVIEW OF INTERVILUED HOUSING UNITS BY STATE AND SMSA NATIONAL RANK AND STATUS^a - Continued

Stave		CMS A	National Paris and	Ctabus
North Carolina	<u>Total</u> 792	Greensboro, Winston, Salem, <u>High Point</u> 107 Not	<u>Charlotte</u> 80	Unranked <u>SMSA</u> 172
		<u>SMSA</u> 433		
South Carolina	<u>Total</u> 341	Columbia 40	Unranked <u>SMSA</u> 117	Not <u>SMSA</u> 184
Georgia	<u>Total</u> 773	Atlanta 276	<u>Chat tanooga⁰ 4</u>	<u>SMSA</u> 107
•		Not SMSA 386	•	
Florida	<u>Total</u> 1,318	Miami 237	Tampa, Ft <u>St. Petersburg</u> 203	Lauderdale, Hollywood 127
		Jacksonville 78	Orlando 115	West Palm Beach 89
		Unranked <u>SMSA</u> 35	Not SMSA 434	
EAST SOUTH CENT	RAL			
Kentucky	Total 494	Cincinnati ^g 29	Louisville ⁱ 109	Unranked <u>SMSA</u> 86
		Not SMSA 270		
Tennessee	<u>Total</u> 578	Memphis ^p 99	Nashville 71	Knoxville 35
		<u>Chattanooga⁰ 24</u>	Not <u>SMSA</u> 349	

.

•

		MBER OF TYPE A 200. ATE AND SMSA MATEC	INTERVIEW AND IN NUCL PANK AND STA	TERVIEWED HOUSING UNITS TUS ^a - Continued	
State		U1 . 53	Nacional Rank as	nd Status	
Alabama	<u>Total</u> 503	<u>Birmingham</u> 95	Mcbile 70	Unranked <u>SMSA</u> 100	
		Not SMSA 243			
Mississippi	<u>Total</u> 365	Unranked <u>SMSA</u> 115	Not SMSA 250		
WEST SOUTH CH	ENTRAL .		Little Rock,		
Arkansas 🖕	<u>Total</u> 370	Memphis ^p 3	North Little Rock 51	Unranked <u>SMSA</u> 7	
		Not SMSA 309			
Louisiana	Total 506	New <u>Orleans</u> 145	Unranked <u>SMSA</u> 136	Not SMSA 225	
Oklahoma	<u>Total</u> 302	Oklahoma <u>City</u> 108	<u>Tulsa</u> 102	Not SMSA 92	
Texas	<u>Total</u> 1,997	Houston 361	Dallas 264	San <u>Antonio</u> 11	
		Fort <u>Worth</u> 126	<u>El Paso</u> 64	Beaumont, Port Arthur, Orange 72	
		Unranked <u>SMSA</u> 467	Not <u>SMSA</u> 530		
MOUNTAIN Montana	<u>Total</u> 112	Unranked <u>SMSA</u> 57	Not SMSA 55		

1.2

Table 1. NUMBER OF TYPE A NONINTERVIEW AND INTERVIEWED HOUSING UNITS BY STATE AND SMSA NATIONAL RANK AND STATUS^a - Continued

State		SMSA	National Renk ar	d Status
Idaho	Not <u>5258</u> 190			
Wyoming	Not SMSA 42			
Colorado	Total 418	Denver 263	Unranked <u>SMSA</u> 107	Not SMSA 48
New Mexico	<u>Total</u> 178	Albuquerque 61	Not SMSA 117	
• Arizona	Total 447	Phoenix 249	Tuscon 75	Not SMSA 153
Utah	<u>Total</u> 144	Salt Lake <u>City</u> 98	Not SMSA 46	
Nevada	Unranked <u>SMSA</u> 67			
PACIFIC		See the la		
Washington	<u>Total</u> 599	Seattle, Everett 252	Portland ^q 18	Tacoma 70
		Unranked SMSA 51	Not SMSA 208	
Oregon	<u>Total</u> 468	Portland ^q 164	Unranked SMSA 1:8	Not <u>SMSA</u> 186
California	<u>Total</u> 3,396	Los Angeles, Long Beach 1,065	San Francisco, <u>Oakland</u> 492	Anaheim, Santa Ava, <u>Garden Grove</u> 295

Pable 1. NOMBER OF TYPE A NONINTERVIEW AND INTERVIEWED HOUSING UNITS BY STATE AND SMSA NATIONAL BANK AND STATUS³ - Continued

