BUREAU OF THE CENSUS STATISTICAL RESEARCH DIVISION REPORT SERIES SRD Research Report Number: Census/SRD/RR-85/18

A COMPARISON OF SEVEN IMPUTATION PROCEDURES FOR ISDP

by

Vicki J. Huggins Statistical Research Division Bureau of the Census

This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The views reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.

Recommended by: Paul Biemer

Report completed: November, 1985

Report issued: November, 1985

I. INTRODUCTION

Missing data for longitudinal surveys occur in a variety of patterns which can be sorted and categorized into different classes of missingness depending on the survey unit. For this study, the survey unit is a person. Therefore the missingness that occurs in the data can be person nonresponse, whereby no data is available for a person at any given time period in the survey, record-type nonresponse where an entire module of related data is unavailable, and item nonresponse in which data is missing sporadically throughout the person record. For this study we focused on record-type nonresponse for a single continuous variable. It is important that these types of nonresponse to be addressed as - they occur generously throughout a longitudinal survey. Also, simulation of record-type nonresponse provides reasonably sized data files to study and manipulate. It is important to note that the techniques investigated can be employed to compensate for both item and record-type nonresponse.

The objective of this study is to evaluate seven different methods of imputation for continuous data in a longitudinal survey. The methods compared are described below as are the procedures to compare them. In our comparisons, we employed a variety of summary statistics and graphic techniques. The particular findings are detailed in the body of the text and a number of graphs and tables are included in the Appendix to support these findings. No information was observed to support any assumptions of normality in the data studied, and the analysis proceeds using a variety of nonparametric techniques.

In Section II we describe the data used in this study and discuss how it was used. In Section III we discuss each of the alternative imputation strategies that are compared against one another. In Section IV the methods used to compare the different procedures are described and the results of our analysis are presented. Findings are summarized in Sections V and VI, and an Appendix contains the tables, graphs, and summary statistics used in our analysis.

II. SIMULATING MISSING DATA PATTERNS

Twelve-month longitudinal data extracted from the 1979 ISDP (Income Survey Development Program) survey were used in this study. These data were entered into a SIR (Scientific Information Retrieval) database, from which free-format simulation data files were extracted. Subsequent manipulation and evaluation were performed using special purpose FORTRAN programs and the SPSS-X statistical package on a Univac 1100 and IBM-XT at the Bureau of the Census.

For this study, missing data were simulated using records on which the variable of interest was completely reported, and for technical reasons records with zero responses for the variable of interest were excluded. We then had the original values for the misssingness that was simulated in the file to use later in analyzing the properties of imputations obtained by the selected imputation methods. The continuous variable used in the study is <u>wages and salary</u>. The following indicates the simulation procedure used to induce missing data on records.

(1) Define a longitudinal record for <u>wages and salary</u> to be a person record of responses to the question: What were your wages and salaries for month (j), j=1, 12 in 1979?

		J	F	М	Α	М	J	J	Α	S	0	Ν	D
<u>Ex:</u>	Rec 1	100	100	150	145	120	200	150	200	100	100	150	175
	Rec 2	10	10	10	10	50	50	50	50	50	50	50	50

(2) Randomly select 500 person records for persons, age > 16, with at least one missing response, i.e., month (j) = -1 for some j, and at least one complete response, i.e., month (j) > 0 for some j. (The value "-1" is a place holder for a missing response.)

J F J S M Α Μ J Α 0 N D 100 100 100 Ex: 100 -1 -1 -1 100 150 150 150 150

(3) Select approximately 2,000 person records with complete responses for every month (j), i.e., month (j) >0 for all j=1, 12. (4) Induce the missing pattern from a record in the set (2) onto a record for a full respondent in set (3) by a nearest match procedure. That is, let X_{n,j}=month (j) for some case n from data set (2) and let Y_{i,j} = month (j) for some case i from data set (3), and find the record Y_i in the set (3) to minimize:

$$\sum_{j=1}^{12} (X(n,j) - Y(i,j))^2.$$

We set X(n,j)-Y(i,j) = 0 for X(n,j) missing.

One then induces the nth missing data pattern from (2) onto the ith full respondent in (3) to obtain 500 simulated person records with missing wave responses. In all, 410 unique complete respondents were used in simulating the 500 records with induced missing ~ responses.

III. SEVEN IMPUTATION PROCEDURES

The seven imputation procedures examined in this study are described below. The first three employ regression type techniques which utilize the entire data set to (1) model the missingness that occurs in the entire set of data and (2) derive model-based imputes for the misssing values. The last four procedures implement averaging techniques in which only data for the current case is used in determining an impute for a missing month's value. The regression-based imputation procedures: Iterated Buck, Logarithmic Iterated Buck, and Cube Iterated Buck; and the four averaging techniques: Arithmetic Smoothing (1) and (2) and Multiplicative Smoothing (1) and (2); were tested and evaluated on the simulated data set described above.

(a) Iterated Buck Techniques

The Iterated Buck procedure is a sequential regression technique that estimates regression parameters, derives imputes based on these parameters, and repeats this process until the sequence of estimated parameters converge. For a detailed description and derivation of the Iterated Buck method the reader is referred to papers by S. F. Buck, [2], and Beale and Little, [1], pertaining to missing values in multivariate analysis. The important thing to note here is that Iterated Buck is an EM-Algorithm that gives maximum likelihood estimates of the population parameters when there is the assumption that the data has a multivariate normal distribution.

However, no distributional assumption of normality of the data is justified here, as indicated in Figures 1-4. Histograms of the residuals for Iterated Buck, Logarithmic Iterated Buck and Cube Iterated Buck are presented with a normal overlay represented by the dotted line on the histograms. Comparing the two distributions in each of the histograms suggests that a normality assumption for the data is unjustified. Even in the absence of normality the Iterated Bucks method can be used to derive imputations. Of course, since the data is not normal, our analysis will proceed along nonparametric lines, and considerations especially appropriate to normal data will not be addressed.

We now describe the steps involved in the Iterated Buck procedures. Assume for a set of N observations and n variables that x_{ij} represents the value of the jth variable in the ith observation for j=1,...,n and i=1,...,N. Let m_j denote the sample mean value of the jth variable over all complete observations and u_{jk} denote the sample covariance between variables m_j and m_k over all complete observations. The Iterated Buck method uses m_j and u_{ik} to compute:

- (1) $x_{ij} = \begin{cases} x_{ij}, & \text{if } x_{ij} \text{ is observed} \\ a \text{ linear combination of the set of variables observed in the i}^{th} \\ observation, & otherwise \end{cases}$
- (2) $c_{ijk} = \begin{cases} partial covariance of m_j and m_k if x_{ij} and x_{ik} are both unknown 0, otherwise \end{cases}$
- (3) $\bar{x}_{j} = \sum_{i=1}^{N} x_{ij} / N$,
- (4) $a_{jk} = \sum_{i=1}^{N} (x_{ij} \bar{x}_j) (x_{ik} \bar{x}_k) + c_{ijk}.$

Set $m_j = \bar{x}_j$ and $u_{jk} = a_{jk}/(N-1)$ and repeat (1) thru (4) until there are no further changes in m_j and u_{jk} . The term c_{ijk} is a correction term for the bias that would normally occur in the formation of a_{jk} . The procedure is applied to a longitudinal record for the variable wages and salaries by setting $x_{ij} = AMT(i,j)$ for person record i, i=1,N and month j, j=1,12.

