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EXACT CALCULATIONS FOR SEQUENTIAL TESTS BASED ON BERNOULLI TRIALS 

We consider methods of computing exactly the probability of 

"acceptance" and the "average sample size needed" for the sequential 

probability ratio test (SPRT) and likewise the newer "2-SPRT," 

concerning the value of a Bernoulli parameter. The methods permit 

one to approximate, iteratively, the desired operating characteristics 

for the test. 
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1. INTRODUCTION 

Consider a Bernoulli population, with p denoting the proportion 

of units possessing attribute A. Based on one-at-a-time sampling 

from this population, we want to make a decision as to whether (the 

unknown) p is small or large, according to the following specifi- 

cations. Suppose O<pI<p2<1. We let a* denote the desired pro- 

bability of erroneously not deciding that p is small, when in fact 

P = PI* Likewise we let B* denote the desired probability of 

erroneously not deciding that p is large, when in fact p = p2. 

Two tests (i.e., decision rules) designed to meet these specifica- 

tions approximately are: (1) the sequential probability ratio test 



(SPRT) (Wald 1947), which approximatley minimizes "average sample 

number" (ASN) if in fact p = pI or p = p2; and (2) the 2-SPRT 

(Lorden 1976), which helps to reduce ASN for values of p inter- 

mediate between pI and p2. 

In contrast to a* and i3*, we let a and B denote the actual 

probabilities attained. Also, let a(p) denote the actual pro- 

bability of deciding small, and E(p) denote ASN, as functions of 

P* Our goals are: (1) to attain, with these sorts of tests, a and 13 

as close as possible to a* and B*; (2) as part of attaining the 

first goal, to compute a and B exactly; (3) also, to compute a(p) 

and E(p) exactly for various values of p. 

We will consider two numerical examples: 

(1) PI = .Ol and p2 = .07, with a* = 8* = .05. 

(2) P1 = .4 and p2 = .6, with a* = f3* = .OOl. 

2. THE SPRT -- 

As we draw our sample one at a time, let n denote accumulated 

sample size, and k denote accumulated number of A-units. The SPRT 

decides low for k<-cl + bn and decides high for k>c2 + bn, which- 

ever happens first. Here we have b, cl and c2 0, with these defined 

by the calculations 

Bl = log((1 - a*)/B*) and B2 = log((1 - @*)/a*) 

Cl = logb2/pl) and 9 = log((l - PI)/(I - ~2)) 

cl = Bl/(Cl + ‘3, ~2 = Qj/(Cl + ‘3, b = Cz/(Cl + Cp)- 

To compute a(p) and E(p) exactly, the following computations may 

be implemented. Let rnk denote the probability that in the first n 

sample units: (1) k A's are obtained, and (2) no decision has been 

reached. Let Un and Vn denote probabilities of deciding small and 

large, respectively, within the first n trials. Initially set rO0 
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= 1 and u0 = v0 = 0. Starting with n = 0 and letting n increase, 

repeatedly (for various k) let 

R= Prnk + (1 - P)rn,k+l s 

with obvious omission of calculations for which rnk or r,,k+l is 0. 

Then set rn+l,k+l = R, except that if decision occurs for n + 1 

and k + 1, add R to the value of (either) un or vn, and set 

rn+l,j+l = 0. 

Let Qn = 1 - Un - vn. Then, Qn is the probability that no 

decision will have been reached in the first n trials. We stop 

and decide small when Qn becomes less than a prespecified bound E 

(which we have taken to be .OOOOl). Let n1 denote the correspon- 

ding value of n for p = ~1, n2 the value for p = ~2. Let n* = 

maxbq,n2). We base our test on the original SPRT, plus "trunca- 

tion" and decide small if n reaches n*. The values of a and f3 for 

our test will differ from those for the unaltered SPRT by at most E. 

Waving determined our test in this manner, we can compute, for 

any value of p, the value of a(p) (that is, un* in the above notation) 

and E(p) (based on contributions to un and vn, plus the contribution 

corresponding to Qn+). We would use double precision in accumulating 

uns "n and E(p), and also in the calculation of the quantities rnk. 

