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Summary

Concurrent seasonal adjustment utilizes all information up to and
including the current month's figure in forming seasonally adjusted data, and
thus should provide more accurate estimates of final ;easonally adjusted data
than the prevalent official method where the seasonal component is forecasted
from data through the preceding December. This paper evaluates the expected
gain, in terms of the reduction in RMSE of seasonal revisions, from employing
concurrent seasonal adjustment.

The framework of the paper is then extended to the case where the
data contain nonseasonal as well as seasonal revisions, the former resulting
from®"preliminary~data error in the first-published, not seasonally adjusted
(NSA) data. It is found that the gain from concurrent adjustment is usually
reduced, often éubstantially, by noise in preliminary NSA data. However an
offset to this effect also occurs since the fo;ecasted seasonal component
must also be derived from preliminary data.

Some of the paperfs results are applied to a linearized X-11-ARIMA
' procedure, using a common seasonal ARIMA model. An analysis of actual series

containing preliminary-data error provides confirmation of the main results.



1. INTRODUCTION

Most seasonally adjusted series published in the U.S. and elsewhere
are formed using a procedure [usually a variant of Census X-11 (Shiskin, Young,
and Musgrave, 1967) or of X-11-ARIMA (Dagum, 1975)] wﬁich, for historical
data, depends equally on the future and past of the series relative to the
figure being adjusted. This is natural, as both future and past observations
generally contain comparable information concerning seasonality at a given
point in the series. However, this means that for seasonally adjusting data
at current and recent time periods, not all relevant information is available.
Thus initial or preliminary seasonal estimates are first determined, which
are ;ubsequently revised as more series values are observed, until the
unobserved futu;e is sufficiently distant to be no longer relevant.

For the initial publication of seasonally adjusted data, the
traditional practice at most institutions has been to determine, at the end
of each calendar year, a set of twelve forecasts of seasonal factorqi/ for-
the following year. These fqrggqgted,iactots are then applied to the incoming
data during the year to form preliminary seasonally adjusted figures, which
can later be revised. Thus, in projected-factor adjustment the observations
from after the preceding December through the current month are disregarded
in forming the current seasonal factor and seasonally adjusted value.

In concurrent seasonal adjustment, by contrast, the adjustment
procedure is Qpplied each month to the entire available series up to and

including the most recent month's figure. Thus the first—published figure

1/ More generally, a forecast of the seasonal “component™ is provided.
However, a multiplicative model is often assumed for post-war economic
time series——y; = (Trend) x (Seasonal) x (Irregular) = C¢S¢Iy—so that
the seasonal Sy is a "factor” of the series yr. The adjustment provided
is thus Xt/St.
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is based on more information than for the projected-factor method, so that

in principle concurrent adjustment should be more accurate with on—average
smaller revisions. Several empirical studies, such as Kenny and Durbin (1982)
and McKenzie (1984), have in fact found this to be thé case, and the merits

of this procedure are becoming sufficiently recognized that it is finding
increasing use. The Census Bureau, for example, has adopted concurrent
seasonal adjustment for several of its Construction Statistics series, with
plans to proceed with more series in 1985.

The purpose of the present paper is twofold. First, assuming that
the series to be seasonally adjusted are stationary or homogeneously noun-
stationary time series, Sections 2 and 3 present a theoretical analysis of
the expected gain, in terms of reduction of the RMSE of the seasonal revisions,
from the use of concurrent seasonal adjustment. This time domain analysis
complements the frequency domain study of Dagum (1983) and is in general
consistent with the findings of the empirical studies cited above: that
significant reductions in rgvigiqgﬁmean_squate can be expected from concurrent
adjustment.

Second, this framework is extended in Section 4 to the case where
the data contain nonseasopal as well as seasonal revisions, that is, where
there is preliminary-data error in the first-released, not seasonally adjusted
(NSA) data. We assume that the nonseasonal revision has mean zero and is
independent of the preliminary NSA figure—assumptions which if violated
would imply the error could be in part anticipated and thereby reduced. We
then measure the degree to which both projected and concurrent seasonal com=
ponent estimates are worsened. Frequently the concurrent estimate undergoes

a greater deterioration, so that the gain from concurrent adjustment is
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reduced by error in preliminary NSA data. However, at least for X-11 and
typical model-based seasonal filters, this reduction in gain may not occur
if data are still noisy 12 or more months prior to the projected seasonal
(e.g., for the December projection made as of the pte;ious December when
NSA data for that month are preliminary).

Section 5 then applies these results to a linear—-filter approxima-
tion to the X-11 ARIMA procedure, using the "Airline” model of Box and Jenkins
which is commonly found to characterize economic and social time series. For

_glven parameter values (including NSA revision variance), the accuracies of
concurrent and projécted-component adjustment are compared with and without
prelfminary-data error.

Section 6 contains an analysis of a component of the Industrial
Production Index, with results essentially as expected from Sections 3

through 5. A summary and conclusions comprise Section 7.
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2. PROJECTED-COMPONENT AND CONCURRENT SEASONAL ADJUSTMENT

The choice between concurrent versus projected-factor seasonal
adjustment can occur with a wide variety of adjustment procedures, and we now
restrict the procedures considered to those which can‘be characterized as
symmetric moving averages (linear filters) applied to forecast—augmented
series. Also we shall be working with additive repreéentations, asgumed
appropriate for the logarithm x¢ of a multiplicative series y., so that
8¢ = log Sy is the seasonal component of x¢ = log yt. Thus we henceforth

speak of “components” rather than "factors,

-~

the former being the logarithms
of the latter for multiplicatively generated series. Appropriate substitu-
tion® in terminology can be made for series which are additive in original
form, or for which an other—than-logarithmic transformation is appropriate.
To seasonally adjust historical values of the series x¢, 1t 1is
asgsumed that a symmetric filter is applied to the series; thus the resulting

“final™ seasonal component determined by the adjustment procedure is

M
Z:—M ijt_j (A_j - Aj)

£
s =
£y

= A(B)x (2.1)
where

M
A(z) = I szi .
j=—NM



-5-

The seasonally adjusted series is then

8 o

x2 = x, = sf = [1-2®))x, . | (2.2)

The Census X~11 procedure is of this form, as are mosé model-based procedures
(with M often infinite for the latter).
Suppose now that it is desired to seasonally adjust xy based only

on data Xt-m, Xt-m-1l,..., £OF some m. If m = 0 this would be concurrent adjust-—
ment; for m = 1, ..., 12 this would be projected-component adjustment. That
.18, the projected—-component adjustment for x¢ = January is based on data

Xt—1» Xt-2s e++; the adjustment for February is based on data x¢-2, Xt=3, «..;
and 8o on, up through the projected component adjustment for xy = December,
which is based on data Xg-12, Xt=13s see . For =M< m < 0 some but not all

of the relevant future (x¢41 x¢+M) 18 available.

