bureau of the census
STATISTICAL RESEARCH DIVISION REPORT SERIES
SRD Research Report Number: CENSUS/SRI)/RR-84/28

ANALYSIS OF CONCURRENT SEASONAL ADJUSTMENT
FOR RETAIL AND WHOLESALE SERIES
by

Michael Z. Shimberg
Business Division
Bureau of the Census
Room 2616 , F.O.B. \#3
Washington, D.C. 20233

(301) 763-7515

Abstract

This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The views reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.

Recommended by: Nash J. Monsour
Report completed: August 10, 1984
Report issued: August 20, 1984

Analysis of Concurrent Seasonal Adjustment for Retail and Wholesale Series By

Michael Z. Shimberg 1/
U.S. Bureau of the Census
I. Introduction and Summary

This paper compares the present method of seasonal adjustment to different methods of concurrent seasonal adjustment for various retail and wholesale sales and inventory series. Various measures were used to determine which method of concurrent adjustment was the best and whether the best concurrent adjustment method was better than the present method of seasonal adjustment. The time span of this study was from October 1977 through December 1979, inclusive.

For the present method, the $X-11$ seasonal adjustment program was executed twice a year and the last observation was the June or December unadjusted final estimate. The projected seasonal factors 2/ computed from these executions of the $X-11$ program were used to adjust advance, preliminary, and final estimates as they became available.

For concurrent adjustment, the $X-11$ program was executed each month included in the time span of this study. The last estimate input to the $X-11$ program was dependent upon the type of series and method of concurrent adjustment. Therefore, the last estimate input to the

1/ The author is a mathematical statistician who works in Business Division at the Bureau of the Census. The views expressed in this paper are those of the author and do not represent official Census Bureau Policy.

2/ In this paper, the term seasonal factor is defined as the product of the seasonal, trading day, and holiday factors.

X-ll program was either a final, preliminary, or advance estimate. If the advance estimate was the last observation, the observation one month prior to this estimate was a preliminary estimate. All observations prior to the preliminary estimate were final estimates.

With the exception of retail sales series with advance estimates, the following three methods of concurrent adjustment were evaluated:

1. Only the last estimate (preliminary or final) was adjusted.
2. The last two estimates were adjusted.
3. The last two estimates and the estimate one year prior to the last estimate were adjusted. For this method, various current month-to-previous month and current year-to-previous year adjusted trends were derived from adjusted estimates which were computed by using seasonal factors generated from the same execution of the $X-11$ program.

For retail sales series with advance estimates, five methods of concurrent adjustment were evaluated. For the first three methods, the last observation input to the $X-11$ program was the preliminary estimate.

1. The last observation, or preliminary estimate, was adjusted and the one month ahead seasonal factor was used to adjust the advance estimate.
2. The last two observations (preliminary and final estimates) were adjusted and the one month ahead seasonal factor was used to adjust the advance estimate.
3. Same as method 2, except that the estimates one year prior to the preliminary and advance estimates were also adjusted.

For methods 4 and 5, each time the the $\mathrm{X}-11$ program was executed, the last observation input to the program was an advance estimate.
4. The advance estimate was adjusted by the seasonal factor computed for the month with the advance estimate. However, the preliminary and final estimates and the estimates one year prior to the advance and preliminary estimates were adjusted by the seasonal factors computed from the $\mathrm{X}-11$ execution for which the preliminary estimate was the last observation. Therefore, this method was equivalent to the third method, except for the computation of the adjusted advance estimate. With this method, adjusted preliminary and final estimates were not dependent upon the advance estimate.
5. The last three observations; or advance, preliminary, and final estimates; and the estimates one year prior to the advance and preliminary estimates were adjusted.

For all methods of concurrent adjustment and the present method of seasonal adjustment, various measures were computed that compared advance, preliminary, and final adjusted estimates and various month-to-month and year-to-year adjusted trends to "ideal" final adjusted estimates and trends. The X-11 program used all final estimates for the period January 1967 through December 1982 to compute seasonal factors which were used to derive "ideal" final adjusted estimates and trends for the time span of this study.

By using the advance and preliminary adjusted estimates in the comparisons instead of all final estimates, this study provides a realistic analysis of concurrent adjustment. These adjusted estimates and the month-tomonth and year-to-year adjusted trends, derived from these estimates, are given the most attention by the users of these data.

For all series, excluding the retail series with advance estimates, method 3 was the best according to the various measures used in this study. For the retail sales series with advance estimates, method 5 had the best results for the various measures. Both these methods of concurrent adjustment were better than the present method of using projected factors. These results were expected as the adjusted estimates used in the various measures were derived from the seasonal factors computed from the same $X-11$ execution which used all available estimates.

If these methods of concurrent adjustment are implemented, final adjusted estimates will be computed from different:X-11 executions. Therefore, it is possible that same trends, derived from these adjusted estimates, can be worse than the trends that would be computed if the present method of seasonal adjustment was used. Research will be implemented to study the magnitude of this problem.

Until research of this problem is completed, the present method of seasonal adjustment will contimue to be used for all retail and wholesale sales and inventory series.

Section II of this paper describes the data and the design of the study. Section III shows the various measures used for determining the best method of concurrent adjustment and whether the best concurrent method is better than the present method of seasonal adjustment. Section IV discusses the results, and Section V describes the conclusions and recommendations.
II. Description of the Data and Design of the Study

All of the kinds-of-businesses (KB's) that had inventory and/or sales estimates evaluated were included under one classification. For each classification used in this study, the following shows the classification along with the estimates that were computed for each month during the time span of this study:

Classification

1. Retail Sales--Category 1
2. Retail Sales-Category 2
3. Retail Sales-Category 3
4. Retail Inventory
5. Wholesale Sales
6. Wholesale Inventory

Estimates

Advance, Preliminary and Final Preliminary and Final Advance, Preliminary and Final Final 3/
Preliminary and Final Preliminary and Final

Attachment 1 shows and describes the KB's that were used in this study for each classification.

3/ For KB's classified under retail inventory, a preliminary estimate for a particular month is released one month prior to the final estimate. However, the same ratio estimation procedure is used for both estimates. The only difference between the two estimates is that the final estimate is derived from more respondents.

For a particular month, the advance estimate is released approximately 10 to 15 days after the last day of the respective month. The preliminary estimate is released approximately 40 to 45 days after the last day of the respective month, and the initial final estimate is released approximately 70 to 75 days after the last day of the respective month. The final estimate that replaces the preliminary estimate will be referenced as the initial final estimate throughout the remainder of this study. Also, the advance estimate is derived from a smaller sample than the sample used to compute preliminary and final estimates.

The KB's that were classified under Retail Sales-Category 1 obtained their advance, preliminary, and final adjusted estimates directly by dividing the undjusted estimates by their respective seasonal factors. The KB's classified under Retail Sales-Category 3 had their adjusted preliminary and final estimates computed by summing the adjusted preliminary and final estimates across all component KB's (classified under Retail Sales-Category 2) that comprise the respective KB . Also, their adjusted advance estimates were computed directly.

The final unadjusted estimates used in this study were derived by benchmarking unadjusted estimates to the 1977 Census of Retail and Wholesale Trade and the 1978 through 1980 annual estimates obtained from annual surveys of Retail and Wholesale Trade. Advance and preliminary unadjusted estimates were derived in a manner that maintained the same advance to preliminary and preliminary to final unadjusted trends originally published. The formulas used to derive advance and preliminary estimates are shown in Attachment 2.

The "ideal" seasonal factors were derived by using final unadjusted estimates for the period January 1967 4/through December 1982 as input to the $\mathrm{X}-11$ program. A seasonal factor is considered "ideal" for a particular month when there are at least three years of data prior to and following the respective month and the filter used for the month is no longer than the seven-term filter, or the " 3×5 moving average filter". The "ideal" final adjusted estimates were derived by dividing the final unadjusted estimates by their respective "ideal" seasonal factors. However, KB's classified under Retail SalesCategory 3 obtained their "ideal" final adjusted estimates by summing the "ideal" final adjusted estimates across all component KB's that comprise the respective KB . The estimates and trends, computed from these "ideal" adjusted estimates, were compared to the adjusted estimates and trends computed for the present method of seasonal adjustment and the various methods of concurrent adjustment.

A. Present Method (Method A)

The $\mathrm{X}-11$ program was executed twice a year and the June and December final unadjusted estimates were the last observations. Projected seasonal factors were used to adjust advance, preliminary, and final unadjusted estimates as they became available.

4/ All of the executions of the X-1l program used the January 1967 final unadjusted estimate as the first observation input into the $\mathrm{X}-11$ program.

When the $\mathrm{X}-11$ program was executed with the December final unadjusted estimate as the last observation, the last seven full years of data were used for deriving trading day factors 5/ and shorter moving average filters were selected for each month, when appropriate. The option to derive holiday factors for the months affected by Easter, Labor Day, and Thanksgiving were used for the following KB's classified under one of the categories in retail: 531100, 541100, 554100, 580000, 591200, 560000, 561100, 560001, 566100, and 560002. Projected seasonal factors were used to derive advance adjusted estimates for the months February through August of the following year and to derive preliminary and final adjusted estimates for the months January through August of the following year. Also, the seasonal factors generated for all the months in the year containing the December final estimate were used to derive revised final adjusted estimates for the months January through November and the initial final adjusted estimate for the month of December. These adjusted estimates were compared to the advance, preliminary, and final adjusted estimates that were computed in the following year. Because the December final estimate was computed after the January advance estimate of the following year became available, the January adjusted final estimate one year prior to the January adjusted advance estimate was not revised.

5/ Trading day factors were not derived for any KB's classified under retail and wholesale inventory.

When the $\mathrm{X}-11$ program was executed with the June final unadjusted estimate as the last observation, the same trading day and holiday options used for the previous December execution were repeated. Also, shorter moving average filters were selected for each month, when appropriate. Projected factors were used to derive advance adjusted estimates for the months September through December of the current year and January of the following year, to derive preliminary adjusted estimates for the months September through December of the current year, and to derive final adjusted estimates for the months September through November of the current year.

For this method, the following should be noted:

1. For each month used in this study; advance, preliminary, and final adjusted estimates were derived from the same seasonal factor.
2. For most months; the adjusted estimates, used to calculate current-tomprevious month adjusted trends, were derived by using seasonal factors computed from the same $\mathrm{X}-11$ execution.
3. For the months January through August, almost all of the adjusted estimates, used to calculate current-to-previous year adjusted trends, were derived by using seasonal factors computed from the same $X-11$ execution.

For each month in 1979, the following table shows the month with the last unadjusted final estimate that was input to the $\mathrm{X}-11$ program to derive the seasonal factors used to adjust various current and previous year estimates. This table is also repeated for each method of concurrent adjustment.

$\frac{\text { Month }}{\text { in } 1979}$	Current Year Estimates			Previous Year Estimates Compared to 1979 Estimates		
	Advance	Preliminary	Final	Advance	Preliminary	Final
Jan.	June 1978	Dec. 1978	Dec. 1978	Dec. 1977	Dec. 1978	Dec. 1978
Feb.	Dec. 1978	"	"	Dec. 1978	"	1
Mar.	"	"	"	"	"	"
April	"	"	"	N	"	"
May	"	"	"	\cdots	"	"
June	"	"	4	1	"	"
July	"	"	"	"	"	"
Aug.	"	"	"	"	\cdots	"
Sept.	June 1979	June 1979	June 1979	"	"	"
Oct.	*	"	+	.	,	\cdots
Nov.	\cdots	N	"	\cdots	\cdots	-
Dec.	"	"	Dec. 1979	"	"	*

The following shows the classifications for which each of the estimates, or columns headings, in the preceding display were computed:

Estimates

Advance
*Preliminary
*Final
*Previous Year Estimate Compared to 1979 Advance

*Previous Year

 Estimate Compared to 1979 PreliminaryPrevious Year Estimate Compared to 1979 Final

Classifications for Which Estimates Were Computed
Retail sales-categories 1 and 3
Retail sales-all categories and Wholesale sales and inventory

Retail sales-all categories, Retail inventory, and Wholesale sales and inventory

Retail sales-categories 1 and 3

Retail sales-all categories and Wholesale sales and inventory

Retail inventory
> *For KB's classified under Retail Sales-Category 3, adjusted estimates were derived by aggregation; while the adjusted estimates for KB's in all other categories were obtained directly.
B. Concurrent Seasonal Adjustment (Methods B1, B2, B3, B4, and B5)

1. Methods B1, B2 and B3

For the period September 1977 through January 1980, the X-11 program was executed each month and the last observation was the preliminary estimate for all KB's classified under Retail Sales-all categories and Wholesale Sales and Inventory. For the KB's classified under Retail Inventory, the last observation was the final estimate. The January through June concurrent executions of the $x-11$ program for a given year used the same trading-day, holiday, and moving average options that were used when the December final unadjusted estimate of the previous year was the last observation under Method A. The July through

December concurrent executions of the X-11 program for a given year used the same options that were used when the June final unadjusted estimate of the given year was the last observation under Method A.
a. Method Bl

This method duplicated the method of concurrent adjustment that was implemented for other studies done at the Census Bureau.
(1) Retail Sales-All Categories and Wholesale Sales and Inventory

The seasonal factor computed for the last observation, or the month with the preliminary unadjusted estimate, was used to obtain the adjusted preliminary estimate and the projected seasonal factor for the following month was used to compute the adjusted advance estimate. The previous month initial final adjusted estimate was derived by dividing the unadjusted estimate by the seasonal factor that was computed for its preliminary estimate. When the January preliminary unadjusted estimate was the last observation input into the $\mathrm{X}-11$ program, the seasonal factors computed for all months in the prior year were used to derive revised final adjusted estimates. These revised final adjusted estimates were compared to advance and preliminary adjusted estimates of the following year. Because
the January preliminary estimate was computed after the January advance estimate, the January final adjusted estimate one year prior to the January advance estimate was not revised.

For this method, the following should be noted:

1. For each month used in this study, the preliminary and initial final adjusted estimates were derived from the same seasonal factor.
2. The adjusted estimates, used to calculate the current month advance to previous month preliminary trends, were derived by using seasonal factors computed from the same X-11 execution. However, the adjusted advance estimates were derived by using one month ahead projected factors.

For each month in 1979, the following table shows the month with the last unadjusted preliminary estimate that was input to the $X-11$ program to derive the seasonal factors used to adjust various current and previous year estimates.

Month	Current Year Estimates			Previous Year Estimates Compared to 1979 Estimates	
in 1979	Advance	Preliminary	Final	Advance	Preliminary
Jan.	Dec. 1978	Jan. 1979	Jan. 1979	Jan. 1978	Jan. 1979
Feb.	Jan. 1979	Feb. 1979	Feb. 1979	Jan. 1979	,
Mar.	Feb. 1979	Mar. 1979	Mar. 1979	"	"
April	Mar. 1979	Apr. 1979	Apr. 1979	"	"
May	Apr. 1979	May 1979	May 1979	"	"
June	May 1979	Jun. 1979	Jun. 1979	"	"
July	Jun. 1979	Jul. 1979	Jul. 1979	"	"
Aug.	Jul. 1979	Aug. 1979	Aug. 1979	"	"
Sept.	Aug. 1979	Sept. 1979	Sept. 1979	1	1
Oct.	Sept. 1979	Oct. 1979	Oct. 1979	"	"
Nov.	Oct. 1979	Nov. 1979	Nov. 1979	"	'
Dec.	Nov. 1979	Dec. 1979	Dec. 1979	"	"

The seasonal factor computed for the last observation was used to obtain the final adjusted estimate. When the December final unadjusted estimate was the last observation input into the $\mathrm{x}-11$ program, the seasonal factors computed for all months in the year with the December estimate were used to derive revised final adjusted estimates. These revised final adjusted estimates were compared to final adjusted estimates of the following year.

For each month in 1979, the following table shows the month with the last unadjusted final estimate that was input to the $X-11$ program to derive the seasonal factors used to adjust various current and previous year estimates.

$\frac{\text { Month }}{\text { in } 1979}$	$\frac{\text { Final (Last }}{\text { Observation) }}$	$\frac{\text { Previous }}{\text { Month Final }}$	Previous Year Estimate Compared to 1979 Final
Jan.	Jan. 1979	Jan. 1979	Dec. 1978
Feb.	Feb. 1979	Feb. 1979	"
Mar.	Mar. 1979	Mar. 1979	"
April	Apr. 1979	Apr. 1979	"
May	May 1979	May 1979	"
June	Jun. 1979	Jun. 1979	"
July	Ju1. 1979	Jul. 1979	"
Aug.	Aug. 1979	Aug. 1979	"
Sept.	Sept. 1979	Sept. 1979	"
Oct.	Oct. 1979	Oct. 1979	"
Nov.	Nov. 1979	Nov. 1979	1
Dec.	Dec. 1979	Dec. 1979	H

(1) Retail Sales-All Categories and Wholesale Sales and Inventory

The only difference from Method Bl was the computation of the initial final adjusted estimates. For each execution of the X-11 program, the seasonal factor computed for the month prior to the last observation, or the preliminary estimate, was used to obtain the initial final adjusted estimate.

For this method, the adjusted estimates, used to calculate the current month advance to previous month preliminary trends and the current month preliminary to previous month final trends, were derived by using seasonal factors computed for the same X-11 execution. Also, the calculation of the seasonal factor computed for the initial final estimate took into account the initial final estimate, or the revision of the preliminary estimate, and the following month's preliminary estimate.

This method would be the easiest to implement because seasonal factors are only used to adjust initial and revised estimates.

For each month in 1979, the following table shows the month with the last unadjusted preliminary estimate that was input to the $X-11$ program to derive the seasonal factors used to adjust various current and previous year estimates.

