BUREAU OFTHECENSUS

STATISTICAL RESEARCH DIVISION REPORTSERIES
SRD Research Report Number: Census/SRD/RR-85/18

A COMPARISON OF SEVEN IMPUTATION PROCEDURESFORISDP

by
Vicki J. Huggins
Statistical Research Division Bureau of the Census

Abstract

This series contains research reports, written by or in cooperation with staff mem bers of the Statistical Research Division, whose content may be of interest to the general statistical research com munity. The views reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.

Recommended by: Paul Biemer
Report completed: November, 1985
Report issued: November, 1985

I. INTRODUCTION

Missing data for longitudinal surveys occur in a variety of patterns which can be sorted and categorized into different classes of missingness depending on the survey unit. For this study, the survey unit is a person. Therefore the missingness that occurs in the data can be person nonresponse, whereby no data is available for a person at any given time period in the survey, record-type nonresponse where an entire module of related data is unavailable, and item nonresponse in which data is missing sporadically throughout the person record. For this study we focused on record-type nonresponse for a single continuous variable. It is important that these types of nonresponse to be addressed as - they occur generously throughout a longitudinal survey. Also, simulation of record-type nonresponse provides reasonably sized data files to study and manipulate. It is important to note that the techniques investigated can be employed to compensate for both item and record-type nonresponse.

The objective of this study is to evaluate seven different methods of imputation for continuous data in a longitudinal survey. The methods compared are described below as are the procedures to compare them. In our comparisons, we employed a variety of summary statistics and graphic techniques. The particular findings are detailed in the body of the text and a number of graphs and tables are included in the Appendix to support these findings. No information was observed to support any assumptions of normality in the data studied, and the analysis proceeds using a variety of nonparametric techniques.

In Section II we describe the data used in this study and discuss how it was used. In Section III we discuss each of the alternative imputation strategies that are compared against one another. In Section IV the methods used to compare the different procedures are described and the results of our analysis are presented. Findings are summarized in Sections V and VI, and an Appendix contains the tables, graphs, and summary statistics used in our analysis.

II. SIMULATING MISSING DATA PATTERNS

Twelve-month longitudinal data extracted from the 1979 ISDP (Income Survey Development Program) survey were used in this study. These data were entered into a SIR (Scientific Information Retrieval) database, from which free-format simulation data files were extracted. Subsequent manipulation and evaluation were performed using special purpose FORTRAN programs and the SPSS-X statistical package on a Univac 1100 and IBM-XT at the Bureau of the Census.

For this study, missing data were simulated using records on which the variable of interest was completely reported, and for technical reasons records with zero responses for the variable of interest were excluded. We then had the original values for the - misssingness that was simulated in the file to use later in analyzing the properties of imputations obtained by the selected imputation methods. The continuous variable used in the study is wages and salary. The following indicates the simulation procedure used to induce missing data on records.
(1) Define a longitudinal record for wages and salary to be a person record of responses to the question: What were your wages and salaries for month (j), $\mathrm{j}=1,12$ in 1979 ?

		J	F	M	A	M	J	J	A	S	0	N	D
Ex:	Rec 1	100	100	150	145	120	200	150	200	100	100	150	175
	Rec 2	10	10	10	10	50	50	50	50	50	50	50	50

(2) Randomly select 500 person records for persons, age ≥ 16, with at least one missing response, i.e., month $(j)=-1$ for some j, and at least one complete response, i.e., month (j) >0 for some j. (The value " -1 " is a place holder for a missing response.)

	J	F	M	A	M	J	J	A	S	O	N	D
Ex:	100	100	-1	-1	-1	100	100	100	150	150	150	150

(3) Select approximately 2,000 person records with complete responses for every month (j), i.e., month (j) >0 for all $\mathrm{j}=1,12$.
(4) Induce the missing pattern from a record in the set (2) onto a record for a full respondent in set (3) by a nearest match procedure. That is, let $X_{n, j}=$ month (j) for some case n from data set (2) and let $Y_{i, j}=$ month (j) for some case i from data set (3), and find the record Y_{i} in the set (3) to minimize:

$$
\sum_{j=1}^{12}(X(n, j)-Y(i, j))^{2}
$$

We set $X(n, j)-Y(i, j)=0$ for $X(n, j)$ missing.

One then induces the $\mathrm{n}^{\text {th }}$ missing data pattern from (2) onto the $\mathrm{i}^{\text {th }}$ full respondent in (3) to obtain 500 simulated person records with missing wave responses. In all, 410 unique complete respondents were used in simulating the 500 records with induced missing - responses.

III. SEVEN IMPUTATION PROCEDURES

The seven imputation procedures examined in this study are described below. The first three employ regression type techniques which utilize the entire data set to (1) model the missingness that occurs in the entire set of data and (2) derive model-based imputes for the misssing values. The last four procedures implement averaging techniques in which only data for the current case is used in determining an impute for a missing month's value. The regression-based imputation procedures: Iterated Buck, Logarithmic Iterated Buck, and Cube Iterated Buck; and the four averaging techniques: Arithmetic Smoothing (1) and (2) and Multiplicative Smoothing (1) and (2); were tested and evaluated on the simulated data set described above.