The Logarithmic Iterated Buck is the same algorithm as just described, the only difference is that $x_{ij} = log(AMT(i,j))$ for the ith person record and jth month. (This is the reason we omitted records containing zero responses.) After the algorithm is satisfied,

 x_{ij} is transformed back to original amounts and corresponding imputes. By using the logarithm of amounts of wages and salaries one reduces the impact of skewness in the data and avoids the problem of generating negative imputes. Similarly, Cube Interated Buck operates on $x_{ij} = (AMT (i,j))^{1/3}$ until closeness criteria are met. The x_{ij} are transformed back to original values and corresponding imputes.

(b) Smoothing Procedures

The two averaging techniques examined here are termed Arithmetic Smoothing and Multiplicative Smoothing because the imputes are based on the arithmetic mean and geometric mean respectively.

Arithmetic Smoothing essentially allocates an equal additive subdivision to each missing value which depends on the length of the interval of missing values in the data record and the reported values on either side of the missing data. For example, suppose March, April, and May values were missing for a particular record, denoted by x_m , then the record looks like the following:

J F M A M J J A S O N D

$$x_1 x_2 x_{m,3} x_{m,4} x_{m,5} x_6 x_7 x_8 x_9 x_{10} x_{11} x_{12}$$

missing interval

We determine the difference in the bounding reported values of the missing interval and divide by the number of subintervals to arrive at

$$d = \frac{x_6 - x_2}{-4 - 4}$$

We then add d to x_2 consecutively to obtain imputes for $x_{m,3}$, $x_{m,4}$ and $x_{m,5}$. Explicitly,

$$x_{m,3} = x_2 + d$$

 $x_{m,4} = x_2 + 2d$
 $x_{m,5} = x_2 + 3d$.

For the general case, let $\underline{r} = (x_1, ..., x_{12})$ be a logitudinal record of amounts. Suppose x_m is a missing response bound below by x_i and above by x_i .

(1) Compute
$$k = j-i$$

(2) Compute $d = (x_j - x_i)/k$ (3) $x_m = x_i + (m-i)d$.

Then

Note that $x_j = x_i + k \cdot d$.

One difficulty with this method is that bounds may not exist around missing responses, specifically, when endpoints (month (1) and/or month (12)) of the record are missing. Two solutions to this problem are examined. The first solution is to substitute the arithmetic mean of the record's complete responses, $(\sum_{i=1}^{p} x_i)/p$, where p is the i=1 number of reported responses, into the endpoints whenever one or both endpoints of the record is missing. The second solution is to substitute the arithmetic mean of the two nearest values for missing endpoints. Numerical comparisons of both methods are included with all other results at the end of this report.

Multiplicative Smoothing abides basically by the same principles as Arithmetic Smoothing with the difference that the geometric mean of a missing interval's bounding responses is employed, and equal multiplicative subdivisions are allocated to missing values in an interval of missing responses. That is, for Multiplicative Smoothing we determine the quotient of the bounding reported values of the missing interval and base our imputation on that value. For the general case let $\underline{r} = (x_1,...,x_{12})$ be a longitudinal record of amounts and let x_m denote a missing response bound below by x_i and above by x_i .

- (1) Compute k = j-i
- (2) Compute q = $(x_{i}/x_{i})^{1/k}$

Then (3) $x_m = x_i \cdot q^{(m-i)}$.

Note that $x_j = x_i \cdot q^k$.

The two methods used to correct for missing endpoints on a record corresponding to the situation for Arithmetic Smoothing were, (1) use the geometric mean of the record's complete responses, $(\prod_{i=1}^{p} x_i)^{1/p}$, and (2) use the geometric mean of the nearest two values for any missing endpoints.

It should be noted that Multiplicative Smoothing of amounts of <u>wages and salaries</u> and Arithmetic Smoothing of the logarithm of amounts of <u>wages and salaries</u> give identical results. The following shows the relationship between the two procedures.

The basis for Multiplicative Smoothing is that for some missing interval of length k bounded below by x_a and above by x_b , and with x_m missing in that interal, $(a \le m \le b)$,

(1)
$$x_m = x_a \cdot q^{(m-a)}$$
 where $q = (x_b / x_a)^{1/k}$.

Taking the logarithm of (1) gives

(2)
$$\log x_m = \log x_a + (m-a) \log q$$
.

and by setting $y_a = \log x_a$ and $y_m = \log x_m$ we get

(3)
$$\log q = \frac{\log x - \log x_{a}}{(m-a)}$$

= $\frac{y_{m} - y_{a}}{(m-a)}$.

Letting log q equal d and substituting into (2) we obtain

(4) $y_m = y_a + (m-a)d$

which is the basis for Arithmetic Smoothing as discussed above.

IV. COMPARING THE PROCEDURES

There are several questions to be addressed when analyzing the effectiveness and efficiency of an imputation procedure, and by focusing on these questions particular imputation procedures can be identified that maximize the desired end results. The final decision as to which imputation strategy is best to use for particular survey items must rest with subject-matter specialists who are familiar with the subject-matter of the survey, the questionnaire form, and the underlying target population. In this report, we present a number of descriptive statistics for each of the procedures described above. These can be compared against one another and serve as a basis for an informed decision as to which procedure is to be preferred. In general, the questions that must be addressed are:

- (1) What does a completely reported data record look like? Is it typically reported consistently, erratically, in particular patterns, or does it follow some distribution?
- (2) What are the imputations expected to accomplish? Should the derived imputation resemble the reported data, implement a presumed relationship, or smooth over the missingness?
- (3) What criteria should be used to evaluate and compare methods?

The data for <u>wages and salary</u> are at times reported consistently across a 12-month period, reported erratically other times, and may or may not follow a particular pattern of responses based on ISDP waves the (3-month interval to which a questionairre refers). Ideally, the optimal imputation procedure would adhere to patterns of consistency or erraticism of the reported data for each individual person record.

As discussed in Section II, we start with completely reported longitudinal records and then blank out responses conforming to missing patterns from a set of longitudinal records having nonresponse. We then impute for the induced nonresponse and compare the imputes with the original values that were blanked out. These comparisons form the basis of our analysis. As noted earlier, normality assumptions are not supported by the data, and accordingly, the analysis is nonparametric. We let

$$\mathbf{x} = (x_1, x_2, \dots, x_{12})$$

be a completely reported record, and we assume the value for month j was blanked out, and the imputed value is denoted by \hat{x}_{i} . Thus we have the following:

$$x_j$$
 = The amount of wages and salaries for some month j,
 \hat{x}_j = Imputed value of x_j for some imputation procedure,
 $r_j = x_j/x_{j+1}$, and
 $\hat{r}_j = x_j/x_{j+1}$ where at least one of x_j or x_{j+1} was imputed.

The analytical variables computed and evaluated for each imputation method are

(1) $\mathbf{e}_{j} = \mathbf{x}_{j} - \hat{\mathbf{x}}_{j}$ (2) $\mathbf{e}_{j} = (\mathbf{x}_{j} - \hat{\mathbf{x}}_{j})/\mathbf{x}_{j}$ (3) $\mathbf{e}_{j} = \mathbf{r}_{j} - \hat{\mathbf{r}}_{j}$ (4) $\mathbf{e}_{j} = (\mathbf{r}_{j} - \hat{\mathbf{r}}_{j})/\mathbf{r}_{j}$.

Note that:

- (a) $x_j \hat{x}_j$ represents the difference between original value and imputed value,
- (b) $(x_j \hat{x}_j)/x_j$ represents the relative difference,
- (c) $r_j \hat{r}_j$ represents the difference between the ratio of adjacent months when one was imputed, and
- (d) $(r_j \hat{r}_j)/r_j$ measures the relative difference of these ratios.