$\begin{aligned} & \text { Month } \\ & \text { in } 1979 \\ & \hline \end{aligned}$	Current Year Estimates			Previous Year Estimates Compared to 1979 Estimates	
	Advance	Preliminary	Final*	Advance	Preliminary
Jan.	Dec. 1978	Jan. 1979	Feb. 1979	Feb. 1978**	Jan. 1979
Feb.	Jan. 1979	Feb. 1979	Mar. 1979	Jan. 1979	
Mar.	Feb. 1979	Mar. 1979	Apr. 1979	"	"
April	Mar. 1979	Apr. 1979	May 1979	"	"
May	Apr. 1979	May 1979	Jun. 1979	"	,
June	May 1979	Jun. 1979	Jul. 1979	*	"
July	Jun. 1979	Jul. 1979	Aug. 1979	"	"
Aug.	Jul. 1979	Aug. 1979	Sept. 1979	"	"
Sept.	Aug. 1979	Sept. 1979	Oct. 1979	"	"
Oct.	Sept. 1979	Oct. 1979	Nov. 1979	"	"
Nov.	Oct. 1979	Nov. 1979	Dec. 1979	"	${ }^{\prime}$
Dec.	Nov. 1979	Dec. 1979	Jan. 1980	"	"

*All periods under this column are different from the periods that were displayed for method Bl.
**This period is different from the period that was displayed for method Bl.
(2) Retail Inventory

The only difference from method Bl was the computation of the previous month final adjusted estimates. For each execution of the $\mathrm{X}-11$ program, the seasonal factor computed for the last two observations were used to adjust the estimates of these observations.

For this method, the adjusted estimates, used to calculate the current month to previous month trends, were derived by using seasonal factors computed from the same $\mathrm{X}-11$ execution. Also, the calculation of the seasonal factor, computed for the previous month's estimate, took into account the following month's estimate.

For each month in 1979, the following table shows the month with the last unadjusted final estimate that was input to the $\mathrm{X}-11$ program to derive the seasonal factors used to adjust various current and previous year estimates.

Current Year Estimates

$\frac{\text { Month }}{\text { in } 1979}$	Final (Last Observation)	$\frac{\text { Previous Month }}{\text { to Final }}$	Previous Year Estimate Compared to 1979 Final
Jan.	Jan. 1979	Feb. 1979	Dec. 1978
Feb.	Feb. 1979	Mar. 1979	n
Mar.	Mar. 1979	Apr. 1979	"
April	Apr. 1979	May. 1979	*
May	May 1979	Jun. 1979	\cdots
June	Jun. 1979	Ju1. 1979	\cdots
July	Jul. 1979	Aug. 1979	*
Aug.	Aug. 1979	Sept. 1979	\cdots
Sept.	Sept. 1979	Oct. 1979	"
Oct.	Oct. 1979	Nov. 1979	"
Nov.	Nov. 1979	Dec. 1979	"
Dec.	Dec. 1979	Jan. 1980	"

*All periods under this column are different from the periods that were displayed for method Bl.

c. Method B3

(1) Retail Sales-All Categories and Wholesale Sales and Inventory

The only difference from method B2 was the computation of the previous year adjusted final estimates that were compared to the adjusted preliminary and advance estimates of the following year. For each execution of the $X-11$ program, the seasonal factor one year prior to the last observation was used to derive a revised final adjusted estimate that was compared to the adjusted preliminary estimate. Also, the seasonal factor one year prior to the month following the last observation, or the month with the advance estimate, was used to derive a revised final adjusted estimate.

This method was equivalent to method B2 for deriving seasonal factors for computing advance, preliminary, and initial final adjusted estimates.

For this method the adjusted estimates, used to calculate various current month to previous month and current year to previous year trends, were derived by using seasonal factors computed from the same $X-11$ execution. However, the adjusted advance estimates used to compute month-tomonth and year-to-year trends, were derived by using one month ahead projected factors. Also, the calculation of the seasonal factors that were computed for estimates one year prior to the advance and preliminary estimates took
into account the initial final and preliminary estimates of the following year.

For each month in 1979, the following table shows the month with the unadjusted preliminary estimate that was input to the $\mathrm{X}-11$ program to derive the seasonal factors used to adjust various current and previous year estimates.

Current Year Estimates

Month
in 1979

Jan.
Feb.
Mar.
April
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

Advance Preliminary Final
Dec. 1978 Jan. 1979 Feb. 1979
Jan. 1979 Feb. 1979 Mar. 1979
Feb. 1979 Mar. 1979 Apr. 1979
Mar. 1979 Apr. 1979 May 1979 Apr. 1979 May 1979 Jun. 1979 May 1979 Jun. 1979 Jul. 1979 Jun. 1979 Jul. 1979 Aug. 1979 Jul. 1979 Aug. 1979 Sept. 1979 Aug. 1979 Sept. 1979 Oct. 1979 Sept. 1979 Oct. 1979 Nov. 1979 Oct. 1979 Nov. 1979 Dec. 1979 Nov. 1979 Dec. 1979 Jan. 1980

Previous Year Estimates Compared to 1979 Estimates Advance* Preliminary*

Dec. 1978 Jan. 1979
Jan. 1979 Feb. 1979
Feb. 1979 Mar. 1979
Mar. 1979 Apr. 1979
Apr. 1979 May 1979
May 1979 Jun. 1979
Jun. 1979 Jul. 1979
Jul. 1979 Aug. 1979
Aug. 1979 Sept. 1979
Sept. 1979 Oct. 1979
Oct. 1979 Nov. 1979
Nov. 1979 Dec. 1979

[^0](2) Retail Inventory

The only difference from method B 2 was the computation of the previous year adjusted estimates that were compared to the adjusted final estimates of the following year. For each execution of the $X-11$ program, the seasonal factor one year prior to the last unadjusted final estimate was used to derive the revised final adjusted estimate.

For this method, the adjusted estimates, used to calculate current month to previous month and current year to previous year trends, were derived by using seasonal factors from the same X-11 execution. Also, the computation of the seasonal factor calculated for the estimate one year prior to the final estimate took. into account the final estimate of the following year.

For each month in 1979, the following table shows the month of the last unadjusted final estimate that was input to the $\mathrm{X}-11$ program to derive the seasonal factors used to adjust various current and previous year estimates.

$\frac{\text { Month }}{\text { in } 1979}$	$\frac{\text { Final (Last }}{\text { Observation) }}$	$\frac{\text { Previous Month }}{\text { to Final }}$	Previous Year Estimate Campared to 1979 Final
Jan.	Jan. 1979	Feb. 1979	Jan. 1979
Feb.	Feb. 1979	Mar. 1979	Feb. 1979
Mar.	Mar. 1979	Apr. 1979	Mar. 1979
April	Apr. 1979	May. 1979	Apr. 1979
May	May 1979	Jun. 1979	May 1979
June	Jun. 1979	Jul. 1979	Jun. 1979
July	Jul. 1979	Aug. 1979	Jul. 1979
Aug.	Aug. 1979	Sept. 1979	Aug. 1979
Sept.	Sept. 1979	Oct. 1979	Sept. 1979
Oct.	Oct. 1979	Nov. 1979	Oct. 1979
Nov.	Nov. 1979	Dec. 1979	Nov. 1979
Dec.	Dec. 1979	Jan. 1980	Dec. 1979

*All periods under this column are different from the periods that were displayed for method B2.

2. Methods B4 and B5

Methods B1, B2, and B3 used projected factors to compute adjusted advance estimates. Because advance estimates are released almost as soon as they become available, using projected factors would be the most expedient way to derive adjusted advance estimates.

Methods B4 and B5 used the concurrent factor that was cormuted for the advance estimate instead of the projected factor to derive adjusted advance estimates. These methods are only applied to the KB's classified under Retail Sales-Categories 1 and 3.

For the period October 1977 through February 1980, the X-11 program was executed each month and the last observation, or unadjusted estimate, was the advance estimate. The February through July concurrent executions of the X-1l program for a given year used the same trading-day, holiday, and moving average options that were used when the December final unadjusted estimate of the previous year was the last observation under method A. The August through January concurrent executions of the $\mathrm{X}-11$ program used the same options that were used when the June final unadjusted estimate was the last observation under method A.
(a) Method B4

This method is identical to method B3, except for the computation of the advance estimate. The advance estimate used the seasonal factor that was computed for the advance estimate, to derive the adjusted advance estimate.

For this method, the adjusted estimates, used to derive adjusted advance to preliminary trends and adjusted advance to previous year trends, were derived from seasonal factors computed from different $X-11$ executions. However, the seasonal factors used to derive the adjusted estimates, used in the computation of the trends described above, were derived from concurrent seasonal factors. For this method, the computation of seasonal factors, that would be used to derive preliminary and final adjusted estimates and adjusted estimates one year prior to the advance and preliminary estimates, would not be dependent on the advance estimate.

The following table shows for each month in 1979 the month with the last unadjusted advance estimate input to the $\mathrm{X}-11$ program (current year advance column only) and the month with the last unadjusted preliminary estimate that was used to derive other current year and previous year estimates.

Month	Current Year Estimates			Previous Year Estimates Compared to 1979 Estimates	
in 1979	Advance*	Preliminary	Final	Advance	Preliminary
Jan.	Jan. 1979	Jan. 1979	Feb. 1979	Dec. 1978	Jan. 1979
Feb.	Feb. 1979	Feb. 1979	Mar. 1979	Jan. 1979	Feb. 1979
Mar.	Mar. 1979	Mar. 1979	Apr. 1979	Feb. 1979	Mar. 1979
April	Apr. 1979	Apr. 1979	May 1979	Mar. 1979	Apr. 1979
May	May 1979	May 1979	Jun. 1979	Apr. 1979	May 1979
June	Jun. 1979	Jun. 1979	Jul. 1979	May 1979	Jun. 1979
July	Jul. 1979	Jul. 1979	Aug. 1979	Jun. 1979	Jul. 1979
Aug.	Aug. 1979	Aug. 1979	Sept. 1979	Jul. 1979	Aug. 1979
Sept.	Sept. 1979	Sept. 1979	Oct. 1979	Aug. 1979	Sept. 1979
Oct.	Oct. 1979	Oct. 1979	Nov. 1979	Sept. 1979	Oct. 1979
Nov.	Nov. 1979	Nov. 1979	Dec. 1979	Oct. 1979	Nov. 1979
Dec.	Dec. 1979	Dec. 1979	Jan. 1980	Nov. 1979	Dec. 1979

*All periods under this column are different from the periods that were displayed for method B3. Also, all periods represent the month with the last unadjusted advance estimate input to the $X-11$ program.

(b) Method B5

This method was only used for the KB's in Retail Sales-
Category 1 6/. When the advance estimate was the last observation input to the $X-11$ program, the seasonal
factors computed for the advance, preliminary, and final estimates, and the estimates one year prior to
the advance and preliminary estimates were derived from the same $X-11$ execution. Therefore, the adjusted estimates, used to compute various current month to previous month and current year to previous year
trends, were derived from the same $X-11$ execution.

6/ This method was not used for the KB's classified under Retail SalesCategory 3 because all preliminary and final estimates for KB's in this classification were derived by aggregation.

For this method, the seasonal factors used to derive adjusted preliminary and final adjusted estimates are dependent upon the advance estimates. Also, the advance, preliminary, and initial final estimates affected the computation of the seasonal factors that were used to derive adjusted estimates one year prior to the advance and preliminary estimates.

The following table shows for each month in 1979, the month with the last unadjusted advance estimate input to the X-1l program to derive seasonal factors used to compute various current year and previous year adjusted estimates.

in 1979

Jan.	Jan. 1979	Feb. 1979	Mar. 1979
Feb.	Feb. 1979	Mar. 1979	Apr. 1979
Mar.	Mar. 1979	Apr. 1979	May. 1979
April	Apr. 1979	May 1979	Jun. 1979
May	May 1979	Jun. 1979	Jul. 1979
June	Jun. 1979	Jul. 1979	Aug. 1979
July	Jul. 1979	Aug. 1979	Sept. 1979
Aug.	Aug. 1979	Sept. 1979	Oct. 1979
Sept.	Sept. 1979	Oct. 1979	Nov. 1979
Oct.	Oct. 1979	Nov. 1979	Dec. 1979
Nov.	Nov. 1979	Dec. 1979	Jan. 1980
Dec.	Dec. 1979	Jan. 1980	Feb. 1980

Previous Year Estimates Compared to 1979 Estimates

Advance
 Preliminary

Jan. 1979 Feb. 1979
Feb. 1979 Mar. 1979
Mar. 1979 Apr. 1979
Apr. 1979 May 1979
May 1979 Jun. 1979
Jun. 1979 Jul. 1979
Jul. 1979 Aug. 1979
Aug. 1979 Sept. 1979
Sept. 1979 Oct. 1979
Oct. 1979 Nov. 1979
Nov. 1979 Dec. 1979
Dec. 1979 Jan. 1980

III. Measures for Analyzing Concurrent Adjustment

The following notation will be used in this section:
FINIDL $_{t}=$ The "ideal" final adjusted estimate for month t. FIN $_{t}=$ The final adjusted estimate for month t. $\mathrm{PRE}_{\mathrm{t}}=$ The preliminary adjusted estimate for month t . $A D V_{t}=$ The advance adjusted estimate for month t.

Month t represents a month in the time span that was used for analyzing the results from this study (October 1977 through December 1979, a total of 27 months).

There were thirteen measures, shown below, used to compare the results from the various methods of concurrent adjustment to the present method of seasonal adjustment. These measures used both absolute percent change and root mean square error computations. The first five measures dealt with various comparisons of the adjusted estimates. Measures 6 through 9 dealt with various comparisons of current month to previous month adjusted trends, and measures 10 through 14 dealt with various comparisons of current year to previous year adjusted trends. The measures were as follow:

Absolute Percent Change Computations

Level Comparisons

Measures

1. $\left.1 / 27 \sum_{t} \mid\left(\left(\text { FIN }_{t} / \text { FINIDL }_{t}\right)-1\right)^{\star} 100\right) \mid$
2. $1 / 27 \sum_{t} \mid\left(\left(\left(\right.\right.\right.$ PRE $_{t} /$ FINIDL $\left.\left.\left._{t}\right)-1\right) * 100\right) \mid$
3. $1 / 27 \sum_{t} \mid\left(\left(\left(\right.\right.\right.$ ADV $_{t} /$ FINIDL $\left.\left.\left._{t}\right)-1\right) * 100\right) \mid$
4. $\quad 1 / 27 \sum_{t} \mid\left(\left(\left(\right.\right.\right.$ PRE $_{t} /$ FIN $\left.\left.\left._{t}\right)-1\right) * 100\right) \mid$
5. $1 / 27 \sum_{t}\left|\left(\left(\left(\mathrm{ADV}_{t} / \mathrm{PRE}_{\mathrm{t}}\right)-1\right) * 100\right)\right|$

Current Month to Previous Month Comparisons

Measures
6. $1 / 27 \sum_{t} \mid\left(\left(\left(\right.\right.\right.$ PRE $_{t} /$ FIN $\left._{t-1}\right)-\left(\right.$ FINIDL $_{t} /$ FINIDL $\left.\left.\left._{t-1}\right)\right) * 100\right) \mid$
7. $1 / 27 \sum_{t} \mid\left(\left(\left(\right.\right.\right.$ FIN $_{t} /$ FIN $\left._{t-1}\right)-\left(\right.$ FINIDL $_{t}$ FINIDL $\left.\left.\left._{t-1}\right)\right) \star 100\right) \mid$
8. $1 / 27 \sum_{t} \mid\left(\left(\left(\mathrm{ADV}_{t} /\right.\right.\right.$ PRE $\left._{t-1}\right)-\left(\right.$ FINIDL $_{t}$ FINIDL $\left.\left.\left._{t-1}\right)\right) * 100\right) \mid$
9. $1 / 27 \sum_{t} \mid\left(\left(\left(\mathrm{ADV}_{\mathrm{t}} / \mathrm{PRE}_{\mathrm{t}-1}\right)-\left(\right.\right.\right.$ PRE $\left.\left.\left._{\mathrm{t}} / \mathrm{FIN}_{\mathrm{t}-1}\right)\right) * 100\right) \mid$

Current Year to Previous Year Comparisons

Measures

10. $1 / 27 \sum_{t} \mid\left(\left(\left(\text { PRE }_{t} / \text { FIN }_{t-12}\right)-\left(\text { FINIDL }_{t} / \text { FINIDL }_{t-12}\right)\right)^{\star} 100\right) \mid$
11. $1 / 27 \sum_{t} \mid\left(\left(\left(\right.\right.\right.$ FIN $_{t} /$ FIN $\left._{t-12}\right)-\left(\right.$ FINIDL $_{t} /$ FINIDL $\left.\left.\left._{t-12}\right)\right) * 100\right) \mid$
12. $1 / 27 \sum_{t} \mid\left(\left(\left(\text { ADV }_{t} / \text { FIN }_{t-12}\right)-\left(\text { FINIDL }_{t} / \text { FINIDL }_{t-12}\right)\right)^{\star} 100\right) \mid$
13. $1 / 27 \sum_{t} \mid\left(\left(\left(\mathrm{ADV}_{\mathrm{t}} / \text { FIN }_{\mathrm{t}}-12\right)-\left(\mathrm{PRE}_{\mathrm{t}} / \text { FIN }_{\mathrm{t}}-12\right)\right)^{\text {* }} 100\right) \mid$

