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ABSTRACT 

The variance of the ANOVA estimator of the variance component for a 

balanced one-way random model which has a categorical response variable is 

derived, without making any distributional assumptions for the random effect. 

The tightest possible bounds for this variance are determined from the 

Markov-Krein Theorem by assuming knowledge of only the first two or three 

moments and possibly the support of the random effect. The bounds are 

sh?wn to be useful for planning the survey design, including the sample size 

requirements, of an interpenetration experiment to estimate the correlated 

component of response variance for a categorical item in a sample survey. 

Examples illustrate that the resulting required sample sizes may deviate 

greatly from that which would be appropriate for estimating the correlated 

component for a continuous response variable assumed to meet the normality 

assumptions of the classical variance components model. 

KEY WORDS: Variance component; Interpenetration; Interviewer variance; 

Survey non-sampling error; Markov-Krein Theorem. 
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1. INTRODUCTION 

Errors introduced in the measuring, editing, or coding of responses in a 

sample survey affect the behavior of the estimators obtained from the sample 

and sometimes affect our ability to measure that behavior. Models designed to 

measure the impact of these errors indicate that the non-sampling errors may 

contribute substantially to the bias and/or variance of the estimators obtained 

from the sample. Furthermore, when these errors are positively correlated 

within the sample, as they might be when a single operator, such as an 

in&viewer or coder, handles a number of cases, the usual estimators of the 

standard errors of means and totals are likely to be biased downward. If good 

estimates of this correlation, sometimes called the correlated component of 

response error, can be made, the estimates of the standard errors can be 

improved and problem items may be identified. 

Most methods for estimating the correlated component require 

interpenetration of operators, a technique introduced by Mahalanobis (19461. 

In its most basic form, interpenetration requires the random sample of size n 

from a population of size N to be randomly divided into k subsamples of size 

m = n/k, and each subsample to be assigned to a single operator. Then the 

typical model describing yii‘, the recorded value in the tth survey replication 

for the jLh unit of the population, which is in operator i’s assignment, is 

Y** rjt = bj l eijp (1) 

where pi - E(yijllll. In some cases, ~j can be thought of as the true value, or at 

least the true value together with any biases which cannot be separated from 
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it. Then eiit is the error in that recorded value, and Mei& j) = 0. For iit = 

SfYijt/km, we have, ignoring the finite population correction factor, 

V(vt) = [V(Hj + eijt) + (m- 1) CoV(eiit, eii*tII / km (2) 

if Cov (eijt, ei*j*t) = cOV(Uj* eijt) = 0. (If the jti Unit isn’t in operator i’s 

assignment, let Yijt - 0.) We will refer to the operator introducing the 

correlated errors as an interviewer, since that is a common source for such 

err?s. When that is the case, the correlated component of response error is 

sometimes referred to as the interviewer variance. 

In this paper we assume that data comes from only one survey trial, so 

the subscript t will be suppressed. We first examine a model proposed by Kish 

(1962) for the correlated errors in continuous data. He decomposed the error 

term in ( 1 I as eij = bi + e’ii, where bil having mean 0 and variance s2, can be 

thought of as a random variable associated with the i* interviewer and 

represents the average bias that he introduces into a measurement. e’ii 

represents the composite of all other uncorrelated non-sampling errors (i.e., 

only one source of correlated errors is assumed), and COV(bi, e’ii) = 0. Then (1) 

can be rewritten as 

Yij = c~ + bi + ~ijl (31 

where l.~ = liclj and sj = ( CLj - p)+ e’ij, having mean 0 ad variance oe2. contains 

both sampling and uncorrelated non-sampling errors. If we assume that 

Cov(bi. bi’) - Cov(bi, pi) = 0, then (3) is a random analysis of variance model 
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where the correlated component of response error, CC = COV(eij, eij*) is the 

variance component s2. (2) can be written as V(y) = V(yij)[l+(m-1) #km, 

where pb = V(bi) / V(yii) = s2 / ( s2+ Ue2). 

Bailar and Biemer (1984) model the mechanism causing the correlated 

errors differently when the characteristic being observed is membership in a 

category. For each category, an interviewer can make two types of errors : $ is 

theqrobability that interviewer i records a unit reporting that it belongs to 

the category as not belonging to it and 8i is the opposite kind of error. Then 

(oi, Oil is considered to be a random vector associated with the ith interviewer. 

We can avoid consideration of individual characteristics of +f and 0i by 

defining a new random variable pi = E(yijl i) = Prlyij = 11 il to be the 

probability that interviewer i records a randomly chosen unit as belonging to 

the category. Then the categorical data equivalent of (3) is 

Yij = Epi + (pi - Epi) + Gij. (4) 

Singe yij is limited to be either 0 or 1, ~ij is restricted to -pi or 1 - pi = Qi , with 

probabilities qi and pi respectively, for each i. Similar statements to those 

following (3) can be made concerning the components of this model; i.e., Wcij) 

p aE(ciiI i)] = E(-piqi + qipi) = 0, and COV(eij,Pi) = HCOV(eijI i)] + Covf~~i~I i),piI = 

