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TheHomeomorphism ExtensionProblem 
fcrTriangulat.ionsinConflatton 

Abstract 

We discuss the problem of extending a one-to-one correspondence between 
two equinumerous finite sets of points in the plane to a homeomorphism 
between two topological spaces containing the sets. This problem arose 
during the development of a computer system to merge pairs of digitized 
map files at the Census Bureau. This system is called conflation. 
ConfIaUon requires thee fundam ental steps: control point selection, 
triangulation, and rubber-sheeting. Pairs of points, each pair consisting of 
a point from each map, are selected. The selected points of one map are 
then used as the vertices of a specific, well-defined triangulation on that 
map, and for each of the triangles of this triangulation we create a triangle 
on the corresponding set of verUces on the other map. The set of triangles 
on the second map need not form a triangulation there. If they do, we show 
that a speciffc extension of the correspondence between the vertices is a 
homeomorphism. Moreover, the converse is also true. Also, we prove a 
second characterization for trlangulatlons from which an easy detection 
algorithm is derived. A description of related problems follows at the end. 

INTRODUCTION 

We discuss the problem of extending a one-to-one correspondence between two 

equinumerous finite sets of points in the plane to a specific type of homeomorphism 

bet ween two topological spaces containing the sets. To understand the im portance of the 

problem, some background inform ation is necessary. 

The Census Bureau is developing a co m puter system for m erging two digitized m ap 

files. The process of merging these files is known as conflaUon. Basically, conflation 

requires three fundam ental steps: control point selection, triangulation, and rubber- 

sheeting. Pairs of points, each pair consisting of a point from each map, are selected. 

The selected points of one m ap are then used as the vertices of a specific, well-defined 

trlangulaUon on that map, and for each of the trLangles of this triangulation we create a 

triangle on the corresponding set of vertices on the other map. The set of triangles on 

the second map need not form a trlangulatfon there, but there is a one-to-one 

correspondence between the sets of triangles (see Figure 1). Moreover, for each pair of 

corresponding triangles there is a unique affine transform ation that takes verUces of one 

triangle to vertices of the other. So we obtain a piecewise-linear function from the first 

map to the second that depends on the control points selected and on the trlangulauon on 
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the convex hull of those points. This function is the extension we are intereted in. If 

the triangles on the second m ap form a triangulation, then the function is one-to-one, 

onto, and bi-continuous. Thus, we have a piecewise-linear homeomorphism (PLH) 

between the m ape. The PLH is used a8 the rubbepsheet function that moves one map 

onto the other. However, the rubbersheeting process beaks down when the extension 

resul~insomething other than a homeomorphism between the maps. 

In this paper, we define the piecewise-linear extension mentioned above and show that 

the extension is a homeomorphism precisely when we have a triangulation on the second 

map. Then we pave a second necessary and sufficient condition for triangulauons from 

which we derive an easy detection algorithm. A description of related problems follows 

- at the end. 

Pigrse 1: Each m ap has these trfangles: A (ade), A (aeb), A (dce), A (be& For A (aeb), 

a,e,b is a counterclockwise ordering of the vertices in map 1, but clockwise for map 2. 

TRIAWGULATIOIS 

We begin with a disc-on of triangulations in gengal. Intuitively, a triangulation of a 

region is like a jigsaw puzzle where each piece is a Mangle. If ue keep the set of 

vertices constant, no new triangles m ay be created by adding edges. So, form ally we can 

define a trlangulauon as follows: 

Deflsdtion 1: Given n 2 3 points in the plane uhich are not all collinear, let R be the 

convex hull of the points. Then, a trfangulation on R fs a m axim al subdivision of R into 
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triangles where the n points are the vertices and every point in R is in one and only one 

triangle unless it lies on a triangle edge. 

Any convex hull of a finite set of points in the plane can be triangulated. In any 

triangulation every edge on the boundary of the hull is an edge for one triangle, and 

every edge which is not on the boundary is an edge for two triangles. Therefore, the 

entire region R Is covered by triangles which abutt edge to edge and vertex to vertex but 

do not overlap. A m ong other things, this 1 m plies that none of the edges in a triangulation 

CI’CW each other except possibly at their endpoints (see Figwe 2). So, we say that two 

edges in a triangulation have a non-trivial lntgsection if the point of intersection is a 

non-endpoint for at least one of the edges. 

A 

A 
B C 

A 

FIgwe 2: A,B are not triangulations, C Is. A) Number of triangles is not m atim& 

B) Non-trivial intersection of edges, C) A triangulation. 

