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1. Introduction 

In applications of the Hillmer-Tiao model-based signal extraction ap- 
* 
preach to seasonal adjustment [see Hillmer, Bell and Tiao (1983) or 

Burma; (1980))) there usually is a white noise component which must be divided 

among the seasonal and nonseasonal components, or assigned wholly to one of 

them (see the example in section 4 below). This assignment determines the 

covariance structure which must be specified before the optimal estimates, 

or, essentially equivalently, the filters used to obtain them, can be deter- 

mined. Recently, Watson (1984) proposed the use of a minimax criterion 

related to mean square component-estimation-error for making this assignment. 

His approach is quite attractive, due in part to additional appealing prop- 

erties he demonstrates for some of the solutions to his minimax problem. 

Watson gives a detailed discussion of his approach only for the situation 

in which the coefficients of the optimal signal extraction filter are obtained 

from pseudo-spectrum ratios, in analogy with the classical Wiener-Kolmogoroff 

theory, as under Assumption A of Bell (1984) with hi-infinite data. It is not 

clear from his arguments whether his results generalize to other situations, 

or if the solution to the minimax problem can he determined in situations where 

the optimal extraction filters are not explicitly available, such as when a 

Kalman smoothing algorithm is used. 
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In section 2, we give a 'geometrical' development of his results which 

makes no use of filters or models but only of the covariance properties of 

least mean square estimates. This shows that Watson's conclusions have very 

general validity. Sections 3 and 4 discuss and exemplify how one could use a 

Kalman smoother algorithm to obtain the minimax solutions. The analysis given 

of the example seems to be the first to show what is required in order for the 

initial covariance specification to precisely replicate the structure implicit 

*in the Hillmer-Tiao component decomposition. Section 5 gives a general 

analysis of Watson's second minimax criterion and its solutions. This * 

second criterion is more appropriate when estimates of nonseasonal period- 

to-period-changes are the quantities of primary interest. 

2. A General Analysis of Watson's First Minimax Criterion. - - 

seasonal ARIMA 

ante. We cons 

tions 

time-varying variance, var(xt) = Exg < 00. For example, xt 

process whose initial values have mean zero 

ider the situation in which xt admits a fami 

Let xt be a time series with mean 0, Ext=O, and finite but possibly 

could be a 

and finite vari- 

ly of decomposi- 

Xt = 51 + nJ , yRGycyU 

having the property that for any Y,Y’~[YR,YU] with y' < y, the series 

Y,Y’ 
I 

et =def ny 
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I 

is a white noise process with var(e{'Y ) = y - y' which is uncorrelated 
I 

with the processes nf and SF: , 

I I I 

cov(e~~y ,S: ) = cov(e$*y ,n:) = 0 

for all t,u. We do not need to assume that the component series SF' and 

nz are uncorrelated. 
* 

Throughout the remainder of this section it will be convenient to hold t 

fixed-and assume that the observed random variables are xt-i, -mci<n for some 

possibly infinite m,n>O. (Set x,~ = x, = 0.) Let OBS(=OBS(t,m,n)) denote 

the linear space consisting of all finite linear combinations of xt-i, -mcicn 

(and their mean square limits if m or n is infinite). For any random vari- 

able y with mean zero and finite variance of the sort to be considered below, 

we will denote by s the least mean square approximation to y in OBS, and re- 

call that it is characterized by the property that y - $ is uncorrelated with 

every random variable in OBS. It follows from this that if we have two such 

random variables y and z, then "y f: G is the least mean square approximation in 

OBS to y + z. Also, note that if cov(y,xt,i) = COv(Z,xt,i), -mGi6n, then y - z 

is uncorrelated with OBS, so that $ - 2 = 0, i.e., G = ;. 

For y',yj E [yR,yU], let a: 
i ,yj 

denote the error when txJ iS IJSed t0 

. 

approximate nx', i.e. 

. , 

. . . . 

and denote the mean square of a$lYJ by ms[a~'~yJ] as in Watson (1984). 