0. Note that 

V(eij) = BV(eijl iI1 * VIE(eijl i)l = Epiqi. (5) 
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The correlated component for model (41, assuming that COV(pip p$ = 0, is 

cov(Yij, Yij’) = oP2. The usual estimator for proportion, 6 = ZZy-./km, has 
‘J ‘I 

variance 

V(6) = V(yij)I 1 + (m- 1) ~~1 /km, (6) 

where pP ‘L: V(pi) / v(Yij) = up2 1 ~p( 1 - ~p)v up = Epi- 

. Model (4) is applicable to many problems outside of survey sampling. It 

is the model for estimating the variance component for a single random effect 

when the dependent variable is categorical. For example, let yii = 1 if the (i,j)* 

rat, which is a member of rat i’s litter, survives to age A, with yij = 0 

otherwise. If the k female rats are considered to be chosen from a large 

population, then ap2 is a measure of the contribution of their variability to the 

variability of the estimated survival rate, 6. Discussion in the literature of 

properties of variance component estimators for models of this type, or even 

having any non-normal random effect, is rare. 

2. THE ESTIMATOR AND ITS VARIANCE 

In this and later sections, yii will denote the j* unit in interviewer i’s 

assignment rather than the jth unit of the population. Then the usual ANOVA 

estimator of the variance component ob2 or oP2 is & = (s2 - s,2)/m, where 

st,2 = (m/(k- 1 )I C(yi. - y..12 and S, 2 = Ik(m- 1 )~‘Z~(yii - ~i.)2- & is an unbiased 

estimator of the correlated component for both models (3) and (4). 

Biemer and Stokes (1985) derived expressions for the variance of similar 
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estimators of the correlated component, but only for the normal model. In 

other studies of interviewer variance, empirical variance estimation 

techniques, such as the jackknife (McLeod and Krotki 1978) and ultimate 

cluster methods (Bailey, Moore, and Cailar 1978) have been used for 

evaluating the precision of estimators of the correlated component. These 

methods are not useful for the planning of sample designs for interpenetration 

- studies, however, since in that case, measures of precision of & are needed 

before the data collection process begins. That application lead to the 

devClopment of the methods discussed in this paper. 

Under the assumption of normality of both cij and bi in model (31, it is 

known (e.g., from Searle 197 1, p. 474) that 

v(k) = 2(k-1)” [ob4 + 2ot, 2ue2/m + Qm21 + 0(mW3). (7) 

If the assumption of normality of bi is discarded, then one can show that 

v(k) = k-‘[ub4 - ((k-3)/(k- 1 )$,4j + 4 ot,2u62 /(k- 1 )m 

+ 2~~’ /(k-l )m2 + o(rnm31 (81 

where u,,4 is the 4 th central moment of the bi’S. 

The response to most survey questions is categorical, rather than 

continuous, thus making (4) the appropriate model for the observations. The 

assumptions of normality of both the error term and pi (since its support is 

the interval IO,ll) are then incorrect. Thus neither (7) nor (8) is appropriate 

for assessing the precision of & for such characteristics. It can be shown, 

however, that for yii following model (4), 



V(k) = k-‘lpp4 - ((k-3)/(k-1 )bp41 + gap2 E(piqi)/(k-l)m 

+ 2E2( piqi)/(k- 1 )m2 + 4Ap/km + 2Bp/km2 + o(m-3), (9) 

where A,, = E(piqiI(pi - pp)’ - up21) and BP 5 V(piqi) + MPiQi(qi-pi)(pi - ~,)l- 

The first three terms of (9) are identical to those of (8), with p,4 and $2 

replaCing fiM and ob2, and (from (5)) V(6ij) = E(piqi) replacing GC2. A, and 8, 

* are functions of the first four moments of Qi and can be either positive or 

negative. One might either over- or underestimate V(&) by incorrectly using 

(7) for categorical variables, as is sometimes done. 

Table 1 shows, for several specified distributions of pjl the ratio of V(& 

for the categorical model (from (9)) to that of a normal model having 

comparable variance components (a C2 = Mpiqi) and s2 = oP2 in (711, where m 

= SO and k = 2. This ratio is denoted by R, *. The symmetric distributions of pi 

in the table (a, b, and c) may lead to values of R, ~ which are either greater or 