(a) Iterated Buck Techniques

The Iterated Buck procedure is a sequential regression technique that estimates regression parameters, derives imputes based on these parameters, and repeats this process until the sequence of estimated parameters converge. For a detailed description and derivation of the Iterated Buck method the reader is referred to papers by S. F. Buck, [2], and Beale and Little, [1], pertaining to missing values in multivariate analysis. The important thing to note here is that Iterated Buck is an EM-Algorithm that gives maximum likelihood estimates of the population parameters when there is the assumption that the data has a multivariate normal distribution.

However, no distributional assumption of normality of the data is justified here, as indicated in Figures 1-4. Histograms of the residuals for Iterated Buck, Logarithmic Iterated Buck and Cube Iterated Buck are presented with a normal overlay represented by the dotted line on the histograms. Comparing the two distributions in each of the histograms suggests that a normality assumption for the data is unjustified. Even in the absence of normality the Iterated Bucks method can be used to derive imputations. Of course, since the data is not normal, our analysis will proceed along nonparametric lines, and considerations especially appropriate to normal data will not be addressed.

We now describe the steps involved in the Iterated Buck procedures. Assume for a set of N observations and n variables that $x_{i j}$ represents the value of the $j^{\text {th }}$ variable in the $i^{\text {th }}$ observation for $j=1, \ldots, n$ and $i=1, \ldots, N$. Let m_{j} denote the sample mean value of the $j^{\text {th }}$ - variable over all complete observations and $u_{j k}$ denote the sample covariance between variables m_{j} and m_{k} over all complete observations. The Iterated Buck method uses m_{j} and $u_{j k}$ to compute:
(1) $\mathrm{x}_{\mathrm{ij}}=\left\{\begin{array}{l}\mathrm{x}_{\mathrm{ij}}, \quad \text { if } \mathrm{x}_{\mathrm{ij}} \text { is observed } \\ \text { a linear combination of the set of variables observed in the } \mathrm{i}^{\text {th }} \\ \text { observation, otherwise }\end{array}\right.$
(2) $c_{i j k}=\left\{\begin{array}{l}\text { partial covariance of } m_{j} \text { and } m_{k} \text { if } x_{i j} \text { and } x_{i k} \text { are both unknown } \\ 0, \text { otherwise }\end{array}\right.$
(3) $\bar{x}_{j}=\sum_{i=1}^{N} x_{i j} / N$,
(4) $a_{j k}=$ $\sum_{i=1}^{N}\left(x_{i j}-\bar{x}_{j}\right)\left(x_{i k}-\bar{x}_{k}\right)+c_{i j k}$.

Set $m_{j}=\bar{x}_{j}$ and $u_{j k}=a_{j k} /(N-1)$ and repeat (1) thru (4) until there are no further changes in m_{j} and $u_{j k}$. The term $c_{i j k}$ is a correction term for the bias that would normally occur in the formation of $a_{j k}$. The procedure is applied to a longitudinal record for the variable wages and salaries by setting $x_{i j}=A M T(i, j)$ for person record $i, i=1, N$ and month $j, j=1,12$.

The Logarithmic Iterated Buck is the same algorithm as just described, the only difference is that $\mathrm{x}_{\mathrm{ij}}=\log \left(\mathrm{AMT}(\mathrm{i}, \mathrm{j})\right.$) for the $\mathrm{i}^{\text {th }}$ person record and $\mathrm{j}^{\text {th }}$ month. (This is the reason we omitted records containing zero responses.) After the algorithm is satisfied,
x_{ij} is transformed back to original amounts and corresponding imputes. By using the logarithm of amounts of wages and salaries one reduces the impact of skewness in the data and avoids the problem of generating negative imputes. Similarly, Cube Interated Buck operates on $\mathrm{x}_{\mathrm{ij}}=(\mathrm{AMT}(\mathrm{i}, \mathrm{j}))^{1 / 3}$ until closeness criteria are met. The x_{ij} are transformed back to original values and corresponding imputes.
(b) Smoothing Procedures

The two averaging techniques examined here are termed Arithmetic Smoothing and Multiplicative Smoothing because the imputes are based on the arithmetic mean and geometric mean respectively.