To choose among the possible estimates ';TJ, yj E [yR,yU] of the non- 

seasonal components of xt, Watson suggests that the criterion 

. . 

min max 
,j ,i 

msfaJ'3YJ1 (2.1) 

should be used. 
* 

We begin our analysis of (2.1) by recalling that for each y E (yR,yUl 

ther: is a decomposition of r$ into uncorrelated components, 

To simplify the exposition, we shall initially consider the decomposition 

of xt given by xt = ST 
R 

+ ez,ya + nz . 

Observe that for any y~(yR,yuJ and -mticn, we have 

cov( (Y-YE )-leY ,YR 
t 

SXt-i) = (y-y")'lcov(eY,Y~,ey,Y~) = 

i 

l,i=O 

t t-i O,i#O 

(2.3) 

It follows that for any gtcOBS, (y-y')-1cov(eT9Y 
84 
,yt) is independent of 

y and that if 
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Y*t = c -mcicn vixt-i (2.4) 

(assuming convergence in mean square if m or n is infinite), then 

(y-yR)-lcov($ ey,y" t, t-l ) = Vi , -mcicn . (2.5) 

It also follows that gt = (y-y")-l&x$Yg, the least mean square approximation 

ig OBS of (y-y')-le~~Ye, does not depend on y. Set h0 = var(&). For any 

yi,yjc[yR,yul, we clearly have 

j R 
9y ) = (vi-v")(&ya)hn . (2.6) 

We note, too, that for any ytcOBS, since 

nJa - Gt 
. . 

= nJ’- Et + e:iYp 

and since e$!Y’ and el i ,YR _ $T’ ,YR are uncorrel ated with nl' and it, 

respectively, we further have 

E{r$- Gt}2 = E{nr' 

. 

- itI + (yi - y’) - 2 cov(er’ *y 
RA 

SY,) 

= E{nz'- Gt}2 + (Yi - Y%l - 2 cov(e&)l . (2.7) 
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By the preceding discussion, the coefficient of (yi - yR) in (2.7) is inde- 

pendent of yi and is equal to 1 - 2vo if Gt is given by (2.4). 

Setting Gt = GxJ in (2.7) and defining haJ = cov(e,,fixJ), we obtain 

ms[aJ 
R j 
sy 1 = ms[a$ 

i j 
,y 1 + (y' - y'){l - 2hJJI (2.8) 

On the other hand, since 

R rR 
= {nz - nx } + %lj9ya , 

we also have from (2.6) that 

ms[a$syJ] = ms[a.$9y'] + (yj - y')2ho . 

Substituting this expression into (2.8) and rearranging, we arrive at the 

fundamental formula 

. . 

ms[al'*yJ] = ms[alesy'] + (yj - yR)2h0 + (Y’ - ye)(2h)Sj- 1) . 

(2.9) 

substituting 
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. 

into the defining expression hilJ = cov(&,?$J), we can easily verify 

two companion formulas to (2.9), 

hKj = hsa - (Yj - v-eho (2.10) 

-+ 
and 

. . 

ams[a~'~YJl/ayj = 2(yj - yi)hO . (2.11) 

Now we are prepared to solve the minimax problem (2.1). The formula 

(2.10) shows that hzj is a decreasing function of yj, so that there are 

three exhaustive and mutually exclusive possibilities: (i) h$ < l/2; 

(ii) hzU > l/2; and (iii) h$ ( l/2 < h3" . In case (i) we clearly have 

i j 
ms[al sy 1 < ms[a~P~YJ1 , (2.12) 

for all yi > yR, whereas in case (ii) the inequality 

ms[aJ 
i j 
,y 1 < msCa~"'YJ1 (2.13) 

holds for all yi < yu. For case (iii), we solve (2.10) for the unique y* 

for which h6* = l/2, obtaining 



y* = yR + h$(ha' - l/2) 

= y + - 

= + hK)-l(y v')(h7j l/2) 

for any Y, Y’ c [yR,yul with y'fy. In case (iii) it is clear that (2.13) 

holds for yj E [yR,y*), that (2.12) holds for yj E (y*,yu], and that 
c 

ms [al '.y*l does not depend on y'. Finally, observe (for all cases) 

II 

from (2.11) that ms[az 
i j 
,y 1 for fixed yi, i.e., as a function of yj, is 

uniquely minimized over both [yR,yi] and [yi,yu] at their common endpoint yi. 