less than 1, depending on whether the kurtosis (as measured by BP2 = 

~~~/or,~) is large or small. The positively skewed distributions, i.e., those 

having 4,,=llps 2/ot,3 ) 0 (d, e, and f) all have R, ,,) 1. These distributions have . 

large BP2 as well, since 82 > 1 + PI for any random variable (see, e.g., Kendall 

and Stuart 1977, p. 95). The magnitude of 82 affects the precision of & in the 

continuous non-normal model in the same way, as can be seen from (8). A 

comparison of d and f in Table 1 shows that, in contrast to the continuous case, 
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the mean of pi affects the precision of di: as well. 

For most applications in which estimates of variance components for 

categorical variables are needed, the investigator is not likely to have much 

information concerning the distribution of pi, making (9) unusable either for 

variance estimation or experimental design. However when planning an 

w interpenetration study for estimation of interviewer variance, one is likely, at 

least, to have information concerning the range of values for the first two 

moments of pi for the categorical variables of interest. A range for +, will be 

known from the reported incidence of similar characteristics in previous 

studies, and a less precise range for p,,, and thus for ~f,~ = p,,( 1 -up)pp, can be 

given from knowledge gained from previous interpenetration studies, such as 

those reported by Kish (1962). For example, we know that for most 

demographic items, Q (used here to mean either h or Q,,) is near 0, for factual 

subject-matter items, +I is less than about 0.04, and for highly controversial or 

attitudinal variables, p may be as large as 0.1. For applications other than to 

estimation of interviewer variance, either more or less information may be 

available about pi. 

One criterion which might be used for determining an adequate sample 

design for an interpenetration study is that of achieving a specified coefficient 

of variation (W(G) = IVar(&B2j”2) for 2. For example, in a telephone survey 

in which it is known that interviewers can complete m interviews during the 

allotted survey period, we might be interested in determining the number of 

interpenetrated interviewer assignments (k) needed to achieve a specified CV 
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for ut,,2, the correlated component from the continuous model. If the normality 

assumptions leading to (7) hold, the required k is that satisfying 

(cv12 = 2(1 + 2[(1- p&p&m + [(I- Pb)/Pb12/m2)/(k-l) + 0(mW3). (10) 

Since all terms of (9) involve 3fd and 4” moments of pi, required values 

of k cannot be obtained in this way for the categorical model unless further 

assumptions about pi are made. The same is true for the continuous non- 

normal model because of the uncertainty in the magnitude of the first term of 

(8)yThe approach taken in this paper is to determine bounds, rather than 

exact values, for V(CC) in the categorical case based on knowledge of the 

boundedness of pi, its first two moments, and as little additional, speculative 

information as possible about its distribution. From these bounds, the survey 

or experimental designer can determine bounds for k or m. 

3. VARIANCE BOUNDS IN THE CATEGORICAL MODEL 

Bounds for WC?) given in (9) can be found by using corollaries of the 

Markov-Krein Theorem (DeVylder 1982,1983). These corollaries, which are 

stated in the Appendix, provide tight upper and lower bounds on the 

expected value of certain functions of a bounded random variable whose first 

several moments are known. By tight bounds is meant that the corollaries 

actually produce distributions which achieve each of those bounds, so that the 

bounds cannot be improved. 

An upper and lower bound for the third central moment of pi( $3, can 

first be found by using Corollary 1 of the Appendix, since pi is bounded on 
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IO,1 I, and since, as noted earlier, the survey planner will have some 

information about the first two moments of pi. This interval, which can be 

obtained from (A.2) is 

bp2’up2 - Pp2J / up ( HP3 i up21( 1 -Il*)2- up21 / (1 -l$)). (11) 

In order that the conditions of Corollary 2 are satisfied, it must be 

possible to write (9) as h(pi), where h141(pi)> 0. This is true since h(a) is a 
z 

polynomial of order 4, where the coefficient of pi4 is I1 - 4/m + 6/m21/k>0 for 

all & Then the permissible pp3 values from (11) can be used in Corollary 2 to 

produce tight upper and lower bounds for V(& i.e., bounds which are 

actually achievable for some potential distribution of pi- With the bounds 

obtained for V(CC), the problem of determining the survey design parameters 

required to achieve a specified CV for $,” can be addressed. 

For telephone surveys, the number of interviewer assignments which 

may be interpenetrated simultaneously is constrained by the number of 

work-stations and interviewers available for a given shift or set of shifts, 

rather than by the cost of interpenetration. But for personal visit interviews, 

interpenetration experiments require increased amounts of travel by all 

involved interviewers and thus are constrained by the cost of that travel. For 

many surveys, such as the Current Population Survey (CPS) conducted by the 

US. Bureau of the Census, finding enumeration areas close enough together 

that interpenetration of large numbers of interviewer assignments is feasible, 

with the time and cost constraints required, is difficult. For that reason, 
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interpenetration in personal visit interviewing is generally restricted to pairs 

of interviewer assignments, and a larger sample of interviewers is achieved 

by increasing the number, r, of interpenetrated pairs. (Biemer and Stokes 

(1985) found that this design is optimal for a similar estimator of the 