CMSA National Bala the Doemp

<u>San Diego</u> 297	San Bernardino, Riverside, Ontario 227	<u>San Jose</u> 138
Sacramento 156	Fresno 73	Oxnard, <u>Ventura</u> 48
Bakersfield 69	Unranked <u>SMSA</u> 268	Not SMSA 218

	Not	
•	SMSA	
Alaska	33	
	+ Honolulu	
Hawaii	103	

^aWithin a state, individual SMSAs are listed in ascending order by rank. ^bIn Massachusetts and Rhode Island. ^CIn Massachusetts and Connecticut. ^dIn New Jersey and Pennsylvania. ^eIn New Jersey and Pennsylvania. ^IIn New Jersey, Delaware and Maryland. ^gIn Ohio, Indiana and Kentucky. ^hIn Ohio and Michigan. ⁱIn Indiana and Kentucky. ^jIn Illinois and Missouri. ^kIn Illinois and Iowa. ¹In Iowa and Nebraska. ^mIn Missouri and Kansas. ⁿIn Maryland, District of Columbia and Virginia. ^OIn Georgia and Tennessee. ^pIn Tennessee and Arkansas.

^qIn Washington and Oregon.

Statistics

· · ·

.

.

.

-

Housing unit noninterview adjustment clusters

			MA, KI, CT		
			other	MA,RI,CT	MA,RI,CT
		Boston	ranked	Unranked	not
	ME,NH,VT	MA	SMSA	SMSA	SMSA
N	424	387	457	332	286
NI	12	25	17	10	6
I	412	362	440	322	280
NI/I	.0291	.0691	.0386	.0311	.0214
N1/1	.0291	.0091	.0100		.0214
F	1.029	1.069	1.039	1.0031	1.021
ſ	1.027	1.061	1.049	1.028	1.021
sef	.0006	.0013	.0010	.0010	.0010
F-f	+.002	+.008	010	+.003	0.000
•		••			
	·· ·· ·	Nassau,	NY	NY	
	New York	Suffolk	other	not	
	• <u>NY</u>	NY	SMSA	SMSA	
N	1,152	328	590	259	
NI	62	9	14	13	
I	1,090	319	576	246	
NI/I	.0569	.0282	.0243	.0528	
F	1.057	1.028	1.024	1.053	
f	1.054	1.035	1.024	1.032	
sef	.0003	.0007	.0007	.0008	
F-f	+.003	007	0.000	+.021	
		NJ	NJ		
	Newark	other	not		
	<u>NJ</u>	SMSA	SMSA		
N	238	334	366		
NI	9	11	12		
I	229	323	354		
- NI/I	.0393	.0341	.0339		
F	1.039	1.034	1.034		
ſ	1.036	1.037	0.136		
sef	.0005	.0005	.0007		
F-f	+.003	003	002		
			PA	PA	
	Philadelphia	Pittsburgh	other	not	
	PA,NJ		SMSA	SMSA	
N	621	<u>PA</u> 297	466	325	
NI	14	8	7	1	
I	607	289	459	324	
NI/I	.0231	.0277	.0153	.0031	
*14/4	• • • • • • •				

Tably 2. FIRST MARTER 1983 INTERVIEW STATUS STATISTICS FOR HOUSING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE AND SMSA NATIONAL RANK AND STATUS - Continued

Statistics		Housing unit n	oninterview ac	ljustment cluster	S
F f sef F-f	1.023 1.023 .0005 0.000	1.028 1.028 .0010 0.000	1.015 1.014 .0005 +.001	1.003 0.126 .0009 023	
N NI I NI/I	Cleveland <u>OH</u> 262 13 249 .0522	0H other <u>SMSA</u> 967 37 930 .0398	OH not SMSA 316 13 303 .0429		
F f sef F-f	1.052 1.039 .0007 +.013	1.040 1.028 .0005 +.012	1.043 1.046 .0016 003		
N NI I NI/I	IN <u>SMSA</u> 439 14 425 .0329	IN not <u>SMSA</u> 335 18 317 .0568	Chicago <u>IL</u> 942 49 893 .0549	St. Louis <u>MO.IL</u> 335 8 327 .0245	Kansas City <u>KS,MO</u> 219 7 212 .0330
F f sef F-f	1.033 1.031 .0010 +.002	1.057 1.041 .0015 +.016	1.055 1.056 .0008 001	1.024 1.041 .0006 017	1.033 1.027 .0008 +.006
N NI I NI/I	IL,MO,KS other <u>SMSA</u> 267 10 257 .0389	IL not <u>SMSA</u> 331 17 314 .0541	MO,KS not <u>SMSA</u> 416 7 409 .0171		
F f sef F-f	1.039 1.032 .0015 +.007	1.054 1.045 .0013 +.009	1.017 1.028 .0011 011		

• •

.