"..’
It is assumed that the seasonal adjustment procedure forms an

estimate

M .
8™ = 1 AfWx_y = i ®@)x, (2.3)

j=m

f

of the final seasonal component s;. In particular, if m = 0, then

8¢ = 8{0) = 2 (0)(B)x, = A§O)x, + A{)x,; + ... (2.4)

is the concurrent seasonal estimate, and for 1 { m 12, if x; falls in the

mth month of the year the projec%ed-component estimate 1is

(m)

of = s{® =AM (B)x, = A, o+ A Xepy ¥ eee o (2.5)



b

Note that in (2.5), since X;“)Bm i8 the leading coefficient in A(®)(B), the
value Xy—p 18 the most recent value to enter this calculation. As noted
between (2.2) and (2.3), this value is the previous December's observation if

1 {m < 12. Also, setting m = -M 2 ==,

f

sf = o{™M (2.6)

t

is the final seasonal component.
For any two times t-m and t-n, two estimates sgm) and sgn) of the

final component sf can be calculated. Suppose n { m, so that x is a more

t t-n

recent observation than x¢.p. Then the revision in the seasonal component

estihate sém) is

rt(:m)n) = sgn) - Bgm) (2-7)

and reflects the availability of the additional information Xt-m+1,...,Xt-n-
The total revision in the projected-component estimate sém),

m=1,2,...,12, 18

rg = rgm,-M) - sé’u) - sém) = sﬁ - sg . (2.8)

This quantity can be represented as the sum of two revisions, one (denoted
rg) occurring even under concurrent adjustment and the other (demoted rt)
occurring explicitly because of the failure to use information available on

s¢ at the time (t) of the initial seasonal adjustment of x¢. That is,

=S4y, (2.9)
where
g = rgo,-ﬁ) - si - 8% , (2.10)

is the total revision that would occur with a concurrent estimate, and



r: -=r£m’°) - sg - gP (2.11)

t .

is the revision due to "the failure to employ concurrent adjustment.” From

(2.11), the concurrent estimate is
(2.12)..

Intuitively, concurrent seasonal adjustment should involve smaller
subsequent revisions since it is based on more information, an idea which is
strengthened by relations such as (2.9) and (2.12). We now show formally

" that this is in fact the case for “"forecast augmented” seasonal adjustment

procedures.
-
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3. GAIN FROM CONCURRENT ADJUSTMENT WITH ARIMA TIME SERIES
The foregoing development is8 in terms of a given seasonal adjust-—
ment procedure such as (the linear filter version of additive) X-11, i.e.,
for given weights Aj and X§m) in (2.1) and (2.3); but‘nothing has yet
been said about X, or its "true” seasonality. In particular sg has been
defined by the procedure, whereas in model=-based procedures s{ i8 an estimate
of an unobserved true seasonal component, say s,. We shall cqntinue not to
require a definition of a true seasonal; however, to investigate further the
properties of concurrent adjustment it is necessary to know something about
Xpeo
It is supposed that the observable series x, has the representation
A(B)x¢y = ¥(B)ag (3.1)
where :
©
Vv(z) = 1 wjzj
j=0
is nonzero and absolutely convergent for |z| < 1, the zeros of A(z) are on

the unit circle, and {a;} is a white noise sequence. The series
wt = A(B)xt

is thus a stationary nondeterministic time series. A common example of (3.1)

is the "Airline” model
(1-8)(1-B12)x, = (1-6B)(1-6B1%)a, (3.2)

with [6] <1, |e]| < 1.
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Revisions can depend in general on the entire past history of the
series; however, it is natural for a revision rt(“’“) to be a function only
of the new information contained in the values Xt—m+l,...,Xt-n, that is, of
the innovations a¢—m+l,...,2t-n (lest it be partially‘anticipated from
information already available). This will be true if (and only 1f) the
seasonal estimate sé“) in (2.3) can be obtained from the application of the
central (symmetric) filter A(B) to the series x extended by a set of fore-

casts from its model; that is, if

@ = aEx (3.3)

t-m

where the extended series xgt) consists of actual values X , X _1, e+
prior to and including time t=T and minimum MSE forecasts (at origin 1)
based on the model (3.1) for times T1+l, T1+2, ... (here t=t-m). Assuming
this to be the case, it was shown in Pierce (1980) that the revision rgm,n)
in (2.7) follows a moving average process of order m—n-l,

m-1

rém’n) = I ujat_j (3.4)

j=n

where the {u's} are obtained by equating coefficients in the formal expan-

sion of-
u(B) = A(B)A"1(B)¥(B) . (3.5)

We therefore have the following results:
(1) The revision r: in (2.11) avoided by employing concurrent
adjustment follows the stochastic process
m-1

*
r, = I U; a,_ 3 (3.6)
t j-ojtj'



(2) the three quantities r: (the revision avoided by concurrent
adjustment), tg (the revision with concurrent adjustment), and sg (the
initial estimate) are all orthogonal (they are based on nonoverlapping
segments of the series {at}); and thus

(3) the reduction in the revision MSE from employing concurrent
adjustment is given directly by

o1

a% - Var(r:) - oi z u§ o ‘ (3.7)

j=0

As noted, m can take on values 1, ..., 12 depending on Qhether Xt

falls in the month January, ..., December. Thus {r:} is a periodically

correlated process, being marginally white noise in January, MA(1l) in February, .

eee, MA(11) in December. The variance (3.7) is correspondingly periodic, being

oM

2,2 2

2,.2 2 2

for January, February, ..., December.

For X~11 and other seasonal adjustment procedures, the “center
weight™ u, is typically much larger than the neighboring weights ui, u2, . o
The variances in (3.8) are thus of comparable magnitude, and this supports
two earlier empirical findings: (1) that there are comparable gains from

concurrent adjustment in all months of the year, and (ii) the gain from



-]ll~-

decreasing the length of projection (increasing the frequency of revision) to
(say) six or three months is far less than the gain from moving to a fully
concurrent adjustment.