Arithmetic Smoothing essentially allocates an equal additive subdivision to each missing value which depends on the length of the interval of missing values in the data record and the reported values on either side of the missing data. For example, suppose March, April, and May values were missing for a particular record, denoted by x_{m}, then the record looks like the following:

We determine the difference in the bounding reported values of the missing interval and divide by the number of subintervals to arrive at

$$
d=x_{6}-x_{2} .
$$

We then add d to x_{2} consecutively to obtain imputes for $x_{m, 3}, x_{m, 4}$ and $x_{m, 5}$. Explicitly,

$$
\begin{aligned}
& x_{m, 3}=x_{2}+d \\
& x_{m, 4}=x_{2}+2 d \\
& x_{m, 5}=x_{2}+3 d .
\end{aligned}
$$

For the general case, let $\underline{r}=\left(x_{1}, \ldots, x_{12}\right)$ be a logitudinal record of amounts. Suppose x_{m} is a missing response bound below by x_{i} and above by x_{j}.
(1) Compute $\mathrm{k}=\mathrm{j}-\mathrm{i}$
(2) Compute $\mathrm{d}=\left(\mathrm{x}_{\mathrm{j}}-\mathrm{x}_{\mathrm{i}}\right) / \mathrm{k}$

Then
(3) $x_{m}=x_{i}+(m-i) d$.

Note that $x_{j}=x_{i}+k \cdot d$.

One difficulty with this method is that bounds may not exist around missing responses, specifically, when endpoints (month (1) and/or month (12)) of the record are missing. Two solutions to this problem are examined. The first solution is to substitute the arithmetic mean of the record's complete responses, $\left(\sum_{i=1}^{p} x_{i}\right) / p$, where p is the number of reported responses, into the endpoints whenever one or both endpoints of the record is missing. The second solution is to substitute the arithemtic mean of the two nearest values for missing endpoints. Numerical comparisons of both methods are included with all other results at the end of this report.

Multiplicative Smoothing abides basically by the same principles as Arithmetic Smoothing with the difference that the geometric mean of a missing interval's bounding responses is employed, and equal multiplicative subdivisions are allocated to missing values in an interval of missing responses. That is, for Multiplicative Smoothing we determine the quotient of the bounding reported values of the missing interval and base our imputation on that value. For the general case let $\underline{f}=\left(x_{1}, \ldots, x_{12}\right)$ be a longitudinal record of amounts and let x_{m} denote a missing response bound below by x_{i} and above by x_{j}.
(1) Compute $\mathrm{k}=\mathrm{j}-\mathrm{i}$
(2) Compute $\mathrm{q}=\left(\mathrm{x}_{\mathrm{j}} / \mathrm{x}_{\mathrm{i}}\right)^{1 / \mathrm{k}}$

Then

$$
\text { (3) } x_{m}=x_{i} \cdot q^{(m-i)}
$$

Note that $x_{j}=x_{i} \cdot q^{k}$.

The two methods used to correct for missing endpoints on a record corresponding to the situation for Arithmetic Smoothing were, (1) use the geometric mean of the record's complete responses, $\left(\underset{i=1}{\rho} x_{i}\right)^{1 / p}$, and (2) use the geometric mean of the nearest two values for any missing eñdpoints.

It should be noted that Multiplicative Smoothing of amounts of wages and salaries and Arithmetic Smoothing of the logarithm of amounts of wages and salaries give identical results. The following shows the relationship between the two procedures.

The basis for Multiplicative Smoothing is that for some missing interval of length k bountled below by x_{a} and above by x_{b}, and with x_{m} missing in that interal, ($\mathrm{a} \leq \mathrm{m} \leq \mathrm{b}$) ,
(1) $\quad x_{m}=x_{a} \cdot q^{(m-a)}$ where $q=\left(x_{b} / x_{a}\right)^{1 / k}$.

Taking the logarithm of (1) gives
(2) $\log x_{m}=\log x_{a}+(m-a) \log q$.
and by setting $y_{a}=\log x_{a}$ and $y_{m}=\log x_{m}$ we get
(3) $\log q=\frac{\log x_{m}-\log x_{a}}{(m-a)}$

$$
=\frac{y_{m}-y_{i}}{(m-a)}
$$

Letting $\log q$ equal d and substituting into (2) we obtain
(4) $y_{m}=y_{a}+(m-a) d$
which is the basis for Arithmetic Smoothing as discussed above.

IV. COMPARING THE PROCEDURES

There are several questions to be addressed when analzying the effectiveness and efficiency of an imputation procedure, and by focusing on these questions particular imputation procedures can be identified that maximize the desired end results. The final decision as to which imputation strategy is best to use for particular survey items must rest with subject-matter specialists who are familiar with the subject-matter of the survey, the questionnaire form, and the underlying target population. In this report, we present a number of descriptive statistics for each of the procedures described above. These can be compared against one another and serve as a basis for an informed decision as to which procedure is to be preferred. In general, the questions that must be addressed are:
(1) What does a completely reported data record look like? Is it typically reported consistently, erratically, in particular patterns, or does it follow some distribution?
(2) What are the imputations expected to accomplish? Should the derived imputation resemble the reported data, implement a presumed relationship, or smooth over the missingness?
(3) What criteria should be used to evaluate and compare methods?