(One of these intervals will contain only a single number if yi is an end- 

point of Cy~,yuI.) These facts lead immediately to the following result. 

Theorem. The minimax problem (2.1) has a unique solution for yj which -- - - 

is given by y j = yR if ha' < l/2 (minimum variance signal extraction); & yj = yu - 

if hr" > l/2 (maximum variance signal extraction); or by y j = y* defined by - 

(2.14) if hJ" G l/2 < hs' . 

The solution yj = y* is particularly interesting, because of the fact 

* 
that ms[al¶y 1 does not depend on y. This means that a natural measure of 

seasonal adjustment standard error exists which is the same for all candidate 

choices nt, y ~[y',y'-'l of the nonseasonal component. 
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For later use, we note that no special properties have been required 

of the endpoints yR and y”. Further, if we replace yR in (2.3) by any Y' < Y, 

we obtain a more general formula for the y(and y')-invariant random variable &, 

namely, 

a, 

“t 

= (y - v’)-lq.Y’ . (2.15) 

3. Obtaining ha = hK(t) fih0 = hO(t) from a Kalman Smoother -- 

* In a real data situation, only finitely many random variables xI,...,xT 

are observed. In this case, the coefficients hi' = hi'(t) for which 

t-1 
nJ = c hiYxt-i 

i = -(T-t) 

holds are not straightforward to calculate, especially when the xt obey a 

nonstationary ARMA model. In this situation, it is natural to seek to 

represent the signal extraction problem in such a way that a (e.g., fixed- 

interval) Kalman smnother recursion algorithm (see Anderson and Moore (1979) 

can be applied to obtain "nr. In the next section we shall illustrate, 

by means of a thorough analysis of an elementary example, the kinds of prob- 

lems which must be solved to ohtain GJ precisely, as opposed to approx- 

imately, via a Kalman smoother. Our concern now is to show with the aid of 

the formula (2.15) that the pivotal coefficient h6 = hJ(t) can be 

obtained from the error covariance matrices produced by the algorithm, pro- 
I 

vided that for some y'<y, e$,y is placed in the Kalman state vector along 
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with n$, as in the example below. Indeed, the algorithm then produces 

var(ez,y' - $r,y') and cov(ez,y' - $x,y', 

nl - f;J). The latter quantity is equal to -cov(~,~', ?11) because 

nl and e{,y' are uncorrelated and so are n$ -%I and $r,u'. 

Thus we simply use (2.15) to obtain our desired result, 

h@) = -(y-y')-lcov(e$,y' - Cl,y',n$ - ?I?). 

(3.1) 

There is more, however, because we can determine ho(t) = var(e,) from 

var(eJyy' - $1 
YY’ ) : Using (2.6) and the fact that 

uncorrelated with $z,y' , we have 

ho(t) = (y - y')-2var(Gl,y') 

= (y - y')-2{var(ez,Y') - var(eJ,y' - "ez,y')} 

= (y - y')-l - (y - y')'2var(ez,y' - Q,y') . 

Because of the linear relation (2.10), we can use ho(t) and ha(t) for a 

single value of y to produce ha(t) for all y E [yR,yU]. Thus, with the 

information from a run of a Kalman smoother for the decomposition 

Xt = nJ + e$,Y' + ST' associated with a single pair 

y,y'(y>y'), we can llse the Theorem of section 2 to determine the 

solution of Matson's minimax problem for each t=l,...,T! 
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4. An Example - 

Let B denote the backshift operator, Bxt = xt-I. Suppose we have twice- 

yearly observations x1,x2, .,.,x1 from a seasonal series conforming to the model 

(I - 132)xt = Et , (4-l) 

where ct I is a white noise process with variance oz. Suppose also that xt 

is known to have the form xt = st + nt, where the seasonal component st and the 

notseasonal component nt are such that the transformed series (I+B)st and (I-B)nt 

are stationary and uncorrelated. Different aspects of this example are dis- 

cussed in Pierce and Maravall (1984). Using partial fractions, we obtain 

the pseudo-spectrum decompositions 

2 
uE 034 

f&4 = = + 

11 - e -i2w12 11 + e-iWl2 

= { + e-iWJ-2 + y} + ( f 11 

11 - e-iWj2 

e-iw(-2 _ yj 

for which we require only that the component pseudo-spectra f<(w) and 

f:(w) are non-negative. Both (1 + e -iwj2 = 2 

11 - e -ioj2 = 2(I _ cosw) have the maximum va 

means that y E [ -(r$/16, a2,/16]. 