correlated component when the variable follows model (3) with normally 

distributed random effects and when the cost of interpenetration increases 

with Jk.) Then the estimator of the correlated component is taken to be the 

average C? over all r pairs; i.e., Ct = ZC~i/‘, where &i denotes the estimate 
* 

from the it’ pair, and, ignoring the finite population correction, 

V(~C) = zv(~~i)/r, (12) 

where V(CCi) is given by (7) or (8) for the continuous model and (9) for the 

discrete model, with k = 2. (12) together with infor mation from the corollaries 

about the range of V(CC), may be used for determining bounds for r, the 

number of interpenetrated pairs required to achieve a given CV. 

Bounds for k or r yielded by the use of the two corollaries as described 

will generally be very wide, especially for small values of pp. Two approaches 

for improvement on these bounds will be discussed and examples of each 

given in Section 4. Each one is available if a certain type of information can be 

obtained (or reasonably guessed) about the distribution of pi 

One approach is to make some assumption about the skewness of the 

distribution of pi, and thus about )I,,. For example, one may feel that the 

distribution of pi is likely to be symmetric; i.e.. the tendency and amount of 
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overreporting of membership in a category is about the same as that of 

Underreporting. Then one might set pP3 to be near 0 and use Corollary 2 to 

obtain bounds for V(&. Ot, one may believe that the larger interviewer 

errors tend to be in the direction of overreporting membership in a category. 

Then Corollary 2 may be used with p,, restricted to positive values. 

The upper bound provided by the corollaries for the expected values are 

achieved by distributions which place positive probability at both endpoints of 

thejssumed support of the random variable X and at only one point in the 

interior. For our application, that means the distribution of pi leading to the 

upper bound on the required number of interviewers would have positive 

probability associated with both 0 and 1 for a single questionnaire item. The 

actual population of interviewers from which the sample can come is likely, 

for most survey field operations, to be somewhat homogeneous, since they 

must undergo screening and training before they can enter the available pool. 

Thus it seems unlikely that interviewer pi’s could achieve the extremes of 

both 0 and 1 on a single questionnaire item. Therefore, a second approach to 

shortening the intervals for k or r is to restrict the range [a,b] in Corollaries 1 

and 2 to be narrower than IO.11. For example, the investigator may believe, 

either from past experience or professional judgment, that a reported 

incidence of some characteristic less than I/( or higher than 314 would be 

highly unlikely. Then la,b] could be set to 1.25,.75] and the two corollaries 

applied. 
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4. APPLICATIONS TO SAMPLE DESIGNS 

In this section, the method described in Section 3 is applied to the 

design of a sample survey whose purpose is to estimate the interviewer 

variance for some categorical variables. The number of interviewer 

assignments to interpenetrate is considered for both personal visit and 

telephone surveys. 

Section 4.1 addresses the design of a new survey where little direct 

knowledge about the non-sampling errors for the survey items are available. 

Tht investigator is forced to use values of pp which have been determined 

from other sources for similar questions and to make reasonable assumptions 

about the distributions of the Pi’S. Section 4.2 considers the design of a 

telephone survey where there has been a pilot study. Estimates of the pi’s 

from an experimental telephone survey conducted by the U.S. Bureau of the 

Census serves as an example of a pilot survey. The data illustrates that a 

variety of distributions for the pi’s are plausible. 

4.1 New Survey Design 

Suppose an investigator is interested in designing an interpenetration 

experiment to estimate the interviewer variance u p2 for a number of 

categorical questionnaire items. Two possible sample designs will be 

considered. One assumes that only interpenetration of pairs of interviewer 

assignments is feasible, so that the investigator must determine the minimum 

number of pairs (r) required to achieve a specified CV. The second design 
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places no limit on the number of interviewer assignments which may be 

interpenetrated simultaneously, so that a minimum k, total number of 

interviewers, for a specified CV, is desired. The first type of design, as 

mentioned in Section 3, is likely to be required for personal visit interviews, 

while the second is more adaptable to telephone surveys. Interviewer sample 

sizes of m = 50 and/or m = 500 (which might correspond to an interviewer 

workload in a census) will be reported for each analysis. 

- Suppose that the only questionnaire items of interest to the investigator 

are ones for which the proportion of respondents recorded as falling in the 

categories are near 0.5, say between 0.3 and 0.7. The number of 

interpenetrated interviewers (k) or interviewer pairs (r) required to achieve 

a CV of 0.5 is investigated for three types of assumptions about the 

distribution of pi. In Table 2, the bounds for r and k, when no assumptions 

about the sfi central moment or the range of pi can be made, are shown . The 

last row of each subtable gives the value of r or k which would be required if 

the response to the questionnaire item were continuous and the normality 

assumptions needed for the validity of (10) were appropriate. The bounds are 

reported for likely values of t+., (or pt., for the last line), .O 1 to .lO, and for $, 

near 0.5. (Only values of j.$ i 0.5 are necessary since the table is symmetric 