The statistics we will use to examine these analytic variables are:

(i)
$$S_1 = \sum_{i=1}^{n} c_i$$
,
(ii) $S_2 = \sum_{i=1}^{n} c_i^2$,
(iii) $S_3 = (\sum_{i=1}^{n} c_i)/n$,
(iv) $S_4 = \sum_{i=1}^{n} (c_i - \bar{c})^2/n$

where m is the total number of cases for which $c_i \neq 0$ and

$$\bar{\mathbf{c}} = \left(\sum_{i=1}^{m} \mathbf{c}_{i}\right)/m$$
.

,

Table 1 contains numerical comparisons for analytical variable $c_j = x_j - \hat{x}_j$. The seven imputation procedures are listed horizontally and the four derived statistics used for evaluation are listed vertically. If one of the smoothing imputation methods has a (1) appended to its name, the method substitutes the mean of all reported months for missing endpoints of a record; if a (2) is appended to the name of the procedure, the mean of the two nearest reported values was substituted for missing endpoints. Table 2 presents the numerical results for the analytical variable $c_j = (x_j - \hat{x}_j)/x_j$ and is set up identical to Table 1. In both Table 1 and Table 2, there are a total of 3183 cases. Tables 3 and 4 contain, respectively the numerical results for the two analytical variables $c_j = r_j - \hat{r}_j$ and $c_j = (r_j - \hat{r}_j)/r_j$. A total of 2820 ratios were used in these calculations.

V. OBSERVED RESULTS OF THE COMPARISONS

(a) Tables 1-4

One initial reason for carrying out this study was to determine whether straight Iterated Buck is a better imputation procedure than its counterparts, Logarithmic Iterated Buck and Cube Interated Buck. For each of the analytic variables, the better a procedure simulates an aspect of missing data, the closer the relevant derived statistic (either S_1 , S_2 , S_3 , or S_4) will approach zero.

The most decisive finding in this study is that for every derived statistic, Logarithmic Iterated Buck outperformed Iterated Buck. Using the Logarithm of wages and salary

rather than actual amounts provides a two-fold improvement over the Iterated Buck procedure by eliminating negative imputes and increasing the accuracy of the imputes. Moreover, in every statistic except the first and third on Table 1, Cube Iterated Buck outperformed Iterated Buck. From these observations, it is clear that either Logarithmic Iterated Buck or Cube Iterated Buck is superior to the simple Iterated Buck.

Results comparing Logarithmic Iterated Buck with Cube Iterated Buck are mixed. In Tables 3 and 4 Cube Iterated Buck performs better. Most often in Tables 1 and 2, Logarithmic Iterated Buck does better. All in all, the results are close. One interesting observation is for the statistic

$$\sum_{i=1}^{n} ((x_{i} - \hat{x}_{i})/x_{i})^{2}$$

Cube Iterated Buck far out performs all other procedures. That is, Cube Iterated Buck seems to do well for scaled residuals. On the other hand, for the statistic

$$\sum_{i=1}^{n} (x_{i} - \hat{x}_{i})^{2}$$

Logarithmic Iterated Buck does best of all. For the last two analytical statistics presented in Tables 3 and 4 Cube Iterated Buck outperformed all other imputation procedures for each statistic calculated, with Logarithmic Iterated Buck a fairly close second best.

Arithmetic Smoothing (1) and Multiplicative Smoothing (1) using the mean of a record's reported values for missing endpoints virtually tie in comparison to one another and outperform their counterparts Arithmetic Smoothing (2) and Multiplicative Smoothing (2) the majority of the time. Logarithmic Iterated Buck and Cube Iterated Buck do a little better, all in all, then the smoothing techniques. However, the ease in implement either of the two smoothing techniques may strongly argue in their favor.

(b) Figures 4-11

In Figure 4 we present a histogram of the amounts of reported <u>wages and salarys</u> that fall into the range \$0. to \$5,000. Histograms of values produced by each of the seven imputation procedures appear in Figures 5 through 11. Histograms of the data completed by Logarithmic Iterated Buck in Figure 6, Cube Iterated Buck in Figure 7, Arithmetic Smoothing (1) in Figure 8, and Multiplicative Smoothing (1) in Figure 9 look very much alike and also appear to reasonably resemble Figure 1. Although histograms of Arithmetic and Multiplicative Smoothing (2) in Figures 10 and 11 look somewhat similar to the true data, there appears to be a slight more grouping of the data than in the reported data.

The data for this study was not edited. However one extremely large value for monthly wage and salary amount was deleted as an obvious edit failure as it caused some problems in obtaining informative graphs of the data. Unbounded histograms were produced but offered very little extra information so were not included here.

• (c) Figures 12-18

Figures 12 thru 18 present scatterplots of the amounts of wages and salaries versus each imputation procedure in the same order as the histograms are listed. The more linear the relationship the better the imputation procedure is in simulating the reported data. Ideally, we would like the standard error of the estimate

$$\left(\sum_{i=1}^{m} (x_i - \hat{x}_i)^2 / (n-1)\right)^{1/2}$$

to be small, the intercept near zero and the slope close to one. The correlation and R-square values which measure the relationship between the values and the goodness of fit of the linear model respectively, should approach one for the best method. The standard error of the estimate, intercept, and slope of the linear relationship listed at the bottom of each scatterplot all appear best overall for the Logarithmic Iterated Buck procedure, Figure 13. Iterated Buck gives a negative intercept as a result of negative imputes and the standard error of the estimate is the worst of all the methods. Statistics for Logarithmic and Cube Iterated Buck are very close in comparison to each other, with Logarithmic Iterated Buck just slightly better. Scatterplots of the Arthimetic and Multiplicative Smoothing (1) procedures basically have the same statistics and are both better than Iterated Buck except for the slope statistics. Arithmetic and Multiplicative Smoothing (2) have the worst slope and intercept but the best fit based on the R-squared value.

(d) Figures 19-25

Histograms of scaled residuals, that is, $(x_j - \hat{x}_j)/x_j$, are presented in Figures 19 thru 25. The imputation procedure used to get the estimated impute is listed at the top left of each histogram. Iterated Buck and Log Iterated Buck most often overestimate true values and all four of the smoothing techniques most often underestimate true values. However Cube Iterated Buck underestimates more often than any of the other techniques. This is determined by counting the number of negative scaled residuals in each of Figures 19 thru 25 and compare them to the number of positive scaled residuals. The smoothing techniques tend to spike around zero.

(e) Brief Summary of Observations:

Based on the statistics generated as part of this analysis, the four procedures that appear best are: Logarithmic Iterated Buck, Cube Iterated Buck, Arithmetic Smoothing (1) and Multiplicative Smoothing (1). The residual sum of squares presented in Table 1, Row 2 is a traditionally used comparison criterion, and based on this statistic Logarithmic Iterated Buck is the best procedure. When examining histograms of data completed using each of the imputation procedures to the true data, Cube Iterated Buck, Arithmetic and Multiplicative Smoothing (1) appear almost as good as Logarithmic Iterated Buck. Other statistics provided in Tables 1 thru 4 indicate that each of the four methods are favored by different criteria. The issue is to choose comparison criterion that address specific needs of the data problem at hand. Survey-specific needs should be brought to bear in accessing the merit of each of the procedures discussed. The diverse statistics presented in this report may aid in this analysis.

VI. CONCLUDING REMARKS

Of the imputation procedures examined in this report, Logarithmic Iterated Buck and Cube Iterated Buck outperformed straight Iterated Buck. Of the smoothing techniques, Arithmetic Smoothing (1) and Multiplicative Smoothing (1) outperformed Arithmetic Smoothing (2) and Multiplicative Smoothing (2), respectively. All Iterated Buck procedures must consider a sample of cases with missing values to derive parameters for imputing for nonresponse. Both smoothing techniques need only consider one record at a time and bounding values when deriving an imputation for nonresponse. A variety of summary statistics are presented to assist SIPP specialists in the determination of the most appropriate method for SIPP needs.