The number of triangles and edges in a triangulation of the covex hull of n points with m 

points in the boundary of the hull is fixed, where 3 ZG m 5 n . The formulas are as 

follows: 

(1) NT - 2(n-1) - m 

(2) NE-3(11-l)- m 

where NT is num ber of triangles and NE Is number of edges. The roofs of these are 

omitted, but the results follow from the Euler characteristic for planar raphs (see 

Lefschetz). 
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PIECEWISE-LINEAR HO!4EOHORPHZSM 

Now we lay the foundation for discussing the extension problem. First, we define the 

specific extension that we are interested in studying. Then, we prove a theorem showing 

that the extension is a horn eom orphism precisely when there is a triangulation on the 

image space. 

Let S, and S2 be two finite sets of n 2 3 points in the plane which are not all collinear 

and a be a one-to-one correspondence bet ween the elements of S, and S2. Let R, and 

R2 be the convex hulls of S, and S2, respectively, and let Hi = {hi , . . . , hii } be the 

boundary Of Ri. Note that Hi is the boundary of a sim pie convex mrgon. 

‘i We triangulate R, then use a to create edges and triangleboundaries on R2 using the 

points in S2 as vertices. For the edges, this is done as follows: For every 

a (ST, a (s2) E S2, a (s, > and a (s2) are connected by an edge if and only if s1 and s2 are 

connected by an edge. The triangles are created analogously. It is important to note 

that the region in R2 determined by the induced triangles need not be all of R2. It should 

be added, also, that these triangles do not necessarily form a triangulation of R2. We 

will denote the set of edges and triangle-boundaries in R, as T and the set of edges and 

triangle-boundaries in R2 as a ( T > . Also, for any edge, e, or triangle-boundary, t, in T, 

denote a (e ) and a (t > as the corresponding edge and triangle-boundary in a( T) , 

respecttvely. 

The correspondence a maps S, to S2. We now define an extension of a which maps R, to 

R2. Call this extension u’ . The question we will ask is whether a is a homeomorphism. 

We introduce a new notation as follows: 

T = { tit E T } and 

O(T) - { ZTtj 1 a(t) E a(T) } 

where F and (LTt’j are the triangles bounded by t and a( t ) , respectively. From now on 

we will refer to t and a( t ) as triangles, too, for dm plicity. No confusion should result 

Porn this. 

0 n each pair of corresponding triangles, we define the affine transform ation that takes 

each vertex to its corresponding one as follows: Let tETand or(t) E a(T) be a 

corresponding pair of triangles. We denote the affine transformatton from t to G?t? as 
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at l 

Let vl, v2, v3, a(v 
1 

1, a(v,), a(v3) be the verUces of t and a(t), 

respectively. For any x E t , there exists non-negative real num bers 6, , B2 , B 
3 

such that 

3 
⌧ = 1 13~ vi and 1 

i-l 
=i?,8i. 

I 

The B i are called the sim plicial coordinates for x. Then 

3 

at(x) = 1 Bi a(v,). 
i=l 

The map Gt, is a horn eomorphism between the triangles taken as subsets of the plane with 

z the standard R2 topology. Note that it is unique and it takes edges to corresponding 

edges. The map a is defined as follows: For any x e R, , there exists c such 

that2 E f: , then 

ax> - (3t(X) . 

We should em phasize at this point that (1 depends not only on S,, S2, and a, but also on 

the triangulauon of R,. For any two distinct triangulaUons of R,, applying the 

procedure just described for generating a gives rise to two different extensions. 

It is easy to show that when a pair of triangles of 7 share an edge, the corresponding pair 

in i( 7) share the corresponding edge and that the affine transform atlons for adjacent 

pairs m ust agree on the edge corn m on to the pair. Therefore, (r is well-defined and 

continuous. In addition, each affine transform aUon is invertible; if there is an inverse 

of G , it is continuous. The only questions that need to be answered are whether a is 

onto and one-to-one. 

To conclude these rem arks, we prove a theorem relating ho m eom orphisms, 

triangulation, and our funcUon (r . 

Theorem 1: ‘. is a homeomorphism between R, and R2 if and only ifa(T)is a 

triangulation of R2. 