The presence of the 'uoat term in r:, or eﬁuivalently the ‘ont'
term in sg, also explains to a large extent why data appear to be smoothed
after seasonal factor revision. Under projected-component adjustment this
term, though known, is not removed from.the first-published SA figure, and
%

thus an amount u is added to the variance.. Therefore, when the term u_a
a o%t

is removed (for the first annual revision at the end of the year) an amount

ugdg is taken from thé adjusted series' variance and added to the seasonal
compbnent variance, thus smoothing any aberrant movements (unusually large ag
values) in the series. This phenomenon is solely an artifact of the failure
to employ concufrent adjustment: when‘pfeliminary data are optimally (i.e.,
concurrently) estimated the term uyay (and earlier terms) are absent from both
the preliminary SA data and the revised data, giving the preliminary figures
a smoother appearance. __
It 1is ﬁlso of interest to determine the gain from concurrent seasonal
adjustment in relative terms. In Sections 5 and 6 we give examples estimating

the ratio of the population root mean square revisions with concurrent and

projected-factor adjustment, which is

-1 2 172
sD(rg) _ og - o2 |12 i} j.fx " (3.9)
SD(rP) o2 ‘ m;I 2

3—u 3




The gain from concurrent adjustment under these circumstances is
entirely realized in the first year. That is, assuming that under concurrent
seasonal adjustment annual revisions continue to be made after December of
each year, and only at those times, the annual revisiéns after the first-year
revision are the same whether concurrent or projected-component adjustment is .
used. But for the initial annual revision, since t-m and t+l12-m are the times'
of the Decembers preceding and following observation t (occurring at month m),

this first-year revision is

rgo,m’].Z) = T

Hi8po (3.10)
j»m-12 3763

(which 1s 0, for example, for a December) for comcurrent adjustment and

=1
1.ém,m—lZ) - T

+ réo,m-12) (3.11)
j=m—-12 '

- *
Hi8e-3 T Tt

for projected-component adjustment. Therefore the ratio of the two expected

first—year RMS revisions is

-1 m-1 1/2
l: z u§ /X ug] s (3.12)
m-12 m-12

which is the right member of (3.9) with m~12 replacing -M.
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4, EFFECT OF ERROR IN PRELIMINARY NSA DATA

The gain from concurrent adjustment was derived in the preceding
section under the assumption that actual (final) NSA data were available
through the month being adjusted. However, the availgbility of the final
NSA value is frequently delayed, and thus a preliminary estimate of the NSA
figure 1is first conmstructed. The question then arises of whether concurrent
adjustment applied to this figure (or figures, as several months' values may
be not yet final), containing an as-yet unremoved error, is still preferable
to forming the preliminary seasonal estimate nonconcurrently (which might
gstill not be from error—free data, depending on whether the most recent
values used at the time of projection were preliminary). Under certain
assumptions on the NSA revisions, this section measures the effect of error
in preliminary NSA data on the gain from concurrent adjustment.

Suppose that the NSA series x¢ can be represented as

x¢ = X¢ + Re (4.1)

where X¢ is the preliminary NSA»value and Ry is the revision, which is unknown
at.time t. It is assumed that the revision Ry is independent of all quantities
known at time t-—which inglude Xty Xt=1, oo as well as xX¢~-d, Xt-d-1, --- and
Rg-4»> Rg=d-1» ¢+, where d is the number of periods following time t before
the final figure (equivalently the revision) is known. It is moreover assumed
that Ry is identically distributed and stationary over time, and in particular
has zero mean and constant variance. While this may represent an ideal situa-
tion, it hopefully will be at least approximated in practice. For example,

if R were serially correlated at lag d or greater, or cross correlated with
Xe-j for j>0, then this revision could be in part predicted and the preliminary

figure X, thereby made more accurate.



4.1 Single Revision with One=Month Delay

Suppose first that d=1, that is, the final figure x, is known one
month later. Then Ry is white noise. Under concurrent adjustment the filter
l(°)(B) as in (2.4) is applied to the series X, xt—l; Xe_gs oo to produce
an estimate

~

o8 =2fx +afo)x 4 ... (4.2)
- x(O)(B);t

where x¢_y = X 4f § = 0 and x; 1f § > 1. The difference between this and
the goncurrent estimate if x, were known 1is
e _Te o3 (0)
8t =8¢ 2 R (4.3)
The analogous situation under projected—component adjustment depends
on how the presence of preliminary data error affects the timing of the annual

projection. In the present (d=1) case we can distinguish three possibilities:

(1) assuming the current month t is a December, project the following
year's factors based on Xy, Xt-], -+, acting as if X; were x¢;
(i1) wait a month and base the projected factors (which will include
a concurrent factor as in (4.2) for January) onm Xg4], Xg, Xg-1»
cee; OT
(111) wait a month, ignore the preliminary January figure X 4; and
base the projection on Xp, X¢-1, -++ (exactly as could have

been done a month earlier were there no preliminary data error).



The alternative (iii) requires the projection of thirteen months' seasonal
components (12+d months in general). Choosing (ii) rather than (1) simply
shifts the annual projection by one time period. Thus we assume that the
alternative (1) is employed.

Therefore, letting t denote the ath month (1<m<12) of the forthcoming
year, to estimate the compoment sg the filter A(“)(B) in (2.5) 1s applied

to the series X¢wp, Xt-pm~1» -+, yielding

~ (m)
sf = xéxm)xt-m + Apt1Xeqm-1 * e

- @ @yx . (4.4)

The difference between this and the projected estimate (2.5), representing

the effect of error in X¢—p, 1is
- m
of - of = (MR y . (4.5)

Subtracting (4.5) from the analogous expression (4.3) for the concurrent

estimate, we obtain

s - sp =R - A{WR._, +sf-ep ,

t
or
ARV WLV CO T (4.6)
where
T = 8C - P ) 4.7)
o1 -
<T bty + DR R .0

is the revision avoided by concurrent adjustment with error in the preliminary

NSA data.



Since r: is a function only of By ooy Bp g t: is nncorrel;ted
with Rep; and since Ry 1s by assumption independent of X¢, Xewi, X¢=2, ..
and R._;, nt-Z’ eeey it follows that Rt is8 uncorrelated with ;:, which depends
only on X;, (Xpaj+Re-1), ¢ee, 1.e., on quantities knoén at time t. Consequently
the pairs of terms on each side of (4.6) are uncorrelated, and taking variances |

we therefore have

o2 + (0 (®)262 = 62 + (1(°))%e2
or

o} = o} + [ {®™)2 - W {eNH21ed . 6.9

Thus the gain from concurrent adjustment for noise-free initial
series, o%, is decreased by an amount (A§°))26§ reflecting error in the value
Xt (causing a deterioration in the concurrent adjustment) and increased by an
amount (kém))za% reflecting error in the value X._, (causing a deterioration ;
in the projected-component adjustment).

Analogous to equation (3.9), it is of interest to determine the
relative magnitudes of the projected and concurrent revisions in the present
case of NSA preliminary data error. Since the variances of the concurrent and

projected-component revisions r{ and r} are, respectively,

-1
03 T u% + c%(kgo))z
=M

and

m-1
2 2 2/y (m)y2
o I us + on( )
oy 3 T or(Ag )7

the ratio of the standard deviations of these two revisions is



-1
SD(TE) _ j-—!(“j + Yo (4.10)
1
SD(?E) ﬂ; Hy + v(k(m))2
gt 3

where

v - o%/og

is a measure of the size of the revisions relative to the innovations in the
error-free series. Note that v { 1, since the innovation variance of x, 63,
is at least as big as the sum of the innovation variances of X and R, the
latter being o% itself.