In this report-we did not add variability to the imputes in the form of a residual. To the extent that thisis a comparative study, we felt adding residuals could be omitted at this stage. Of course, in implementing any one of these procedures, one may add some variability factors. Variability can be computed from the entire data set and added into each impute or computed on a record by record basis where the variability added to the imputes for each record is based on the record under consideration. An alternate form to adding variability on a record by record basis is to split the data file into two or more groups of records. One group might contain cases that report consistently over time and the other group might contain erratic data reporters. The variability added to each record will be determined by the group in which the record lies.

-14-

Acknowledgement

I would like to thank Brian Greenberg for suggesting this research and providing a number of helpful recommendations along the way.

REFERENCES

-

- [1] Beale, E.M.L. and Little, R.J.A. (1975). Missing values in multivariate analysis. J.R. Statistics Society, B. 37, 129–146.
- [2] Buck, S.F. (1960). A method of estimation of missing values in multivariate data suitable for use with an electronic computer. J.R. Statistics Society.
 B. 22, 302-306.

• •

1

٠,

٠

HISTOGRAM OF RESIDUALS

.

ITERATED BUCK

144.1

COUNT	MIDPOINT	ONE SYMBOL EQUALS APPROXIMATELY 16.00 OCCURRENCES
1	-1450.00	
2	-1350.00	
4	-1250.00	
11	-1150.00	* = AMOUNT-IMPUTE
5	-1050.00	•
5.	-950.00	•
11	-850.00	* .
8	-750.00	
90	-650.00	
191	-550.00	· · · · · · · · · · · · · · · · · · ·
179	-450.00	
190	-350.00	教育 的复数形式 的复数形式 化合金 ·
241	-250.00	
510	-150.00	化化学学会 化化化学学 化化化学学 化化学学 化化学学 化化学学 化化学学 化
0/2	-50.00	
434	150.00	
170	250.00	
82	350.00	
42	450.00	
10	550.00	
28	650.00	
20	750.00	
-7	850.00	
16	950.00	1
12	1050.00	•
8	1150.00	
2	1250.00	
4	1350.00	
4	1450.00	
		I+I+II+I+I
		8 160 320 480 640 800 HISTOGRAM FREQUENCY
ID CASES	3182	MISSING CASES

1

*

2

ì

VALID CASES

.

٠

:

· ekl

.

HISTOGRAM OF RESIDUALS

.

٠,

.

LOG ITERATED BUCK ONE SYMBOL EQUALS APPROXIMATELY 24.00 OCCURRENCES COUNT MIDPOINT -1450.00 2 -1350.00 -1250.00 1 ī ***** = AMOUNT-IMPUTE -1150.00 10 5 -1050.00 -950.00 2 -850.00 . -750.00 9 10 -650.00 -550.00 # 19 37 -450.00 ## -350.00 ** 55 -250.00 **** 105 -150.00 *********** 332 ****** -50.00 1090 **** 648 276 50.00 ********** 150.00 250.00 178 105 350.00 #### 93 63 32 16 450.00 #### 550.00 *** 650.00 ***** 750.00 ***** . 850.00 17 *. 7 127 1050.00 1 1150.00 42 1250.00 1350.00 5 1450.00 I....+....I....+....I.. 1200 40 480 720 Histogram Frequency 960 240 8 MISSING CASES 0 3182

۲.

.

ŧ

1

4

VALID CASES

٠,

-14

HISTOGRAM OF RESIDUALS

FILEI

CUBE ITERATED BUCK

•

COUNT	MIDPOINT	ONE SYMBOL EQUALS APPROXIMATELY 24.00 OCCURRENCES
0	-1450.00	
4	-1350.00	* = AMOUNT-IMPUTE
1	-1250.00	
10	-1150.00	
- 4	-1050.00	
5	-950.00	•
5	-850.00	•
6	-750.00	•
11	-650.00	•
28	-550.00	
25	-450.00	• .
58	-350.00	
100	-250.00	
246	-150.00	· · · · · · · · · · · · · · · · · · ·
1030	~50.00	
689	50.00	· · · · · · · · · · · · · · · · · · ·
309	150.00	
204	250.00	
136	350.00	
88	450.00	(株式) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
62	550.00	
38	650.00	
23	750.00	
18	850.00	
15	950.00	
16	1050.00	
11	1150.00	
4	1250.00	
4	1350.00	
1	1450.00	
		240 480 720 960 1200 HISTOGRAM FREQUENCY
ID CASES	3182	MISSING CASES 0

VALID CASES

.

·••}

HISTOGRAM OF REPORTED AMOUNTS

FILE:

AMOUNT

14

51 50	6	150.0 250.0)0)0	
48	9	350.0	0	医学校教育学家学校学校学校学校学校学校学校学校学校学校会会会会会会会会会会会会会会会会会
41	5	550.0	0	学业学家学业学业学业学业学业学业学业学业学业学业学学学学学学学学生
50	3	650.0	0	· · · · · · · · · · · · · · · · · · ·
32	0	750.0	0	你你你没这些了你?你?你会没有你能够没有你的?" ————————————————————————————————————
20) L . 4	950.0	10	· · · ·
24	5	1050.0	00	*****
16	9	1150.0	00	建建筑学会学家学校学校学校
26	3	1250.0	00	
10	13	1450.0	00	
10	14	1550.0	00	
7	18	1620.0	00	
7	2	1750.0	00	· · · · · · · · · · · · · · · · · · ·
))	1950.0	00	建筑业务需要需
5	57	2050.	0 Ó	· · · · · · · · · · · · · · · · · · ·
1	<u>,</u>	2150.0	00	
	33	2250.0	00	
	32	2450.0	00	
	35	2550.	00	
1	14	2650.	00	
	20	2850.	00	
3	iz	2950.	00	
	26	3050.	00	
	21	3150.	00	**
	6	3350.	00	• `
	i	3450.	ŌŌ	·
	2	3550.	00	
	'	3050.	00	
	ś	3650.	ÕÕ	
	6	3950.	00	
	15	4050.	00	•
	17 .48	4250.	00	
•	i T	4350.	00	
	7	4450.	00	· .
	5,	4550.	00	
	C C	4050.	00	•
	8	4850.	00	*
	8	4950.	00	
				I
				U 120 2 240 350 460 600 HISTOGRAM FREQUENCY
LID C	ASES	599	9	MISSING CASES 0

ĥ

= REPORTED AMOUNTS

1

VALID CASES

.

....

MISSING CASES

HISTOGRAM OF DATA COMPLETED BY IMPUTATION

I.