.

-

•

Cable 2. FIRST QUARTER 1903 INTERVIEW STATUS STATISTICS FOR HOUSING UNIT COMINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE AND SMSA NATIONAL RANK AND STATUS - Continued

Statistics

•

•

.

(.

Housing unit noninterview adjustment clusters

N NI I NI/I		Detroit <u>MI</u> 576 26 550 .0473	Milwaukee <u>WI</u> 240 2 238 .0084	Minneapolis, St. Paul <u>MN</u> 283 3 280 .0107	
F f sef F-f		1.047 1.047 .0008 0.000	1.008 1.032 .0008 024	1.011 1.028 .0006 017	
N NI I NI/I	-	MI other ranked <u>SMSA</u> 248 5 243 .0206	MI,WI,MN unranked <u>SMSA</u> 416 6 410 .0146	MI not <u>SMSA</u> 368 19 349 .0544	WI,MN not <u>SMSA</u> 384 8 376 .0213
F f sef F-f		1.021 1.019 .0005 +.002	1.015 1.022 .0010 007	1.054 1.045 .0014 +.009	1.021 1.030 .0009 009
N NI I NI/I		IA, ND, SD, NE <u>SMSA</u> 7 223 .0314	IA not <u>SMSA</u> 292 7 285 .0246	ND, SD, NE not <u>SMSA</u> 321 8 313 .0256	
F f sef F-f		1.031 1.023 .0010 +.008	1.025 1.032 .0013 007	1.026 1.030 .0010 004	
N NI I NI/I		Washington <u>DC,MD,VA</u> 453 18 435 .0414	Baltimore <u>MD</u> 353 9 344 .0262	DE,MD,VA,WV other <u>SMSA</u> 476 17 459 .0370	DE, MD, VA, WV not <u>SMSA</u> 553 13 540 .0241

Table 2. FIRST QUARTER 1983 INTERVIEW STATUS STATISTICS TOP USING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED DI STATE AND SMSA NATIONAL RANK AND STATUS - Continued

Statistics		Housing unit r	oninterview	adjustment clusters	
F	1.041	1.026	1.037	1.024	
f	1.041	1.021	1.040	1.029	
sef	.0011	.0011	.0011	.0009	
F-f	0.000	+.005	003	004	
N NI I NI/I	NC <u>SMSA</u> 359 21 338 .0621	NC not <u>SMSA</u> 433 18 415 .0434	Atlanta <u>GA</u> 276 8 268 .0299	SC,GA other <u>SMSA</u> 268 8 260 .0308	SC,GA not <u>SMSA</u> 570 16 554 .0289
F	1.062	1.043	1.030	1.031	1.029
f	1.039	1.024	1.033	1.039	1.031
sef	.0015	.0010	.0012	.0028	.0010
F-f	+.023	+.019	003	008	002
N NI I NI/I	Miami <u>FL</u> 237 12 225 .0533	Tampa, St. Peterburg <u>FL</u> 203 3 200 .0150	FL other <u>SMSA</u> 444 7 437 .0160	FL not <u>SMSA</u> 434 14 420 .0333	
F	1.053	1.015	1.016	1.033	
f	1.035	1.032	1.030	1.033	
sef	.0009	.0007	.0007	.0007	
F-f	+.018	017	014	0.000	
N NI I NI/I	KY <u>SMSA</u> 224 9 215 .0419	KY not <u>SMSA</u> 270 4 266 .0150	TN ranked <u>SMSA</u> 229 3 226 .0133	TN not <u>SMSA</u> 349 9 340 .0265	
F	1.042	1.015	1.013	1.026	
f	1.045	1.021	1.029	1.028	
sef	.0026	.0009	.0009	.0013	
F-f	003	006	016	002	

10

· •

.

Table 2. FIRST QUALTER 1983 INVERVIEW STATUS STATISTICS FOR HOUSING UNIT MONINTERVIEW NO-USTMENT CLUSTERS AS DEFINED BY STATE AND SMSA NATIONAL RANK AND STATUS - Continued