around p, = 0.5.) 

As discussed in Section 3, these bounds can generally be improved if 

certain information about the distribution of pi is known. Suppose that the 
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investigator in this example believes that the distribution of pi is nearly 

symmetric. That belief can be translated into a restriction that pP3 be close to *. 

0. Two definitions of close were considered. For the first, whose results are 

reported in Table 3.a, we required that up3 be restricted to the l/3 of its 

potential range (as given by ( 11)) that is closest to 0. So, for example, if (11) 

yields a possible range for j.t,, of f-c, +c), the restricted range is (-c/3, +c/3). 
e 

Likewise, if (11) yields a possible range of (c&, where cg 1 cl 1 0, then the 

restricted range would be (c,, cl + (cg - c,)/3). For Table 3-b, the stringent 

assumption that clP3 be exactly 0 was required. While this requirement is 

weaker than the analogous one used for the continuous random ANOVA model 

(i.e., normality of the hi’s). it is stronger than can generally be justified. It is 

included here just to show how much could be gained by perfect knowledge of 

the third moment of pi. 

Restriction of the support of pi from IO,1 I to some subinterval [a,bl aho 

results in improved bounds for the survey design parameters r and k. In 

Tables 3-c and 3.d, respectively, results are shown for restricted ranges la,bl = 

I. 1,.9] and [.25,.75], when no assumptions are made about J.$,~ 

To be sure of achieving the stated CV for any possible distribution of pi 

meeting the selected criteria, the investigator must choose r or k as the upper 

bound given in the table for the chosen pair of parameter values, p, and pp. It 

is clear from Table 2 that there exist distributions for pi which would make 
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detection of small levels of interviewer correlation impossible due to the large 

number of interviewers which would be required to do so. Table 3 shows that 

a reduction in these upper bounds can usually be obtained by a restriction 

placed on either the support or the third central moment of pi. Despite this, 

the maximum possible r and k are still so large for some parameter pairs (u,, 

p,) that detection of small interviewer correlation would remain difficult, if 

* not impossible, for many surveys. However, the application of both types of 

assumptions simultaneously is much more helpful in reducing the upper 

bounds of r or k, as is demonstrated by Table 4. 

Several important observations which are generally true are illustrated 

by Tables 2 through 4: 

(1) Detection of small values of u-,,,~ is potentially very difficult for 

categorical questionnaire items, much more difficult than for items having 

continuous normally distributed responses. 

(2) The sample design parameter, r or k, which would be determined 

using the normal assumptions (i.e., equation (10)) is almost always near the 

lower, or most optimistic, end of its possible range under the categorical model 

assumption. This indicates that a serious underestimation of the number of 

interviewers needed in the interpenetration experiment can occur if (10) is 

used inappropriately for categorical variables. 

(3) up affects the upper bound of the variance of di: and thus of the 

required r or k. Estimation of interviewer variance becomes potentially more 

difficult (i.e., requires larger numbers of interviewers for the extreme pi 
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distributions) as j.$, moves away from 0.5. This situation contrasts with the 

normal model case, where V(CC) is not a function of the item mean. 

(4) The lower bound of the interval for the required r or k is unaffected 

by restriction of the support of pi, and is affected only slightly by the 

requirement of near symmetry. The only exception to this occurs when the 

support of pi is restricted to such a point that the value of u,, producing the 

* interval’s lower bound is incompatible with the specified up and pp. For 

example, in the unrestricted case, those distributions having vP3 = 0 are the 

ones which allow the lower bounds for r and k. But there does not exist a 

distribution meeting the simultaneous restrictions vP3 = 0, [a,b] = [.2S, .7S[, 

pP= -3, and pP = . 10. So the lower bound for r for any distribution for pi 

meeting the latter three of these restrictions occurs when up3 takes its 

smallest possible value, which can be seen from (A.2) to be .0078, and is 

shown in Table 3.d to be 2 1. 

(5) The upper bound of the interval for r or k is reduced most for 

distributions having up near .5 by restriction of the support of pi. For 

distributions having ~1, further from .S, the most reduction is gained by 

restricting pP3. 

(6) An increase in interviewer assignment size m, over the range 

considered (SO to 500) is very helpful for detecting small $ (pP = .Ol), but 

makes little difference if detection of larger ui is sufficient. This occurs 
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because the upper bound of (9) is dominated by its first term, which is not a 

function of m, when pp is large. 

(7) Changing the sample design from complete to pairwise 

interpenetration loses much efficiency when the distribution of pi is of the 

type leading to values of r or k near their lower bound. For example, we see 
e 

from Table 2.a that the minimum number of interviewers which would be 

required to achieve a CV of 0.5 for &,,2 when pp = -01 under the pairwise 

interpenetration design is 134 (2 x 671, while only 64 would be required for 

that pi distribution if complete interpenetration were possible. By contrast, the 

largest possible required number of interviewers is similar for the two 

designs; for this example, the required number of interviewers is SO0 (2 x 

250) for pairwise and 428 for complete interpenetration. 