N Equations (4.9) and (4.10) show the effects of preliminary-data
error oh the gain from concurrent adjustment, the gain being measured by the

reduction in variance of the seasonal revisions. As expected, error in the

current NSA figure X, reduces the gain from concurrent adjustment; however,

-~

error in X, _ (the previous December's value) increases az since the informa-

tion ignored by the projected-factor method includes the December NSA revision
Rg-p in addition to the available current-year data.

For projecting the months January through November, for X-11 and
generally for model-based procedures the weights lgm) are small relative to
the center weight A§°), 8o that 33 is less than 03. On the other hand, the

(12)
December projected value s8¢ in general depends more heavily on the previous

December's value, since Xi;Z) is..typically larger than kil), sesy Xiil)——see
Table 4 of Section 5, for example. Therefore the presence of NSA data error
would be expected to cause a greater deterioration in the projected-component
estimate for December than for the other months. This deterioration may in

fact exceed the deterioration in the concurrent estimate for December, as

seen for example by the occurrence of A(lz) > lgo) in Table 4.
: 12



4,2 Several Successive Revisions

When error in NSA data persists for more than one month, with
possibly more than one successive revision leading to the final NSA data, the
situation is more complex. For example, in some of tge retail trade series
published by the Census Bureau, an "advance” figure i8 revised one month
later to a "preliminary™ figure which after another month is again revised to
the final figure x¢. And the Federal Reserve's money supply and industrial
production series typically undergo several revisions.

. Thus, suppose that there are k successive revisions (some may be
zero), so that the data are final after k additional months. Let the succes-

sive revised values for month t be Xor (the initfal NSA figure), Xit, see,

Xkt = x¢ (the final NSA figure). Define Ejy, Rir, 1 < 1 < k, by the relations

xt = Xk-1,t + Exe = Xk-1,t + Rkt
= Xg-2,t + Ex-1,t + Ekt = Xg-2,t + Rk-1,¢t
- X1¢ + Egp + oo 4 Epq = X3¢ + Rpe
= Xot + Bjt + E2¢ + eee + Eg¢ = Xo¢ + R3¢ (4.11)

The quantities

Efe = X3¢ — X1-1,¢

are the incremental revisions na&e in each time period; Xy 1s observed at
time t, adjusted by Ej. (revised to Xj;) at time t+l, and so on until at time
t+k the time-(t+k~1) figure Xy-j,t is revised by the amount Ext to produce

the "final™ figure xy. The quantity



Rig = : Eye (4.12)
=i
represents the revision yet remaining in Xj_j, ¢ required to produce the final
NSA figure x¢.

There is an interesting analogy between (i) Xy, and a (k-1i)-period )
forecast of xy, (i1) Rjyy and the (k-i)-step—ahead forecast error, and (iii)
{E{¢]} and updates to forecasts. The terminology used for each set of
quantities reflects primarily the time origin: a constructed figure X
is a forecast (with corresponding updates, forecast errors, and actual
valgs) if we are at time t'<t, while X; is an estimate (with corresponding
revised values, revisions, and final value) if the current time is t">t.
Also, in the latter case the final value may still be an estimate.

To compare concurrent and projected—component adjustment, it is
useful to consider information known and unknown at a given time t, whigh is
summarized in Table 1. Part (b) of this table shows the updates or "elementary”™
revisions Ei,t-j added to each”aé:yet—éreliminary figure at each time period.
The updates El,t-I’ see, Ex t-k along the main diagonal are the quantities
which become known at time t. (In the ARIMA forecasting amalogy they would
correspond respectively to the forecast updates Yyat, ..., Yja¢ of what
previously were k-step, ..., l~step forecasts of X¢—1, see, Xe-k)e

As in Section 4.1 (where d=1, Xor = X¢, and Ej¢ = Ry = Re), we
assume that the information at iﬁy given time t 18 “optimally” used in
calculating the preliminary values Xg¢, X1,t-1s *+e» Xk-1,t-k+l» in the
sense that the remaining revisions at that time (i.e., everything in part
(c) of Table 1) are uncorrelated with any existing data (parts (a) and (b)).

Thus Ryy is independent of everything known at time t+i, and the {Eit} across
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a row in (b) and (c) of Table 1 are a univariate white noise sequence.
However, along a northwest/southeast diagonal the Ej, are correlated as they
are all functions of (and only of) the information which becomes available at
time t. .

Under concurrent adjustment, therefore, the series to which the
filter l(o)(B) is applied 1s Xg, xl,c-l’ aeesy xk-l,t-k+l’ Xpaks s

resulting in the seasonal component estimate

~ (o) (o) (o)

g = )\ + o+ X Xp_q .o + A
t Xoe g k-1, t=k+l * A

+ LN N ] ” 4.13
o Xe-k (4.13)

and the difference between this and the estimate which could be determined if

there were no preliminary-data error is

(o) (o

)
c R + eee + A - .
1t -1 Ko tokH1

- aC o
8¢ 8¢ A

o

Similarly, with projected-component adjustment

&P A(m) + + x(m) X + A(m) +
se A, To,em t e A LTtk YA Temek RPN
and
~ (m) (m)
BE - sg = Am Rl,t-m toees t xm+k_1Rk,t—m-k+l *
Therefore, analogous to equation (4.6),
* s x(m)n + + x(m)
rt m 1, t-m i ﬂ"‘k"lkk’ t-m—k+1
~x (o) (o)
=r + A R + cee + A - (4.15)
e ¥ B mq K, £kl
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or

(m)* ~ (0)”
rp +A  Bep =T +A

~

R, (4.16)

~ ~

where the k~dimensional vectors in (4.16) are defined in an obvious way from
(4.15). By arguments directly analogous to those in the paragraph following ‘

(4.8), it follows that

or

~a 2 (m)‘z A(m)

Ck =05 + X (4.17)

~ ~ ~

where I is the covariance matrix of R¢.

~

For example, if k=2 a preliminary figure Xg¢ is revised twice_

to produce

X1t = Xot + E1¢

and

X2t = Xo¢ + E1¢ + E2¢ = Xot + R3¢,

so that Rp¢ = E3¢. Thus Ry = (Rye, Ry, ¢-1)" and the elements 044 of I are,
with o} = Var(E.),
011 = Var(th) - 0'12. + U%

2
022 - Vat(Rz’t_l) - 02

012 = Cov(Ryt R2 t-1) = E(Eyc B2 ¢e-1) -



2=

Therefore, from (4.17) and assuming as before that the distributions are

~

stationary, the expression analogous to (4.9) for the variance of r: is

~

of = o + [(A{®)2 - (2())2)(6? + oD
+ ()2 - (r{°)21q3

MR UL (4.18)
In terms of the variance effects, the gain frﬁm concurrent adjustment (for k=2)

" 1s seen from (4.18) to be reduced from the presence of lg°) and Agl), that 1is
from.a deterioration of the concurrent adjustment resulting from the noisy
current and previous months' data. On the other hand the noise or error in
NSA data also causes a deterioration in the projected values which is seen
(from the A&m) and li:; terms) to increase the gain from concurrent adjust-—
ment. This effect will be strong relative to the current effect for bo;h the
November and December seasonal projections; it is the term Apt] in the filter
A(m)(B) which multiplies the November value.