The data for wages and salary are at times reported consistently across a 12 -month period, reported erratically other times, and may or may not follow a particular pattern of responses based on ISDP waves the (3-month interval to which a questionairre refers). Ideally, the optimal imputation procedure would adhere to patterns of consistency or erraticism of the reported data for each individual person record.

As discussed in Section II, we start with completely reported longitudinal records and then blank out responses conforming to missing patterns from a set of longitudinal records having nonresponse. We then impute for the induced nonresponse and compare the imputes with the original values that were blanked out. These comparisons form the basis of our analysis. As noted earlier, normality assumptions are not supported by the data, and accordingly, the analysis is nonparametric.

We let

$$
x=\left(x_{1}, x_{2}, \ldots, x_{12}\right)
$$

be a completely reported record, and we assume the value for month j was blanked out, and the imputed value is denoted by \hat{x}_{j}. Thus we have the following:
$x_{j}=$ The amount of wages and salaries for some month j,
$\widehat{x}_{\mathrm{j}}=$ Imputed value of x_{j} for some imputation procedure,
$r_{j}=x_{j} / x_{j+1}$, and
$\hat{r}_{j}=x_{j} / x_{j+1}$ where at least one of x_{j} or $\mathrm{x}_{\mathrm{j}+1}$ was imputed.

The analytical variables computed and evaluated for each imputation method are
(1) $c_{j}=x_{j}-\hat{x}_{j}$
(2) $c_{j}=\left(x_{j}-\hat{x}_{j}\right) / x_{j}$
(3) $c_{j}=r_{j}-\hat{r}_{j}$
(4) $c_{j}=\left(r_{j}-\hat{r}_{j}\right) / r_{j}$

Note that:
(a) $\mathrm{x}_{\mathrm{j}}-\hat{\mathrm{x}}_{\mathrm{j}}$ represents the difference between original value and imputed value,
(b) $\left(x_{j}-\hat{x}_{j}\right) / x_{j}$ represents the relative difference,
(c) $r_{j}-\hat{r}_{j}$ represents the difference between the ratio of adjacent months when one was imputed, and
(d) $\quad\left(r_{j}-\hat{r}_{j}\right) / r_{j}$ measures the relative difference of these ratios.

The statistics we will use to examine these analytic variables are:
(i)

$$
\mathrm{s}_{1}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}
$$

(ii) $\mathrm{s}_{2}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{c}_{\mathrm{i}}^{2}$,
(iii)

$$
S_{3}=\left(\sum_{i=1}^{n} c_{i}\right) / n
$$

(iv) $\quad S_{4}=\sum_{i=1}^{n}\left(c_{i}-\vec{c}\right)^{2} / n$,
where m is the total number of cases for which $c_{i} \neq 0$ and

$$
\bar{c}=\left(\sum_{i=1}^{m} c_{i}\right) / m
$$

Table 1 contains numerical comparisons for analytical variable $c_{j}=x_{j}-\hat{x}_{j}$. The seven imputation procedures are listed horizontally and the four derived statistics used for evaluation are listed vertically. If one of the smoothing imputation methods has a (1) appended to its name, the method substitutes the mean of all reported months for missing endpoints of a record; if a (2) is appended to the name of the procedure, the mean of the two nearest reported values was substituted for missing endpoints. Table 2 presents the numerical results for the analytical variable $c_{j}=\left(x_{j}-\hat{x}_{j}\right) / x_{j}$ and is set up identical to Table 1. In both Table 1 and Table 2, there are a total of 3183 cases. Tables 3 and 4 contain, respectively the numerical results for the two analytical varaiables $c_{j}=r_{j}-\hat{r}_{j}$ and $c_{j}=\left(r_{j}-\hat{r}_{j}\right) / r_{j}$. A total of 2820 ratios were used in these calculations.

V. OBSERVED RESULTS OF THE COMPARISONS

(a) Tables 1-4

One initial reason for carrying out this study was to determine whether straight Iterated Buck is a better imputation procedure than its counterparts, Logarithmic Iterated Buck and Cube Interated Buck. For each of the analytic variables, the better a procedure simulates an aspect of missing data, the closer the relevant derived statistic (either S_{1}, $\mathrm{S}_{2}, \mathrm{~S}_{3}$, or S_{4}) will approach zero.

The most decisive finding in this study is that for every derived statistic, Logarithmic Iterated Buck outperformed Iterated Buck. Using the Logarithm of wages and salary
rather than actual amounts provides a two-fold improvement over the Iterated Buck procedure by eliminating negative imputes and increasing the accuracy of the imputes. Moreover, in every statistic except the first and third on Table 1, Cube Iterated Buck outperformed Iterated Buck. From these observations, it is clear that either Logarithmic Iterated Buck or Cube Iterated Buck is superior to the simple Iterated Buck.