FILE:

**

ITERATED BUCK

4

COUNT MIDPOINT ONE SYMBOL EQUALS APPROXIMATELY 12.00 OCCURRENCES

198	50.00	建全体管理在保全管理和保全管理			
392	150.00	建建建学院的教育学校学校教育学校教育教育教育教育教育教育教育教育教育	* =	IMPUTED	AMOUNTS
444	250.00	· · · · · · · · · · · · · · · · · · ·			
480	350.00	· · · · · · · · · · · · · · · · · · ·			
350	450.00	· · · · · · · · · · · · · · · · · · ·			
415	550.00	建和自定由生活的就能有这些实现的现在的实际的实际的实际的实际的实际的现在分词			
563	650.00	·····································			
491	750.00	· · · · · · · · · · · · · · · · · · ·			
457	850.00	·····································			
311	950.00				
303	1050.00	建建制业业和工作和联系会计和保证的资源的建立			
219	1150 00	****			
232	1250.00				
128	1350.00	*****			
117	1450 00				
125	1550.00				
AL	1650.00				
74	1750.00				
45	1850.00				
4.2	1950.00				
31	2050.00				
24	2160 00				
26	2250 00	**			
4.0	2350.00				
21	2450.00	**			
20	2550 00	**			
ĩă	2650 00				
22	2760 00				
16	2850.00				
17	2950 00				
16	3050.00	-			
20	3150 00				
- ŭ	3250.00				
Ś.	3350 00	-			
2	3450.00				
ō	3550.00	•			
Á	3650.00	N. N. State and State			
Ă	3750 00				
ĭ	3850.00	~ 1			
Ā	3950.00	*			
7	4050.00				
2	4150.00				
ě	4250.00				
i	4350.00				
6	4450.00	*			
6	4550.00	•			
-	4450 00				
2	4030,00	-			
4	4/50.00				
	4050.00	- +			
*	4730.00	T	T		
		a 120 240 340 480	600		
		HISTOGRAM FREQUENCY			

VALID CASES

11

5999

٠

HISTOGRAM OF DATA COMPLETED BY IMPUTATION

•

.

.

١

۰.

FILE:

.

,

LOG ITERATED BUCK

. 111 .

.

ł

л а.	E E Proves							
C	OUNT	MIDPOINT	ONE SYMBOL EQUALS APPRO	CINATELY 12.00 OCCURRENCES				
		F	·····································	********				
	422	50.00		医法律学家法律学家法律学家教育学校学校学校学校	*	×	IMPUTED	AMOUNTS
	555	150.00	() ししして、して、して、して、して、し、し、し、し、し、し、し、し、し、し、し、	******				
	516	250.00		*****				
	499	350.00	· 新教学教育教育教育教育部会会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会社会	***				
	473	450.00						
	436	550.00		****				
	476	650.00	***					
	343	750.00						
	334	850.00	***	***				
	228	950.00	***					
	264	1050.00	********					
	173	1150.00	*****					
	227	1250.00	***					
	112	1350.00	***					
	109	1450.00	新新教教教教教教教					
•	111	1550.00	电影学家家家主要					
	- 96	1650.00	新教教教教教教教教					
	80	1750.00	使出发来说话说					
	LA	1850.00	保護法律					
	AA	1950.00	依然与我的情绪					
	40	2050.00						
	23	2150.00	**					
	22	2250.00	**					
	15	2350.00	***					
	21	2450.00	**					
	24	2550.00	**					
	17	2650.00	*					
	14	2750 00	*					
	16	2850.00	*					
	14	2050 00						
	20	3050.00						
٠	22	3150 00	**					
	"	3250.00						
	ŭ	1150 00			•			
		3450.00	¥ \					
	10	3550.00		•				
	12	3650.00						•
	#L	3750 00						
	4	3850.00	•					
		3050.00					•	
	5	4050.00	-					
	3	4050.00						
	C A	4250 00						
		'A 150 00						
	4	4450.00					•	
	L ()	4550.00						
	-	4330.00						
		4050.00	•					
		4750.00					•	
		4050.00	-					
	1	4750.00	T	+I				
			A 120 240	360 480 600				
			HISTOGRAM FREQL	IENCY				
VAL	ID CASE	5 5999	MISSING CASES 0					

HISTOGRAM OF DATA COMPLETED BY IMPUTATION

FILEI

VALID CASES

•

۰.

5999

CUBE ITERATED BUCK

No. 1

COUNT MIDPOINT ONE SYMBOL EQUALS APPROXIMATELY 12.00 OCCURRENCES

ł

397	50.00	学家学家主义学家学家学家学家学家学家学家学家学家学校学校学校
558	150.00	***
546	250.00	你不是这个你这些没有这些没有没有不能没有这些没有没有的没有不是没有没有的没有的没有的。
537	350.00	"你我不会不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不不
500	450.00	我我我想要我我想要我我想要我我我我我我我我我我我我不知道我我我我我就能能能能
624	550.00	
455	650.00	
333	750 00	
154	850.00	
246	950 00	******
263	1050.00	
14.8	1150 00	
107	1250.00	
105	3360.00	
111	1450.00	
116	1650 00	
00	1450.00	
70	1050.00	
15	1950.00	
70	1050.00	
- 17	2050.00	
20	2150.00	
22	2150.00	
26	2250.00	
22	2350.00	
23	2430.00	
22	2550.00	
14	2050.00	W
10	2750.00	
10	2030.00	
13	2950.00	
23	3030.00	
21	3150.00	
	3250.00	•
14	3350.00	· ·
	3450.00	H
	3550.00	
0	3050.00	
ç	3/50.00	
	3030.00	•
2	3950.00	*
	4050.00	•
0	4150.00	
9	4250.00	
3		
2	4450.00	•
5	4550.00	
. 3	4650.00	
4	4750.00	
8	4850.00	*
2	4950.00	*
		I+I+I+I+I+I.
		0 120 240 360 480 600
		MISTOGRAM FREQUENCY

HISSING CASES

8

★ = IMPUTED AMOUNTS

.

٠

HISTOGRAM OF DATA COMPLETED BY IMPUTATION

ł.

FILE:

ARITHMETIC SMOOTHING (1)

11

COUNT MIDPOINT ONE SYMBOL EQUALS APPROXIMATELY 12.00 OCCURRENCES

1

508 565 496 529 * = IMPUTED AMOUNTS503 550.00 ********************** 394 446 *** 294 750.00 ****** 366 850.00 249 238 174 1150.00 *** 198 1250.00 #********* 113 1350.00 #****** 89 1450.00 ####### 99 1550.00 ****** ėź. 1650.00 ####### 89 1750.00 NNNHHHH 1850.00 ### 38 109 1950.00 ********* 51 2050.00 #### 19 2150.00 ## 16 2250.00 # 35 25 2350.00 ### 2450.00 ** 29 2550.00 ## 2650.00 7 Ħ 26 21 2750.00 ## 2850,00 ## 18 2950.00 ## 20 3050.00 ## 17 3150,00 # 3250.00 4 3350.00 . 6 3 3450.00 3550,00 # 8 4 3650.00 9 3750.00 7 3850.00 . 3 3950.00 11 4050.00 4 11 4150.00 . 4250.00 4350,00 3 5 4450.00 4550.00 4 ٥ 4650.00 4750.00 4850.00 7 -6 . 2 4950.00 1. -0 120 240 360 480 600 HISTOGRAM FREQUENCY *

0

VALID CASES

MISSING CASES

5999

HISTOGRAM OF DATA COMPLETED BY IMPUTATION

.

AMOUNTS

FILE:

٠

MULTIPLICATIVE SMOOTHING (1)

141

ì.