4.2 Survey Design Following a Pilot Study 

When data from a survey using similar procedures and asking similar 

questions is available, the investigator may have more information about the 

distribution of the pi’s to use in designing an interpenetration study. In this 

section, data for four questionnaire items from an experimental telephone 

survey illustrate how interviewer characteristics may differ from one 

questionnaire item to another. Two of these examples are then used to 

demonstrate how the methods of Section 3, combined with the descriptive 

information about the distribution of the pi’s can be employed by the 
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. 

investigator to determine the number of interviewers and the assignment size 

required. Since a telephone survey is under consideration, we assume that our 

object is to determine k, the number of interviewer assignments to be 

completely interpenetrated, needed to achieve the desired precision for an 

estimator of interviewer variance. 

The data for these examples were obtained from an experimental 

random digit dial telephone survey of employment (called RDD-I) conducted 

by the US. Bureau of the Census in 1982 ( Mulry-Liggan and Chapman 1982, 

M&y-Liggan 1983). The questionnaire used was nearly identical to that used 

in the CPS. The survey was conducted in seven two-week periods (called 

replicates) and the data shown here were collected in the last three of these 

replicates. The interviewers’ assignments were interpenetrated so that 

estimates of the correlated component could be obtained, as well as estimates 

of pi (called r;i) for individual interviewers. pi is simply the observed 

proportion of interviewer i’s assignment which belonged to the category being 

considered. Approximately 13 interviewers participated in the experiment, 

each of whom handled 39 or more cases for the items in these examples. 

The first example considered the questionnaire item which recorded 

whether or not the respondent was willing to provide a complete address. The 

proportion of households whose, addresses could be obtained was of interest to 

the designers of this survey. There was evidence from the survey data of 

positive interviewer variance for this item, and examination of the ii’S shows 

that their range was quite small, from a low of 0.62 to a high of 0.80. Larger 
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numbers of interviewers had pi values falling near the ends of that interval 

than near the middle, so that the histogram of the ai’S was U-shaped. 

Contrasting with this were the results from another response 

characteristic measured, the proportion of respondents answering a direct 

salary question, before probing for salary category began. This item, too, 

showed evidence of positive interviewer variance, but the range of estimated 

- pi values was large, from a low of 0.23 to a high of 0.93. The observed 

distribution of these p^i values appeared more unimodal than that of the * 

address question, with most of the values falling in an interval close to the 

average. These observations suggest that the interviewer population 

characteristics may really differ for these two items, even though they seem 

to be of a similar nature, both having to do with item response rate. 

As a final example, we consider two possible response categories to the 

employment status question, ‘What were you doing most of last week, 

working or something else?” These LWO responses are coded on the 

questionnaire as “Unable to work” and “Other”. The proportion of households 

having at least one member classified by an interviewer as “Unable to work” 

varied among the interviewers from a low of 0 to a high of only .13 and was 

very nearly symmetric. (The overall proportion so classified was .07X) By 

contrast, the proportion of households having a member classified as “Other” 

decreased as the survey progressed, but the histogram of the interviewer 6i.S 

consistently retained the same characteristics. For the three replicates 

considered here, the overall proportions were 0.20, 0.11, and O-OS. For each 
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replicate, however, two interviewers had discrepantly large pi values (0.37 

and 0.39 for the first replicate considered, 0.21 and 0.30 for the second, and 

0.12 and 0.13 for the third), while the remaining 6i values covered only a 

small range. 

The apparent change in the distribution of the Pi’S during these three 

replicates appears to be the result of a learning process, although the 

interviewers had been working for eight weeks by the beginning of the first of 

theie replicates. There were Changes in the interviewer training and 

supervision as the experiment progressed, however, including the instigation 

of quality circles where the interviewers shared experiences. It is likely that 

this interaction eventually resulted in their behavior becoming more uniform. 

(Hopefully, it simultaneously resulted in more accurate classification, but that 

can’t be demonstrated.) This is an illustration of what is meant by the claim 

that telephone interviewing from a centralized facility might provide better 

interviewer control than decentralized interviewing. 

We now illustrate how these observations about the data from RDD-I 

could be used informally by the investigator for planning a design for a 

survey to estimate the interviewer variance for the address question and for 

the “Other” category of the labor force question. For the address question, the 

ifNeStigat.Or might feel safe in restricting the range [a,b] to I&.91, an interVa1 

somewhat longer than that observed in the experimental survey. A further 

restriction of the 3ti central moment of pi to be near 0 might be acceptable to 

the investigator as well on account of the symmetry of the histogram of ii*s* 