1 + COW) and 

ue 4, so this requirement 



12 

For y E (0,0:/161, if we define fzl'(w) = y, then 

f,(w) = f!(w) + fy,sO(,) + fy,(U) , 

corresponding to the decomposition 

Xt = s! + e 9' + nJ . T 

W~shall formulate a Kalman state model for 

require the coefficients and innovation var 

this decomposition. To do 

iances of ARMA models assoc 

Corresponding to f!?(w) we 

iated 

lrlith the pseudo-spectra of the components. 

clearly have the model 

(I + B)sf = ag 

(4.2) 

(4.3) 

this we 

(4.4) 

where a f is a white noise process with variance 0% = az/4. Of course, ez¶' 

is a white noise process with variance y. The situation is more complex 

for nz. 

4.1 Spectral Factorization for nT . 

Since (I-B)nJ has the spectrum 

11 - e -iw(2f);(u) = a2,/4 - yll - e-iW(2 

= 10; - 2yl + 2ycosw (4.5) 
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it is clearly an MA(l) process, i.e., 

(I-R)nJ = (I - eyR)Q (4.6) 

where the coefficient ey (satisfying (EJ~~c~) and the variance o$ of 

the white noise process 81 must be obtained from the spectral density function 

(4.5), a procedure known as spectral factorization. The procedure is easy 

for this example. From 108 - 2~1 + 2~~0s~ = oFI - 0ye-iw12 = 

a2(1 + {0Y>2) - It 2c@Ycosw, we obtain the system of equations 

Y = -0YU2 
Y ’ 

whose solution with(ey(al is given by 

( 

4i 

1) (( 

Oli 7 

ey = - - + - _ I 1)2 - 1W 
2Y 2y 

2 
aY 

= (1 - ey)-20$ . 

Note that 0 < y G a%/4 implies -1 G 8 < 0. 

Remark. When xt has a somewhat more complex model than (4.1), the spectral 

factorizat ion requ ired to determine the model for nl (y+O) could ord inarily 

only be approximated, using an algorithm like that of Wilson (1972), or a 

root-finding algorithm applied to the covariance generating function, see 

Whittle (1963, p. 28). (The latter procedure must be used when the 

(4.7) 

(4.8) 
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moving component the is Noninvertibility 

at maximum value of y, since f:(w) - y” is zero 

for some 0.) 

We can now put the modeling equations for xt, 52, nl and eJ,' 

in a "Markovian" form as required by the smoothing algorithms: 

P . I- m - - c e L 

4 -1 0 0 0 4!-1 1 0 0 ato 

nJ 0 1 -ey 0 $-1 Q 1 0 
= + 

.[ ;Bl 
II 

Bl 0 0 0 0 @T-l !Q 10 i r$sO . (4.9) 
el,’ 0 0 0 0 ef:p 10 0 1 i J . 

J L i 

xt = [ 1 1 0 l][s,O nt f31 e{sOl’ . (4.10) 

We also require the covariance matrix of the "noise" vector 

[a! 81 eT,'l' in (4.9). If we multiply (4.2) by 11 - e-i2w12, we obtain a 

decomposition of the spectral density of the white noise process ct = zt - zt-2 , 

7 
% = 02,11 - e -iw 2 1 + yll - e-i2w12 

+ +I1 + e-iw1211 - eyewiw12 , 

which reveals that the stationary processes (I-B)aF, (I-B2)el,' and 

(I+B)(I-8B)Bx are uncorrelated. It can be shown to follow from this that 

the processes a!, eJ*’ and 8% are uncorrelated, see Findley (1985) or 
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Whittle (1963, p. 44). Hence, in particular, the covariance matrix Q of 

ra! 81 el'"l' is given by 

Q = 

ug 

0 

0 

0 0 

(i-ey)-20$ 0 

0 Y 1 . (4.11) 

Now we must specify properties of the starting values sp and nl, 

without which the specifications of SF by (4.4), of n7 by (4.6) and of xt 

by (4.1) are incomplete. Bell (1984) discusses this point very informatively 

as well as the effect of the starting-value-covariance specifications on the 

form of the filters providing the least squares estimates of the components 

of Xt. 