Finally, generalizing equation (4.10), the ratio of expected revision

mean squares under concurrent and projected-component seasonal adjustment is

-1 - 1/2
~C z u} + ozz X(O) I A(O)
RHS(rt) - M ~ ~ . (4.19)
RMS(¥P) L 2 -2 (m)” (m)
t z uy +o,% A A

.M ) ~ ~
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5. APPLICATIONS TO X-11
We now apply some of the previous results to the Census X-11 program
for seasonal adjustment (Shiskin, Young, and Musgrave 1967) or more precisely
to a variant of the X-11 ARIMA procedure (Dagum 1975); confining ourselves to
the cases of no error in preliminary NSA data (Section 3) and of a single-
month revision in the NSA data (Section 4.1). We obtain in this section some
predicted or expected effects of concurrent seasonal adjustment, by substitut-
ing for A(B) a linear filter approximation to the X-1l program, for ¥Y(B) a
_ common ARIMA model for economic and other time series, and for v a range of

plausible variance ratios.

5.1 Linear Filter Approximation to X-11

For historical data the X-11 and X-11-ARIMA procedures consist
largely of a set of symmetric linear filters applied to the series to estimate
its seasonal component, which can be written in the form
M .-

L

xl e = A(B)x. . | (5.1)
3

f .
8¢
For the standard-option seaéonal filter the value of M is 82, 84, or 89

according to the detrending filter chosen; however as shown by Young (1968),

to a very close approximation the symmetric moving average in (5.1) is given

by
42
NORSE A % = 1(8)[1 - g(B)] , (5.2)
-42
where

g(8) = 186 (1+3B)(1+B+...+Bl)
24

1



is the filter for computing a centered 12-month moving average, and

2(B) = _1 B-36 (1 + B12 + B24)(1 + B1Z + B24 + B36 + B48)
15

corresponds to a centered "3 x 5" moving average of like months in adjacent
years. Because of this result, equations (5.1) and (5.2) will be used here
as the linear filter approximation to X-1l.

Figure 1 presents a graph of the coefficients Mg, =42 { k < 42,
The largest values are at O and at multiples of 12, and the negative values
in between result in IAp = O,

. Similarly, for the seasonal adjustment of data near the end of the
sample period, and for projected—-component seasonal adjustment, the filtering
procedure in X-11 can be expressed in the form (2.3); see Wallis (1982) for a
fuller description. However, for computing sé“), X-11 uses a different set
of weights {Aém)} for each m, weights which are determined & priori rather
than in accordance with the model fox x¢, and thus the condition (3.3) is not
met. By contrast, the ~X-11~ARTMA" vé&tant proceeds by forecasting (and
backcasting) the series and applying the central X-11 filter to the extended
series as in (3.3), and it is this procedure to which the present section's
results apply, although as a less accurate approximation they may also indi-
cate what might be expected from X-~11 itself. The filters X(m)(B) therefore
depend on the uo&el chosen; as an {llustration, Figures 2 and 3 present the
concurrent and 6~month-ahead filters A(°)(B) and A(®)(B) for the Airline

model following.



5.2 Airliine Model

The model
(1-B)(1-B12)x, = (1-6B)(1~6B12)a, . (5.3)

has been found to effectively represent a large number of practically occurring
time series. It was first fit by Box and Jenkins (1970, Chapter 9) to a
series of logged monthly passenger totals in international air travel and has
thus become known as the Airline model. Additionally, with suitable values
of the parameters 6 and ©, it is close to the observable-series models found
to be implied by the X-11 and X-11 ARIMA procedures (Burridge and Wallis 1984,
Clev&land and Tiao 1976). We shall examine in greatest detail this model
with parameter values 8 = .4, 6 = ,6, corresponding to those obtained by Box
and Jenkins for the Airline data, though in Section 5.5 we also consider
other sets of parameter values. The values 0 = .4, © = .6 are close to the
range of those implied by the Cleveland-Tiao and Burridge-Wallace models, and
while a somewhat smaller ©-value may give a slightly improved X~-1l approxima-
tion (Bell and Hillmer 1984), somewhat larger values are often observed in
practice, so that the original airline—data value of © = .6 seems like a
useful compromise; moreover Burridge and Wallace observe a robustness in that
modestly different models are all capable of approximating fhe filtering
characteristics of the X-11 procedure.

Given the model (5.3) with 6 = .4, @ = .6, we can calculate the
leading coefficients in u(B) in (3.5) [with A(B) = (1 - B)(1 - B12)]
and the various quantities which depend on m such as the variances c%

in (3.7), the ratios in (3.9), and the analogous measures in Section 4.

Additionally we shall make use of the coefficients A§m) in



A(@) () = A(B) [u(B) Im | - (5.4)
¥(3)

where

[h(B)], = b B® + n 8% + .,

denotes the operator whose coefficients hj of B} are identical to those of
h(B) if j>m and are 0 if j<m. For comparison of projected~component and
concurrent adjustment our interest is largely inm = 1,...,12,

In analyzing economic time series the changes, or rates of change
~1n the case of logged data, are frequently of at least as great an interest
as the levels. Thus our comparisons are given for both levels and changes of
the series. To the extent that the linear filter version of X-11 is an
accurate characterization, the seasonal component for the change in a series
is the change in the seasonal component for the levels series. Thus A(“)(B),
u(B) and the ensuing quantities can be determined for changes by removing

(1 - B) from the model, that 1is using A(B) = 1 - 812 45 (3.5).