C	DUNT	MIDPOINT	ONE SYMBOL EQ	UALS	APPROXIM	ATELY 12.00	OCCURRENCES			
	504	50.00	*******		*****	*****	***			
	562	150.00				*******				
	495	250.00		****	*****	****	**			
	534	350.00	***	****	******	********	有非关于情情的			
	495	450.00	**************	*****	*******		***			
	410	550.00	****	****	*******	****		*	=	IMPUTED
	436	650.00		*****	******	***				
	297	750.00		*****	新教教師師	-				
	351	850.00								
	251	950.00			-					
	170	1050.00								
	148	1250.00		-						
	116	1350.00								
	89	1450.00								
	98	1550.00	****							
	82	1650.00	*****							
	80	1750.00	教育的复数教育							
	45	1850.00	****							
	103	1950.00	*********							
	53	2050.00	并并持 算							
	20	2150.00								
	21	2250.00								
	41	2350.00								•
	20	2450.00								
•	21	2550.00								
	21	2750.00								
	30	2850.00								
	17	2950.00								÷
	20	3050.00	**							
٠	11	3150.00	#							
	4	3250.00								
	7	3350.00	#			•				
	2	3450.00								
	20	3550.00			N					
	9	3650.00	*							
	e e	3/50.00	• .							
	2	3050.00	*							
	12	4050.00								
	5	4150.00	~							
	12	4250.00	*							
	3	4350.00								
	Ž	4650.00								
	3	4550.00	•							
	1	4650.00								
	8	4750.00	#							
	5	4850.00			•					
	2	4950.00	• . • .	-		- .	• · •			•
			0 120 HISTOG	240 Raņ F	REQUENCY	6 0 48	600			
VALID	CASES	5999	MISSING CASE	5	0					

HISTOGRAM OF DATA COMPLETED BY IMPUTATION

FILE:

ARITHMETIC SMOOTHING (2)

٠,

COUNT	MIDPOINT	OHE SYMBOL	EQUALS APPROXIMATELY	12.00	OCCURRENCES
000111	11401 04111		Prince with the second second		

¥.

	514	50.00	****
	544	150.00	学家教会工作的可能在学校教会发展的实际的教育教育学校教育学校和学校教会学校学校学校学校
	507	250.00	
	521	350.00	
	523	450.00	
	375	550.00	建建筑学业学校学业学校学校学校学校学校学校学校学校学校
	456	650.00	
	270	750.00	建筑 建筑 医 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金 化合金
	374	850.00	张家家等于这些学家主要的非常常非常常非常常能够够够够够够
	269	950.00	教教教室主张和教室和教育教育教育教育教育教育
	237	1050.00	建全体学习和学校学习学校学校学校学校学校
	164	1150.00	
i	227	1250.00	· · · · · · · · · · · · · · · · · · ·
	97	1350.00	· · · · · · · · · · · · · · · · · · ·
	94	1450.00	
	90	1550.00	非法常常业 业和推荐
	91	1650.00	
	79	1750.00	****
	45	1850.00	
	104	1950.00	非非常非常意思的
	48	2050.00	
	16	2150.00	N
	20	2250.00	
	39	2350.00	
	17	2450.00	•
•	29	2550.00	**
	18	2650.00	
	17	2750.00	•
	19	2850.00	
	19	2950.00	
	20	3050.00	
•	19	3150.00	
	3	3250.00	
	6	3350.00	♠
	Z	3450.00	
•		3550.00	
	1/	3650.00	•
	2	3/50.00	•
	2	3050.00	•
		3950.00	
	1	4050.00	
	16	4150.00	
	10	4250.00	
	2	4350.00	
	2	4450.00	•
		4330.00	
	- 4	4050.00	•
	4	4750.00	•
	3	4050.00	•
		7724.00	
			6 120 240 360 480 600 HISTOGRAM FREQUENCY
VALID	CASES	6000	MISSING CASES 0

***** = IMPUTED AMOUNTS

4

.

ŧ

.

.

.

.

.

HISTOGRAM OF DATA COMPLETED BY IMPUTATION

FILE:

۱

MULTIPLICATIVE SMOOTHING (2)

11

ł

CO	UNT	HIDPOINT	ONE SYMBOL EQUALS APPROXIMATELY 12.00 OCCURRENCES			
	542	50.00	新教堂水底就有这些水学家在这个学习水和实际和学校和学校学校和学校和学校和学校学校学校学校学校			
	510	150.00				
	501	250.00				
	514	350.00				
	528	450.00	家家名 新教会主要主要主要的主要的主要的非常常能够有的非常常要求的多效的变量。			
	383	550.00	· · · · · · · · · · · · · · · · · · ·			
	457	650.00		* =	IMPHTED	AMOUNTS
	269	750.00	动力化 动力 化化合金化合金化合金化合金化合金化合金化合金化合金		III OI LD	141001110
	271	050.00				
	270 230	1050.00				
	168	1150 00				
	208	1250.00				
	95	1350.00				
	95	1450.00				
	89	1550.00	· · · · · · · · · · · · · · · · · · ·			
	89	1650.00				
	77	1750.00				
	46	1850.00				
		1950.00				
	20	2150.00				
	22	2250.00				
	17	2350 00				
	29	2450.00	44			
	29	2550.00	**			
	19	2650.00	**			
	18	2750.00	**			
	19	2850.00				
	20	2950.00	**			
	18	3050.00				
	19	3150.00				
	4	3250.00				
	2	3350.00				
	2 7	3450.00	×			
	17	3550.00				
	5	3750.00	~			
	3	3850.00	•			•
	7	3950.00	*			
	12	4050.00	H		·	
	8	4150.00	•			
	11	4250.00	*			
	3	4350.00				
	2	4450.00				
	5	4550.00			•	
	1	4650.00				
	7	4750.00	•			
	2	4850.00	•			
	Þ	4720.00	• • • • • • • • •			
			0 120 240 360 480 600 HISTOGRAM FREQUENCY			
0	CASES	6000	MISSING CASES 0			

VALID CASES

•

`,.

.

•

.

¥

4. ·

.

٠

•

•

...

REPORTED AMOUNTS BY IMPUTED AMOUNTS

DOWN: ANT	250.000 750.000 1250.000 175	ACROSS: ITERATED BUCK 0.000 2250.000 2750.000 3250.	000 3750.000 4250.000 4750.000	•
5000.000		-++++++++	1 # ## ##	+ 5000.000
4500.000	i 1 48 48 1 1 1	I I I I ##	7 1 7 1 8 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 1 1 1 1 1	I I 4500.000
4000.000	I I I V * #2	I I I I + 2 + +2	и и и и и и I и2 и и 8 и I I и2 и и 8 и	I I 4000.000
3500.000	I * * * I 2 *		і бн и бн І ч І бн 	1 1 1 • 3500.000
5000 000	Y I# I # • #	I ## I # ## # I # ## ## I # # ##9 I # # 2# #9 #2	15 H I I H H	-1 1 1 • 3000.000
2500.000	I 24 I 24 I 4 I 442 4	Î HI HI </td <td>4 I I I I</td> <td>I I I • 2500.000</td>	4 I I I I	I I I • 2500.000
	I W WW 200 I W WW 200 I W WW 200 I W W 200 I 20	###2 2 59% I 3 ##5952 I 2 763 I 2 10 I 3 10 I 10 10 I 10 10	I ~ I I I #	I I I I + 2000.000
2000.000	* * 2* *	221277 42 #2#899## 2 #99# # # ## # 9#22#-##	I I I	I I I I 1500-008
150 0.000	white 22235699842 22 #44334#35996232 w3 #254647999#5 2 2 w425 47879999227#2# v2 w 2 453739998452 2 2 #	1200 0 1200 0 13 2 11 2		
1000.000	# ## 6#4999999496574## I # 24629999997333# 22### I 22 32 45469999999543### # I 22 32 454699999999543### # I 2323 4499999998952##5#2 #			+ 1000.000 I I I I
500.000	I #5797756599999999999994 •	1 I I I	I	→ 500.000 I I I I
0.0	1299999999653399993 * +999999 * * 9992 2 **3 * 	1 1 2 2000.000 2500.000 3000.000	1 3500.000 4000.000 4500.000 500	• 0.0 • . • . • • •
STATISTICS. Correlatio Sid Err di Plotted V	DN (R)92884 R SC F EST - 284.54653 INTE ALUES - 5949 EXCI	RUARED86274 ERCEPT (A)58.87632 LUDED VALUES- 50	SIGNIFICANCE SLOPE (B) - 1.0 MISSING VALUES - 0	00008 97211

THE THE THE POST CALDAR CANDING BE COMPLITED.