4.2 Choosing Covariance Properties for the Initial Values. -- 

In order to obtain estimates m:, Gt, cl,Q (and $1) along with their 

associated error covariance matrix from a Kalman smoother, for t=l,...,T, 

we must have nl and ST uncorrelated with at, f3T and el, ' for t=2,...,T, 

as are 61 and el,O by our previous discussion. In this case, the 

following requirement is met, i.e., the representation (4.9) is truly Markovian. 

(1) As regards its covariance structure, - [s,O r-Q Bl e~~"l' 

is a Markov process for t=2,...,T initialized st=l. -- 
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This justifies the application of the Kalman smoothing algorithm 

for t=l,...,T. 

But two more requirements must be met by the processes satisfying (4.9), 

(4.10) (equivalently, (4.3-4) and (4.6)) if they are to have the properties 

of the decompositions described in section 2. 

(11) The covariance structure of Xl,.,+,XT is independent of the - - -e 

value of Y. -- 

(111) cov(e~y’, n:) = cov(ez,", si) = 0, 1 G t,, u G T. 
* 

Also, var(nl + el,') = var(n1) + y does not depend on y, fort=l,...,T. -- 

We will now show that when (I) holds, which we assume, then (II) and 

(III) are implied by the weaker conditions (II’) and (III’) concerning the 

initial values, which we shall impose. 

(II’) var(xl), var(x2) cov(xl,x2) do not depend on Y. -- - 

(III’) cov(s~, el,O) = cov(n1, eI,O) = 0. 

Also, var(nI + el,') = var(nI) + y does not depend on Y. -- 

In conformity with the notation of section 2, let us define 

ny = YO nl[ + et, . Since 

var(q 1 = var(sp) + var(ny) + Pcov(s~, np) (4.12) 

and since var(xl), var(si]) and var(nf) do not depend on Y, there is 

a constant C such that 
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cov(s~, r-t?) = cov(sp, nj) = C . (4.13) 

Recause 58 = -5: + a$ by (4.4) and n$ = nl + 83 - Oyg~ by (4.6), we 

have 

x2 = nl - sp + es,' t aj t f3$ - eT3T . (4.14) 

Hence 

II var(q4 = var(nI) + var(sp) - 2 covCs~, nj[) + Y 

t U$ t (1 t {ey}2)0c - 2 cov(nI - spy e%l) 

= var(x1) - 4 cov(sp, ny) + 206 

- 2Icov(nT - sp, e%j[) + ~1 , (4.15) 

by (I), (III’), (4.8) and (4.12). 

Similarly 

cov(xl,x2) = var(np) - var(s.7) 

- {cov(nI + sp, cYf31) t y) . (4.16) 

The fact that var(xl), var(x2), cov(xl,x2), var(np), var(sp) and cov(np,sp 

do not depend on y means that the same must be true of the ( I-terms in 

(4.15) and (4.16). Since these terms clearly approach 0 as Y (and hence 
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also BY, see (4.7)) approaches 0, they must, in fact, be equal to 0. Because 

Y = -ey,G, this is equivalent to the formulas 

cov(sp,q) = 0 
(4.17) 

91 holding for all y. Now, using (4.17), (4.8) and the model equations (4.1), 

(4.4), and (4.6), it is stra 

II 

Et = Xt - xt-2 

= {eJyo - ex$ 

ghtforward tc 

+ Ia,D - ato-1 

verify that the white nois e variable 

(4.18 

is uncorrelated with x1 and x2 for t=3 ,...,T, and therefore that (II) holds. 

The verification of (III) also follows readily. 