Statistics		Housing unit r	noninterview a	djustment cluste	rs
N NI I NI/I	AL,LA ranked <u>SMSA</u> 310 15 295 .0508	AL,MS,LA unranked <u>SMSA</u> 351 12 339 .0354	AL,MS,LA not <u>SMSA</u> 718 22 696 .0316	AR,OK <u>SMSA</u> 271 9 262 .0344	AR, OK not <u>SMSA</u> 401 8 393 .0204
F f sef F-f	1.051 1.047 .0017 +.004.	1.035 1.025 .0006 +.010	1.032 1.032 .0010 0.000	1.034 1.053 .0021 019	1.020 1.032 .0010 012
N NI I NI/I	Houston <u>TX</u> 361 16 345 .0464	Dallas <u>TX</u> 264 11 253 .0435	TX other ranked <u>SMSA</u> 375 12 363 .0331	TX unranked <u>SMSA</u> 467 15 452 .0332	TX not <u>SMSA</u> 530 14 516 .0271
F f sef F-f	1.046 1.032 .0006 +.014	1.044 1.043 .0020 +.001	1.033 1.041 .0015 008	1.033 1.036 .0010 003	1.027 1.024 .0010 +.003
N NI I NI/I	MT, ID, WY, NV 411 10 401 .0249	Denver <u> CO</u> 263 11 252 .0437	Phoenix <u>AZ</u> 249 2 247 .0081	CO,MN,AZ,UT other <u>SMSA</u> 341 9 332 .0271	
f sef F-f	1.025 1.035 .0011 010	1.044 1.047 .0005 003	1.008 1.032 .0009 024	1.027 1.028 .0006 001	
N NI I NI	Seattle, Everett <u>WA</u> 252 6 246 .0244	WA,OR other <u>SMSA</u> 421 12 409 .0293	WA, OR not <u>SMSA</u> 394 19 375 .C507		

20

· · ·

Table 2. FIRST QUARTER 1983 INTERVIEW STATUS STATISTICS FOR HOUSING UNIT NONINTERVIEW ADJUSTMENT CLUSTERS AS DEFINED BY STATE AND SMEA MATIONAL RANK AND STATUS - Continued

S	tat	is	ti	cs	
---	-----	----	----	----	--

.

.

.

.

۰.

Housing unit noninterview adjustment clusters

F	10.24	1.029	1.051
f	1.025	1.024	1.041
seî	.0003	.0008	.0014
F-f	001	+.005	+.010

N NI I NI/I	Los Angeles, Long Beach <u>CA</u> 1,065 50 1,015 .0493	San Francisco, Oakland <u>CA</u> 492 18 474 .0380	Anaheim, Santa Ana, Garden Grove <u>CA</u> 295 13 282 .0461	San Diego <u>CA</u> 297 14 283 .0495	San Bernardino, Riverside, Ontario <u>CA</u> 227 8 219 .0365
F	1.049	1.038	1.046	1.050	1.036
ſ	1.049	1.038	1.044	1.030	1.028
sef	.0008	.0004	.0007	.0006	.0014
F-f	0.000	0.000	+.002	+.020	+.008
	CA,HI				
	other	CA	CA,AK		
	ranked	unranked	not		
	SMSA	SMSA	SMSA		
N	637	268	251		
NI	21	5	11		
I	616	263	240		
NI/I	.0341	.0190	.0458		
F	1.034	1.019	1.046		
f	1.033-	1.021	1.029		
sef	.0010	.0015	.0014		
F-f	+.001	002	+.017		

Table 3. PERCENT OF CLUSTERS WITH F MINUS f DIFFERENCE IN MINUS .005 TO MINUS .025 RANGE AND IN PLUS .005 TO PLUS .025 RANGE BY REGION AND TYPE OF CLUSTER^a

.

	1		Type of cluster					
	То	tal	Individual SMSA Other SMSA ^D			Not SMSA		
Region	Minus .005	Plus .005	Minus .005	Plus .005	Minus .005	Plus .005	Minus .005	Plus .005
	to	to	to	to	to	to	to	to
	minus .025	plus .025	minus .025	plus .025	minus .025	plus .025	minus .025	plus .025
NATION	25.3	26.6	21.4	28.6	28.6	21.4	26.1	30.4
		79)		28)		28)	()	23)
NORTHEAST	18.8	12.5	16.7	16.7	16.7	0.0	25.0	25.0
	(*	16)	(6)) · (6)	(4)
MIDWEST	33.3	38.1	42.8	28.6	16.7	50.0	37.5	37.5
	()	21)	(7)	(6)	(8)
SOUTH	29.7	22,2	14.3	42.8	45.4	18.2	22.2	11.1
	(27)	(7)	(11)	l (9)
WEST	13.3	33.4	12.5	25.0	20.0	20.0	0.0	100.0
	(15)	(8)	(5)		2)
				•				-

^acase (number of clusters) of each pair of percents is shown in parentheses. ^bIncludes all other SMSA categories in table 2, (i.e., other than individual (nationally ranked) SMSAs) and states.