Results comparing Logarithmic Iterated Buck with Cube Iterated Buck are mixed. In Tables 3 and 4 Cube Iterated Buck performs better. Most often in Tables 1 and 2, Logarithmic Iterated Buck does better. All in all, the results are close. One interesting observation is for the statistic

$$
\sum_{i=1}^{n}\left(\left(x_{i}-\hat{x}_{i}\right) / x_{i}\right)^{2}
$$

Cube Iterated Buck far out performs all other procedures. That is, Cube Iterated Buck seems to do well for scaled residuals. On the other hand, for the statistic

$$
\sum_{i=1}^{n}\left(x_{i}-\hat{x}_{i}\right)^{2}
$$

Logarithmic Iterated Buck does best of all. For the last two analytical statistics presented in Tables 3 and 4 Cube Iterated Buck outperformed all other imputation procedures for each statistic calculated, with Logarithmic Iterated Buck a fairly close second best.

Arithmetic Smoothing (1) and Multiplicative Smoothing (1) using the mean of a record's reported values for missing endpoints virtually tie in comparison to one another and outperform their counterparts Arithmetic Smoothing (2) and Multiplicative Smoothing (2) the majority of the time. Logarithmic Iterated Buck and Cube Iterated Buck do a little better, all in all, then the smoothing techniques. However, the ease in implement either of the two smoothing techniques may strongly argue in their favor.
(b) Figures 4-11

In Figure 4 we present a histogram of the amounts of reported wages and salarys that fall into the range $\$ 0$. to $\$ 5,000$. Histograms of values produced by each of the seven imputation procedures appear in Figures 5 through 11.

Histograms of the data completed by Logarithmic Iterated Buck in Fizure 6, Cube Iterated Buck in Figure 7, Arithmetic Smoothing (1) in Figure 8, and Multiplicative Smoothing (1) in Figure 9 look very much alike and also appear to reasonably resemble Figure 1. Although histograms of Arithmetic and Multiplicative Smoothing (2) in Figures 10 and 11 look somewhat similar to the true data, there appears to be a slight more grouping of the data than in the reported data.

The data for this study was not edited. However one extremely large value for monthly wage and salary amount was deleted as an obvious edit failure as it caused some problems in obtaining informative graphs of the data. Unbounded histograms were produced but offered very little extra information so were not included here.

- (c) Figures 12-18

Figures 12 thru 18 present scatterplots of the amounts of wages and salaries versus each imputation procedure in the same order as the histograms are listed. The more linear the relationship the better the imputation procedure is in simulating the reported data. Ideally, we would like the standard error of the estimate

$$
\left(\sum_{i=1}^{m}\left(x_{i}-\hat{x}_{i}\right)^{2} /(n-1)\right)^{1 / 2}
$$

to be small, the intercept near zero and the slope close to one. The correlation and R -square values which measure the relationship between the values and the goodness of fit of the linear model respectively, should approach one for the best method. The standard error of the estimate, intercept, and slope of the linear relationship listed at the bottom of each scatterplot all appear best overall for the Logarithmic Iterated Buck procedure, Figure 13. Iterated Buck gives a negative intercept as a result of negative imputes and the standard error of the estimate is the worst of all the methods. Statistics for Logarithmic and Cube Iterated Buck are very close in comparison to each other, with Logarithmic Iterated Buck just slightly better. Scatterplots of the Arthimetic and Multiplicative Smoothing (1) procedures basically have the same statistics and are both better than Iterated Buck except for the slope statistics. Arithmetic and Multiplicative Smoothing (2) have the worst slope and intercept but the best fit based on the R -squared value.
(d) Figures 19-25

Histograms of scaled residuals, that is, $\left(\mathrm{x}_{\mathrm{j}}-\hat{\mathrm{x}}_{\mathrm{j}}\right) / \mathrm{x}_{\mathrm{j}}$, are presented in Figures 19 thru 25. The imputation procedure used to get the estimated impute is listed at the top left of each histogram. Iterated Buck and Log Iterated Buck most of ten overestimate true values and all four of the smoothing techniques most of en underestimate true values. However Cube Iterated Buck underestimates more often than any of the other techniques. This is determined by counting the number of negative scaled residuals in each of Figures 19 thru 25 and compare them to the number of positive scaled residuals. The smoothing techniques tend to spike around zero.

(e) Brief Summary of Observations:

Based on the statistics generated as part of this analysis, the four procedures that appear best are: Logarithmic Iterated Buck, Cube Iterated Buck, Arithmetic Smoothing (1) and Multiplicative Smoothing (1). The residual sum of squares presented in Table 1, Row 2 is a traditionally used comparison criterion, and based on this statistic Logarithmic Iterated Buck is the best procedure. When examining histograms of data completed using each of the imputation procedures to the true data, Cube Iterated Buck, Arithmetic and Multiplicative Smoothing (1) appear almost as good as Logarithmic Iterated Buck. Other statistics provided in Tables 1 thru 4 indicate that each of the four methods are favored by different criteria. The issue is to choose comparison criterion that address specific needs of the data problem at hand. Survey-specific needs should be brought to bear in accessing the merit of each of the procedures discussed. The diverse statistics presented in this report may aid in this analysis.