Root Mean Square Error Computations

Level Comparisons

Measures

1. $\left(1 / 27 \sum_{t}\left(\left(\left(\left(\text { FIN }_{t} / \text { FINIDL }_{t}\right)-1\right)^{*} 100\right) * * 2\right)\right)^{* *} 1 / 2$
2. $\left(1 / 27 \sum_{t}\left(\left(\left(\left(\text { PRE }_{t} / \text { FINIDL }_{t}\right)-1\right) * 100\right) \star * 2\right)\right)^{\star *} 1 / 2$
3. $\left(1 / 27 \sum_{t}\left(\left(\left(\left(\text { ADV }_{t} / \text { FINIDL }_{t}\right)-1\right) * 100\right) \star * 2\right)\right)^{\star *} 1 / 2$
4. $\left(1 / 27 \sum_{t}\left(\left(\left(\left(\text { PRE }_{t} / \text { FIN }_{t}\right)-1\right) * 100\right) * * 2\right)\right)^{* *} 1 / 2$
5. $\left(1 / 27 \sum_{t}\left(\left(\left(\left(\mathrm{ADV}_{\mathrm{t}} / \mathrm{PRE}_{\mathrm{t}}\right)-1\right) * 100\right) * * 2\right)\right)^{\star *} 1 / 2$

Current Month to Previous Month Comparisons

Measures

$$
\text { 6. }\left(1 / 27 \sum_{t}\left(\left(\left(\left(\text { PRE }_{t} / \text { FIN }_{t-1}\right)-\left(\text { FINIDI }_{t} / \text { FINIDL }_{t-1}\right)\right)^{\star} 100\right){ }^{* *} 2\right)\right){ }^{* *} 1 / 2
$$

$$
\text { 7. }\left(1 / 27 \sum_{t}\left(\left(\left(\left(\text { FIN }_{t} / \text { FIN }_{t-1}\right)-\left(\text { FINIDL }_{t} / \text { FINIDL }_{t-1}\right)\right)^{\star} 100\right)^{* *} 2\right)\right)^{\star *} 1 / 2
$$

$$
\text { 8. }\left(1 / 27 \sum_{t}\left(\left(\left(\left(\mathrm{ADV}_{t} / \mathrm{PRE}_{t-1}\right)-\left(\text { FINIDL }_{t} / \text { FINIDL }_{t-1}\right)\right) * 100\right)^{\star *} 2\right)\right)^{\star *} 1 / 2
$$

$$
\text { 9. }\left(1 / 27 \sum_{t}\left(\left(\left(\left(\mathrm{ADV}_{t} / \mathrm{PRE}_{\mathrm{t}-1}\right)-\left(\mathrm{PRE}_{\mathrm{t}} / \mathrm{FIN}_{\mathrm{t}-1}\right)\right){ }^{*} 100\right) * * 2\right)\right)^{* *} 1 / 2
$$

Current Year to Previous Year Comparisons

Measures

10. $\left(1 / 27 \sum_{t}\left(\left(\left(\left(\right.\right.\right.\right.\right.$ PRE $_{t} /$ FIN $\left._{t-12}\right)-\left(\right.$ FINIDL $_{t} /$ FINIDL $\left.\left.\left.\left.\left._{t-12}\right)\right) * 100\right) * * 2\right)\right) * * 1 / 2$
11. $\left(1 / 27 \sum_{t}\left(\left(\left(\left(\text { FIN }_{t} / \text { FIN }_{t-12}\right)-\left(\text { FINIDL }_{t} / \text { FINIDL }_{t-12}\right)\right)^{\star} 100\right) * * 2\right)\right)^{* *} 1 / 2$
12. $\left(1 / 27 \sum_{t}\left(\left(\left(\left(\text { ADV }_{t} / \text { FIN }_{t-12}\right)-\left(\text { FINIDL }_{t} / \text { FINIDL }_{t-12}\right)\right)^{*} 100\right)^{* *} 2\right)\right)^{* *} 1 / 2$
13. $\left(1 / 27 \sum_{t}\left(\left(\left(\left(\mathrm{ADV}_{t} / \text { FIN }_{t}-12\right)-\left(\text { PRE }_{t} / \text { FIN }_{t}-12\right)\right)^{* 100}\right)^{* *} 2\right)\right){ }^{* *} 1 / 2$

Most of the measures shown above used adjusted advance and preliminary estimates. The various adjusted estimates and trends included in these measures are given the most attention by many of the users of these data.
A. Level Comparisons

Measures 1 through 3 listed under each computation method (absolute percent change and root mean square error) show how close the adjusted final, preliminary, and advance estimates are to the "ideal" adjusted final estimate. The fourth and fifth measures for each computation method show how close the adjusted preliminary estimates are to the adjusted final estimates and how the adjusted advance estimates compare to the adjusted preliminary estimates.
B. Current Month to Previous Month Comparisons

Measures 6 through 8 listed under each computation method show how close various month-to-month adjusted trends are to the "ideal" month-to-month adjusted trend. Measure 9 compares the adjusted advance to preliminary trend to the adjusted preliminary to final trend. These four measures are considered to be the most important measures for evaluating whether one of the methods of concurrent seasonal adjustment should be implemented. Month-tomonth adjusted estimates are given the most attention by the mass media.

C. Current Year to Previous Year Camparisons

Measures 10 through 12 listed under each computation method show how close various year-to-year adjusted trends are to the "ideal" year-to-year adjusted trend. Measure 13 compares the adjusted advance to previous year trend to the adjusted preliminary to previous year trend.

For each measure (absolute percent computation or root mean square error computation) one of the following three notations is shown in the following table for each classification used in this study: 1. The measure is denoted with an "X". This implies that the measure was not computed for any KB under the classification. or
2. The methods of concurrent seasonal adjustment that will have identical results for the measure (e.g., $\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3$). This is because all the variables used in the measure are computed identically.
or
3. The measure is denoted with an "N". This implies that the measure was computed for the classification and none of the different methods of concurrent seasonal adjustment have identical results for the measure.

Classification

Measure	Retail Inventory	Retail SalesCategory 2 and Wholesale sales and Inventory	$\frac{\text { Retail Sales }}{\text { Category } 1}$	$\frac{\text { Retail Sales }}{\text { Category } 3}$
1	$\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3$	$B 2=B 3$	$\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4$	$\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4$
2	X	$\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3$	$\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4$	$\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3=\mathrm{B4}$
3	x	x	$\begin{aligned} & \mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3 \text { and } \\ & \mathrm{B} 4=\mathrm{B5} 5 \end{aligned}$	$\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3$
4	X	$B 2=B 3$	$\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4$	$\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4$
5	X	X	$\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3$	$\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3$
6	X	$B 2=B 3$	$\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4$	$\mathrm{B} 2=\mathrm{B} 3=\mathrm{B} 4$
7	$\mathrm{B} 2=\mathrm{B} 3$	X	X	X
8	X	X	$\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3$	$\mathrm{Bl}=\mathrm{B} 2=\mathrm{B} 3$
9	X	X	$\mathrm{B} 2=\mathrm{B} 3$	$\mathrm{B} 2=\mathrm{B} 3$
10	X	$\mathrm{Bl}=\mathrm{B} 2$	$\begin{aligned} & \mathrm{Bl}=\mathrm{B} 2 \text { and } \\ & \mathrm{B} 3=\mathrm{B} 4 \end{aligned}$	$\begin{aligned} & \mathrm{Bl}=\mathrm{B} 2 \text { and } \\ & \mathrm{B}=\mathrm{B} 4 \end{aligned}$
11	$\mathrm{Bl}=\mathrm{B} 2$	X	X	X
12	X	X	N*	N^{*}
13	X	X	N^{*}	N^{\star}
*Bl is results adjusted derived	oximately cept, possi stimates for om differen	to B2. All of for January as these two methods 11 executions (se	months will h previous year computed fro section II).	the same tial final asonal factor

IV. Results of the Study

Attachments 3 and 4 show the results from this study. Attachment 3 shows various results for all KB's comprising each classification. For all classifications, the following results for each applicable measure (using both absolute percent change and root mean square error computations) are shown for each $K B$ comprising the respective classification:

1. The first line shows the results of the measure for each method of seasonal adjustment (methods $\mathrm{A}, \mathrm{Bl}, \mathrm{B} 2, \mathrm{~B} 3, \mathrm{~B} 4$, and B 5).
2. For each method of seasonal adjustment, the result was divided by the result computed for method A and expressed as a percent. These results are shown on the second line. A value less than 100 indicates the method shows an improvement over method A. The best method of concurrent adjustment would have the smallest value.
3. For methods $\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{~B} 4$, and B 5 ; the number of observations for which the results of the measure had a value less than the value obtained for method A was divided by 27 and expressed as a percent.

Attachment 4 shows various results for each classification. For each classification, the following results for each applicable measure (absolute percent change and root mean square error computations) are displayed:

1. The geometric mean (computed across all KB's that comprise the classification) of the measure was calculated for each method of seasonal adjustment and is shown on the first line.
2. The geometric mean of the measure, computed in 1 above, for each method was divided by the result computed for method A and expressed as a percent. This result is shown on the second line. A value less than 100 indicates the method shows an improvement over method A.
3. The average, or mean, of the percent of observations (computed across all KB's that comprise the classification) that methods $\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3$, B4, and B5 had a value less than the value obtained for method A. These results are shown on the third line.

For all classifications, excluding Retail Sales-Categories 1 and 3, mathod B3 should be the best method of concurrent adjustment. For Retail Sales--Categories 1 and 3, the best methods should be respectively, methods B5 and B4 7/. These results are expected because the adjusted estimates, used in the computation of the various measures, are derived from seasonal factors computed from the same $\mathrm{X}-11$ execution which takes into account all available estimates. For each concurrent execution of the $x-11$ program, initial and revised estimates have an effect on the computation of seasonal factors for all back months. This effect diminishes for months further back in time. Even though it was expected that the best method of concurrent adjustment would be method B3, B4, or B5 the other methods were evaluated because they would be easier to implement.

7/ For Retail Sales-Category 3, the only difference between method B4 and B3 is that method B4 used the concurrent seasonal factor instead of the one month ahead projected factor to derive adjusted advance estimates. Adjusted preliminary and final estimates were derived by aggregation. The use of the concurrent factor should provide better results for all measures that use the adjusted advance estimates in the computation.

The following will be shown for each classification:

1. The measure shown in Section III that was calculated by using the absolute percent change computation $8 /$.
2. For the "best" method of concurrent adjustment (Method B3, B4, or B5), the percent improvement over method A. The percent improvement is computed in the following manner.

$$
\left(1-\frac{\text { GM of "Best" Method }}{\text { GM of Method A }}\right) * 100 \text { where }
$$

$G M=$ the geometric mean. Also the geometric mean for both methods are displayed in Attachment 4.

If the "best" method did not have the best percent improvement over method A, the following will be shown for the next two columns:
3. The method or methods that actually had the best percent improvement over method A.
4. For the method shown in column 3, the percent improvement over method A.

8/ The results computed for the measures that used the root mean square error computations will not be shown as the results are similar to the results that used the absolute percent change computations.

Retail Sales-Category 1

Other Than Method B5
Method With Best Percent
Improvement Over Method A
For Method B5 Percent Improvement Over Method A

Method
Percent Improvement Over Method A

Level Analysis

1		30.9
2	19.9	
3	8.6	
4		11.6
5		8.3

Month-to-Month Analysis
6
31.5
8
18.3
9
18.1

Year-to-Year Analysis

$10 \quad 12.9$
12
8.5
6.7

Retail Sales-Category 2

For Method B3
Percent Improvement Over Method A

Measure Fram Section III

Level Analysis

$$
20.5
$$

17.5

2
4
6.7

Month-to-Month Analysis

6

32.1

Year-to-Year Analysis

Retail Sales-Category 3

Measure Fram Section III

Level Analysis

1
 18.7

2
3
4
5

Month-to-Month Analysis

6
8
9

Year-to-Year Analysis

10
12
13
16.3
9.2
9.1

Retail Inventory

For Method B3 Percent Improvement Over Method A

Other Than Method B4
Method With Best Percent
Improvement Over Method A

Percent Improvement
Method

For Method B4

Percent Improvement Over Method A
34.3
14.4
21.3
13.5
6.6
8.2
15.3

$$
21.3
$$

B2
11.1

Level Analysis

1
3.0

Month-to-Month Analysis

10.0
Wholesale Sales
For Method B3
Percent Improvement
Over Method A
Measure Fram Section III
Level Analysis
12

$$
8.1
$$4

$$
3.2
$$

Month-to-Month Analysis

6
Year-to-Year Analysis
10 10
16.4
Wholesale Inventory
For Method B3
Percent Improvement
Level Analysis
12
4
Month-to-Month Analysis
64.3
23.9
. 84.5
Year-to-Year Analysis10
V. Conclusions and Recammendations

According to the measures used in this study; the best advance, preliminary, initial final, and previous year adjusted estimates were derived by using the concurrent adjustment method which used all available estimates as input to the $\mathrm{X}-11$ program. The best method of concurrent adjustment for the various classifications included in this study were as follow:
Classification
Retail Sales-Category 2, Retail
Inventory, and Wholesale Sales
and Inventory
Retail Sales-Category 1
Retail Sales--Category 3
For all classifications the best method of concurrent adjustment was
proven to be better than the present method of seasonal adjustment.
Method B4

The following measures, used in this study, showed the distortion or possible distortion of adjusted trends when adjusted final estimates were not derived from the seasonal factors computed from the $\mathrm{X}-11$ execution that included all available estimates:

> 1. Measure 10 or 11 (The result of year-to-year trends compared to the results of the year-to year trends computed from the "ideal" adjusted estimates).

For all classifications used in this study, method B3 had the better results for the geometric mean of this measure when compared to the results computed for method B 2 or Bl . The previous year final adjusted estimate was not revised for method B2. For the following classifications; Retail Inventory, Wholesale Sales, and Wholesale Inventory, method A had better results for the geometric mean of this measure when compared to the results computed for method Bl or B 2 .

> 2. Measure 79 (The results of month-to-month trends compared to the results of the month-to-month trends computed from the "ideal" adjusted estimates).

For retail inventory series, method B2 or B3 had a 10 percent improvement over the present method. However, method Bl only had a 1 percent improvement over method A. Method Bl used seasonal factors from two different $\mathrm{X}-11$ executions to derive the month-to-month trends derived from final adjusted estimates.

9/ For this measure the KB's classified under Retail Inventory were the only KB's in this study to derive month-to-month trends from adjusted final estimates.

These results indicate that if the best method of concurrent adjustment is implemented for each classification, other adjusted trends that were not analyzed in this study can be worse than the adjusted trends derived by using the present method of seasonal adjustment. Research should be done to study the magnitude of this problem. If research shows the problem is not significant, the best concurrent adjustment method for each classification should be implemented for all KB's comprising the respective classification. Otherwise, the results from studying the magnitude of this problem should be used to determine how far back in time seasonal factors are to be used to derive adjusted estimates for each concurrent execution of the $\mathrm{x}-11$ program. Also, the following question must bo answered:

Will the users of these data accept adjusted estimates being revised each month even though their corresponding unadjusted estimates remain the same?

Until research of this problem is completed, the present method of seasonal adjustment will continue to be used for all retail and wholesale sales and inventory series.
Retail Sales-Category 1

	KB	Description
1.	531100	Department stores
2.	541100	Grocery stores
3.	554100	Gasoline service stations
4.	580000	Eating and drinking places
5.	591200	Drug stores

Retail Sales-Category 2
KB Description

1. 550001* Motor vehicle dealers (automobile, boats, airplanes,motorcycles, and recreational vehicles)
2. 553100* Auto and home supply stores
3. 561100 Men's clothing
4. 560001 Women's clothing
5. 566100 Shoe stores
6. 560002 Miscellaneous apparel (children's, family, customtailors, and novelty shops)
7. 57001 Furniture, floor covering, drapery, and upholsterystores
8. 570002 Household appliances and radio and television stores
9. 573300Music stores
Retail Sales-Category 3
KB Description
10. 550000* Motor vehicle dealers $(550001+553100)$
11. 560000 Apparel and accessories stores$(561100+560001+566100+560002)$
12. 570000 Furniture and home funding stores $(570001+570002+573300)$and 553100 as these KB's were sampled separately for the advance survey.

Retail Inventory

KB
Description

1. KB's $531100,550000,560000$, and 570000 have previously been defined.
2. 540000 Total food stores $(541100+542000+543100+$ $544100+54510+546000+549900)$

Wholesale Sales and Inventory
KB Description

1. 501000 Automobiles and other motor vehicles $(501200+501300+501400)$
2. 506000 Electrical goods $(506300+506400+506500)$
3. 508000 Machinery, equipment and supplies $(508100+508200+508300+508400+508500+$ $508600+508700+508800)$
4. 514000 Groceries and related products
$(514100+514200+514300+514400+514500+$ $514600+514700+514800+514900)$
5. 518000 Beer, wine and distilled alcoholic beverages $(518100+518200)$

Let
$A D V_{\mathrm{t}}^{\mathrm{O}}=$ the initial unadjusted advance estimate published for month t.
PRE $_{t}^{\circ}=$ the initial unadjusted preliminary estimate published for month t.
$\mathrm{FIN}_{\mathrm{t}}^{\mathrm{O}}=$ the initial unadjusted final estimate published for month t .
$A D V_{t}^{r}=$ the unadjusted advance estimate for month t used in this study.
$\operatorname{PRE}_{t}^{r}=$ the unadjusted preliminary estimate for month t used in this study.
FIN $_{t}^{r}=$ the final unadjusted estimates for month t used in this study. The estimates were derived by benchmarking the unadjusted estimates to the 1977 Census of Retail and Wholesale Trade and the 1978 through 1980 estimates obtained from the annual survey of Retail and Wholesale Trade.

Month $t=$ represents an estimate in the time span of this study; October 1977 through December 1979, inclusive.