5.3 No Revision Error in NSA Data

Equations (3.9) and (3.12), based respectively on total revisions
and first-year revisions, show the ratio of the revision standard deviation
from concurrent adjustment to that from projected-component adjustment. These
ratios lie between 0 and 1; the smaller a ratio, the greater the gain from
concurrent adjustment. The total and first-year revision measures are respec—

tively of the form [k/tmll/2 and“[km/fmlllz, where the quantities



-1
k= & u§ (5.5)
-42

= ,110 (levels), .125 (changes) |,

e

= Ikt . (5.6)

k, = - u? (5.7)
m-12 iz
and
o1
fo = L u§ =k, tcp . (5.8)
m12
are (1/03) times the revision variances under concurrent [(5.5) and (5.7)]
and projected-component [(5.6) and (5.8)] adjustment, for total [(5.5) and-
(5.6)] and first-year [(5.7) and (5.8)] revisions.
Table 2 shows these variances, and also gives the values
Cp ™ (1/03) Var(r:) - m;1 u%
j=0
as in (3.7) and (3.8). Regarding the series levels, note that the variance
Cpo of the revision r: due to the failure to concurrently adjust, increases
dramatically at m = 11, 12 as does the variance of the total revision, ty.
The variance of the first—year revision with concurrent adjustment, kp, is
less than that from projected-component adjustment, fp, for all twelve

values of m. For series changes, the variance cp increases monotonically,

but less dramatically at m = 11, 12 than is the case for levels. However,
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cp for changes jumps quite dramatically at m = 2, as does the variance of the
total revision, ty. The variance of the first-year revision with concurrent
adjustment, k,, is substantially less than that of the projected—component
adjustment, fy, for m = 1, ..., 12. Also, note that éhe first-year revision
variance with concurrent adjustment drops off by at least two thirds for m>l. .
Table 3 shows the ratios (3.9) and (3.12) of the revision standard
deviations under concurrent adjustment to those under projected-component
adjustment. In all cases the ratios are smaller for m near 12 than for m
near 1, reflecting the greater amount of information ignored by the projected-
component method later in the calendar year. The ratio of the standard
deviations is smaller for the first—-year reyisions than for the total
revisions, which is expected since the subsequent revisions are unchanged
under either procedure. The zero value for December is because the first—year
revision utilizes no further information than is already available for the
December concurrent value. Table 3 also reveals that the gain from concurrent
adjustment is greater for changes_than for levels, a phenomenon which has

also been observed in empirical studies (e.g., McKenzie 1984).

5.4 Single-Month Revision in NSA Data

Continuing with the linear—~filter approximation to X-11-ARIMA and
the Airline -odel.(5.3), we wish to determine the effects of preliminary—-data
error on measures of the gain from concurrent adjustment, such as those shnwn
in Table 3. We confine attention to the case in Section 4.1 where the pre-
liminary NSA data are revised once one month later; and we further conmsider
only the total seasonal revisions. As seen in Section 4.1, two effects in

offsetting directions are present: the current month's value is known less
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precisely, increasing the revision from concurrent adjustment; and last
December's value was known less precisely at the time of the seasonal projec-
tions, increasing the projected-component revision. ?rom (4.10) these effects
depend quantitatively on the relative magnitudes of the leading coefficients
X§°) and Aém) of the filters A(°)(B) and A(“)(B) used in concurrent and
projected-component adjustment (of the series value for the mth month), and
on the ratio v of the variances of the revisions Ry and series innovations
a.. Table 4 gives the first of these, the coefficients l£°) and X&m)l

Table 5 presents the values of the ratio of standard deviations
(4.10), for levels and changes of the series and for a range of variance
ratios v. Several observations can be made about these results. As one
progresses downward (as m increases), the entries generally decrease, although
they are quite stable for the majority of "central™ m values (generally
excepting January, November, and December). As was the case without NSA data.
error (Table 3), the revision RMS ratios for December and to a lesser extent
November exhibited the greatest deteriorations relative to the preceding
months, resulting in the largest payoffs from the concurrent procedure.

To assess the effects of preliminary~data error, it is of interest
to compare Table 5(a) with the first column of Table 3 and Table 5(b) with
the second column. As perhaps expected, the effects of small amounts of NSA
data error, say for v = .01 or .1, are very slight; the gain from concurrent
adjustment is about what it would have been had the initial NSA figures been
final., However, as we move across Table 5 the situation deteriorates markedly.
When the variance of the revisions Ry approaches that of the revised NSA
series' innovations (when v is near 1), there is a much reduced gain from

concurrent adjustment for all months except December. In terms of equation
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(4.10), since Xg°) is much larger than lg?) for 1 < m < 12 (Table 4), increas-
ing v results in a faster increase in the numerator than in the denominator

of this equation.

5.5 Effects of Parameter Changes

The foregoing results were all for a given model and parameter
values, and it is of interest to see how variations in the model can affect
the performance of concurrent adjustment. Table 6 gives the same information
as in Table 3, for four additional configurations of Airline-model parameter
values. The basic pattern is the same: all ratios are less than 1 (concurrent
sggsonal adjustment is superior) and decrease as m goes from 1 to 12 (the
superiority of concurrent adjustment increases as one progresses through the
months of the year). |

The effects of error in the preliminary NSA data for these four
models were also computed, and were found to be comparable to those for'the

Airline~data parameter values in Table 5.
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6. EMPIRICAL EXAMPLE

We illustrate the foregoing results by analyzing one of the compo—
nents of the Federal Reserve's Industrial Production Index, namely the Index
of Nonelectrical Machinery, over the period 1970-1983; The series of final
NSA values (in logarithmic form) is shown in Figure 4. The preliminary data .
for a given month are firﬁt released on or near the l4th of the following month
and then undergo three successive monthly revisions, as shown in Figure 5 for
the year 1980. Thus, in the notation of Section 4.3, k=3 and the historical
record consists of the four series {Xg¢}, {X1t}, {X2¢}, and {x¢}. However,
to obtain a more direct comparison with the numerical X-11 calculations in
Sectfon 5 for a single month's delay, we took X3¢ as the preliminary-data
gseries (so that k=1); thus at a given time t (from April 1970 onward) the

available data are

;t = X9ty Xeg=1ls Xg=2s oo .
We chose a sample period of Jamuary 1977 through December 1980, consisting of
48 months. This gave six initial years with which to begin the ARIMA modelling
and the X-11 ARIMA seasonai adjustment (moreover a major re—benchmarking of
the NSA data occurred in 1976), and three subsequent years from which to
compute final seasonal component estimates.

?or the eight sample periods ending in December for the years 1976
through 1983 we made the following basic calculations, illustrated for the

period ending in 1979:



1. An ARIMA model was fitted to the series as of the end of 1978

(to the series ;t with t denoting December 1978). This model was of the form
(1-41 B~$,B2)79, 5x, = (1-6B12)a, . (6.1)

and Table 7 gives parameter values for this period and the other seven samplec
periods used.

2. An additive X-11 ARIMA procedure was used to obtain projected
seasonal component estimates, ;g as in (4.14), for the year 1979.

3. This same procedure (and with the same ARIMA model) was applied
twelve times, on data ending in January 1979, ..., and in December 1979 to
obtadn concurrent seasonal component estimates, ;g as in (4.13), for each
month of 1979.

4, Fiom the X-11 ARIMA run in (2), "first-revised” seasonal
component estimates were obtained for the year 1978.