4 L

REPORTED AMOUNTS BY IMPUTED AMOUNTS

"******** IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED.

FIGURE 14

11.11

REPORTED AMOUNTS BY IMPUTED AMOUNTS

"HHHHHHHH" IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED.

"NHANNAHH" IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED.

••••		•			
STATISTICS CORRELATION (R)- SID ERR OF EST - PLOTTED VALUES -	.94223 255.96089 * 5957	R SQUARED - Intercept (A) - Excluded Values-	.88780 61.27008 42	SIGNIFICANCE SLOPE (B) MISSING VALUES	00000 95075 - 0

REPORTED AMOUNTS BY IMPUTED AMOUNTS

ACROSS: ARITHMETIC SMOOTHING (1)

3250.000

3750.000

4250.000 4750.000

۰.

DOWN: AHT

1.1

FIGURE 15

REPORTED AMOUNTS BY IMPUTED AMOUNTS

"######### IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED.

FIGURE 16

FIGURE 17

REPORTED AMOUNTS BY IMPUTED AMOUNTS

'######### IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED.

REPORTED AMOUNTS BY IMPUTED AMOUNTS

'MAMMAMMA' IS PRINTED IF A COEFFICIENT CANNOT BE COMPUTED.

والتصافية المراجع

-

HISTOGRAM OF SCALED DIFFERENCES

ļ

ITERATED	BUCK						
Count	Midpoint						
10	-1.725	111	:				
17	-1.675	111					
13	-1.625	111					
1.0-	-1.575	111					
21	-1.525	11111					
12	-1.475	111					
10 -	-1.425				١	AMOUNT-IMPUTE	
19	-1.375	51111			\ -	AMOUNT	2
18	-1.325	11111					
12	-1.275	111					
14	-1.225				•		
14	-1.175	1111					
71	-1.125						
14	-1.075	1111					
29	-1.025						
	- 975						
9 E	975						
▲ → 〒つ	- 875						
	- 875						
<u>~</u> 0	- 775						
<u>+</u> 0							
- 4	- · / ÷ J.						
45	675	///////////////////////////////////////	11				
4 <i>E</i>	625		111				
4 🖓	575		111				
6 6	525			L			
55	475		11111				
61	425		11111				
62	375						
84	325						
81	275			1111			
103	225				11		
125	175						
170	125				******		
197	075	11111111					
187	025	- 11111111		*****	*****		
164	. 025		1111111		*****		
174	075		1111111	1111111	*****		
141	175					1	
115	175				1111		
107					11		
105	・デン・				• •		
	• 4 / J 705						
29	 775						
48	- C/ D 475	******					
10	•723 475						
47 •>•-	• 7 / J # 75.						
<u> </u>	. Jij						
4 ÷	.3/3						
12	• 0∡J ∡ 7=	1111					· •
17	• 0/J						•
	• / ፈጋ	τι: 1 1				-	
0	.//5	•••					
10	.825						
7	.875						
5	.925	1					
1	. 7/5	▼ ▲	T 🔺		+	+	
		0	40	8 0	120	160 200	•

Histogram Frequency

		HISTOGRAM OF SCALED DIFFERENCES	
LOG ITERALE			
3			
- 3		١	
4	-1.525	·	
2	-1 575	AMOUNT-IMPUTE	
2		' AMOUNT	
4	-1 475		
1			
5	-1 375		
8	-1.275	N N	
न र	-1.225		
10	-1.175	1	
8 .	-1,125		
8	-1.075	Ň	
12	-1.025.	11	
6	975	1	
15	925	11	
13	875	11	
14	825	11	
20	775	111	
19	-725		
26	675	111	
29	625	1111	
28	575	1111	
34	525		
32	475		
56	425		
76	375		
85	325		
98	- 275		
120 144	175	1111111111111111111	
4 C A	- 175	11111111111111111111111	
741	075	111111111111111111111111111111111111111	
570	- 025		
<u> </u>	.025		
207	.075	******	
203	.125	*****	
141	.175	*****	
115	.225	111141111111	
102	.275	*****	
62	.325	1111111	
57	.375		
64	.425	* * * * * * * * * * * * * * * * * * * *	
41	.475	1111	
51	.525	11111	
35	.575		
29	.625	1111	
16	.675		
5	.725		
19	.775		
20	.825		
B	.875		
6	.925		
16	. 7/5	· · · · · · · · · · · · · · · · · · ·	+I
		0 BO 160 240 320	40Ō
		Historian Frankancy	

2

.

.

FIGURE 21 HISTOGRAM OF SCALED DIFFERENCES

÷

CUBE ITERATED BUCK

.

.Count	Midpoint	
Ō	-1.7750	
5	-1.7250	
O Á	-1.6/30	
0	-1.5750	l l
	-1.5250	
5	-1.4750	N
8	-1.4250	
2	-1.3750	AMOUNT-IMPUTE
7	-1.3250	AMOUNT
	-1.2750	
6	-1.1750	N N
9	-1.1250	
15	-1.0750	())
13	-1.0250	
9	9750	
11	9250	
10	- 8750 - 8750	
12	7750	11
11	7250	
22		1111
21	6250	1111
32	5750	
ు చ 4 9	5250	
51	4250	
49	3750	
73	3250	
91	2750	**********
116	2250	
1/4	1750	
187	0750	
234	0250	
249	.025 0	
250	.0750	
219	.1250	
126	.1750	
121	.2750	
95	.3250	1
60	.3750	
60	.4250	
65 40	.4/50	
24	- J_JO - 5750	
25	.6250	11111
12	.6750	11
16	.7250	
25	.7750	
20 1	.8250	
-+ 14	. 8730 . 9750	
e e	.9750	11
		I+I+I+I+I+I
		0 5 0 100 15 0 200 250
		Histogram Frequency

		HISTOGRAM OF SCALED DIFFERENCES	
ARITHMETIC	SMOOTHING (1)	HISTOGRAT OF SCREEP DIFFERENCES	
Count	Midpoint -1.725		
. 3	-1.675		
Ó	-1.625		
1	-1.5/5		
4	-1.475	AMOUNT-IMPUTE	
2	-1.425	AMOUNT	
7	-1.375	1	:
3	-1.320		
1	-1.225		
2	-1.175		
5	-1.125		
8 11	-1.075		
15	975		
10	925		
10	875		
12	775	N N	
9	•	$\Lambda = \mathscr{I}$	
14	875		
13	820		
25	525		
35	475		
32	425		
4) 61	325	11111	
111	275		•
102	225		
115	125		
181	075		
427	025		
234	.025		
159	:125		
227	.175		
150	225		
56	.725	11111111	
8 3	.375	11111111	
7 0	.425		
. 36 4a	.4/0		
32	575		
25	.625		
26	.675		·.
17	.725		
23	.825	11	
16	.875	11	

.925 \ .975 \

 ..+...I...+...I...+...I...+...I

 100
 200
 300
 400
 500

 I.. 0 Histogram Frequency

FIGURE 22

- ا ح

14

14

1

~

-

HISTOGRAM OF SCALED DIFFERENCES

:

MULTIPLICATIVE SMOOTHING (1)

₩ _2

Count	Midpoint	
. 2	-1.725	
2	-1.675	
1	-1.625	
1	-1.575	
3	-1.525	
4	-1.475	AMOUNT-IMPUTE
3	-1.425	AMOUNT
6	-1.375	1
4	-1.325	
2	-1.275	
1	-1.225	
4	-1.175	
5	-1.125	
5	-1.075	
11	-1.025	
9	975	
6	925	
13	875	
6	- .825	
14	775	
C'	725	
5	0/5	
14	620	
20	u/U - EDE	
20 =-		
3 5.0		
24		
44 41	- 375	
61	- 975	
109	- 275	
107	- 175	
140	125	
1 D 1	- 075	
A ⁻ 1	075	
	.025	1111111111111111111111
228	.075	1111111111111111111111
164	175	
	. 175	1111111111111111111111
144	.225	11111111111111
178		1111111111111
 95	.725	111111111
20 80		1111111
76	.425	1111111
49	.475	11111
58	.525	
42	-575	1111
24	. 625	11
36	.675	1111
26	.725	• • •
16	.775	11
27	.825	11
16	.875	11
13	.925	1
2 0	.975	11
		I+I+I+I+I
		o 100 200 300 400 500

| -

_......