1. Deriving unadjusted preliminary estimates used in this study

PRE $_{t}^{r}=$ PRE $_{t}^{0} /$ FIN $_{t-1}^{o} *$ FIN $_{t-1}^{r}$
Note: This formula maintains the following relationship:

$$
\frac{\operatorname{PRE}_{t}^{r}}{\operatorname{FIN}_{t-1}^{r}}=\frac{\operatorname{PRE}_{t}^{o}}{\operatorname{FIN}_{t-1}^{O}}
$$

2. Deriving unadjusted advance estimates used in this study

$$
A D V_{t}^{r}=A D V_{t}^{o} / \text { PRE }_{t-1}^{o} * \operatorname{PRE}_{t-1}^{r}
$$

Note: This formula maintains the following relationship:

$$
\frac{A D V_{t}^{r}}{\operatorname{PRE}_{t-1}^{r}}=\frac{\operatorname{ADV}_{t}^{o}}{\operatorname{PRE}_{t-1}^{o}}
$$

ATTACHMENT 3

retail sales

category 1

PART A LEVEL ANALYSIS
root mean square error
ABS(FIN / FINIDL)

1 KB	METH A MA/MA	METH 81 MB1/MA XMB $1<M A$	$\begin{aligned} & \text { METH B2 } \\ & \text { MB2/MA } \\ & \times M B 2<M A \end{aligned}$	METH B3 MB3/MA XMB3<MA	$\begin{aligned} & \text { METH B4 } \\ & \text { MB4/MA } \\ & \text { ZMB } 4<M A \end{aligned}$	METH B5 MB5/MA \%MB5<MA	METH A MA/MA	METH BI MBI/MA \%MB $1<M A$	$\begin{aligned} & \text { METH M2 } \\ & M B 2 / M A \\ & \text { \%MB2<MA } \end{aligned}$	METH B3 MB3/MA \%MB3<MA	$\begin{aligned} & \text { METH B4 } \\ & \text { MB } 4 / \text { MA } \\ & \times M B 4<M A \end{aligned}$	METH B5 MB5/MA \%MB5<MA
531100	0.992	0.720	0.762	0.762	0.762	0.632	1.172	0.864	0.983	0.983	0.983	0.904
53110	100.0	72.6	76.8	76.8	76.8	63.8	100.0	73.8	83.9	883.9	83.9	77.2
1		66.7	66.7	66.7	66.7	74.1		66.7	66.7	66.7	66.7	74.1
541100	0.553	0.466	0.386	0.386	0.386	0.376	0.654	0.543	0.492	0.492	0.492	0.474
541100	100.0	84.2	69.8	69.8	69.8	68.0	100.0	83.0	$7!.1$	75.1	75.1	72.4
,		51.9	66.7	66.7	66.7	66.7		51.9	66.7	66.7	66.7	66.7
554100	0.516	0.407	0.340	0.340	0.340	0.344	0.734		0.475	0.475	0.475	
554100	100.0	79.0 48.1	65.9 66.7	65.9 66.7	65.9 66.7	66.6 55.6	100.0	72.2 48.1	64.6 66.7	$\begin{aligned} & 64.6 \\ & 66.7 \end{aligned}$	$\begin{aligned} & 64.6 \\ & 66.7 \end{aligned}$	65.9
		48.1	66.7	66.7	66.7	55.6		48.1	66.7	66.7	66.7	55.6
580000	1.095	0.918	0.873	0.873	0.873	0.840	1.334	1.081	1.047	1.047	1.047	1.010
	100.0	83.8	79.7	79.7	79.7	76.7	100.0	81.1	785	78.5	78.5	75.7
		55.6	63.0	63.0	63.0	63.0		55.6	63.0	63.0	63.0	63.0
591200			0.464	0.464	0.464	0.442	0.814	0.709	0.574	0.574	0.574	0.527
	100.0	87.0	74.8	74.8	74.8	71.3	100.0	87.1	70.5	70.5	- 70.5	64.7
		48.1	63.0	63.0	63.0	44.4		48.1	63.0	63.0	63.0	44.4

RETAIL SALES

CATEGORY 1

ABSOLUTE PERCENT CHANGE
ABSCPRE/FINIDL)

KB	METH A MA/MA	METH 11 MB1/MA XMB $1<M A$	METH B2 MB2/MA xMB2<MA	METH B3 MB3/MA xMB3<MA	METH 84 MB4/MA 2MB4<MA	METH 85 MB5/MA XMB5<MA
531100	1.399	0.968	0.968	0.968	0.968	0.993
	100.0	69.2	69.2	69.2	69.2	71.0
		70.4	70.4	70.4	70.4	66.7
541100	0.584	0.506	0.506	0.506	0.506	0.458
	100.0	86.7	86.7	86.7	86.7	78.5
		48.1	48.1	48.1	48.1	63.0
554100	0.922	0.792	0.792	0.792	0.792	0.822
	100.0	85.9	85.9	85.9	85.9	89.1
		51.9	51.9	51.9	51.9	48.1
580000	1.355	1.109	1.109			1.179
	100.0	81.8	81.8	81.8	81.8	187.0
		44.4	44.4	44.4	44.4	48.1
591200	0.824	0.669	0.669	0.669	0.669	0.627
	100.0	81.2	81.2	81.2	81.2	76.1
		59.3	59.3	59.3	59.3	63.0

ROOT MEAN SQUARE ERROR
(PRE / FINIDL) $* * 2$

METH A MA/MA	$\begin{aligned} & \text { METH B1 } \\ & \text { MB1 MA } \\ & \text { \%MB1<MA } \end{aligned}$	$\begin{aligned} & \text { METH B2 } \\ & \text { MB2 } \angle M A \\ & \text { \&MB2<MA } \end{aligned}$	METH B3 MB3/MA \%MB3<MA	$\begin{aligned} & \text { METH B4 } \\ & \text { MB4 } \mathrm{MA} \\ & \text { \&MB4 <MA } \end{aligned}$	$\begin{aligned} & \text { METH B5 } \\ & \text { MB5/MA } \\ & \text { \&MB <MA } \end{aligned}$
1.887	1.239	1.239	1.239	1.239	1.280
100.0	65.7	65.7	65.7	65.7	67.9
	70.4	70.4	70.4	70.4	66.7
0.675	0.596	0.596	0.596	0.596	0.551
100.0	88.2	88.2	88.2	88.2	81.7
	48.1	48.1	48.1	48.1	63.0
1.092	0.942	0.942	0.942	0.942	0.999
100.0	86.3	86.3	86.3	86.3	91.5
	51.9	51.9	51.9	51.9	48.1
$\begin{aligned} & 1.606 \\ & 100.0 \end{aligned}$	1.362	1.362	1.362	1. 362	1.388
	84.9.	84.9	84.9	84.9	86.5
	44.4	44.4	44.4	44.4	48.1
$\begin{aligned} & 1.078 \\ & 100.0 \end{aligned}$	0.839	0.839	0.839	0.839	0.783
	77.9	77.9	77.9	77.9	72.6
	59.3	59.3	59.3	59.3	63.0

RETAIL SALES

ABSOLUTE PERCENT CHANGE
ABS(ADV/FINIDL)

KB	meth a MA/MA	METH BI MBI/MA \%MB1<MA	$\begin{gathered} \text { METH } B 2 \\ \text { MB2/MA } \\ \times M B 2<M A \end{gathered}$	METH B3 MB3/MA XMB3<MA	METH B4 MB4/MA XMB4 <MA	METH B5 MB5/MA *MB5<MA
531100	1.745	1.783	1.783	1.783	1.553	1.553
	100.0	102.2	102.2	102.2	89.0	89.0
		40.7	40.7	40.7	63.0	63.0
541100	0.976	1.001	1.001	1.001	0.948	0.948
	100.0	102.6	102.6	102.6	97.1	97.1
	100	29.6	29.6	29.6	44.4	44.4
554100	1.986	1.889	1.889	1.889	1.778	1.778
	100.0	95.1	95.1	95.1	89.5	89.5
\|		59.3	59.3	59.3	51.9	51.9
580000	1.788	1.723	1.723	1.723	1.733	1.733
	100.0	96.4	96.4	96.4	96.9	96.9
		48.1	48.1	48.1	40.7	40.7
591200	1.414	1.402	1.402	1.402	1.204	1.204
	100.0	99.1	99.1	99.1	85.1	85.1
		33.3	33.3	33.3	63.0	63.0

CATEGORY
ROOT MEAN SQUARE ERROR
(ADV/FINIDL) ** 2

METH A MA/MA	METH B1 MB1/MA \%MB1<MA	$\begin{aligned} & \text { METH B2 } \\ & \text { MB2/MA } \\ & \text { 世MB2<MA } \end{aligned}$	$\begin{aligned} & \text { METH B3 } \\ & \text { MB3/MA } \\ & \text { \%MB } 3 \text { <MA } \end{aligned}$	$\begin{aligned} & \text { METH B4 } \\ & \text { MB4/MA } \\ & \text { XMB4<MA } \end{aligned}$	$\begin{gathered} \text { METH B5 } \\ \text { MB5/MA } \\ \text { ХMB5 } \end{gathered}$
2.109	2.125	2.125	2.125	1.907	1.907
100.0	100.7	100.7	100.7	90.4	90.4
	40.7	40.7	40.7	63.0	63.0
1.293	1.270	1.270	1.270	1.179	1.179
100.0	98.2	98.2	. 98.2	91.1	91.1
	29.6	29.6	29.6	44.4	44.4
2.436	2.358	2.358	2.358	2.188	2.188
100.0	96.8	96.8	96.8	89.8	89.8
	59.3	59.3	59.3	51.9	51.9
2.076	2.005	2.005	2.005	1.969	1.969
100.0	96.6	96.6	96.6	94.8	94.8
	48.1	48.1	48.1	40.7	40.7
$\begin{aligned} & 1.777 \\ & 100.0 \end{aligned}$	1.740	1.740	1.740	1.510	1.510
	97.9	97.9	97.9	85.0	85.0
	33.3	33.3	33.3	63.0	63.0

CATEGORY 1
absolute percent change
ABS(PRE / FIN)

KB	METH A MA/MA	METH BI MB1/MA XMB1<MA	METH 82 MB2/MA $x \mathrm{MB2}<\mathrm{MA}$	METH B3 MB3/MA xMB3<MA	METH B4 MB4/MA *MB4<MA	METH B5 MB5/MA XMB5<MA
531100	0.686	0.562	0.582	0.582	0.582	0.585
	100.0	81.9	84.9	84.9	84.9	85.2
		37.0	40.7	40.7	40.7	40.7
541100	0.355	0.300	0.309	0.309	0.309	0.283
	100.0	84.5	87.2	87.2	87.2	79.9
		37.0	48.1	48.1	48.1	63.0
554100	0.696	0.746	0.641	0.641	0.641	0.676
	100.0	107.2	92.1	92.1	92.1	97.2
		33.3	48.1	48.1	48.1	51.9
580000	0.816	0.826	0.696	0.696	0.696	0.751
	100.0	101.2	85.3	85.3	85.3	92.0
		48.1	63.0	63.0	63.0	55.6
591200	0.502	0.499	0.497	0.497	0.497	0.444
	100.0	99.5	99.1	99.1	99.1	88.5
		48.1	48.1	48.1	48.1	51.9

ROOT MEAN SQUARE ERROR
(PRE / FIN) ** 2

METH A MA/MA	$\begin{gathered} \text { METH B1 } \\ M B 1 / M A \\ \text { ※MB1<MA } \end{gathered}$	$\begin{aligned} & \text { METH B2 } \\ & \text { MB } 2 / \text { MA } \\ & \text { ※MB }<\text { <MA } \end{aligned}$	$\begin{aligned} & \text { METH B } 3 \\ & \text { MB } 3 \subset M A \\ & \text { KMB } 3<M A \end{aligned}$	$\begin{aligned} & \text { METH B4 } \\ & \text { MB4/MA } \\ & \text { MB } 4<M A \end{aligned}$	$\begin{aligned} & \text { METH B5 } \\ & \text { MB5 } / \text { MA } \\ & \text { ЖMB } 5 \text { CMA } \end{aligned}$
1.197	0.824	0.774	0.774	0.774	0.822
100.0	68.8	64.7	64.7	64.7	68.6
	37.0	40.7	40.7	40.7	40.7
0.457	0.398	0.411	0.411	0.411	0.377
100.0	87.0	89.9	89.9	89.9	82.4
	37.0	48.1	48.1	48.1	63.0
0.880	0.928	0.792	0.792	0.792	0.901
100.0	105.5	90.0	90.0	90.0	102.4
	33.3	48.1	48.1	48.1	51.9
0.946	0.953	0.893	0.893	0.893	0.869
100.0	100.7	94.4	94.4	94.4	91.9
	48.1	63.0	63.0	63.0	55.6
0.638	0.624	0.642	0.642	0.642	0.551
100.0	97.9	100.7	100.7	100.7	86.4
	48.1	48.1	48.1	48.1	51.9

RETAIL SALES

CATEGORY 1
absolute percent change
ABS(ADV / PRE)

KB	METH A MA/MA	METH BI MB1/MA XMB1 $\angle M A$	METH 12 MB2/MA XMB2<MA	METH B3 MB3/MA xMB3<MA	METH $B 4$ MB4/MA XMB4 4 MA	METH B5 MB5/MA \%MB5<MA
531100	1.694	1.395	1.395	1.395	1.355	1.503
	100.0	82.4	82.4	82.4	80.0	88.8
		66.7	66.7	66.7	74.1	66.7
541100	0.843	0.861	0.861	0.861	0.738	0.753
	100.0	102.1	102.1	102.1	87.5	89.3
		37.0	37.0	37.0	51.9	63.0
554100	1.645	1.714	1.714	1.714	1.570	1.623
	100.0	104.2	104.2	104.2	95.4	98.7
		44.4	44.4	44.4	66.7	44.4
580000	1.477	1.416	1.416	1.416	1.347	1.343
	100.0	95.9	95.9	95.9	91.2	91.0
		55.6	55.6	55.6	63.0	63.0
591200	1.144	1.146	1.146	1.146	0.974	1.040
	100.0	100.2	100.2	100.2	85.1	91.0
		44.4	44.4	44.4	81.5	63.0

(ADV / PRE) ** 2

METH A MA/MA	METH BI MB $1 / M A$ *MB1 <MA	$\begin{aligned} & \text { METH B2 } \\ & \text { MB2/MA } \\ & \text { \%MB2<MA } \end{aligned}$	$\begin{aligned} & \text { METH B3 } \\ & M B 3<M A \\ & \% M B 3<M A \end{aligned}$	METH 84 MB4/MA \%MB4 $<$ MA	$\begin{aligned} & \text { METH B5 } \\ & \text { MB5 MA } \\ & \text { \%MB5 } \mathrm{MAA} \end{aligned}$
2.378	1.864	1.864	1.864	1.873	2.027
100.0	78.4	78.4	78.4	78.8	85.2
	66.7	66.7	66.7	74.1	66.7
1.075	1.024	1.024	1.024	0.898	0.941
100.0	95.2	95.2	95.2	83.5	87.5
	37.0	37.0	37.0	51.9	63.0
2.165	2.262	2.262	2.262	2.064	2.086
100.0	104.5	104.5	104.5	95.3	96.4
	44.4	44.4	44.4	66.7	44.4
$\begin{aligned} & 1.810 \\ & 100.0 \end{aligned}$	1.640	1.640	1.640	1.634	1.610
	90.6	90.6	90.6	90.3	88.9
	55.6	55.6	55.6	63.0	63.0
$\begin{aligned} & 1.506 \\ & 100.0 \end{aligned}$	1.439	1.439	1.439	1.270	1.324
	95.5	95.5	95.5	84.4	87.9
	44.4	44.4	44.4	81.5	63.0

RETAIL SALES

CATEGORY 1
PART B MONTH-TO-MONTH ANALYSIS
AbSOLUTE PERCENT CHANGE
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))

K8	METH A MA/MA	METH BI MBI/MA XMB1<MA	METH $B 2$ MB2/MA XMB2<MA	METH BJ MB3/MA \%MB3<MA	METH 84 MB4/MA KMB4<MA	METH B5 MB5/MA XMB5<MA
531100	1.716	1.118	1.053	1.053	1.053	0.987
	100.0	65.1	61.4	61.4	61.4	57.
541100		77.8	77.8	77.8	77.8	85.2
	0.869	0.812	0.729	0.729	0.729	0.696
	100.0	93.4	84.0	84.0	84.0	80.2
		55.6	59.3	59.3	59.3	59.3
554100	1.156	0.993	0.875	0.875	0.875	0.911
	100.0	88.9	75.6	75.6	75.6	78.8
		63.0	66.7	66.7	66.7	74.1
580000	1.373	1.053	1.005	1.005	1.005	1.008
	100.0	76.7	73.2	73.2	73.2	73.4
		63.0	59.3	59.3	59.3	70.4
591200	1.136	0.850	0.742	0.742	0.742	
	100.0	74.9	65.3	65.3	65.3	56.7
		70.4	77.8	77.8	77.8	88.9

RETAIL SALES

CATEGORY 1
absolute percent change
ABS((ADV/PRE) - (FINIDL/FINIDL(-1)))

KB	METH A MA/MA	METH 81 MB1/MA XMB1 $\angle M A$	$\begin{aligned} & \text { METH B2 } \\ & \text { MB2/MA } \\ & \times M B 2<M A \end{aligned}$	METH B_{3} MB3/MA XMB3<MA	METH $B 4$ MB4/MA \%MB4 くMA	METH B5 MB5/MA \%MB5<MA
531100	1.569	1.573	1.573	1.573	1.340	1.261
	100.0	100.3	100.3	100.3	85.5	80.4
		37.0	37.0	37.0	66.7	59.3
541100	1.189	1.055	1.055	1.055	0.991	0.946
	100.0	88.7	88.7	88.7	83.3	79.5
		66.7	66.7	66.7	70.4	74.1
554108	1.724	1.696	1.696	1.696	1.550	1.501
	100.0	98.3	98.3	98.3	89.9	87.0
		59.3	59.3	59.3	74.1	66.7
580000	1.303	1.258	1.258	1.258	1.215	1.164
	100.0	96.5	96.5	96.5	93.3	89.3
1		55.6	55.6	55.6	55.6	55.6
591200	1.538	1.487	1.487	1.487	1.253	1.127
	100.0	96.6	96.6	96.6	81.5	73.3
		59.3	59.3	59.3	63.0	74.1