Proofz Assume Gis a homeomorphism. Therefore, the boundary of R, is m apped onto 

the boundary of R2, i.e. H2 is the image of H,. In particular, ml = m2. By (1) and 
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(2). i ( T 1 has the correct (maxim urn) number of triangles and edges to be a triangulation 

on R2. Because a is one to one, no triangle fold over each other, and there are no non- 

trivial intersections of edges. Because (z is onto, all of R2 la covered by triangles 

of a (T) . Therefore, each point in R2 lies in one and only one triangle unless it lies on an 

edge. Because a is biconUnuous, the set of triangles meet edge to edge and all the 

adjacency relations are preserved. Therefore, ‘; ( 7) is a triangulation on R 2. 

Assume i( T) is a triangulatton on R2’ For any xsR2, x lies in one and only one triangle 

unless it lies on an edge. So, the triangles in a( T) cover all of R2, therefore G is onto. 

Also, from this and the definition of a’ , we have the F&m age of any x E R2 contains 

just one point in R,. Therefare, G is one-to-one. From the definition of 0’ we know 

that a is conUnuous. Since a’ is one-to-one and onto, it has an inverse. Since each piece 
* 
of i is a homeomorphism and since OC F) is a triangulation on R2, we can apply thesame 

argument to the inverse of G that we applied to 0’ to conclude that G is bicontinuous. 

ThereFore, (I Is a homeomorphism. 0 

In the roof of the theorem we showed that if: is a homeomorphism then 

ii (H,) = H2. Since a agrees with a’ on vertices and edges of T, then a ( H, ) - H2. 

Therefore, we have a 

. - 
Ccrdllay: If ‘; is a homeomorphism between R, and R2, then a(H, ) - H2. 

We em phasize this fact because we wm need It as an aasum pUon in the next section. 

Note that it is a necessary condition, but not a sufficient condition, for G (7) to be a 

triangulation on R2 (see Figu-es 3 and 4). 

A 

B 

B 

A 

A D 
C 

f B 

C 

A 

E 

b 

B 

D c 

D 

A 
‘k 

C 

D 
E 

B 

Figue3: What can go wrongif a(H,) C H2. A) Triangleson RI , B) R2 where 

ml> m2, C) A2 where m, < m2, D) R2 where m, - m 2 and a maps each vertex 

in H, to onein H2. 
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m 
Figure& Eventhough a(H,) = H2, i(T) lsnotatriangulationof R2. 

PRELIMINARIES 

From now on, we willassumethat a(H, 1 - H2 . To be in a position to prove the main 

result, we need a definition and som e facts first. 

For anytriangle, A(v, v2 v3), where vi - (xi, yi > for 1 = 1,2,3, let 

P(v,s v2’ v3) = (x, - x2) (Y, + Y9 + 09 - x3) (y2 + y3) + (x3 - x1) (y3 + y,). 

Defhftlon 2: JfA(v, v2 v > is a non-degenerate triangle, then the orlehtation of 
3 

A(v, v2 v3) is pc&tive if P(vl,v2, 3 v 1 > 0 and negative otherwise. 

Fm non-degenerate triangles, P(v,, v 2, v3) is positive (negative) If and only if v,, v2, v3 

is a counterclockwise (clockwise) ordering of the vertices about the interior of the 

mangle. Notice that any even perm utation of the vertices of a triangle leaves the value 

of P unchanged and any odd perm utation of the verUces reverses stgn. 

Whenever the ordering of the vertices is understood or isn’t necessary, we will leave off 

mention of them and write P. If tcT and t - A(s, s 2 s3),then we write 

Pa(s,. s2s s3)illsteadofP(a(sl), a(s,), a(s3))fora(t) c a(T). With 

this notation, we can specify an order for the vertfces of a triangle in a ( T) by specifying 

an order for its corresponding triangle in T. 
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A useful fact is the following formula. The area of a simple polygon in terms of the 

coordinates of the vertices is 

3) A - $1 1 (x1- xi+, 1 (Yi+ Yi+,) I, 
i-l 

where n 2 3 is the number of vertices in the polygon, (xi, yi) is the i-th vertex, and 

lx n+l* Yn+l) = (xl* Yl 1. We can remove the absolute values signs above if and only if the 

vertices as indexed by 1 are in counterclock wise order around the polygon. 

Because any si m ple polygon can be subdivided into triangles, we have 
.e 

(4) 

* 

A-; i! I 8 (wi,j- Wi,j+,) (2, j' zi j+l) 19 
i-1 j-l , , 

where N is the number of triangles in the subdivision and (w ij, zij) is the j-th vertex in 

the i-th triangle. Again the absolute value signs can be removed if and only if each 

triangle has ita vertices listed in counterclockwise order. 

