bureau of the census
STATISTICAL RESEARCH DIVISION REPORT SERIES
SRD Research Report Number: CENSUS/SRD/RR-84/05

EXPECTED ABSOLUTE DEPARTURE OF CHI-SQUARE
FROM ITS MEDIAN
by
Beverley D. Causey
U.S. Bureau of the Census Washington, D.C. 20233

Abstract

This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The views reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.

Recommended by: Paul P. Biemer

Report completed: December 1, 1983
Report issued: December 1, 1983

EXPECTED ABSOLUTE DEPARTURE OF CHI-SQUARE FROM ITS MEDIAN

Abstract
We develop a formula for the expected absolute departure of x^{2} from its median.
Key words: chi-square, median, expected absolute departure
Beverley D. Causey
Mathematical Statistician
Statistical Research Division
Bureau of the Census
Washington, D.C. 20233
May 1983

Let D_{f} denote the median of χ_{f}^{2} (chi-square with f degrees of freedom); we here determine $E\left(\left|\chi_{f}^{2}-D_{f}\right|\right)$. Let D_{f} denote this quantity. Note that $E\left(\left|x_{f}^{2}-c\right|\right)$ is minimal for $c=D_{f}$.

We first need D_{f}. One easily obtains $D_{1}=Z^{2}$ with $\Phi(Z)=.75$ and $D_{2}=2 \log 2$; for $f \geqslant 3$ one may base an approximation to D_{f} on the approximation to χ_{f}^{2} of Peizer and Pratt (1968): $D_{f}=f-2 / 3+.08 / f$. To obtain D_{f} exactly, in essence, as well as to obtain E_{f}, we make use of the following, familiar results (obtainable from Kennedy and Gentle 1980). For $k \geqslant 1$:

$$
\begin{align*}
& P\left(x_{2 k+1}^{2}>c\right)=P\left(x_{2 k-1}^{2}>c\right)+a_{k} \\
& P\left(x_{2 k+2}^{2}>c\right)=P\left(x_{2 k}^{2}>c\right)+b_{k} \tag{1}
\end{align*}
$$

with

$$
\begin{align*}
& P\left(x_{1}^{2}>c\right)=2(1-\Phi(\sqrt{c})), a_{k}=a_{k-1} c /(2 k-1) \quad(k>1) \\
& P\left(x_{2}^{2}>c\right)=\exp (-c / 2), b_{k}=b_{k-1} c / 2 k \tag{2}\\
& a_{1}=\sqrt{2 c / \pi} \exp (-c / 2), b_{0}=\exp (-c / 2) .
\end{align*}
$$

Using (1) and (2), we do a binary search of the interval <0,f> (successively cut this interval in half) to determine c such that $P\left(\chi_{f}^{2}>c\right)=.5$; this gives us D_{f}.

Let

$$
\begin{equation*}
g_{f}(x)=\frac{1}{2^{f / 2} \Gamma(f / 2)} \quad x^{f / 2-1} \exp (-x / 2) \tag{3}
\end{equation*}
$$

the density for χ_{f}^{2}. The value of E_{f} is

$$
\begin{align*}
& \quad \int_{0}^{D_{f}}\left(D_{f}-x\right) g_{f}(x) d x+\int_{D_{f}}^{\infty}\left(x-D_{f}\right) g_{f}(x) d x \tag{4}\\
& =D_{f}\left[\int_{0}^{D_{f}} g_{f}(x) d x-\int_{D_{f}}^{\infty} g_{f}(x) d x\right]+\int_{D_{f}}^{\infty} x g_{f}(x) d x-\int_{0}^{D_{f}} x g_{f}(x) d x . \tag{5}
\end{align*}
$$

We have

$$
\begin{equation*}
x g_{f}(x)=\frac{2^{f / 2+1} \Gamma(f / 2+1)}{2^{f / 2} \Gamma(f / 2)} g_{f+2}(x)=f g_{f+2}(x) \tag{6}
\end{equation*}
$$

Thus, using the definition of D_{f}, we obtain $E_{f}=$

$$
\begin{gather*}
D_{f}(.5=.5)+f\left[P\left(x_{f+2}^{2}>D_{f}\right)-P\left(x_{f+2}^{2}<D_{f}\right)\right] \tag{7}\\
=f\left[2 P\left(x_{f+2}^{2}>D_{f}\right)-1\right] . \tag{8}\\
\text { If } f=2 k+1 \quad(k>0) \text {, we have from (1) }
\end{gather*}
$$

$$
\begin{equation*}
E_{f}=f\left\{2\left[P\left(\chi_{f}^{2}>O_{f}\right)+a_{k+1}\right]-1\right\} ; \tag{9}
\end{equation*}
$$

a_{k+1} is obtained from (2) with D_{f} substituted for c. By definition of D_{f}, again, we are left with $E_{f}=2 f a_{k+1}$. Likewise, if $f=2 k+2(k \geqslant 0)$ we have $E_{f}=2 f b_{k+1}$.

Thus, we have: $D_{1}=0.4549$ and $E_{1}=0.8573, D_{2}=E_{2}=1.386$, $D_{3}=2.366$ and $E_{3}=1.779, D_{4}=3.357$ and $E_{4}=2.103$.

Note correspondences between the formulas for E_{f} and the formula (Blyth 1980) for Poisson expected absolute departure from the mean: for x with Poisson mean $\mu, E(|x-\mu|)$ becomes $2 k P(x=k)$ with $k=[\mu]+1$.

REFERENCES

BLYTH, C.R. (1980), "Expected Absolute Error of the Usual Estimator of the Binomial Parameter," American Statistician, 34, 155-157.

KENNEDY, W.J., and GENTLE, J.E. (1980), Statistical Computing, Dekker, New York. LING, Robert (1978), "A Study of the Accuracy of Some Approximations for t, χ^{2}, and F Tail Probabilities," Journal of the American Statistical Association, 73, 274-283.