ROOT MEAN SQUARE ERROR
((ADV/PRE) - (FINIDL/FINIDL(-1))) \times * 2

METH A MA/MA	METH BI MB1/MA \%MB1<MA	METH B2 MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB3<MA	METH B4 MB4/MA \%MB4 <MA	METH B5 MB5/MA *MB5 $<$ MA
2.053	1.995	1.995	1.995	1.642	1.496
100.0	97.2	97.2	97.2	80.0	72.9
	37.0	37.0	37.0	66.7	59.3
1.418	1.290	1.290	1.290	1.193	1.132
100.0	91.0	91.0	91.0	84.1	79.8
	66.7	66.7	66.7	70.4	74.1
2.039	2.067	2.067	2.067	1.883	1.816
100.0	101.3	101.3	101.3	92.3	89.0
	59.3	59.3	59.3	74.1	66.7
$\begin{aligned} & 1.621 \\ & 100.0 \end{aligned}$	1.614	1.614	1.614	1.530	1.442
	99.5	99.5	99.5	94.4	89.0
	55.6	55.6	55.6	55.6	55.6
$\begin{aligned} & 1.869 \\ & 100.0 \end{aligned}$	1.794	1.794	1.794	1.522	1.374
	96.0	96.0	96.0	81.4	73.5
	59.3	59.3	59.3	63.0	74.1

RETAIL SALES

CATEGORY 1

ABSOLUTE PERCENT CHANGE
ABS ((ADV/PRE) - (PRE/FIN))

KB	METH A MA/MA	METH BI MBI/MA XMB1 1 MA	METH 82 MB2/MA XMB2<MA	$\begin{gathered} \text { METH B3 } \\ \text { MB } 3<M A \\ \times M B 3<M A \end{gathered}$	METH 84 MB4/MA XMB4<MA	METH B5 MB5/MA \%MB5<MA
531100	1.342	1.218	1.311	1.311	1.091	1.113
)	100.0	90.7	97.7	97.7	81.3	82.9
55.655 .650 .6 66.7		55.6	55.6	55.6	66.7	74.1
541100	0.861	0.843	0.882	0.882	0.738	0.681
	100.0	98.0	102.5	102.5	85.7	79.2
		40.7	40.7	40.7	55.6	74.1
554100	1.458	1.560	1.566	1.566	1.384	1.345
	100.0	107.0	107.4	107.4	94.9	92.3
		37.0	51.9	51.9	63.0	51.9
580000	1.224	0.979	1.063	1.063	0.992	0.991
	100.0	80.0	86.8	86.8	81.1	80.9
		59.3	55.6	55.6	63.0	70.4
591200	1.162	1.222	1.168	1.168	0.970	0.874
	100.0	105.2	100.5	100.5	83.5	75.2
		44.4	51.9	51.9	74.1	77.8

ROOT MEAN SQUARE ERROR
((ADV/PRE) - (PRE/FIN)) ** 2

METH A MA/MA	$\begin{aligned} & \text { METH B1 } \\ & \text { MB1 } 1 / M A \\ & \text { MB1<MA } \end{aligned}$	METH B2 MB2 MA -MB2<MA	METH B3 MB3/MA \%MB $3<M A$	METH B4 MB4/MA \%MB4 <MA	METH B5 MB5/MA 2MB5<MA
1.763	1.503	1.630	1.630	1.457	1.492
100.0	85.3	92.5	92.5	82.7	84.7
	55.6	55.6	55.6	66.7	74.1
1.146	1.071	1.069	1,069	0.885	0.850
100.0	93.4	93.2	93.2	77.2	74.1
	40.7	40.7	40.7	55.6	74.1
1.912	1.998	2.055	2.055	1.837	' 1.787
100.0	104.5	107.5	107.5	96.1	93.4
	37.0	51.9	51.9	63.0	51.9
$\begin{aligned} & 1.551 \\ & 100.0 \end{aligned}$	1.326	1.400	1.400	1.325	1.212
	85.5	90.2	90.2	85.4	78.1
	59.3	55.6	55.6	63.0	70.4
$\begin{aligned} & 1.462 \\ & 100.0 \end{aligned}$	1.536	1.464	1.464	1.225	1.106
	105.1	100.1	100.1	83.8	75.6
	44.4	51.9	51.9	74.1	77.8

RETAIL SALES

CATEGORY 1

ABSOLUTE PERCENT CHANGEYFIN) - (FINIDL/FINIDL(-12)							C(CYADV	/PYFIN)	MEAN SQ (FINIDL/	UARE ERRO FINIDL (-1	2)) $x * 2$	
KB	meth a MA/MA	METH B_{1} MB1/MA XMB1<MA	METH B_{2} MB2/MA xMB2<MA	METH B3 MB3/MA XMB3<MA	METH $B 4$ MB4/MA xMB4<MA	METH B5 MB5/MA XMB5<MA	METH A MA/MA	METH B1 MB1/MA \%MB1<MA	METH B2 MB2/MA \%MB2<MA	METH 83 MB3/MA \%MB3<MA	METH $B 4$ MB4/MA \%MB4<MA	$\begin{aligned} & \text { METH B5 } \\ & \text { MB5/ MA } \\ & \text { \%MB5<MA } \end{aligned}$
531100	1.976	1.751	1.757	1.762	1.774	1.729	2.571	2.236	2.246	2.321	2.289	2.260
531.00	100.0	88.6	88.9	89.1	89.8	87.5	100.0	887.0	87.4	90.3	889	887.9
		55.6	55.6	59.3	59.3	66.7		55.6	55.6	59.3	59.3	66.7
541100	1.150	1.166	1.153	1.154	1.068	1.082	1.348	1.331	1.323	1.334	1.274	1.260
	100.0	101.4	100.3	100.3	92.8	94.1	100.0	98.7	98.1	99.0	94.5	93.5
		33.3	33.3	40.7	59.3	70.4		33.3	33.3	40.7	59.3	70.4
554100	2.305	2.209	2.200	2.245	2.122	2.184	2.821	2.749	2.748	2.755	2.617	2.704
	100.0	95.8	95.4	97.4	92.0	94.8	100.0	97.4	97.4	97.7	92.8	95.8
		63.0	59.3	44.4	59.3	66.7		63.0	59.3	44.4	59.3	66.7
580000	2.008	1.862	1.843	1.826	1.921	1.806	2.245	2.103	2.086	2.036	2.140	2.021
	100.0	92.7	91.8	90.9	95.7	89.9	100.0	93.7	92.9	90.7	95.3	90.0
,		70.4	70.4	63.0	51.9	74.1		70.4	70.4	63.0	51.9	74.1
591200	1.548	1.489	1.475	1.496	1.329	1.417	2.007	1.846	1.843	1.872	1.694	1.769
	100.0	96.2	95.2	96.6	85.8	91.5	100.0	92.0	91.8	93.3	84.4	88.1
		40.7	40.7	44.4	66.7	63.0		40.7	40.7	44.4	66.7	63.0

retail sales

CATEGORY 1

absolute percent change
ABS((CYADV/PYFIN) - (CYPRE/PYFIN))
$\left\{\begin{array}{lrrrrrr}531100 & 1.934 & 1.570 & 1.576 & 1.778 & 1.847 & 1.745 \\ & 100.0 & 81.2 & 81.5 & 91.9 & 95.5 & 90.2 \\ & & 70.4 & 70.4 & 63.0 & 59.3 & 74.1 \\ 541100 & 0.993 & 0.965 & 0.952 & 0.986 & 0.891 & 0.905 \\ & 100.0 & 97.2 & 95.9 & 99.3 & 899.7 & 91.1 \\ & & 48.1 & 48.1 & 40.7 & 44.4 & 55.6 \\ 554100 & 1.968 & 2.049 & 2.042 & 1.946 & 1.844 & 1.902 \\ & 100.0 & 104.1 & 103.7 & 98.9 & 93.7 & 96.6 \\ & & 51.9 & 51.9 & 48.1 & 70.4 & 59.3 \\ 580000 & 1.693 & 1.642 & 1.623 & 1.667 & 1.711 & 1.631 \\ & 100.0 & 97.0 & 95.9 & 98.5 & 101.1 & 96.4 \\ & & 51.9 & 51.9 & 51.9 & 51.9 & 55.6 \\ 591200 & 1.298 & 1.289 & 1.275 & 1.251 & 1.149 & 1.197 \\ & 100.0 & 99.2 & 98.2 & 96.4 & 88.5 & 92.2\end{array}\right.$

ROOT MEAN SQUARE ERROR
((CYADV/PYFIN) - (CYPRE/PYFIN)) K* 2

METH A MA/MA	METH B1 MB1/MA \%MB1 $\angle M A$	$\begin{gathered} \text { METH B2 } \\ \text { MB2/MA } \\ \text { \%MB2<MA } \end{gathered}$	$\begin{gathered} \text { METH B3 } \\ \text { MB } 3 / M A \\ \% M B 3<M A \end{gathered}$	$\begin{aligned} & \text { METH B4 } \\ & \text { MB4 } \angle M A \\ & \text { KMB4 } \angle M A \end{aligned}$	METH 85 MB5/MA ZMB5<MA
2.856	2.152	2.165	2.440	2.604	2.431
100.0	75.3	75.8	85.4	91.2	85.1
	70.4	70.4	63.0	59.3	74.1
1.245	1.121	1.109	1.237	1.172	1.130
100.0	90.0	89.1	99.4	94.2	90.8
	48.1	48.1	40.7	44.4	55.6
2.571	2.698	2.694	2.596	2.414	1. 2.524
100.0	104.9	104.8	101.0	93.9	198.2
	51.9	51.9	48.1	70.4	59.3
2.047	1.881	1.867	1.987	2.084	1.984
100.0	91.9	91.2	97.1	101.8	96.9
	51.9	51.9	51.9	51.9	55.6
1.763	1.609	1.605	1.621	1.494	1.542
100.0	91.3	91.1	91.9	84.8	87.4
	44.4	44.4	55.6	63.0	48.1

RETAIL SALES

CATEGORY 2

PART A LEVEL ANALYSIS
ABSOLUTE PERCENT CHANGE
ABS(FIN / FINIDL)

550001	$\begin{aligned} & 2.420 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 2.118 \\ 87.5 \\ 55.6 \end{array}$	$\begin{array}{r} 2.019 \\ 83.4 \\ 74.1 \end{array}$	$\begin{array}{r} 2.019 \\ 83.4 \\ 74.1 \end{array}$
'553100	1.702	1.234	1.211	1.211
	100.0	72.5	71.1	71.1
		77.8	74.1	74.1
561100	2.797	2.402	2.150	2.150
	100.0	85.9	76.9	76.9
		59.3	66.7	66.7
560001	1.829	1.359	1.089	1.089
	100.0	74.3	59.6	59.6
		66.7	74.1	74.1
566100	1.637	1.165	1.121	1.121
:	100.0	71.2	68.5	68.5
!		59.3	63.0	63.0
560002	1.278	1.184	1.110	1.110
	100.0	92.6	86.9	86.9
		48.1	48.1	48.1
570001	1.039	0.886	1.004	1.004
1	100.0	85.3	96.7	96.7
1		51.9	48.1	48.1
570002	1.766	1.330	1.482	1.482
	100.0	75.3	83.9	83.9
		63.0	51.9	51.9
573300	2.115	2.091	2.050	2.050
;	100.0	98.8	96.9	96.9

METH A MA/MA	$\begin{gathered} M E T H \quad B 1 \\ M B 1 / M A \\ \text { KMB1<MA } \end{gathered}$	METH 82 MB2/MA \%MB2<MA	$\begin{aligned} & \text { METH B3 } \\ & \text { MB } 3 / M A \\ & \text { \%MB } 3<M A \end{aligned}$
2.980	2.685	2.515	2.515
100.0	90.1	84.4	84.4
	55.6	74.1	74.1
2.008	1.463	1.441	1.441
100.0	72.8	71.7	71.7
	77.8	74.1	74.1
3.494	2.906	2.527	2.527
100.0	83.2	72.3	72.3
	59.3	66.7	66.7
$\begin{aligned} & 2.371 \\ & 100.0 \end{aligned}$	1.690	1.416	1.416
	71.3	59.7	59.7
	66.7	74.1	74.1
$\begin{aligned} & 2.290 \\ & 100.0 \end{aligned}$	1.539	1.460	1.460
	67.2	63.7	63.7
	59.3	63.0	63.0
$\begin{aligned} & 1.645 \\ & 100.0 \end{aligned}$	1.440	1.386	1.386
	87.6	84.3	84.3
	48.1	48.1	48.1
$\begin{aligned} & 1.370 \\ & 100.0 \end{aligned}$	1.167	1.222	1.222
	85.2	89.1	89.1
	51.9	48.1	48.1
$\begin{aligned} & 2.113 \\ & 100.0 \end{aligned}$	1.709	1.759	1.759
	80.9	83.2	83.2
	63.0	51.9	51.9
$\begin{aligned} & 2.804 \\ & 100.0 \end{aligned}$	2.876	2.637	2.637
	102.6	94.1	94.1
	44.4	40.7	40.7

retail sales

category 2

ABSOLUTE PERCENT CHANGE
ABS(PRE / FINIDL)

KB	METH A MA/MA	METH BI MB1/MA XMB1<MA	METH BL^{2} MB2/MA 2MB2<MA	METH B3 MB3/MA xMB3<MA
550001	2.454	2.160	2.160	2.160
	100.0	88.0	88.0	88.0
!		59.3	59.3	59.3
553100	2.220	1.703	1.703	1.703
	100.0	76.7	76.7	76.7
		81.5	81.5	81.5
561100	2.108	1.743	1.743	1.743
	100.0	82.7	82.7	82.7
		63.0	63.0	63.0
560001	2.098	1.504	1.504	1.504
	100.0	71.7	71.7	71.7
		74.1	74.1	74.1
566100	1.412	1.171	1.171	1.171
	100.0	82.9	82.9	82.9
		48.1	48.1	48.1
560002	1.972	1.704	1.704	1.704
	100.0	86.4	86.4	86.4
		59.3	59.3	59.3
570001	1.539	1.328	1.328	1.328
	100.0	86.3	86.3	86.3
		55.6	55.6	55.6
570002	2.541	2.230	2.230	2.230
	100.0	87.7	87.7	87.7
		51.9	51.9	51.9
573300	4.371	3.570	3.570	3.570
	100.0	81.7	81.7	81.7
		70.4	70.4	70.4

ROOT MEAN SQUARE ERROR
(PRE / FINIDL) ** 2

METH A MA/MA	METH BI MB1/MA \%MB1<MA	METH B2 MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB3<MA
$\begin{aligned} & 3.216 \\ & 100.0 \end{aligned}$	2.667	2.667	2.667
	82.9	82.9	82.9
	59.3	59.3	59.3
$\begin{aligned} & 2.792 \\ & 100.0 \end{aligned}$	2.190	2.190	2,190
	78.4	78.4	78.4
	81.5	81.5	81.5
$\begin{aligned} & 2.672 \\ & 100.0 \end{aligned}$	2.151	2.151	2.151
	80.5	80.5	80.5
	63.0	63.0	63.0
$\begin{aligned} & 2.634 \\ & 100.0 \end{aligned}$	1.965	1.965	1.965
	74.6	74.6	74.6
	74.1	74.1	74.1
$\begin{aligned} & 1.935 \\ & 100.0 \end{aligned}$	1.485	1.485	1.485
	76.8	76.8	76.8
	48.1	48.1	48.1
$\begin{aligned} & 2.697 \\ & 100.0 \end{aligned}$	2.497	2.497	2.497
	92.6	92.6	92.6
	59.3	59.3	59.3
1.903100.0	1.654	1.654	1.654
	86.9	86.9	86.9
	55.6	55.6	55.6
$\begin{aligned} & 3.036 \\ & 100.0 \end{aligned}$	2.694	2.694	2.694
	88.7	88.7	88.7
	51.9	51.9	51.9
$\begin{aligned} & 5.490 \\ & 100.0 \end{aligned}$	4.927	4.927	4.927
	89.7	89.7	89.7
	70.4	70.4	70.4

RETAIL SALES

CATEGORY 2

ABSOLUTE PERCENT CHANGE
ABS(PRE / FIN)

KB	METH A MA/MA	METH BI MB1/MA xMB1 $\angle M A$	METH B2 MB2/MA *MB2<MA	METH BJ MB3/MA 2MB $3<M A$
550001	0.753	0.640	0.744	0.744
	100.0	85.0	98.8	98.8
		51.9	51.9	51.9
553100	1.533	1.506	1.234	1.234
	100.0	98.2	80.5	80.5
		37.0	74.1	74.1
561100	1.683	1.697	1.397	1.397
	100.0	100.8	83.0	83.0
		48.1	70.4	70.4
560001	0.628	0.619	0.721	0.721
	100.0	98.6	114.7	114.7
		48.1	48.1	48.1
566100	0.887	0.894	1.031	1.031
	100.0	100.8	116.3	116.3
		51.9	40.7	40.7
560002	1.410	1.432	1.265	1.265
	100.0	101.6	89.7	89.7
		33.3	66.7	66.7
570001	0.861	0.831	0.794	0.794
	100.0	96.5	92.2	92.2
		40.7	51.9	51.9
570002	1.548	1.410	1.318	1.318
	100.0	91.1	85.2	85.2
		51.9	59.3	59.3
573300	3.400	3.318	2.939	2.939
	100.0	97.6	86.4	86.4
		44.4	51.9	51.9