VI. CONCLUDING REMARKS

Of the imputation procedures examined in this report, Logarithmic Iterated Buck and Cube Iterated Buck outperformed straight Iterated Buck. Of the smoothing techniques, Arithmetic Smoothing (1) and Multiplicative Smoothing (1) outperformed Arithmetic Smoothing (2) and Multiplicative Smoothing (2), respectively. All Iterated Buck procedures must consider a sample of cases with missing values to derive parameters for imputing for nonresponse. Both smoothing techniques need only consider one record at a time and bounding values when deriving an imputation for nonresponse. A variety of
summary statistics are presented to assist SIPP specialists in the determination of the most appropriate method for SIPP needs.

In this report-we did not add variability to the imputes in the form of a residual. To the extent that thisis a comparative study, we felt adding residuals could be omitted at this stage. Of course, in implementing any one of these procedures, one may add some variablity factors. Variability can be computed from the entire data set and added into each impute or computed on a record by record basis where the variability added to the imputes for each record is based on the record under consideration. An alternate form to adding variability on a record by record basis is to split the data file into two or more groups of records. One group might contain cases that report consistently over time and the other group might contain erratic data reporters. The variability added to each record will be determined by the group in which the record lies.

Acknowledgement

I would like to thank Brian Greenberg for suggesting this research and providing a number of helpful recommendations along the way.

REFERENCES

[1] Beale, E.M.L. and Little, R.J.A. (1975). Missing values in multivariate analysis. J.R. Statistics Society, B. 37, 129-146.
[2] Buck, S.F. (1960). A method of estimation of missing values in multivariate data suitable for use with an electronic computer. J.R. Statistics Society. B. 22, 302-306.

HISTOGRAM OF RESIDUALS

```
    ITERATED BUCK
    COLNT MIOPOINT ONE STHBOL EQUALS APPROXIHATELY 16.00 OCCURRENCES
            -1450.00
            -1350.00
            $250.00 * = AMOUNT-IMPUTE
        -1050.00 
        -1050.00
        -950.00
        -850.00
        -750.00 ", -650.00 **м⿱亠凶禸
        -550.00 ######пи#:и%
        -450.00 Н#####M*MAM
```



```
        -250.00 #####************
```



```
        150.00 W#Н#########
        ##m****
        350.00 M*M*M
        450.00 **** -
        450.00 M*** .
        650.00 **
        850.00
        850.00
        1050.00
        1050.00
        $1250.00
        1250.00
        1350.00
        1450.00 I....t...iI....t....I....t....I....t....I....t...... I
            i60

FIGURE 2

HISTOGRAM OF RESIDUALS
LOG ITERATED BUCK


FIGURE 3

\section*{HISTOGRAM OF RESIDUALS}

FILE:
CUBE ITERATED BUCK
COUNT MIDPOINT ONE SYHBOL EQUALS APPROXIMATELY 24.00 DCCLIARENCES

\(\cdot 1\)

\section*{FIGURE 4}

\section*{histogram of reported amounts}
file:
amount


VALID CASES 5999 mISSING CASES 0

FIGURE 5
HISTOGRAM OF DATA COMPLETED BY IMPUTATION
```