It is important that n * be of manageable size, and we find that it is; 

for Example 1 we obtained n* = 369 for the "final iteration." Such 

iterations are now to be discussed. 

We have obtained actual a* and B, in contrast to desired a* and 

8* . To obtain a and 8 closer to a* and B*, we compensate as 

follows. Let a: and 13: denote the desired CL* and 8*, 

and a0 and 80 denote the realized a and B. With j = 0, 

we: (1) set 
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(2) use a; and 8; in computing cl, c2 and b; and (3) with 01 

and 81 denoting new realized values apply the same idea with j = 1. 

These iterations can continue until aj and Bj (i.e., a and B) are 

close to the originally desired a; and 13;). 

Using this approach for Example 1, with a* = Bf = -05, we 

obtained a0 = -0279 and 130 = -0486. Eventually we obtained a7 = 

.0502 and 67 = -0501, with a; = -1047 and 8; = .0480. As a 

variant of Example 1, we tried a* = .lc) and B* = -02. We obtained 

a sort of cycling in our iterations, but were able to obtain (as 

closest to a* and r3*) a8 = -09958 and 88 = .01997. 

3. THE 2-SPRT 

For the 2-SPRT one uses halves of 2 different SPRT's. Let p* 

denote a value of p intermediate between p1 and p2. Here we will 

restrict ourselves to the choice p* = b as defined above. This 

choice of p* makes sense especially for a* = B*, based on consi- 

deration of "information numbers" (Lorden 1976). Along with p* 

= b, we approximate that a(p*) equals B2/(B1 + B2) (and thus .5 

for a* = f3*). Accordingly, we have formulated a 2-SPRT which 

decides small for k<-c3 + b3n and decides large for kLc4 + bqn, 

whichever happens first. Here we have b3, c3, b4 and c4 >O, with 

these defined by the calculations 

P * = l/(1 + log(P2/Pl)/log((l - Pl)/(l - P2))) 
a* = l/(1 + log((l- a*)/B*)/log( (1 - 8*)/a*)) > 

c31 = log(p2/p*) and C32 = log((l - p*)/(l -p2)) 

c41 = log(p*/pl) and C42 = lw((l - PI)/(~ -P*)) 

B31 = log(a*/e*) and B42 = log((l- a*)/a*) 

b3 = c32/(c31 + c32) and bq = c42/(c41 + c42) 

c3 = B31/(C31 + c32) and c4 = B42/(C41 + c42)- 



We are comparing k against a pair of converging straight lines. 

Accordingly, we easily may find an upper bound on the maximum pos- 

sible value of n. We may readily compute a(p) and E(p) exactly, 

using the computational approach for the SPRT. We may also use 

the above iterative approach for j = 0, 1, . . . . 

Using this method for Example 1, with a* = f3* = -05, we obtained a4 

= -0498 and 84 = -0500, with ctt = -0780 and 6: = -0473. 

For our variant of example 1, with a* = -10 and B* = .02, we were able 

to obtain a2 = .1005 and $2 = -0200, with a? = .1385 and 6; 

= .0198. For example 2, with a* = $* = .OOl (and with p* = a* = 

.5), we obtained a1 = BI = .OOlO with a; = 8: = .OOll. 

4. COMPARISON 

We briefly compare the statistical properties of the SPRT and 

2-SPRT, although our primary purpose has been to provide computa- 

tional procedures which permit this comparison and to bring a and B 

closer to a* and 8* for both procedures. Almost invariably E(P) is 

smaller for the SPRT for p close to pl or p2; but for intermediate 

values such as p*, in which area E(n) is maximal for both procedures, 

E(n) is smaller for the 2-SPRT. In Example 1 we obtained final values 

E(p)'SPRT 62.48 -01 73.00 -02 72.17 -03 62.97 -04 35.17 -07 

E(p) 2-SPRT 66.79 70.55 67.08 59.85 37.94 . 
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