ROOT MEAN SQUARE ERROR
(PRE / FIN) $\because * 2$

METH A MA/MA	METH B1 MB1/MA \%MB1<MA	METH 82 MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB3<MA
0.910	0.761	0.898	0.898
100.0	83.7	98.6	98.6
	51.9	51.9	51.9
1.775	1.760	1.391	1.391
100.0	99.1	78.4	48.4
	37.0	74.1	74.1
2.236	2.245	1.930	1.930
100.0	100.4	86.3	86.3
	48.1	70.4	70.4
0.780	0.779	0.925	0.925
100.0	99.9	118.6	118.6
	48.1	48.1	48.1
1.036	1.048	1.242	1.242
100.0	101.2	119.9	119.9
	51.9	40.7	40.7
1.940	1.967	1.805	1.805
100.0	101.4	93.0	93.0
	33.3	66.7	66.7
1.176	1.153	1.054	1.054
100.0	98.1	89.7	89.7
	40.7	51.9	51.9
1.902	1.728	1.601	1.601
100.0	90.8	84.2	84.2
	51.9	59.3	59.3
4.530	4.442	4.122	4.122
100.0	98.1	91.0	91.0
	44.4	51.9	51.9

RETAIL SALES

CATEGORY 2

PART 日 MONTH-TO-MONTH ANALYSIS

ABSOLUTE PERCENT CHANGE
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))

KB	$\begin{gathered} \text { METH } \\ \text { MA/MÁ } \end{gathered}$	$\begin{aligned} & \text { METH } 81 \\ & \text { MB1/MA } \\ & \text { MB1<MA } \end{aligned}$	$\begin{aligned} & \text { METH } 2 \\ & \text { MB2 MA } \\ & \times M B 2<M A \end{aligned}$	$\begin{gathered} \text { METH B3 } \\ \text { MB3/MA } \\ \times M B 3<M A \end{gathered}$
550001	2.756	2.248	1.996	1.996
	100.0	81.6	72.4	72.4
		70.4	77.8	77.8
553100	2.386	1.829	1.518	1.518
	100.0	76.7	63.6	63.6
		66.7	85.2	85.2
561100	3.360	2.822	2.371	2.371
	100.0	84.0	70.6	70.6
		63.0	66.7	66.7
560001	2.499	1.683	1.551	1.561
	100.0	67.3	62.5	62.5
		77.8	81.5	81.5
566100	2.498	1.588	1.488	1.488
	100.0	63.6	59.6	59.6
		77.8	70.4	70.4
560002	2.031	1.762	1.684	1.684
	100.0	86.8	82.9	82.9
!	10.0	59.3	55.6	55.6
570001	1.776	1.285	1.205	1.205
	100.0	72.3	67.8	67.8
		74.1	81.5	81.5
570002	2.450	1.776		1.558
	100.0	72.5	63.6	63.6
	,	74.1	74.1	74.1
573300	4.307	3.105	3.069	3.069
	100.0	72.1	71.3	71.3
		70.4	66.7	66.7

root mean square error
((PRE/FIN) - (FIMIDL/FINIDL(-1))) ** 2

METH A MA/MA	METH BI MB1/MA \%MB1<MA	METH B2 MB2/MA \%MB2<MA	METH B3 MB3/MA \% MB3 $<\mathrm{MA}$
3.476	2.864	2.612	2.612
100.0	82.4	75.1	75.1
	70.4	77.8	77.8
2.736	2.132	1.865	1.865
100.0	77.9	68.2	68.2
	66.7	85.2	85.2
4.016	3.319	2.849	2.849
100.0	82.7	71.0	71.0
	63.0	66.7	66.7
3.188	2.217	2.095	2.095
100.0	69.5	65.7	65.7
	77.8	81.5	81.5
2.972	1.965	1.805	1.805
100.0	66.1	60.7	60.7
	77.8	70.4	70.4
2.798	2.556	2.583	2.583
100.0	91.4	92.3	92.3
	59.3	55.6	55.6
2.060	1.649	1.536	1.536
100.0	80.0	74.6	74.6
	74.1	81.5	81.5
2.873	2.302	1. 985	1.985
100.0	80.1	69.1	69.1
	74.1	74.1	74.1
5.617	4.470	4.215	4.215
100.0	79.6	75.0	75.0
	70.4	66.7	66.7

retail. sales

CATEGORY 2
PART C YEAR-TO-YEAR ANALYSIS

ABSOLUTE PERCENT CHANGE ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))

KB	METH A MA/MA	$\begin{gathered} \text { METH BI } \\ \text { MB1/MA } \\ \times M B 1<M A \end{gathered}$	$\begin{aligned} & \text { METH B2 } \\ & \text { MB2 } / M A \\ & \times M B 2<M A \end{aligned}$	$\begin{aligned} & \text { METH B3 } \\ & \text { MB } 3 / M A \\ & \times M B 3<M A \end{aligned}$
550001	2.079	1.698	1.698	1.718
	100.0	81.7	81.7	82.6
		51.9	51.9	59.3
553100	2.068	1.821	1.821	1.835
	100.0	88.0	88.0	88.7
		55.6	55.6	63.0
561100	1.928	1.816	1.816	1.676
	100.0	94.2	94.2	87.0
i		63.0	63.0	66.7
560001	1.360	1.449	1.449	1.202
	100.0	106.5	106.5	88.4
:		40.7	40.7	55.6
566100	1.337	1.526	1.526	1.117
	100.0	114.1	114.1	83.6
		48.1	48.1	63.0
560002	1.716	1.622	1.622	
	100.0	94.5	94.5	92.5
		55.6	55.6	51.9
570001	1.515	1.363	1.363	1.376
	100.0	90.0	90.0	90.9
		63.0	63.0	59.3
570002	1.927	1.819	1.819	1.817
	100.0	94.4	94.4	94.3
		55.6	55.6	55.6
573300	3.970	3.409	3.409	3.609
	100.0	85.9	85.9	90.9
		59.3	59.3	66.7

ROOT MEAN SQUARE ERROR
((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2

METH A MA/MA	METH BI MB1/MA \%MB1 $\angle M A$	METH B2 MB2/MA \%MB2<MA	METH B_{3} MB3/MA \% IIB3 3 MA
2.638	2.185	2.185	2.172
100.0	82.8	82.8	82.3
	51.9	51.9	59.3
2.765	2.384	2.384	2.400
100.0	86.2	86.2	86.8
	55.6	55.6	63.0
2.419	2.336	2.336	2.162
100.0	96.5	96.5	89.4
	63.0	63.0	66.7
1.773	1.665	1.665	1.528
100.0	93.9	93.9	86.2
	40.7	40.7	55.6
1.588	2.017	2.017	1.487
100.0	127.0	127.0	93.6
	48.1	48.1	63.0
2.472	2.407	2.407	2.348
100.0	97.4	97.4	95.0
	55.6	55.6	51.9
1.982	1.743	1.743	1.746
100.0	87.9	87.9	88.1
	63.0	63.0	59.3
2.436	2.348	2.348	2.281
100.0	96.4	96.4	93.6
	55.6	55.6	55.6
5.093	4.696	4.696	4.733
100.0	92.2	92.2	92.9
	59.3	59.3	66.7

RETAIL SALES

category 3
PART A LEVEL ANALYSIS
abSolute percent change ABS(FIN / FINIDL)

550000	2.298	1.971	1.901	1.901	1.901
	100.0	85.8	82.7	82.7	82.7
		66.7	77.8	77.8	77.8
560000	1.368	1.031	0.956	0.956	0.956
	100.0	75.4	69.9	69.9	69.9
		70.4	70.4	70.4	70.4
570000	1.148	1.013	1.066	1.066	1.066
	100.0	88.3	92.9	92.9	92.9
		55.6	59.3	59.3	59.3

RETAIL SALES

CATEGORY 3
ROOT MEAN SQUARE ERROR
ABS(PRE / FIMIDL)

KB	METH A MA/MA	METH DI MB1/MA YMB1<MA	$\begin{aligned} & \text { METH B2 } \\ & \text { MB2/MA } \\ & \times M B 2<M A \end{aligned}$	METH B3 MB3/MA 2:MB3<MA	METH B4 MB4/MA XMB4 4 MA
550000	2.341	2.045	2.045	2.045	2.045
	100.0	87.3	87.3	87.3	87.3
		59.3	59.3	59.3	59.3
560000	1.315	1.051	1.051	1.051	
	100.0	80.0	80.0	80.0	80.0
		66.7	66.7	66.7	66.7
570000	1.403	1.302	1.302	1.302	1.302
	100.0	92.8	92.8	92.8	92.8
		59.3	59.3	59.3	59.3

RETAIL SALES
CATEGORY 3
absolute percent change
ABS(ADV/FINIDL)

550000	2.850	2.757	2.757	2.757	2.712
	100.0	96.8	96.8	96.8	95.2
		55.6	55.6	55.6	59.3
560000	2.040	2.088	2.088	2.088	1.856
	100.0	102.3	102.3	102.3	91.0
		37.0	37.0	37.0	66.7
570000	2.246	2.215	2.215	2.215	2.111
	100.0	98.6	98.6	98.6	94.0
		29.6	29.6	29.6	66.7

ROOT MEAN SQUARE ERROR
(ADV / FINIDL) ** 2

METH A MA/MA	METH BI MB1/MA \%MB1<MA	METH B2 MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB3<MA	METH B4 MB4/MA 2MB4<MA
3.582	3.488	3.488	3.488	3.418
100.0	97.4	97.4	97.4	95.4
	55.6	55.6	55.6	59.3
2.702	2.721	2.721	2.721	2.523
100.0	100.7	100.7	100.7	93.4
	37.0	37.0	37.0	66.7
$\begin{aligned} & 2.885 \\ & 100.0 \end{aligned}$	2.871	2.871	2.871	2.750
	99.5	99.5	99.5	95.3
	29.6	29.6	29.6	66.7

RETAIL SALES

CATEGORY 3

ABSOLUTE PERCENT CHANGE
ABS(PRE / FIN)
KB

$\begin{aligned} & \text { METH A } \\ & \text { MA/MA } \end{aligned}$	$\begin{aligned} & \text { METH B1 } \\ & M B 1 / M A \\ & \times M R 1<M A \end{aligned}$	$\begin{gathered} \text { METH } B 2 \\ \text { MB2 MA } \\ \times M B 2<M A \end{gathered}$	$\begin{gathered} \text { METH B3 } \\ \text { MB } 3 / M A \\ \times M B 3<M A \end{gathered}$	METH B4 MB4/MA \%MB4<MA
$\begin{aligned} & 0.748 \\ & 100.0 \end{aligned}$	0.653	0.671	0.671	0.671
	87.4	89.7	89.7	89.7
	51.9	63.0	63.0	63.0
0.631	0.624	0.622	0.622	0.622
100.0	98.9	98.6	98.6	98.6
	33.3	55.6	55.6	55.6
$\begin{aligned} & 0.702 \\ & 100.0 \end{aligned}$	0.648	0.614	0.614	0.614
	92.3	87.5	87.5	87.5
	40.7	63.0	63.0	63.0

ROOT MEAN SQUARE ERROR
(PRE / FIN) ** 2

METH A MA/MA	METH B1 MB1/MA \%MB1<MA	METH B2 MB2/MA \%MB2 $<M A$	METH B3 MB3/MA \% $11 B 3<M A$	METH $B 4$ MB4/MA ХMB4<MA
0.888	0.769	0.841	0.841	0.841
100.0	86.6	94.6	94.6	94.6
	51.9	63.0	63.0	63.0
0.807	0.798	0.781	0.781	0.781
100.0	98.9	96.7	96.7	96.7
	33.3	55.6	55.6	55.6
$\begin{aligned} & 0.849 \\ & 100.0 \end{aligned}$	0.823	0.785	0.785	0.785
	97.0	92.5	92.5	92.5
	40.7	63.0	63.0	63.0

RETAIL SALES

CATEGORY 3
absolute percent change

ABS(ADV / PRE)

Kः

METH A	$\begin{aligned} & \text { METH B1 } \\ & \text { MBI/MA } \end{aligned}$	METH B2 MB2LMA xMB2<MA	METH 83 $M B 3 / M A$ $\times M B 3<M A$	METH MB4 MMA M *MB4<MA
2.397	2.007	2.007	2.007	1.976
100.0	83.7 70.4	830.7	83.7 70.4	82.4 81.5
2.122	1.931	1.931	1.931	1.763
100.0	91.0	91.0	91.0	83.1
	66.7	66.7	66.7	74.
2.187	2.047	2.047	2.047	. 939
	93.6	93.6	93.6	88.6
	63.0	63.0	63.0	59.3

RETAIL SALES

CATEGORY 3
PART B MONTH-TO-MONTH ANALYSIS

AbSOLUTE PERCENT CHANGE
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))

METH A MA/MA	METH BI MB1/MA *MB1 $\angle M A$	METH 82 MB2/MA 2MB2<MA	METH B3 MB3/MA XMB $3<M A$	METH $B 4$ MB4/MA XMB4<MA
2.635	2.133	1.899	1.899	1.899
100.0	80.9	72.1	72.1	72.1
	70.4	77.8	77.8	77.8
1.864	1.209	1.090	1.090	1.090
100.0	64.8	58.5	58.5	58.5
	85.2	81.5	81.5	81.5
1.471	1.137	0.989	0.989	0.989
100.0	77.3	67.3	67.3	67.3
100.0	74.1	85.2	85.2	85.2

RETAIL SALES

CATEGORY 3

ABSOLUTE PERCENT CHANGE
ABS((ADV/PRE) - (FINIDL/FINIDL(-1)))

550000

560000

570000

METH A MA/MA	METH BL MB $1 / \mathrm{MA}$ XMB1<MA	METH 12 MB2/MA XMB2<MA	METH 3 MB3/MA xMB3<MA	METH B4 MB4/MA XMB4<MA
$\begin{aligned} & 2.750 \\ & 100.0 \end{aligned}$	2.691	2.691	2.691	2.505
	97.9	97.9	97.9	91.1
	51.9	51.9	51.9	59.3
2.218	2.083	2.083	2.083	1.794
100.0	93.9	93.9	93.9	80.9
	59.3	59.3	59.3	66.7
2.023100.0	1.886	1.886	1.886	1.720
	93.2	93.2	93.2	85.0
	70.4	70.4	70.4	70.4

CATEGORY 3

ABSOLUTE PERCENT CHANGE

ABS ((ADV/PRE) - (PRE/FIN))

METH A MA/MA	METH B1 MB1/MA XMB1<MA	METH B2 MB2/MA xMB2<MA	METH B3 MB3/MA \%MB3<MA	METH B4 MB4/MA XMB4<MA
2.481	2.003	2.001	2.001	1.879
100.0	80.8	80.6	80.6	75.7
	74.1	55.6	55.6	77.8
2.008	1.895	1.951	1.951	1.664
100.0	94.4	97.1	97.1	82.9
	59.3	55.6	55.6	66.7
$\begin{aligned} & 2.303 \\ & 100.0 \end{aligned}$	2.118	1.985	1.985	1.786
	92.0	86.2	86.2	77.5
	63.0	70.4	70.4	77.8

ROOT MEAN SQUARE ERROR
((ADV/PRE) - (PRE/FIN)) \times * 2

METH A MA/MA	METH BI MB1/MA \%MBI <MA	METH B2 MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB3<MA	METH B4 MB4/MA *MB4<MA
3.058	2.513	2.373	2.373	2.262
100.0	82.2	77.6	77.6	73.9
	74.1	55.6	55.6	77.8
2.702	2.531	2.484	2.484	2.186
100.0	93.7	92.0	92.0	80.9
	59.3	55.6	55.6	66.7
2.952	2.716	2.570	2.570	2.315
100.0	92.0	87.1	87.1	78.4
	63.0	70.4	70.4	77.8

RETAIL SALES

CATEGORY 3

PART C YEAR-TO-YEAR ANALYSIS
absolute percent change ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))

KB	METH A MA/MA	METH 11 MB1/MA XMB1<MA	$\begin{aligned} & \text { METH B2 } \\ & \text { MB2/MA } \\ & \times M B 2<M A \end{aligned}$	METH 83 MB3/MA XMB3<MA	METH B4 MB4/MA 2MB4<MA
550000	1.985	1.637	1.637	1.623	1.623
1	100.0	82.5	82.5	81.7	81.7
560000		63.0	63.0	59.3	59.3
	1.081	1.045	1.045	0.842	0.842
	100.0	96.6	96.6	77.9	77.9
		48.1	48.1	74.1	74.1
570000	1.252	1.209	1.209	1.153	1.153
	100.0	96.6	96.6	92.1	92.1
		59.3	59.3	66.7	66.7

RETAIL SALES

CATEGORY 3
absolute percent change
ABS(CYADV/PYFIN) - (FINIDL/FINIDL(-12))

KB	METH A MA/MA	METH 11 MB I/MA XMBI<MA	$\begin{aligned} & \text { METH B2 } \\ & \text { MB2/MA } \\ & \times M B 2<M A \end{aligned}$	METH B_{3} MB3/MA XMB3<MA	$\begin{gathered} \text { METH B4 } \\ \text { MB } / \text { MA } \\ \text { YMB }<M A \end{gathered}$
550000	2.834	2.686	2.665	2.581	2.601
	100.0	94.8	94.0	91.1	91.8
		48.1	48.1	48.1	59.3
560000	2.669	2.589	2.581	2.418	2.312
	100.0	97.0	96.7	90.6	86.6
		63.0	59.3	63.0	70.4
570000	2.654	2.572	2.553	2.607	2.504
	100.0	96.9	96.2	98.2	94.3
		63.0	63.0	63.0	66.7