FILE:
ITERITEL BUCK
COUNT MIDPOINT ONE SYMBOL EQUALS APPROXIMATELY 12.00 OCCURRENCES

```


FIGURE 6
histogram of data completed by imputation
FILE:
LOG ITERATED BUCK


\section*{HISTOGRAM OF DATA COMPLETED BY IMPUTATION}

\section*{FILE:}

CUBE ITERATED BUCK


\section*{histogram of data completed by imputation}

FILE:
ARITHMETIC SMOOTHING (1)
COUNT MIDPOINT ONE SYMBOL EQUALS APPROXIMATELY 12.00 OCCURRENCES


\section*{HISTOGRAM OF DATA COMPLETED BY IMPU'IATIUN}

FILE:
MULTIPLICATIVE SMOOTHING (1)


HISTOGRAM OF DATA COMPLETED BY IMPUTATION

FILE:
AKITHMETIC SMOOTHING (2)
COUNT MIDPOINT OHE SMBBOL EQUALS APPROXIHATELY 12.00 OCCURRENCES


VALID CASES 6000 MISSING CASES* 0

\section*{HISTOGRAM OF DATA COMPLETED BY IMPUTATION}

FILE:
MULTLPLICATIVE SMOOTHING (2)


REPORTED AMOUNTS BY IMPUTED AMOUNTS


FIGURE 13
REPORTED AMOUNTS BY IMPUTED AMOUNTS


\section*{REPORTED AMOUNTS BY IMPUTED AMOUNTS}


REPORTED AMOUNTS BY IMPUTED AMOUNTS


\section*{REPORTED AMOUNTS BY IMPUTED AMOUNTS}



FIGURE 17
REPORTED AMOUNTS BY IMPUTED AMOUNTS


REPORTED AMOUNTS BY IMPUTED AMOUNTS

statistics..
CORREIATION (R)-
ployied valuis

\subsection*{184.664622 5954} STMARED
INERCEPT (AA):
EXCLUNED VALUES:-


SIGNIFICAACE
SLOPE (B)
-
\(=\)
- \(\begin{array}{r}.80000 \\ .89032\end{array}\)


\begin{tabular}{|c|c|c|}
\hline TE & UCK & \\
\hline 3 & －1．725 & － \\
\hline 3 & －1．675 & \\
\hline 4 & －1．625 & 1 \\
\hline 2 & －1．575 & \(1 . \mathrm{AMO}\) \\
\hline 2 & －1．525 & \(1=\) \\
\hline 4 & －1．475 & 1 \\
\hline 1 & －1．425 & \\
\hline 3 & －1．375：－ & \\
\hline 6 & －1．325 & 1 \\
\hline 4 & －1．275 & 1 \\
\hline 3 & －1．22う & \\
\hline 10 & －1．175 & 1 \\
\hline 8 & －1．125 & 1 \\
\hline 8 & －1．07E & 1 \\
\hline 12 & －1．025． & 11 \\
\hline 6 & －．97E & 1 \\
\hline ： 0 & \(\cdots \mathrm{F}\) & 1： \\
\hline 15 & －．875 & 11 \\
\hline 14 & －．E25 & \(1 i\) \\
\hline 20 & －．775 & 111 \\
\hline 15 & －． 725 & 11 \\
\hline 26 & －．t75 & 111 \\
\hline 29 & －．セニ゙ & 1111 \\
\hline 28 & －．E75 & 111 \\
\hline 34 & －．5ニ5 & 111 \\
\hline 32 & －． 475 & 111 \\
\hline 58 & －．425 & 11111 \\
\hline 76 & －． 375 & 1111111 \\
\hline 85 & －．325 & 111111111 \\
\hline 98 & －． 275 &  \\
\hline 125 & －．225 & \11111111111 \\
\hline 166 & －． 175 & W11111111111111 \\
\hline \(15 ; 4\) & －． 175 & H111111111111111 \\
\hline 241 & －． 675 & ：1111111111111111111 \\
\hline 272 & －．¢マロ & H111111111111111111111 \\
\hline 255 & ． 025 & H11111111111111111111 \\
\hline \(2=7\) & ． 075 & 11111111111111111111 \\
\hline 2.15 & ． 125 & 111111111111111111 \\
\hline 141 & ． 175 & （11111111111 \\
\hline 115 & －こご & い11H11111 \\
\hline \(10=\) & ．275 & 1111111111 \\
\hline 6 & －ごこ & 11111 \\
\hline 57 & － 3 & け1111 \\
\hline 64 & ．42E & 111111 \\
\hline 41 & ．475 & 11111 \\
\hline 51 & ． 5.5 & 11111 \\
\hline 35 & ． 575 & 111 \\
\hline 29 & ．625 & 1111 \\
\hline 16 & ．675 & 11 \\
\hline 5 & ． 725 & 1 \\
\hline 19 & ．775 & 11 \\
\hline 20 & ．825 & 111 \\
\hline 8 & ．875 & 1 \\
\hline 6 & ．925 & 1 \\
\hline 1 E & ．975 & 11 \\
\hline & & 1．．．．＋．．．．1．．．t．．．．1．．．．t．．．．．1．．． \\
\hline & & 0 00 040 \\
\hline
\end{tabular}
```