5. Steps 2 and 3 were also run using final historical NSA data
(x¢ rather than ;t) for comparison purposes.

In addition, based on the entire sample period, final seasonal
component estimates were obtained for the years 1980 and earlier. From these
figures the revisions rf, rP, ;g, and ;%, for t ranging over the
48 months January 1977 through December 1980, were obtained, their empirical
mean squares calculated, e.g.,

12-80 .
RMS(r) = [(1/48) I (£5)2)/2 (6.2)
1-77
and the appropriate RMS ratios (the empirical analogues of (3.9) and (4.19))

determined. All of this was done for changes as well as levels of the series.
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The results of this analysis, summarized in Table 8, are generally
in agreement with the findings of Section 5. For example, the gain from
concurrent adjustment is reduced by the presence of preliminafy—data error
(RMS ratios of .96 rather than .84 for levels and .71.tather than .57 for
changes); but there still is a gain (the RMS ratios .96 and .71 are less than .
1). Moreover, as expected the biggest payoff from using concurrent adjust-
ment is in measuring the changes (growth rates) of the series; a 29 percent
reduction in RMS revision for changes versus a 4 percent reduction for levels.
(These are for total revisions; as in Tables 3 and 5 the proportionate reduc—

tion in first-year RMS revisions would be still greater).
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7. CONCLUSIONS

This study has shown theoretically the expected gain from concurrent

seasonal adjustment, including the case of preliminary not-seasonally-adjusted

(NSA) data error. The expected gain 1s calculated in terms of the reduction

in root mean square error of revisions. The gain from concurrent adjustment .

is found to be reduced by the presence of error in the NSA data, but not

eliminated.

Some specific findings are of interest.

1)

Tﬁe seasonal component estimate at time t-m, sém), and the
revision in that estimate between times t-m and t-m, rém,n).

are expressed as linear combinations of, respectively, the
historical data and the innovations in the incoming series
values. This leads to expressions of the MSE of the “penalty
revision; of projected-component adjustment. The MSE of the
penalty revision is found to be periodic: agug for January,
0§(n§+u%) fbr'Feprqgry,_and so on, where the u; are coefficients
in the expression of the revisions as linear combinations of

the series innovations. These expressions for revision MSE are
dominated by the term containing the center—weight term ug,
which supports the earlier empirical findings (1) that there

are comparable gains from concurrent adjustment in all months

of the year, and (ii1) that the gain from increasing the frequency
of piojected-component estimation (say, to every six months or
even to every two or three months) is far less than the gain

from moving to a fully concurrent adjustment.



2)

3)

4)
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The revision procedure (fot already-published seagsonally adjusted
data) which 18 currently in widespread use is revising initially-
published estimates only once a year, after every December. If
concurrent seasonal adjustment is emplo&ed under such a revision
scheme, then the gain from concurrent seasonal adjustment 1is

L et ora s | o PPN - P N
4ALBL yeaLe agwever, oLuer rIeyv

PO Ay e B £
éntirely I

realized in the
schemes have been advocated=—such as every month revising the
one-month~ago and twelve-months-ago figures——and the gain from
concurrent adjustment under such alternative revision schemes
may well extend past the first year.

When preliminary-data error exists, the uncertainty in the
concurrently determined value is increased. However, deteriora-
tion 1{s also observed in the projected—component estimates for
December and other end-of-year months for which non-seasonally-
adjusted data are still preliminary when projections are made.
The deteriora;ipgviqhthe_yrojected-component estimate may exceed
that of the concurrent estimate for December, so that even with
preliminary-data error a substantial gain from concurrent
adjustment ;s realizable, especially for the latter months of
the year.

Using typical forecast—augmented series (from the "airline”
ARIMA model) with Young's linear approximation to Census X-11,
theoretical root mean square revisions under both projected—
component and concurrent adjustment are calculated, for both the
level of the series and the month-to-month change (or growth

rate). The ratio of the revision standard deviation under
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concurrent to that under projected-component adjustment is
calculated; the gain from concurrent adjustment is expressed as
1 minus that ratio. A gain 18 always observed, but to varying
degrees. The gain from concurrent adju;tment is greater for
changes than for levels. Without preliminary-data error, the
theoretical gain with concurrent adjustment for total revisions
is 18 to 30 percent for levels and 28 to 32 percent for changes,
with a markedly increased gain in the latter months of the year.
In the case of one month of preliminary-data error, calcula-
tions show the decreasing g#in from concurrent adjustment as the
degree of this error increases (measured by the variance of the
revisions due to preliminary-data error relative to the variance
of the revised NSA series' innovations). For éxample, when the
variance of the revision is half that of the revised NSA seriesf
innovations, the gain from concurrent adjustment for total
revisions is 9 to 27 percent for levels and 15 to 29 percent
for changes. Substantial gains from concurrent adjustment are
still present for the latter months of the year. These results
hold for ;Vrange of values of the parameters in the ARIMA model
used to produce the forecasts which augment the series.
The theoretical results are illustrated with an empirical
example, the Federgl Reserve Board's Industrial Production
Index, a monthly serieé which undergoes three NSA preliminary
data revisions. As expected from the preceding theoretical

results, concurrent adjustment exhibits a gain, but one which



is reduced by the preliminary data error. However, the gain
~ (for total revisions) from concurrent adjustment for month-to-
month changes (i.e., the growth rate) in the series remains

substantial.



Table 1. Information Known and Unknown at Time t for a Series Xt

with Preliminary-Data Error

(a) Known (b) Representation in Terms of (¢) Unknown Revision Remaining
Observation Initial Data and Incremental
Revisions
Xot *0t Rig = Ejy + Exp + .00 t Ek"l;t + Exe

X1,e-1 Xo,e-1 + B1e-1 R2,e-1 = Eg,e=1 + eoe + Bygg e + B e
Xy-1, t-kHl Ko, t-k+1 + B1,t-ktl + ooo + Eg-l t=kt1 Rk e-k#1 = Ey, t-k+1

X, t-k ™ Xe-k Xo,t—k + E1,e-k + eoo + Epop t-i + Ei -k Y




Table 2. Revision Variances (Normalized by 03), Airline Model

(a) Levels

(b) Changes

m Cm tm kn fm Cm tm Km fm
1 053 164 037 .090 117 242 019 .136
2 .058 .168 .034 .092 . 143 .268 003 . 146
3 061 171 .033 .093 J144 .268 .003 146
4 .062 . 172 .032 .094 . 144 .268 002 . 146
5 .062 .172 .032 094 144 .269 .002 .146
6 .062 172 .032 .094 . 145 .269 002 . 146
7 .063 173 .031 .094 145 .270 .002 147
8 .065 .175 .030 .095 .146 .270 .0014 . 147
9 .070 .180 .027 .096 146 271 .0010 . 147
10 .078 .188 .021 .099 146 271 .0006 147
11 .091 .201 .012 .103 .147 .272 .0003 o147
12 .109 .220 .000 .109 « 147 .272 .000 .147
k = .110 k = ,125
Legend
¢yt varlance of r:, revision avoided by concurrent adjustment.
tpt variance of total revision, projected-—component adjustment,
kp: variance of first-year revision, concurrent adjustment.
fm: varlance of first-year revision, projected-component adjustment.

variance of

total revision, concurrent adjustment.