The conditions (III’), (4.13) and (4.17) reveal how the covariance 

matrix of the state vector (sy nl 61 elyD)' initializing the Markov process 

(4.9) (and therefore the Kalman smoothing algorithm) must be restricted in 

order for (II) and (III) to be satisfied: The nonnegative value of 

var(sy) can be selected arbitrarily. However, by (4.17) and the 

Cauchy-Schwarz inequality, 

0: = cov(n~,B~) = cov(nl + eI,O,@I) 

( {var(nl) t y}li2ay . 
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Since 06 = rnaxyoF by (4.7), the constant var(nf) = var(nI) + y 

must be therefore chosen to be at least as large as ~6. Similarly, 

Icov(nI,sp)l = (cov(np,s!j)l G Jvar(np) Jvar(sf) . (4.1?) 

This is the only restriction that must be imposed on the choice of 

cov(nI,sy). 

Sometimes, other considerations make additional restrictions appropri- 

a;e. For example, in the model (4.1), the facts that x2m depends only on 

~2~~ E2m-2,. •e,~2 and ~2, and that x2m-1 depends only on c2m-1, c2m,S,...yEl 

and x1 (m22) makes it seem natural to choose the covariance structure of 

nI and sp in such a way that cov(xl,x2) = 0 and var(xl) = var(x2). By 

(4.15) - (4.17), this means choosing var(np) = var(s7) and 

cov(nj[,sp) = 032. Thus the covariance matrix of (s 7 nil Bl e'j,')' 

is required to be 

PJ = 

var(sp) 

4/2 

0 

0 

-r 
u&2 0 0 

var(sp)-y (1-ey)-20g 0 

(l-ey)-2~fj (l-ey)-20i 0 

0 0 Y 

We must choose var(sf) > ~6, and then (4.39) is also satisfied. Often, 

setting var(sp) equal to some fraction of the squared range 

(maxt{xtI - mintIxtI)2 would provide a conservative choice. 
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It is clear that the analysis which led us to Pa could be very 

difficult to carry out for a more complicated model than (4.1). If the 

backshift-operator polynomial transformations to stationarity for ST 

and nz ((I+B) and (I-B) in our example) have no common factor, then the 

estimation error covariance matrices will converge as t+= to a matrix which 

is independent of the initializing covariance matrix, see 

Burridge and Wallis (1983), for example. Thus, the same will be true of 

ha(t), by (3.1). In the seasonal adjustment situation, the greatest 

intgest would usually be attached to hz for values of t close to T. 

In this case, it therefore seems reasonable, if T is not too small, to use 

a simpler procedure for obtaining an initializing covariance matrix. 

We will briefly illustrate one such procedure using our decomposition 

Xt = s! + et' YO + n! of the series satisfying (4.1). Following Assumption A 

of Be11(1984), we will choose initial values XI and x2 which are uncorrelated 

with the white noise series a!, Et and el, ' for all t (contradicting (III), 

which implies via (4.17) that cov(x2,BI) = y) and whose variance-covariance 

matrix is specified independently of y. Then we solve (4.3) and (4.14) for 

the initial values sp and nl, obtaining 

nI = {xl + x2 - a! - 133 + eygj[ - eIy” - e$y0>/2 . (4.20) 

The variance-covariance matrix of sp and nl, and therefore also of SF and 

rtr for t>2, can be calculated from the known covariances of the right- 

hand-side terms in (4.20). It is easy to see that (II) holds, and if we ini- 
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tialize (4.9) at t=2 instead of t=l, so does the appropriately modified ver- 

sion of (I). Thus a Kalman smoother can provide least mean square esti- 

mates of nl, s! etc. for t>2 based on the shortened observation set 

{x2,...,+ Finally, it is simple to verify that all of the conditions 

of (III) are satisfied for t>3, but not for t=l or 2. 

5. Watson's Second Minimax Criterion. 

* We return to the notation and discussion of Section 2. Since the 

least mean square approximation in OR!? to An: = nr - n?-1 is given by 

AfiT = $1 - Gl-1 (which is different, in general, from the orthogonal 

projection of AnJ onto the linear subspace spanned by AXt,i, -m + 1 G i G n), 

it makes sense to consider the criterion 

min max ms[Aal 
i j 
,y 1 

yj ,i 
(5.1) 

if the focus is on estimation of Ant. Watson's results on (5.1) for a spe- 

cial case can be obtained in the present generality using the analogue of 

(2.9) given by (5.3) below. First, note that by arguments similar to those 

used to derive (2.7), the identity 

Anf 

. . 