.Count Midpoint
0
-1.375%
1 I= AMOUNT-IMPUTE
-1.2750 ।
-1.2250 11
-1.1750 I
.-1.1250 \1
-1.0750 111
-1.0250. 111
-.9750 11
-.9250 11
-.8750 111
-.8250 1111
-.7750 11
-=7250 11
-.6750 1111
-.6250 1111
-.5750 111111
-.5250 1111111
-.4750 1111111111
-.4250 1111111111
-.5750 111111111
-. 3250 11111111111111
-.2750 1111111:11111111!
-.2250 111111111111111111111
-.1750 11:1111111111111111111111111111
-.1250 1111111111111111111111111111111
-.0750 111111111111111111111:11111111:11111
-.0250 11111111111111111:11111111111111111111111
.0250 111111111111111111!111111111!111111111111!1
.0750 111!1
.1250 11111111111111111111111111111111111!111:11
.17EO 111111111111111111111111111111111
.2250 1:111111111:11111111!!!
.2750 l!11111!1111111111111
. З=50 11:111!11111111!11!
. 5750 111111111111
.4250 111111!1!!11
.4750 1111111111111
.5こE0 1!1111!1!
.5750 1111!
.6250 11111
.6750 11
.7250 111
.7750 \1111
.8=50 1111
.8750) 1
.9250 111
.9750 11

```


Count
0
0
0

1
4
2
7
3
3
4
1
2
5
8
11
15
10
10
9
12
9
14
17
\(-25\)
in
シュ
47
61
111
\(10=\)
115
154
181
427
\(2 \div 4\)
225
159
227
150
120
56
E
76
56
46
25
26
19
16 23 16 14 14

Madpoint
\(-1.7=5\)
\(-1.675\)
\(-1.6=5\)
\(-1.575\)
\(-1.525\)
\(-1.475\)
\(-1.425\)
\(-1.375 \quad 1\)
\(-1.325\)
\(-1.275\)
\(-1.225\)
\(-1.175\)
\(-1.125\)
\(-1.075\)
-1.025
\(-.975\)
11
\[
-.925
\]
\(1=\frac{\text { AMOUNT-IMPUTE }}{\text { AMOUNT }}\)
\[
-.8751
\]
\[
-.825
\]
\[
1
\]
\[
-775!
\]
\[
1
\]
\[
\begin{array}{rl}
-.725 & 1 \\
-. .275 & 1
\end{array}
\]
\[
-6=5
\]
\[
-.575 \quad 111
\]
\[
-.525111
\]
\[
-.4751111
\]
\[
-.425111
\]
\[
-.375 \quad 11111
\]
\[
-.325111111
\]
\[
-.2751111111111
\]
\[
-.225 \text { 111111111 }
\]
\[
-175 \quad 11111111111
\]
\[
-125 \text { ज111111111}
\]
\[
-.075 \text { 1111111111111 }
\]
\[
\text { - } 025 \text { I111111111111111111 }
\]
\[
.075 \text { } 111111111111111
\]
\[
: 125 \quad 11111111111111
\]
. 175111111111111111111
. 225 llllllll1111
.275 1111111111
-R
.5751111111
.425 lllll
.475 11111
. 5251111
\(: 575111\)
.625 111
.675111
.72511
.77511
.82511
.87511
.9251
.975



MLITIPLICATIVE SMOOTHI:G (2)



Histogram Frequency


3183 cases
1 = oniy imputed values
TABLE 1
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
c_{1}=x_{1}-\hat{x}_{1}
\] & Iterated Buck & Logarithmic llerated Buck & \begin{tabular}{l}
Cube \\
Iterated Buck
\end{tabular} & Arithmetic smoothing (1) & Multiplicative Smouthing (1) & Arithmetic Smoothing (2) & Multiplicative Smoothing (2) \\
\hline & & & & & & -699.351 & -681.261 \\
\hline & -5792.08 & -1001.723 & -1120.027 & -734.073 & -661.089 & & \\
\hline & & & & 1,024,158 & 1,007,087 & 1,022,134 & 1,013,100 \\
\hline \(y_{1} c_{1}{ }^{2}\) & 3,594,429 & 952,807.2 & 58973.7 & 1,084,150 & & & \\
\hline \(\underbrace{}_{1}{ }_{1}\) & -1.820 & -. 315 & -. 352 & -. 231 & -. 208 & -. 220 & -. 208 \\
\hline \[
\sum\left(e_{1}-\bar{c}\right)^{2}
\] & 148.434 & 16.454 & 18.404 & 16.904 & 16.827 & 17.016 & 16.985 \\
\hline
\end{tabular}

\section*{3183 cases}

TABLE 1
I = only imputed valuen

4

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
c_{i}=-\underline{r}_{r_{i}}^{-\hat{r}_{1}}
\] & Iterated Buck & Logarithmic Iterated Buck & \begin{tabular}{l}
Cube \\
llerated Buck
\end{tabular} & Arithmetic Bmoothing (1) & Multiplicative Smoothang (1) & \begin{tabular}{l}
Arithmelic soncothing \\
(2)
\end{tabular} & Multiplicative Smoothing (2) \\
\hline \({ }_{1} 0_{1}\) & -2960.78 & -1758.141 & -1678.103 & -2258.004 & -2,305.211 & -2295.991 & -2320.885 \\
\hline \(\sum_{1} 0_{1}{ }^{2}\) & 4,074,304 & 123,128.9 & 121,931.687 & 215,218.4 & 232,074.2 & 227,100.922 & 237,474.718 \\
\hline  & -1.050 & -. 623 & -. 585 & -. 801 & -. 817 & -. 814 & -. 023 \\
\hline \[
\begin{aligned}
& \sum\left(a_{1}-\bar{\theta}\right)^{2} \\
& 1
\end{aligned}
\] & 1443.693 & 43.275 & 42.884 & 75.677 & 81.628 & 79.868 & 03.533 \\
\hline
\end{tabular}
i = only Imputed values
Table 4```