RETAIL SALES

CATEGORY 3

((CYADV/PYFIN) - (CYPRE/PYFIN)) \times (2				
METH A MA/MA	METH B1 MB1/MA \%MB1<MA	METH B2 MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB3<MA	METH B4 MB4/MA \%MB4<MA
$\begin{aligned} & 3.342 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 2.841 \\ 85.0 \\ 66.7 \end{array}$	2.817 84.3 70.4	3.018 90.3 70.4	3.100 92.8 63.0
3.210 100.0	$\begin{array}{r} 2.867 \\ 89.3 \\ 66.7 \end{array}$	$\begin{array}{r} 2.836 \\ 88.3 \\ 66.7 \end{array}$	$\begin{array}{r} 2.776 \\ 86.5 \\ 55.6 \end{array}$	$\begin{array}{r} 2.666 \\ 83.0 \\ 55.6 \end{array}$
3.172 100.0	2.971 93.7 55.6	2.956 93.2 55.6	3.097 97.7 40.7	2.890 91.1 59.3

RETAIL INVENTORY

part a level analysis

AbSOLUTE PERCENT CHANGE
ABS(FIN / FINIDL)

531100	$\begin{aligned} & 0.550 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 0.528 \\ 96.8 \\ 40.7 \end{array}$	$\begin{array}{r} 0.528 \\ 96.0 \\ 40.7 \end{array}$	$\begin{array}{r} 0.528 \\ 96.0 \\ 40.7 \end{array}$
540000	0.348	0.327	0.327	0.327
	100.0	94.1	94.1	94.1
		44.4	44.4	44.4
550000	0.769	0.829	0.829	0.829
	100.0	107.8	107.8	107.8
		37.0	37.0	37.0
560000	0.851	0.731	0.731	0.731
	100.0	85.8	85.8	85.8
		55.6	55.6	55.6
570000	0.510	0.525	0.525	0.525
	100.0	102.9	102.9	102.9
		40.7	40.7	40.7

ROOT MEAN SQUARE ERROR
(FIN / FINIDL) ** 2

METH A MA/MA	METH BI MB1/MA \%MB1 <MA	METH B2 MB2/MA \%MB2<MA	METH B3 MB 3/MA \%MB3 $<M A$
0.658	0.627	0.627	0.627
100.0	95.3	95.3	95.3
	40.7	40.7	40.7
0.409	0.399	0.399	0.399
100.0	97.6	97.6	97.6
	44.4	44.4	44.4
0.965	1.106	1.106	1.106
100.0	114.6	114.6	114.6
	37.0	37.0	37.0
0.937	0.839	0.839	0.839
100.0	89.5	89.5	89.5
	55.6	55.6	55.6
0.634	0.665	0.665	0.665
100.0	104.9	104.9	104.9
	40.7	40.7	40.7

RETAIL INUENTORY

PART B MONTH-TO-MONTH ANALYSIS

ABSOLUTE PERCENT CHANGE
ABS((FIN/FIN(-1)) - (FINIDL/FINIDL(-1)))

ROOT MEAN SQUARE ERROR
((FIN/FIN(-1)) - (FINIDL/FINIDL(-1))) \times (2

METH A MA/MA	METH B1 MB1/MA \%MB1<MA	METH BZ MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB3<MA
0.615	0.590	0.569	0.569
100.0	96.1	92.6	92.6
	48.1	63.0	63.0
0.593	0.515	0.425	0.425
100.0	86.9	71.8	71.8
	59.3	59.3	59.3
0.904	1.002	0.960	0.960
100.0	110.8	106.1	106.1
	40.7	44.4	44.4
0.765	0.716	0.667	0.667
100.0	93.7	87.2	87.2
	59.3	70.4	70.4
0.528	0.591	0.621	0.621
100.0	111.9	117.5	117.5
	29.6	33.3	33.3

RETAIL INVENTORY
 PART C YEAR-TO-YEAR ANALYSIS

Wholesale sales
 PART A LEVEL ANALYSIS

ABSOLUTE PERCENT CHANGE ABS(FIN / FINIDL)

KB	METH A MA/MA	METH DI MB1/MA XMB1<MA	METH 12 MB2/MA XMB2<MA	METH B3 MB3/MA XMB3<MA
501000	2.654	2.304	2.095	2.095
	100.0	86.8	79.0	79.0
		66.7	74.1	74.1
506000	1.247	1.156	1.045	1.045
	100.0	92.7	83.8	83.8
		48.1	66.7	66.7
508000	0.901	0.969	0.858	0.858
	100.0	107.5	95.2	95.2
		44.4	48.1	48.1
514000	0.993	0.913	0.870	0.870
	100.0	92.0	87.6	87.6
		51.9	51.9	51.9
518000	1.202	1.037	0.887	0.887
	100.0	86.3	73.8	73.8
		66.7	74.1	74.1

METH A MA/MA	METH B1 MB1/MA XMB1 <MA	METH B2 MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB $3<M A$
3.266	2.794	2.542	2.542
100.0	85.5	77.8	77.8
	66.7	74.1	74.1
100	1.582	1.416	1.416
	93.2	83.4	83.4
	48.1	66.7	66.7
$\begin{aligned} & 1.235 \\ & 100.0 \end{aligned}$	1.310	1.198	1.198
	106.1	97.0	97.0
	44.4	48.1	48.1
$\begin{aligned} & 1.215 \\ & 100.0 \end{aligned}$	1.083	0.994	0.994
	89.2	81.8	81.8
	51.9	51.9	51.9
$\begin{aligned} & 1.464 \\ & 100.0 \end{aligned}$	1.247	1.132	1.132
	85.2	77.3	77.3
	66.7	74.1	74.1

WHOLESALE SALES

ABSOLUTE PERCENT CHANGE ABS(PRE/FINIDL)

KB	METH A MA/MA	METH BI MB1/MA XMB $1<M A$	METH B2 MBZ/MA XMB2<MA	METH BJ MB3/MA xMB $3<M A$
501000	2.760	2.331	2.331	2.331
	100.0	84.5	84.5	84.5
		74.1	74.1	74.1
506000	1.505	1.466	1.466	1.466
	100.0	97.4	97.4	97.4
		55.6	55.6	55.6
508000	1.386	1.456	1.456	1.456
	100.0	105.1	105.1	105.1
		48.1	48.1	48.1
514000	1.118	0.978	0.978	0.978
	100.0	87.5	87.5	87.5
		48.1	48.1	48.1
518000	2.645	2.297	2.297	2.297
	100.0	86.8	86.8	86.8
		63.0	63.0	63.

absolute percent change
ABS(PRE / FIN)

KB	METH A MA/MA	METH BI MB1/MA 2MB1<MA	METH $\mathbf{B 2}$ MB2/MA XMB2<MA	METH B_{3} MB3/MA \%MB3<MA
501000	2.194	2.214	2.130	2.130
	100.0	100.9	97.1	97.1
		55.6	55.6	55.6
506000	0.915	0.905	0.916	0.916
	100.0	98.9	100.1	100.1
		29.6	55.6	55.6
508000	1.102	1.067	1 1.122	1.122
	100.0	96.9	101.8	101.8
		33.3	51.9	51.9
514000	0.485	0.531	0.489	0.489
	100.0	109.5	100.8	100.8
		63.0	63.0	63.0
518000	2.153	2.115	1.834	1.834
	100.0	98.2	85.2	85.2
		59.3	81.5	81.5

WHOLESALE SALES

PART B MONTH-TO-MONTH ANALYSIS

ADSOLUTE PERCENT CHANGE ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))

KB	METH A MA/MA	METH DI MB1/MA XMB1<MA	METH B 2 MB2/MA 2MB2<MA	METH B3 MB3/MA xMB3<MA
501000	3.359	2.607	2.434	2.434
	100.0	77.6	72.5	72.5
		81.5	81.5	81.5
506000	1.877	1.720	1.691	1.691
	100.0	91.6	90.1	90.1
		48.1	51.9	51.9
508000	1.776	1.643	1.636	1.636
	100.0	92.5	92.1	92.1
		59.3	59.3	59.3
514000	0.992	0.874	0.801	0.801
	100.0	88.1	88.8	80.8
		55.6	63.0	63.0
518000	2.837	2.539	2.458	2.458
	100.0	89.5	86.6	86.6
		66.7	63.0	63.0

WHOLESALE SALES
 PART C YEAR-TO-YEAR ANALYSIS

ABSOLUTE PERCEHT CHANGE

 ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))| KB | METH A MA/MA | METH BI
 MB1/MA XMB1 1 MA | METH B2 MB2/MA 2MB2<MA | $\begin{gathered} \text { METH B3 } \\ \text { MB3 } / M A \\ \text { XB }<\text { MA } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 501000 | 2.470 | 2.619 | 2.619 | 2.380 |
| | 100.0 | 106.0 | 106.0 | 96.4 |
| | | 44.4 | 44.4 | 55.6 |
| 506000 | 1.644 | 1.738 | 1.738 | 1.693 |
| | 100.0 | 105.7 | 105.7 | 103.0 |
| | | 44.4 | 44.4 | 48.1 |
| 508000 | 1.492 | 1.648 | 1.648 | 1.437 |
| | 100.0 | 110.5 | 110.5 | 96.3 |
| | | 33.3 | 33.3 | 51.9 |
| 514000 | 0.704 | 0.979 | 0.979 | 0.733 |
| | 100.0 | 139.1 | 139.1 | 104.2 |
| | | 25.9 | 25.9 | 51.9 |
| 518000 | 2.755 | 2.713 | 2.713 | 2.704 |
| | 100.0 | 98.5 | 98.5 | 98.2 |
| | | 44.4 | 44.4 | 48.1 |

WHOLESALE INVENTORY

part a level analysis

absolute percent change ABS(FIN / FINIDL)

KB	METH A	METH 1 MB1/MA xMB1<MA	METH 82 MB2/MA \%MB2<MA	METH 83 MBS/MA zMB3<MA
501000	0.540	0.454	0.413	0.413
	100.0	84.0	76.4	76.4
		59.3	63.0	63.0
506000	0.480	0.531	0.368	0.368
	100.0	110.7	76.7	76.7
		37.0	59.3	59.3
508000	0.621	0.553	0.513	0.513
	100.0	89.0	82.6	82.6
		44.4	55.6	55.6
514000		0.600	0.583	
	100.0	88.2	85.6	85.6
		51.9	55.6	55.6
518000	1.143			
	1000	0.917	0.706	0.706
	100.0	80.2	61.8	61.8
		55.6	70.4	70.4

ROOT MEAN SQUARE ERROR
(FIN / FINIDL) ** 2

METH A MA/MA	$\begin{gathered} \text { METH B1 } \\ \text { MB1/MA } \end{gathered}$ $\text { \%MB } 1<M A$	METH 82 MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB3<MA
0.649	0.594	0.527	0.527
100.0	91.4	81.2	81.2
	59.3	63.0	63.0
0.633	0.711	0.494	0.494
100.0	112.3	78.1	78.1
	37.0	59.3	59.3
$\begin{aligned} & 0.796 \\ & 100.0 \end{aligned}$	0.666	0.628	0.628
	83.7	78.9	78.9
	44.4	55.6	55.6
$\begin{aligned} & 0.854 \\ & 100.0 \end{aligned}$	0.814	0.749	0.749
	95.3	87.7	87.7
	51.9	55.6	55.6
$\begin{aligned} & 1.448 \\ & 100.0 \end{aligned}$	1.212	0.931	0.931
	83.7	64.3	64.3
	55.6	70.4	70.4

Wholesale inventory
absolute percent change ABS(PRE / FINIDL)

KB	METH A MA/MA	METH BI MB1/MA XMB $1<M A$	METH 82 MB2/MA *MB2<MA	METH 83 MB3/MA XMB3<MA
501000	1.752	1.831	1.831	1.831
	100.0	104.5	104.5	104.5
\|		51.9	51.9	51.9
506000	0.743	0.836	0.836	0.836
	100.0	112.6	112.6	112.6
1		40.7	40.7	40.7
508000	0.851	0.768	0.768	0.768
	100.0	90.3	90.3	90.3
		51.9	51.9	51.9
514000	1.247	1.172	1.172	1.172
	100.0	94.0	94.0	94.0
,		59.3	59.3	59.3
518000	1.629	1.565	1.565	1.565
	100.0	96.1	96.1	96.1
		48.1	48.1	48.1

ROOT MEAN SQUARE ERROR
(PRE/FINIDL) ** 2

METH A MA/MA	METH BI MB $1 /$ MA \%MB1<MA	METH B2 MB2/MA \%MB2<MA	METH B3 MB3/MA \%MB $3<M A$
2.047	2.146	2.146	2.146
100.0	104.8	104.8	104.8
	51.9	51.9	51.9
1.031	1.119	1.119	1.119
100.0	108.6	108.6	108.6
	40.7	40.7	40.7
1.017	0.947	0.947	0.947
100.0	93.1	93.1	93.1
	51.9	51.9	51.9
	1.398	1.398	1.398
100.0	96.3	96.3	96.3
	59.3	59.3	59.3
$\begin{aligned} & 1.984 \\ & 100.0 \end{aligned}$	1.895	1.893	1.893
	95.4	95.4	95.4
	48.1	48.1	48.1

attachment 4

retail sales
CATEGORY
absolute percent change

measure

LEVEL ANALYSIS
ABS(FIN / FINIDL)
abs(PRE / FINIDL)

ABS(ADV / FINIDL)

ABS(PRE/FIN)

ABS(ADV / PRE)

MONTH-TO-MONTH ANALYSIS
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))

GM OF METHA GMMA/GMMA

GM OF METHB1 IIMMB $1 /$ GMMA AY \%MB1くMA

GMMB2/GNMA AV \%MBZ<MA

OF METHB3 GMMB 3/G1MA AV \%MB $3<M A$

GMMB $4 /$ GMMA AV \%MB4<MA

OF METHB5 GMMB5/GMMA AV \%MB5<MA

0.719	0.583
100.0	51.1
	54.1
0.966	0.780
100.0	80.7
	54.8
1.536	1.521
100.0	99.0
	42.2
0.586	0.553
100.0	94.3
	40.7
1.317	1.273
100.0	96.6

0.527
73.2
65.2
0.780
80.7
54.8
1.521
99.0
42.2
0.525
89.5
49.6
1.273
96.6
49.6

0.527	0.527
73.2	73.2
65.2	65.2
0.780	0.780
80.7	80.7
54.8	54.8
1.521	1.404
99.0	91.4
42.2	52.6
0.525	0.525
89.5	89.5
49.6	49.6
1.273	1.155
96.6	87.7
49.6	67.4

0.497
69.1
60.7
0.773
80.1
57.8
1.404
91.4
52.6
0.518
88.4
52.6
1.208
91.7
60.0
1.219
100.0
1.452
100.0
1.191
100.0
988
78.6
65.9
1.394
96.0
55.6
1.139
95.6
47.4

0.871	0.871
71.5	71.5
68.1	68.1
1.394	1.257
96.0	86.6
55.6	65.9
1.176	1.014
98.7	85.1
51.1	64.4

0.871
71.5
68.1
1.257
86.6
65.9
1.014
85.1
64.4

RETAIL SALES

CATEGORY 1

AbSOLUTE PERCENT CHANGE

MEASURE

YEAR-TO-YEAR ANALYSIS
ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))

ABS((CYADV/PYFIN) - (FINIDL/FINIDL(-12))

GM OF METHA GMMA/GMMA GMMP 1 GMMA AV \%MBI<MA GMMB2/GMMA AV \%MB2<MA

GMMB3/GMMA
GMMB 3 /GMMA AV $\% M B 3<M A$

OF METHB4 GMMB4/GMMA AV \%MB4<MA

OF METHB5
GMMB 5 GMMA AV $\% M B 5<M A$

0.920	0.793	0.793	0.795	0.795	0.802
100.0	86.2	86.2	86.4	86.4	87.1
	56.3	56.3	63.0	63.0	66.7
	1.657	1.647	1.656	1.593	1.599
100.747	94.8	94.3	94.8	.91 .2	91.5
	52.6	51.9	50.4	59.3	68.1
		1.457	1.447	1.481	1.429
1.527	95.4	94.7	96.9	93.424	
100.0	53.3	53.3	51.9	57.8	93.3

retail sales

CATEGORY 1

ROOT MEAN SQUARE ERROR

measure

LEVEL ANALYSIS
(FIN / FINIDL) ** 2
(PRE / FINIDL) ** 2
(ADV / FINIDL) ** 2
(PRE / FIN) $\times * 2$
(ADV / PRE) X K 2

MONTH-TO-MONTH ANALYSIS
((PRE/FIN) - (FINIDL/FINIDL(-1))) $x * 2$
((ADV/PRE) - (FINIDL/FINIDL(-1))) ** 2

GM OF METHA G GMMA/ GMMA

OF METHB1
GMMB1/GMMA AV \%MB1<MA

OF METHB2
GMMB2/GMMA GMMB $2 /$ GIMA
AV $\% M B 2<M A$

GMMB3/GMMA

 AV \%MB3<MAGM OF METHB4 GMMB4/GMMA AV \%MB4<MA

GM OF METHB5 GMMB5/GMMA $A V \not \approx M B 5<M A$

0.906	0.718	0.673	0.673	0.673	0.643
100.0	79.2	74.2	74.2	74.2	71.0
	54.1	65.2	65.2	65.2	60.7
1.192	0.955	0.955	0.955	0.955	0.948
100.0	80.1	80.1	80.1	80.1	79.6
	54.8	54.8	54.8	54.8	57.8
1.896	1.859	1.859	1.859	1.710	1.710
100.0	98.0	98.0	98.0	90.2	90.2
	42.2	42.2	42.2	52.6	52.6
0.781	0.710	0.679	0.679	0.679	0.668
100.0	91.0	87.0	87.0	87.0	85.6
	40.7	49.6	49.6	49.6	52.6
1.721	1.591	1.591	1.591	1.484	1.533
100.0	92.5	92.5	92.5	86.3	89.1