If all sets of vertices are listed counterclockwise in (3) and (II>, then (4) collapses into (3) 

because each interior edge is counted twice, once in each direction. The two terms are 

negatives of each other, so they cancel. Thus, we are left with the terms in (3). 

W e can apply (3) and (4) to any triangulation on R,. If we orient Hl and the vertices of 

the triangles in counterclockwise order, then we can remove the absolute value stgns and 

still have equality. For the set of triangles on R2, we get similar formulas by 

applying a to each vertex and substituting the new coordinates of the corresponding 

vertex in each term. Call these new formulas a ( 3 > and a ( 4 1 . Then, considering them 

without the absolute value signs, a ( 3 > = a ( 4 > because each interior edge Le. an edge 

not in H2> is counted twice, once in each direction. Note that this is true regardless of 

whether the triangles on R 2 form a triangulation and regardless of the order of the 

vertices of the triangles. It is not true in general, however, that a ( 3 > - a ( 4 1 with the 

absolute value signs replaced. 

The last facts we will need are corn putational and are easily derived. If we apply (3) to a 

triangle on R ,, then the area of the triangle as given by (3) is 

(5) A=1/2 1 P 1 
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It fallows fl-om (4) and (5) that the area of R, (or H,) is given by 

(6) A-; 1 I Pit. 
tcT 

Of course, if the vertices of every triangle are oriented counterclockwise, then P > 0 for 

every triangle and the absolute value signs can be removed in (6). We have dmilar 

formulas for the triangles on R2. 

MAIN RESULT 

Now, we Fove the main result. It gives us a practical way of determining whether ‘; is a 

homeomorphism. The algorithm followsfiom this theorem. 
0 

Theorem 2: ‘; ( T) Is a triangulation if and only if either a preserves orientation on every 

Mange in T or a reverses orientation on every triangle in T. 

PlVOf: Assume that G( ?) is a triangulation. Let s,t E T be aqacent triangles and 

a(s), a (t ) e a( T) be the corresponding aaacent triangles. Let Vf - (x,, Y,), 

v2 -(x2, ~~1, and v3 - (~3, ~3 > be the vertices of t such that P(v,, v2, v3) ’ 0. Let 

v4 - (x4, y4) be the other vertex for a and v2, v3 be the corn mon vertices between s 

and t bee Figwe 5). Suppose a reverses the orientation of t. Then, Pat v, , v2, v 3 1 < 0 

for a (t 1 . (rC T > is a triangulatton of R 2,soa(v,) anda(v4)lieonoppositeddesof 

the common edge between a(s) and a(t). For a, P(v4,v3,v2) ’ 0. Thus, 

Pa(v4.v3, v2) < 0 for a (a > (see Figu-e 6). Therefore, a reverses the orientation for 

s. Therefore, we conclude that a reveres orientation for all triangles in T. 

I fIgawe 6 

1 

Figwe 5: 

Flgwe 6: 

A pair of aaacent triangles in T: a and t. 

The corresponding pair of adjacent Mangles in a ( T) : a (s) and a (t 1. 
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Assume a preserves orientation on every triangle in T. Fix a listing of the vertices of 

every triangle in T such that P > 0 for each triangle. Therefore, Pa > 0 for every 

triangle in a( T) . If we Ust the vertices of H, in counterclock wise order, then since 

a(H, 1 - H2 we can Ust the vertices of H2 in counterclockwise order. Applying (3) to 

the vertices of H2, we get 

(7) Area of R2 - 2 l 1 7 (Xi’ Xi+,) (Yi+ Yi+,) 1 
i-l 

- 5 ,i,(.,- Xi+,) (Yi+ Yi+,) 9 
¶ 

. 

where (3, yi> - hf- athi) . 

From the discussion just before the statement of the theorem above, (4) applied to the 

verUces of the triangles on R2, and (71, we get 

(8) -: ,i,(.,- Xi+,) (Yi+ Yi+,) 
¶ 

- ; ,;; ,%, (yj- Wi,j+,) (Z1.J' zi.j+l) ' 
¶ I 

where (wij, iJ z .) is the vertex in R2 corresponding to the j-th vertex of the i-th triangle 

on R,. 