Table 3. Ratio of Revision Standard Deviations Under

Concurrent and Projected=Component Seasonal Adjustment,
Airline Model with 8 = 4, 8 = .6

Total Revisions First-Year Revisions

Levels Changes Levels Changes
1 .821 .718 .640 .371
2 .809 .682 .608 137
3 .803 .682 591 .132
4 .800 .681 .583 127
5 .800 .681 .582 122
6 .800 .680 «582 .116
7 .798 680 .578 107
8 .793 .679 .561 .094
9 .783 .679 «525 .,081
10 «765 .678 460 .066
11 740 677 «345 .047
12 .708 677 .000 .000




Table 4. Leading Coefficients in Concurrent and
Projected=Component Seasonal Filters A(‘)(B)

(m)
Am

m Levels Changes
0 .23 <34
1 .07 -.16
2 .05 -.02
3 .03 -002
4 002 -002
5 -.00 -,02
6 -.02 -.02
7 -.05 -.02
8 -.07 -.02
9 "'.09 -.02
10 -.11 -.02
11 -.14 -,02
12 28 42

m = 0: Concurrent adjustment

m=1l,...,12: Projected-component
adjustment, January, ..., December



Table 5. Ratio of Revision Standard Deviations Under Concurrent
and Projected-Component Seasonal Adjustment, for Given Ratio v

of NSA Revision Variance to Innovation Variance

(a) Levels
m .01 .1 .25 .5 .75 1
1 .823 .839 .866 .908 . 948 .986
2 .811 .828 855 .898 939 .978
3 . 805 .822 «849 .893 935 975
4 .802 .819 847 892 «934 .974
5 .802 .819 « 847 .891 .934 .974
6 .802 .819 .846 .891 .933 973
7 800 .817 «844 .887 .928 +966
8 795 .811 .837 .878 .917 «953
9 . 784 . 799 «824 862 .898 932
«10 766 .780 .803 838 .871 .901
11 .741 754 «775 .806 836 .863
12 .709 712 .718 .726 .733 .739
(b) Changes
n .01 .1 .25 .5 .75 1
1 «721 o747 «787 848 902 «950
2 685 .713 758 .827 .890 949
3 685 .713 « 757 826 .889 949
4 .684 «712 757 .826 .889 .948
5 .684 «712 756 «825 .888 »947
6 684 712 +756 .824 .888 <947
7 .683 «711 755 .824 .887 .946
8 .682 .710 754 .823 .886 «945
9 .682 .710 <754 «822 885 .944
10 +681 .709 753 .821 .884 .943
11 .680 .708 752 .821 .884 «942
12 .678 .686 .698 .714 726 .735




Table 6. Ratio of Revision Standard Deviations Under Concurrent and Projected-
Component Seasonal Adjustment, Alternative Airline-Model Parameter Values

[ I B R I e R I

(a) 0= .4, 6=0 m (b) 8= 4, 0= .9

_Total Revisions First-Year Revisions Total Revisions Firgt-Year Revisions

Levels Changes Levels Changes Levels Changes Levels .Changes
«784 .649 633 «329 1 .859 .784 «650 .420
.771 .612 .605 133 2 849 «752 «614 144
.764 .610 589 129 3 «.843 .751 «593 .138
761 .610 «583 «125 4 .841 751 584 .131
760 .609 +582 «121 5 «841 751 582 .123
.760 .609 «582 .116 6 841 750 «582 .115
758 .608 577 .108 7 840 «750 578 106
752 .607 «560 094 8 .836 750 «563 .094
738 .607 521 .081 9 .829 «749 «530 .081
715 -+ 606 453 .066 10 817 <749 468 .066
.684 605 <336 .047 11 799 .748 356 .047
646 «604 .000 .000 12 o775 +«748 .000 .000

(c) 0=0, 6=290 m (d) 6= .9, 6=.,9

Total Revisions First-Year Revisions Total Revisions First-Year Revisione

Levels Changes Levels Changes Levels Changes Levels ‘Changes
.914 .632 +865 .248 1 770 .836 «298 643
.867 .630 785 240 _ .2 .770 <747 «295 .021
.842 629 739 «232 3 770 747 291 .020
.830 .627 716 «225 4 .769 <747 «286 .019
.826 © .626 708 «216 S .768 o747 279 .018
825 624 707 208 6 767 « 747 «270 . .017
«824 .622 +705 .194 7 766 « 747 «256 .015
.817 «619 «690 . «173 8 764 . 747 .238 .012
798 617 647 150 9 762 747 .213 .011
. 764 .614 «563 .122 10 759 « 747 180 .009
.716 .612 416 .086 11 o757 «T47 «132 .006
.659 .609 .000 .000 12 .753 . 746 .000 .000




Table 7. ARIMA Models Fit to IP Index of Nonelectrical Hachinerx:/

Sample

Period 91 42 o Oa Qéof!
1970-76 «36 «36 «30 0144 13.5
1970-77 «39 «25 «52 0147 13.1
1970-78 «29 .33 «53 .0146 13.7
1970-79 .28 .28 «63 .0148 13.3
1971-80 .23 «26 .50 «0149 6.4
1972-81 .28 .19 .69 0152 10.9

. 1973-82 24 .27 .70 .0156 9.6
1974-83 .30 .25 «56 0177 11.8

a/ Model: (1-4B-6,8%)%V;,x, = (1-0812)a,
xy = log of series.

b/ Box-Pierce-Ljung Q-Statistic [see (Box and Pierce 1970) and
(Ljung and Box 1978)].



Table 8. Root Mean Square Revisions, Industrial Production
Index of Non—electrical Machinery

Concurrent Projected Ratio
(a) Levels
No Preliminary .0021 .0025 .84
Data Error {x.}
Preliminary .0049 © .0051 .96
Data Error {x.}
(P) Changes
No Preliminary .0012 .0021 57
Data Error {x¢}
Preliminary ‘ .0037 .0052 71

Data Error {it}
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Figure 2. Concurrent Adjustment Filter Seasonal Weights
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Figure 3. Six-Month-Ahead Adjustment Filter Seasonal Weights
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FIGURE 4. MATURAL LOGARITHR OF INDUS. PROD. INDEX, -NON-ELEC. MACH.
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