HISTOGRAM OF SCALED DIFFERENCES

Ξ

~

ARITHMETIC SMOOTHING ((2)	HISTOGRAM OF SCALED DIFFERENCES
Count Midpoint		
2 -1.725		
3 -1.675		AMOUNT-IMPUTE
0 -1.625		
2 -1.575		ANOUNI
4 -1.525		·
	1	
	•	
	1	
2 -1.275	·	
6 -1.225	١.	
3 -1.175		
6 -1.125	۱	
9 -1.075	1	
14 -1.025	1	
14975	\	
88/5	\	
	· ·	
14 - 725	\	
10675	Ň	
15625	11	
23575	11	
32525	***	
28475	111	•
20425	11	

4/		11
115225	111111	
109175		
174125		
186075		
471 ,025	1141111	
15/ .025		
209 .075		
126 .275	111111	
91 .315		\ \ \
79 .375		11
77 .425		
66 .475		
34 .525		
45 .5/5		
30 .675	111	
42 .725	1111	
23 .775	11	-
22 . 825	11	
16 .875	11	
14 .925	N	
20 .9 75	\ \	· · · · · · · · · · · · · · · · · · ·
	1	100 200 300 400 500
	V	

Histogram Frequency

	FI	GURE	25
--	----	------	----

٠

2

			HISTO)GRAM	OF	SCALED	DIFF	ERENC	ES		
MULTIPL	ICATIVE SMOOTHI	rg (2)									
Count	Midpoint										
2	-1.725										
3	-1.675										m 2
0	-1.625								\ -	AMOUNT-IMPU	TE
2	-1.575								•	AMOUNT	
4	-1.525										
6	-1.4/3 \ -1.475f										
1											
6											
6	-1.323 N										
2	-1.270 -1.00E \										
0 7	-1.175										
• •											
ē	-1.120 (
4											
14	-1.025 N										
14	973 N										
0											
8	8/J \										
8			1								
11	- 775 N										
14	675 \										
15	- 625 \	1									
27	- 575 \	, ,		•							
30	525 \	11									
28	475 \	11									
20	425 N	١									
42	375 \	111									
47	325 \	1111									
91	275 \		11								
115	225 N		1111	Λ							
109	175 N	11111	1111								
174	125 N	11/11	1111	111	111						
180	075 N	11111	1111	111	1111	1					
471	025 N				((()					ATTACTAL ST	
196	.025 \		1111								
209	.075 N		((()	111							
164	.125 \		1111		11						
219	.175 \	111111	1111		() ()						
116	.225 \	111111	1111								
126	.275 \		(())								
92	.325 \		11								
79	.375		N.								
77	.425		. \								
66	.475										
34	.525										
45	.575										
24	.625										
30	.675									-	
42	.725										
23	.775										
22	.825										
16	.875										
14	.925										
20	.975	• •	•		_	Ŧ	▲	T	_	+	41
		••••	1000 - 1000 - 1000 - 1000		* • • •	••••• 700		200		4 00	500
	0		H	isto	gra	m Fre	quenc	:y			

.

1,

$c_i = x_i - \hat{x}_i$	[terated Buck	Logarithmic Iterated Buck	Cube Iterated Buck	Arithmetic Smoothing (1)	Multiplicative Smoothing (1)	Arithmetic Smoothing (2)+	Multiplicative Smoothing (2)
Le _i	-198,198.8	182,713.8	244,585.5	150,246.2	191,657.9	177,842.6	198,243.3
Σ c ² i	881,607,100	791,591,000	835,393,408	836,990,100	823,631,700	880,732,300	874,453,700
r ° _i <u>i</u> - _Ň	-62.268	57.403	76.835	47.203	60.213	55 .873	62.282
$\frac{I}{\sqrt{N}} \left[\frac{c_i - \bar{c}}{2} \right]^2$	273,096.5	245,398.1	256,550 .8	260,7 29.8	255,135	273,577.6	270,848.4
$> N_{N_{\rm eff}}$							

3183 cases

:

i = only imputed values

. اود

٠

TABLE 1

.

Ν.

۲

ŧ

ł

$c_1 = \frac{x_1 - \hat{x}_1}{x_1 - \hat{x}_1}$	lterated Buck	Logarithmic Iterated Buck	Cube Iterated Buck	Arithmetic Smoothing (1)	Multiplicative Smoothing (1)	Arithmetic Smoothing (2)	Multiplicative Smoothing (2)
Σ ε,	-5792.08	-1001.723	-1120.027	-734.073	-661.089	-699.351	-661.261
ι. Σci ²	3,594,429	952,807.2	58973.7	1,024,158	1,007,097	1,022,134	1,013,160
	-1.820	-,315	352	231	208	220	208
$\Sigma (e_i - \bar{e})^2$ $\frac{1}{N}$	148.434	16.454	18.404	16.904	16.827	17.016	16.985

.

.

.

.

\$163 cases i = only imputed values

ч,

i.

TABLE 1

٠

.

١,

.

Ł

.

•

$c_i = r_i - \hat{r}_i$	iterated Buck	Logarithmic Iterated Buck	Cube Iterated Buck	Arithmetic Smoothing (1)	Multiplicative Smoothing (1)	Arithmetic Smoothing (2)	Multiplicative Smoothing (2)
1 cl	-2,252.849	-1040.282	-957.756	-1482.371	-1514.899	-151 2.63 1	-1522.117
Σ c _i ²	4,071,898	122,167.8	119,478.895	202,261.6	221,854.2	213,85 6.469	226,826.703
Σ с i i - _Ň -	799	369	340	526	537	536	540
$\sum_{i=1}^{\infty} (e_i - \bar{e})^2$	1,443.303	43.186	42.253	71.448	78.383	75.547	80.144

i = only imputed values

١,

1

ł

1

4

TABLE 3

$a_i = \frac{r_i - r_i}{r_i}$	lterated Buck	Logarithmic Iterated Buck	Cube Iterated Buck	Arithmetic Smoothing (1)	Multiplicative Smoothing (1)	Arithmetic Smoothing (2)	Multiplicative Smoothing (2)
Σ e _i	-2960.78	-1756.161	-1679.103	-2258.004	-2,305.211	-2295.991	-2320.885
Σci ² i	4,074,304	123,128.9	121,931.687	215,218.4	232,074.2	227,100.922	237,474.719
Σ°Ι Ι Ν	-1.050	623	595	801	817	814	823
$\sum_{i=1}^{\infty} (c_i - \bar{c})^2$	1443.693	43.275	42.884	75.677	81.628	79.868	83.533

1

i = only imputed values

*

ş

TABLE 4

111

.

.

أروان