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Table 5 shows the bounds of the required k for several values of the 

assignment size m for CV = 0.5 when up equals its estimate from RDD-I (which 

was 0.7) and when up3 is restricted to a small interval near 0. Examination of 

similar tables for up = . 65 and .75 showed little deviation in either the bounds 

of k or the effect of varying m. 

. If the investigator wants to be certain of meeting the precision criteria 

for estimating very small values of ot,* (e.g., pP = .Ol), he or she must be 

pre$ared to interpenetrate more interviewer assignments than would be 

required for a continuous normally distributed response item. However, for 

larger values of up , * the entire interval for k may lie below that required for a 

normal variable. For example, from (10) with m = 25 and pp = .05, we see that 

k = 32 interviewer assignments would have to be interpenetrated to achieve 

CV = 0.5. Table 5 illustrates that increasing the assignment size m reduces the 

number of interviewers required up to a point. That point is higher for the 

lower values of pp. 

To estimate k for the “Other” category of the labor force question, the 

investigator has to judge which of the situations in the three replicates is 

analogous to the new survey. If there is no planned interaction among 

interviewers, such as the quality circles for example, the investigator might 

decide that the range of pi’s cannot be more severely restricted than to IO, -41 

or IO, A. If the survey is well-established and the interviewers experienced, 

he or she might feel comfortable further restricting [a,bl, for example to IO, -21. 
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Since the histogram of ~i’S always appears skewed to the right, restricting u,, 

to be non-negative is also a reasonable assumption. The resulting bounds for 

k when m = SO and for u, between .OS and .20 are shown in Table 6. The 

ranges for k displayed there illustrate again the advantage of specifying as 

small an interval [a,bl as possible. By using the interval [O, -41 instead of IO, -51, 

there is, on the average, a 35% reduction in the upper bound for k. Table 6 

. also illustrates that the investigator can make the assumptions so restrictive 

that there does not exist a bounded random variable which satisfies them. 
* 

5. CONCLUSIONS 

This paper has shown that the application of methods which may be 

appropriate for designing an experiment to estimate the correlated component 

of response error, or in general, any variance component, for continuous 

normal variables may be dangerously inappropriate for categorical variables. 

The examples of Section 4.1 have illustrated that usually there exist 

distributions of pi for which far greater numbers of interviewers would be 

required to achieve the same CV that is attained more easily for the 

continuous normal models; in fact, the number of interviewers required for 

normal variables is often close to the lowest possible number which could be 

required for any distribution of pi in the categorical case. Some of these 

extreme distributions of pi are highly unlikely, however, at least for the 

application to interviewer variance estimation. If they can be ruled out by 
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placing restrictions on the skewness and/or support of the pi distribution, the 

upper bound for r or k can be reduced considerably, making the method more 

useful as a survey or experimental planning tool. 

The investigator may be able to select the largest possible value 

required for r or k to ensure that the sample design has adequate precision for 

the interviewer variance estimates for important categorical items. On the 

other hand, if even the lower bound calls for an impossibly large number of 

interviewers, he or she is warned that for that item, at least, interviewer 

variance cannot be estimated sufficiently accurately with the available 

resources. 

The investigator is left with a different problem if, after the best 

information about the distribution of pi is utilized, the maximum number of 

interviewers available for inclusion in the interpenetration experiment falls 

between the lower and upper bound called for by this method. He or she then 

must realize that if the experiment proceeds, there is a risk of being unable to 

estimate the desired parameters adequately. If this path is chosen, however, 

the investigator at least receives the side benefit of having the opportunity to 

collect more information about the distribution of pi, so that better prediction 

intervals may be possible for the next experiment. Alternatively, a 

modification of the sample design, such as increasing the interviewer 

assignment size m or the number of interviewers interpenetrated 

SimUltmeouSly, might be called for. 

Another potential benefit of this method is that it might be used as an 
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aid to variance estimation for CC. Without assuming some distribtttion for pi, 

one is left with only empirical variance estimation methods, such as the 

jackknife, for evaluating the precision of & after the data are collected. When 

large numbers of questionnaire items are being considered, these methods can 

become very expensive. The bounds for V(k) provided by the corollaries can 

serve as a cheap screening device for identifying items showing some 

evidence of positive interviewer variance. The investigator may then decide to 

* produce empirical estimates of the variance for just those items. Besides the 

cost, another problem with the use of empirical variance estimation methods 

is ihat they are difficult to implement for estimators of the correlated 

component in some complex sample designs, whereas a “boundable” 

expression for V((%) (such as (9)) may be easily obtained for some such 

designs. 

With an accumulation of information about interviewer behavior (and 