From (41, (51, and (6) applied to the triangles on R2 and the fact that Pa > 0 for each 

triangle, we get 

(9) 5 If, jtl(wi,~- wi,j+l) (‘i,j+ ‘itj+l) 
I ¶ 

- ; y, 1 ! (yj- Wi,j+,) tzi,j+ zi j+l) '* 
¶ J-1 

, 
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Corn bining (7), (8), and (9) we get that the sum of the areas of the triangles on R2 is the 

area of the region bounded by H2, i.e. R2. Therefore, any point in R2 is in one and only 

one triangle unless it lies on an edge. By (1) and (2) we get that the num ber of triangles 

is the maximum. Therefore, the set of triangles on R 2, i.e. (1( 7) , is a triangulation. W e 

can rove the result when a reverses orientation on every triangle in T in a dmiIar 

manner. 0 

ALGORITHM 

We are now in a position to pesent an easy detection algorithm for determining whether 

or not Z ( T 1 is a triangulation. The theoreticdl basis for the algorithm is Theorem 2. 

‘i The algorithm runs in O( NT) ti m e, where N T is the num ber of triangles. 

The only data structures necessary for this procedure are as fdllows: 

a> F’, each triangle in T, a Iist of the vertices; 

b) Table for a , i.e. a list of corresponding pairs of vertices, one fYom S, and one from 

S2 in each pair. 

Procedwe 

a> For each triangle in the list 

1) CaIcuIate P*Pa 

2) If PePa < 0 then stop. G( T> is not a triangulationon R2. 

b) eof. i ( 7 > is a triangulation of R 2. 

CONCLU!SION 

We have roved a necessary and sufficient condition for determining whether or not the 

extension ‘E is a horn eom orphism. It turns out that this is equivdlent to knowing whether 

or not G ( 7 > is a triangulation on R 2. We then outlined a very sim pie detection algorithm 

for determining if indeed G is a horn eom orphism . 

The fuU story, how ever, is far from co q plete. For we can ask the following question. If 

it tmns out that G is not a horn eom orphism, is it poaslble to modify S, and S2 in such a 

way that the modified a is a homeomorphism? We say “modifyn here because it is not 

clear whether we should add or remove points from Sl and S2 in order to effect this 

change. The two figures below (Figwes 7 and 8) indicate how either m ethod could be 

used. It is possible, too, that a combination of both m ethods will be useful. In any case, 

once it is determined that certain modifications will work, a second question fallows. 
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Given that the answer to the first question is yes, is it possible to develop an effective 

method, i.e. one from which an algorithm can be developed? 

From the discussion above, we can formally state two research poblems as follows: 

Pmhlem 1: Is it possible to modify S, and S2 such that the modified i is a 

horn eom orphlsm ? 

Problem 2: Given that the answer to problem 1 is ‘yes’, can we find an effective 

m edification m ethod? 

A 1 

49 
2 

4 
S 

s 

C 

1 

5' 

4 

47 

2 
P 

s 

1 

e 

2 

4 5 

P 

s 

me 7: How adding a vertex can create a triangulation on R2. 

A) R,, B) R2. C) R; with point P added, D) R;. 

A 
,P 

4!? 
2. 

4 

a 

1 

4 

Fib 

P 

2 

a 

C 

1 

0 2 4 

8 

1 
4 

m 2 
s 

we 8: How removing a vertex can create a triangulation on R 
9 2’ 

A) R,, B) R2, C) R; with point P in R, removed, D) R2 0 

These two problems assume that we will use the same extension q ethod as presented in 
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the paper. There is nothing sacred about extending to the piecewise-linear function. 

Instead of trying to modify S, and S2, it might be possible to modify the extension 

wocedure in such a way that a homeomorphism is obtained. Finding another way to 

create an extension could be a rather difficult problem though, owing to the fact that 

triangulations are rather easy to use and they lead naturally into our choice of an 

extension. 

Another possiblity is to change the triangles rather than modify the vertex sets. In our 

application we use a particular triangulation procedwe, the Delaunay Triangulation. This 

is a w ell.-defined procedure, m caning that for a given set of points the sam e triangles are 

produced regardless of the order of p‘ocesaing the points. By relaxing the strict 

m athem atical definition for the triangulation procedure we will be able to have different 

sets of triangles on a given set of points. By judiciously choosing which triangles to 

change, we could rem ove all triangle pairs where the orientation is reversed. This would 

mea&our extensionis a homeomorphism. 

These ideas and others will be examined in the near future to find an algorithm for 

creating an extension which is a horn eom orphism. 
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