1.471	1.156	1.063	1.063	1.063	1.016
100.0	78.5	72.3	72.3	72.3	69.0
	65.9	68.1	68.1	68.1	75.6
1.782	1.728	1.728	1.728	1.537	1.435
100.0	97.0	97.0	97.0	86.3	80.5
	55.6	55.6	55.6	65.9	65.9
1.544	1.456	1.490	1.490	1.309	1.249
100.0	94.3	96.5	96.5	84.8	80.9
	47.4	51.1	51.1.	64.4	69.6

0.643
71.0
60.7
0.948
79.6
57.8
1.710
90.2
52.6
0.668
85.6
52.6
1.533
89.1
60.0
1.016
69.0
75.6
8.435
65.9
1.249
80.9
80.9
69.6

RETAIL SALES

CATEGORY 1
ROOT MEAN SQUARE ERROR
measure

YEAR-TO-YEAR ANALYSIS

((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2

((CYADV/PYFIN) - (FINIDL/FINIDL(-12)) \times * 2
((CYADV/PYFIN) - (CYPRE/PYFIN)) $x * 2$ GMMA/GMMA GMMB1/GMMA AY $-M B 1<M A$

GMMB2/GMMA AV $\angle M B 2<M A$ GMMB METHB3 GMMB 3 /GMMA AV \%MB3 $<M A$ OF METHB4 GMMB4/GMMA AV \%MB4<MA

M OF METHB5 GMMB5 GMMA AV \%MB5<MA

1.126	0.997	0.997	0.976	0.976	0.976
100.0	88.5	88.5	86.7	86.7	86.7
	56.3	56.3	63.0	63.0	66.7
2.132	1.997	1.992	2.007	1.943	1.941
100.0	93.7	93.4	94.1	91.1	91.0
	52.6	51.9	50.4	59.3	68.1
2.012	1.815	1.809	1.907	1.871	1.842
100.0	90.2	89.9	94.8	93.0	91.5
	53.3	53.3	51.9	57.8	58.5

RETAIL SALES
CATEGORY 2
ABSOLUTE PERCENT CHANGE

MEASURE

LEVEL ANALYSIS

ABS(PRE / FIN)

MONTH-TO-MONTH ANALYSIS
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))

YEAR-TO-YEAR ANALYSIS
ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))

GM OF METHA GM OF METHB1 GM OF METHB2 GM OF METHB 3
GMMA/GMMA

GMMB1/GMMA
AV \%MB1<MA

GMMB3/GMMA AV \%MB3<MA

RETAIL SALES

CATEGORY 2
root mean square error
MEASURE
gM of metha gm of methbi gm of methbr gm of methb GMMA/GMMA GMMB1/GMMA GMMB2/GMMA GMMB $3 /$ GMMA GMMB1/GMMA GMMB2/GMMA GMMB $\%$ MB $3<M A$

Level analysis
(FIN / FINIDL) $\times * 2$
$(P R E / F I N I D L) * * 2$
$(P R E / F I N) * * 2$

MONTH-TO-MONTH ANALYSIS
((PRE/FIN) - (FINIDL/FINIDL(-1))) ** 2

YEAR-TO-YEAR ANALYSIS
((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2

\subsection*{2.256

100.0

2.796
100.0

1.568
100.0}

1.743
77.
60.
2.32
83.
62.
1.48
94.
57.

2.291
2.291
3.184
100.0
2.436
100.0
2.312
94.9
94.9
54.7 $\begin{array}{lr}2.312 & 2.184 \\ 94.9 & 89.7\end{array}$ 69.1

RETAIL SALES
CATEGORY 3
ABSOLUTE PERCENT CHANGE
measure

LEVEL ANALYSIS
ABS(FIN / FINIDL)
ABS (EIN FIMID)
ABS(PRE / FINIDL)

ABS(ADV / FINIDL)

ABS(PRE / FIN)

ABS(ADV / PRE)

MONTH-TO-MONTH ANALYSIS
ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))

ABS((ADV/PRE) - (FINIDL/FINIDL(-1)))

ABS ((ADV/PRE) - (PRE/FIN))

GM OF METHA G GMMA/GMMA

GMMB1/GMMA AV \%MB1<MA

GMMB2/GMMA AV \%MB2<MA

GMMB3/GMMA AV \%MB3<MA

OF METHB4 AV \%MB4<MA

1.246	1.246
81.3	81.3
69.1	69.1
1.409	1.409
86.5	86.5
61.7	61.7
2.336	2.198
99.2	93.4
40.7	64.2
0.635	0.635
91.8	91.8
60.5	60.5
1.994	1.890
89.3	84.7
66.7	71.6

RETAIL SALES

CATEGORY 3
absolute percent change

MEASURE

YEAR-TO-YEAR ANALYSIS
ABS ((CYPRE/PYFIN) - (FINIDL/FINIDL (-12))
ABS ((CYADV/PYFIN) - (FINIDL/FINIDL (-12))
ABS (CYADV/PYFIN) - (CYPRE/PYFIN))

GM OF METHA GM OF METHB1 GM OF METHB2 GM OF METHB3 GM OF METHB4
GMMA/GMMA
GMMB1/GMMA
GMMB2/GMMA
GMMB3/GMMA
GMMB4/GMMA GMMB1/GMMA GMMB2/GMMA GMMB3/GMMA AV \%MB3<MA

AV \%MB4くMA

1.390	1.274	1.274	1.163	1.163
100.0	91.6	91.6	83.7	83.7
	56.8	56.8	66.7	66.7
2.718	2.615	2.599	2.534	2.469
100.0	96.2	95.6	93.2	90.8
	58.0	56.8	58.0	65.4
2.493	2.233	2.216	2.321	2.266
100.0	89.6	88.9	93.1	90.9
	63.0	64.2	55.6	59.3

RETAIL SALES
CATEGORY 3
ROOT MEAN SQUARE ERROR

MEASURE
GM OF METHA GM OF METHB1 GM OF METHB2 GM OF METHB3 GM OF METHB4 GMMA/GMMA GMMB1/GMMA GMMB2/GMMA GMMB3/GIMA GMMB4/GMMA AV \%MB1<MA AV \%MB2<MA AV $\% \mathrm{MB} 3<\mathrm{MA}$ AV \%MB4<MA
LEVEL ANALYSIS

(FIN / FINIDL) \times * 2	$\begin{aligned} & 1.955 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 1.609 \\ 82.3 \\ 64.2 \end{array}$	$\begin{array}{r} 1.543 \\ 78.9 \\ 69.1 \end{array}$	$\begin{array}{r} 1.543 \\ 78.9 \\ 69.1 \end{array}$	$\begin{array}{r} 1.543 \\ 78.9 \\ 69.1 \end{array}$
(PRE / FINIDL) $* * 2$	$\begin{aligned} & 2.055 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 1.742 \\ 84.8 \\ 61.7 \end{array}$			
(ADV / FINIDL) $* * 2$	$\begin{aligned} & 3.034 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 3.009 \\ 99.2 \\ 40.7 \end{array}$	$\begin{array}{r} 3.009 \\ 99.2 \\ 40.7 \end{array}$	$\begin{array}{r} 3.009 \\ 99.2 \\ 40.7 \end{array}$	$\begin{array}{r} 2.873 \\ 94.7 \\ 64.2 \end{array}$
(PRE / FIN) ** 2	0.847 100.0	$\begin{array}{r} 0.797 \\ 94.0 \\ 42.0 \end{array}$	$\begin{array}{r} 0.802 \\ 94.6 \\ 60.5 \end{array}$	$\begin{array}{r} 0.802 \\ 94.6 \\ 60.5 \end{array}$	$\begin{array}{r} 0.802 \\ 94.6 \\ 60.5 \end{array}$
(ADV / PRE) KK 2	$\begin{aligned} & 2.869 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 2.571 \\ 89.6 \\ 66.7 \end{array}$	$\begin{array}{r} 2.571 \\ 89.6 \\ 66.7 \end{array}$	$\begin{array}{r} 2.571 \\ 89.6 \\ 66.7 \end{array}$	$\begin{array}{r} 2.415 \\ 84.2 \\ 71.6 \end{array}$
MONTH-TO-MONTH ANALYSIS					
-					
((PRE/FIN) - (FINIDL/FINIDL(-1)) $\times 2$	$\begin{aligned} & 2.297 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 1.782 \\ 77.6 \\ 76.5 \end{array}$	$\begin{array}{r} 1.638 \\ 71.3 \\ 81.5 \end{array}$	$\begin{array}{r} 1.638 \\ 71.3 \\ 81.5 \end{array}$	$\begin{array}{r} 1.638 \\ 71.3 \\ 81.5 \end{array}$
$((A D V / P R E)-(F I N I D L / F I N I D L(-1))) * * 2$	$\begin{aligned} & 2.850 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 2.775 \\ 97.4 \\ 60.5 \end{array}$	$\begin{array}{r} 2.775 \\ 97.4 \\ 60.5 \end{array}$	$\begin{array}{r} 2.775 \\ 97.4 \\ 60.5 \end{array}$	$\begin{array}{r} 2.556 \\ 89.7 \\ 65.4 \end{array}$
((ADV/PRE) - (PRE/FIN)) ** 2	2.900 100.0	$\begin{array}{r} 2.585 \\ 89.1 \\ 65.4 \end{array}$	$\begin{array}{r} 2.475 \\ 85.3 \\ 60.5 \end{array}$	$\begin{array}{r} 2.475 \\ 85.3 \\ 60.5 \end{array}$	$\begin{array}{r} 2.254 \\ 77.7 \\ 74.1 \end{array}$

RETAIL SALES

CATEGORY 3
ROOT MEAN SQUARE ERROR
measure

YEAR-TO-YEAR ANALYSIS ((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) $k * 2$
((CYADV/PYFIN) - (FINIDL/FINIDL(-12)) ** 2

GM OF METHA GMMA/GMMA

GM OF METHB1 GMMB1/GMMA
AV \%MBI <MA OF METHB3 GM $\begin{array}{ll}\text { GMMB2/GMMA } & \text { GMMB3/GMMA } \\ \text { AV } \% M B 2<M A & A V ~\end{array}$ MB3<MA

GMM METHB4 GMMB4/GMMA AV \%MB4<MA

1.680	1.564	1.564	1.426	1.426
100.0	93.1	93.1	84.9	84.9
	56.8	56.8	66.7	66.7
3.489	3.393	3.369	3.299	3.221
100.0	97.3	96.6	94.6	92.3
	58.0	56.8	58.0	65.4
3.240	2.893	2.869	2.960	2.880
100.0	89.3	88.5	91.4	88.9
	63.0	64.2	55.6	59.3

absolute percent change
measure
level analysis
ABS(FIN / FINIDL)
month-to-month analysis
ABS((FIN/FIN(-1)) - (FINIDL/FINIDL(-1)))

YEAR-TO-YEAR ANALYSIS
ABS(CYFIN/PYFIN) - (FINIDL/FINIDL(-12))

gM OF METHA G GMMA/GMMA
 OF METHB1 GMMB1/GMMA AV \%MB1<MA GM1182/GMMA AV $\approx M B 2<M A$
 GM OF METHB3 GMMB 3/GMIMA AV \%MB3<MA

0.560
97.0
43.7
0.560
97.0
0.560
0.577
100.0
43.7
0.525
100.0
0.520
99.0
0.473
90.0
54.1
0.473
9.47
54.1
0.251
100.0
0.376
150.0
25.2
0.200
79.8
46.7

RETAIL INVENTORY
ROOT MEAN SQUARE ERROR

MEASURE

LEVEL ANALYSIS
(FIN / FINIDL) $\times{ }^{*} 2$

MONTH-TO-MONTH ANALYSIS
((FIN/FIN(-1)) - (FINIDL/FINIDL(-1))) ** 2

YEAR-TO-YEAR ANALYSIS
((CYFIN/PYFIN) - (FINIDL/FINIDL(-12)) ** 2

GM DF METHA GM DF METHB1 GM OF METHB2 GM OF METHB3 GMMA/GMMA GMMB1/GMMA GMMB2/GMMA GMMB3/GMMA $\begin{array}{lll}\text { GMMB1/GMMA } & \text { GMMB2/GMMA } & \text { GMMB3/GMMA } \\ \text { AV } \% M B 1<M A & \text { AV } \% M B 2<M A & \text { AV } \% M B 3<M A\end{array}$

0.688	0.688	0.688	0.688
100.0	100.0	100.0	100.0
	43.7	43.7	43.7

0.668	0.664	0.626	0.626
100.0	99.4	93.7	93.7

0.343	0.502	0.502	0.250
100.0	146.4	146.4	72.7
	25.2	25.2	46.7

absolute percent change
MEASURE
level analysis

abs(fin / FINIDL)

ABS(PRE / FINIDL)

ABS(PRE / FIN)

MONTH-TO-MONTH ANALYSIS

ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))

YEAR-TO-YEAR ANALYSIS
(BS(CYPRE/PYFIN) - (FINIDL/FINIDL(-12))

GM OF METHA GM OF METHB1 GM OF METHB2 GM OF METHB3 GMMA/GMMA GMMB1/GMMA GMMBR/GMIA GMMB3/GMMA

1.289	1.196	1.077	1.077
100.0	92.8	83.6	83.6
	55.6	63.0	63.0
1.763	1.621	1.621	1.621
100.0	91.9	91.9	91.9
	57.8	57.8	57.8
$\begin{aligned} & 1.182 \\ & 100.0 \end{aligned}$	1.192	1.145	1.145
	100.8	96.8	96.8
	48.1	61.5	61.5
1.994100.0	1.749	1.677	1.677
	87.7	84.1	84.1
	62.2	63.7	63.7
$\begin{aligned} & 1.637 \\ & 100.0 \end{aligned}$	1.819	1.819	1.629
	111.1	111.1	99.5
	38.5	38.5	51.1

ROOT MEAN SQUARE ERROR
measure

LEVEL ANALYSIS
(FIN / FINIDL) ** 2
(PRE / FINIDL) \times K 2
(PRE / FIN) ** 2

MONTH-TO-MONTH ANALYSIS
((PRE/FIN) - (FINIDL/FINIDL(-1))) ** 2

YEAR-TO-YEAR ANALYSIS
((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) $* * 2$

GM OF METHA GM OF METHB1 GM OF METHB2 GM OF METHB3 GMMA/GMMA GMIB1/GMMA GMMB2/GMMA GMMB3/GMMA $\begin{array}{ll}\text { GMI1B1/GMMA } & \text { GMMB2/GMMA } \\ \text { AV } \% M B 1<M A & \text { AV } \% M B 2<M A\end{array}$ Av \%MB3<MA

1.649	1.509	1.371	1.371
100.0	91.5	83.2	83.2
	55.6	63.0	63.0
2.329	2.256	2.256	2.256
100.0	96.9	96.9	96.9
	57.8	57.8	57.8
1.634	1.660	1.584	1.584
100.0	101.6	96.9	96.9
	48.1	61.5	61.5

2.618	2.359	2.238	2.238
100.0	90.1	85.5	85.5
	62.2	63.7	63.7

2.252	2.465	2.465	2.250
100.0	109.5	109.5	99.9

WHOLESALE INVENTORY

ABSOLUTE PERCENT CHANGE

MEASURE

LEVEL ANALYSIS
ABS(PRE / FINIDL)
ABS(PRE / FIN)

MONTH-TO-MONTH ANALYSIS

ABS((PRE/FIN) - (FINIDL/FINIDL(-1)))

YEAR-TO-YEAR ANALYSIS

ABS((CYPRE/PYFIN) - (FINIDL/FINIDL(-12))

```
ABS(FIN/FINIDL)
```

```
ABS(FIN/FINIDL)
```

GM OF METHA GM OF METHB1 GM OF METHB2 GM OF METHB3

$\begin{aligned} & 0.660 \\ & 100.0 \end{aligned}$	$\begin{array}{r} 0.593 \\ 89.9 \\ 49.6 \end{array}$	$\begin{array}{r} 0.502 \\ 76.1 \\ 60.7 \end{array}$	$\begin{array}{r} 0.502 \\ 76.1 \\ 60.7 \end{array}$
1.176	1.166	1.166	1.166
100.0	99.2	99.2	99.2
	50.4	50.4	50.4
1.148	1.155	1.096	1.096
100.0	100.6	95.5	95.5
	44.4	60.7	60.7
1.160	1.188	1.110	1.110
100.0	102.4	95.7	95.7
	52.6	55.6	55.6
1.271	1.365	1.365	1.271
100.0	107.4	107.4	100.0
	48.1	48.1	57.8

WHOLESALE INVENTORY

ROOT MEAN SQUARE ERROR

MEASURE

LEVEL ANALYSIS
$(F I N / F I N I D L)$
$(P R E / F I N I D L)$
$(P R E / F I N) * * 2$

MONTH-TO-MONTH ANALYSIS
((PRE/FIN) - (FINIDL/FINIDL(-1))) $* * 2$

YEAR-TO-YEAR ANALYSIS
((CYPRE/PYFIN) - (FINIDL/FINIDL(-12)) ** 2_{2}
 GMMB 1 /GMMA GMMB2/GMMA AV \%MB2<MA GMMB 3/GMMA AV \%MB3<MA

0.834	0.774	0.648	0.648
100.0	92.7	77.6	77.6
	49.6	60.7	60.7
1.439	1.432	1.432	1.432
100.0	99.5	99.5	99.5
	50.4	50.4	50.4
1.430	1.432	1.346	1.346
100.0	100.1	94.1	94.1
	44.4	60.7	60.7

1.445	1.471	1.392	1.392
100.0	101.8	96.3	96.3
	52.6	55.6	55.6

1.586	1.703	1.703	1.600
100.0	107.4	107.4	100.9
	48.1	48.1	57.8

[^0]: *All periods under this column are different from the periods that were displayed for method B2.