thus about the pi distributions) for certain types of questionnaire items, or 

about whatever random effect is of interest in a variance components model, 

more accurate assessment of sample size requirements may be possible. If 

enough information is available, (9) may be directly usable; otherwise, we 

may at least learn more precisely what restrictions on the pi distribution are 

acceptable for specific important items. 
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APPENDIX 

This section is designed to state results and provide formulas which will 

enable the reader to easily derive upper and lower bounds for V(&) and for 

survey design parameters for their own survey using knowledge of specific 

questionnaire items. 

1. Corollary 1 (Brockett and Cox 1984): Let X be a random variable having 

range [a,b] with EX = p and V(X) = Q *. Then for any function h for 

which h’3’(x)>0 9 
* 

h(a)r + h(c)( l-1) s iih(X) s h(d) q + h(b)( 1 -q). (A.1 1 

where 

a2 (b-p)* 
T= . q= 

a* + (a-p)* u* + (b-p)* 

c = p - &(a-u) , and d = p - aa/( 

2. Corollary 1 can be used to show that the upper and lower bounds for the 

3fd central moment of X, p, , are 

u* [(a - p)* - a*] / (a-p) < cl3 < a2 [(b - p)* - a*] / (b-p). (A.21 

3. Corollary 2 (Brockett and Cox 1954): Let X be a random variable having 
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range la,bl with EX = D, V(X) = U* and j$ = E(X-N)~ known. Then for 

any function h for which h’4J(x)r0, 

h$)r+hk$l-1) 5 m(X) 5 h(a)q+ h(d)n2 + h(b)( 1 -q-r& 

where 

. 

u3 - (a+~-2p) a* + (d-p)(b-p) 
d= + CI, q = , 

a* - p(l-jl) (b-a)(d-a) 

(b-fl)(a-H) + a* JlJqzs 

92 = . , 
(d-b)(d-H) 

q=1+ 
202 
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Table 1 Distributions for p and Resulting Precision of & 

f(p) PP B PI 

.9 if.454 pi.55 
a. 25 if .5StpJ .7S so0 .013 0 8.91 1.21 

Of 2)s p<.c) 
0 otherhe 

b. Beta(.Z,.S,.418,.282)’ so0 .013 0 1.50 0.93 

* c. Beta(37,37,0,1) so0 .013 0 2.92 0.99 

d. 6eta(l,lO,O,S) .04s .040 2.3 1 5.78 1.64 

e. Betat 1,20,0,.5) .024 .022 2.99 7.07 1.84 

f. Beta( 1,10,.25,.75) -295 .008 2.31 5.78 1.08 

* Ekta(r,s,a,b) denotes a random variable having density function 
f(p) = (p - a)r-*(b - pP-J / B(r,s)(b - a)r+r*l for a<p%b. 
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Table 2 Bounds for Required r and k to Achieve CV - 0.5 
Ia,bl - IO,1 1, pp3 Unrestricted 

Number of Interviewers 

r (Interpenetration of pairs) k (Complete interpenetration) 

PP ’ PP .Ol .02S -0s -10 -01 .02S -0s .lO 

a. m = 50 

.5 - (67,250) (22,941 ( 12,471 (8,241 (64,428) (19,162) (9,781 (6,371 

.4 (67,348) (22,132) ( 12,651 (8,32) (64,624) ( 19,238) (9,114) (6,S3) 

-3 (67:514) (22,198) (12,98) UM9) (64,9S7) (19,371 I (10,181) (6,861 

Normal 72 26 16 12 73 27 17 13 

.S (8,204) (6,831 (X43) (2.23) (6,397) (SJ 57) (4,771 (4,371 

b. m =500 

.4 (8,302) (6,12 1) (X6 1) (5.3 1) (6,593) (5,233) (4,113) (4,531 

-3 (8,469) (6,188) (5.94) (X47) (6,926) (5,366) (4,179) MAW 

Nor ma1 12 10 9 9 13 11 10 10 
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Table 3 Bounds for Required r and k to Achieve CV - 0.5, m - SO 

Number of Interviewers 

VP ’ PP 

r (Interpenetration of pairs) k (Complete interpenetration) 

-01 .025 .os .lO .Ol .025 .os .10 

-5 

.4 

.3 

a. VP3 restricted to middle third of its range, [a,bl=[O,l] 

* (67,250) (22,941 (12,471 (8,241 (64,428) (19,162) (9,781 (6,37) 

(67,277) (22,104) (12,521 (8,271 (64,483) (19,183) (9,881 (6,421 

(67,312) (22,118) (12,SS) (8,29) (64,553) (19,210) (9,101) (6,471 

.s 

-4 

.3 

b. up3 = 0, la,bl = IO.1 1 

(67,250) (22,941 (12,471 (8,241 (64,428) (19,162) (9.78) (6.37) 

(67,250) (22,941 (12,471 (8,241 (64,428) (19,161) (9,771 (636) 

(67,249) (22.92) (12,451 (8,231 (64,426) (22,159) (10,721 (6,341 

-5 

.4 

-3 

c. [a,bi = I.L.91 ) wp3 unrestricted 

(67,183) (22,671 (12,331 (8,181 (64,296) (19,109) (951) (6,241 

(67,262) (22,971 (12,481 (8,241 (64,453) (19,169) (9,801 (6.36) 

(67,397) (22,151) (12,751 (8,371 (64,723) (19,277) (10,134) (6,631 

.s 

.4 

.3 

d. Ia,b] = [.25,.7S] , up3 unrestricted 

(67,111) (22,381 (12,19) (8,101 (64,152) (19,Sl) (923) (6,lO) 

(67,162) (22,571 (12,281 (8,141 (64,253) (19,891 (9,401 (6,17) 

(67,2S5) (23,941 (17,461 (21.23) (64,438) (22,163) (19,771 (30,351 
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Table 4 Bounds for Required r and k to Achieve CV = 0-S 
m = SO, Ia,bi - LZSJSI 

. 

Number of Interviewers 

PP ’ PP 

r (Interpenetration of pairs) k (Complete interpenetration) 

.Ol -02s -0s -10 .Ol .02S -0s -10 

a. pp3 restricted to middle third of its range 

.s - (67,111) (22.38) (12,19) (8.10) (64,152) (1951) (9,23) (6,10) 

.4 (672 18) (22.40) (12,19) (8,111 (64,166) (19.55) (9,23) (6,111 

-3 (67,134) (23.51) (12,29) (21.22) (64,196) (22,76) (19,43) (30.32) 

b. pp3 = 0 

.s (67,111) (22,38) (12,19) (&lo) (64,152) (1951) (9,23) (6,10) 

.4 (67,104) (22,34) (12,16) * (64,138) (19,44) (9~7) * 

.3 (67,71) * S 1 * x 

There not bounded variable the conditions. 
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Table 5. Bounds for Required k to Achieve CV - 0.5, 1 
pp - 0.7, [a,b] - 1.5, .9], pp3 restricted to middle third of its range 

PP 

m .Ol -025 .os .lO 

2s (189,257) (45,701 (18,281 (9.12) 

SO (64,134) (19,441 (9,191 (6.9) 

7S (37,106) (13,371 (7,171 (5.8) . 
100 (25,W (10,341 (6,151 (5.7) 
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Table 6. Bounds for Required k to Achieve CV = 0.5, 
m = SO, VP3 ’ 0 

VP 
-01 .025 -0s -10 

. a. [a,bl = IO,.21 

0.15 (6678) 
0.10 (68,127) (2 1’38) 
0.05 (75,326) (21) 18) 

00*15, 
(11:53) 

(6,;) 
(10,231 

b. 1a.b) = IO,.41 

0.20 (63,171) (20,57) (10,24) (6,111 
0.15 (65,298) (20,107) (10.49) (6,211 
0.10 (68,824) (21,317) (10,153) (6,731 

c. [a,bl = lO,.Sl 

0.30 (64,16SI (19,%) (10,2S) Ml) 
0.20 (65,298) (20,107) wL49) (6.2 1) 
0.10 (68,824) (21,317) (10,153) (6,731 

’ There is not a bounded random variable satisfying the specified 
conditions. 

- 