- A$t = AnI' - A$t t Aellyya 

leads to 
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readi 1 y obtai ns 

* 
i j 

ms [Aa? ,y ] = ms[Aal a,ye] + {ho(t) + ho(t-1) - 2hl 

+ 2(yi - y’)kov(A;t,A!~J) - 1) , 

(t) UYj - YRJ2 

(5.3) 

E{Ar$- 
. 

A&j2 = E{Anz’- ATtj2 

+ 2(yi - Y%l - cov(A&A$I . (5.2) 

Ry (2.5) the quantity cov(A&,ATt) is equal to vg(t) + vo(t-1) - v-l(t-1) 

- VI(t), when $t is given by (2.4) with coefficients vi = vi(t), Then, 

proceeding as before with ;t = $zJ and setting hi(t) = cov(&,&-I), one 

with ho(t) + hg(t-1) > 2hl(t) unless et = et-l. However, et = et-l is 

equivalent to 7'11 - nt &Y’ =q 1 
I 

_ - q-1 for all y y' Y E [yR vu1 Y 

with y > y', and so can, in principle, be verified or contradicted from 

calculated quantities. Since 

. 

cov (A& ,A:zJ ) = cov(A&,A+ 

- {ho(t) + ho(t-1) - 2hl(t)I(yj - Y’) , 

the form of (5.3) is equivalent to that of (2.9) for analyzing the mimimax cri- 

terion and the analogues of the conclusions of the Theorem of section 2 there- 

fore hold for (5.1) when et Z et-l. Also, a formula like (2.14) can be given 

for the value y** of yj for which the coefficient of (yi - ~2) in (5.3) vanishes. 
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In analogy with the derivations of section 3, the quantities hi(t) and 

cov(A&, Afig) can be obtained for all t 2 2 from the Kalman smoother, 

provided that the state vector at time t contains er,y: egg ' 

and n:-I among its components, along with nr. The effect of the presence 

of these additional components on the initializing covariance matrix is easy 

to determine for the example of section 4. To maintain compatibility with the 

equations (4.4) and (4.6) and the conditions (II) and (III), one should specify 

the covariance matrix of [eJ,n nsl with the other initial components 

i 0 0 0 
J 
i cov(sp,np) var(n;j) + Y 0 
F 

0 1 

0 1 , 
i 

and also specify var(eJ,') = Y, and 

var(n6) = var(nI) - 0:(1 - ey)2 . 

If Bell's Assumption A is to be used, then the covariance of t-$ with the 

other components can be determined with the aid of (4.20) and the equation 

nT; = {x2 + xI + a? - as - f33 

which is obtained from an analogue of (4.20) and the relation x0 = x2 - ~2, 

using (4.18) with t=2. 
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Concluding Remarks. 

In this note we have demonstrated the great generality of the minimax 

results of Watson (1984) for selecting an unobserved components decomposi- 

tion of an observed series when there is ambiguity concerning the assign- 

ment of a white noise process which is uncorrelated with the remaining 

components. We have also shown how the minimax choice can be determined 

from the output of a Kalman smoothing algorithm when (possibly nonstation- 

qry) ARMA models are available for the components of a candidate decompo- 

sition, provided that the initializing covariance matrix is properly 

chosen. Regardless of how the component estimates are calculated, the 

results of Bell (1984) show that if the component series are non- 

stationary, then initializing covariance assumptions must be made, 

explicitly or implicitly, before the minimum mean square estimates can 

be determined. The example of section 4 suggests that it will be dif- 

ficult, in general, to determine which initializing assumptions are com- 

pletely compatible with the assumptions (II) and (III) of section 4 con- 

cerning the component decomposition, but in practice mild incompatibilities 

may be harmless. Further work is needed to establish practical, adequate 

procedures for specifying initial covariances. 
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