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ABSTRACT 

A group testing procedure for the problem of identifying the sample 
minimum from a discrete uniform distribution in the minimal expected 
number of group tests is presented. A relation between the proposed 
procedure (PP) and other previously studied procedures (Sobel 1971; 
Hwang 1974, 1980) is shown to exist. Comparisons between the PP and 
other considered procedures are made and it is shown that the PP is 
uniformly better. A continuous case procedure is developed and is 
shown that under certain conditions the PP converges to it. 



1. The Basic Problem 

1.1 Introduction: 

Consider the problem in which we wish to find both the minimum 

value of a set of stored variables and the position where those 

variables with value equal to the minimum are stored. The type of 

sampling allowed is to select a subset of those variables and find out 

its minimum value by testing simultaneously all the variables in the 

subset. At this point (unless the subset is of size one) we do not 

know where this minimum value lies or how many variables are equal to 

this minimum value, and (unless we test the whole set) we may not know 

whether the minimum value of the tested subset is equal to the minimum 

value of the original set. Furthermore, there is a cost of one for 

every test we perform (on one unit or simultaneously on several 

units). 

We are interested in the goal of finding at least one variable 

whose value is equal to the minimum value of the original complete 

set. We wish to do this in the minimal (or near minimal) expected 

number of group tests. A similar goal applies for the corresponding 

problem dealing with the maximum value instead of the minimum. 

This problem arises in several applications, such as when we are 

an array. 

not be 

ion in a 

subarrays 

lear that 

minimizing a discrete function and have stored the values in 

If the number of values stored in the array is large, it may 

feasible or practical to f ind the minimum value of the funct 

single (simultano,eus) test * So we devise a strategy to test 

and find the minimum value of each subarray tested. It is c 

the conditions described above hold for this problem. The problem is 



to find an efficient or optimal strategy for achieving our goal. 

1.2 Formulation of the Problem: 

Consider the case when we have N independent identically 

distributed (i.i.d.1 random variables YI,...,YN , each with the 

discrete uniform distribution over the integers 1,2,3,...,r. Consider 

the random variable M=min(Yl,Yg,..., YN) and let m be the realized 

value of M for any given point in our sample space S. Let yk denote 

the observed value of Yk for k=lrZr3,...N. Our goal can now be stated 

as follows: to find, in the minimal (or near minimal) expected number 

of group tests the value m and any one subscript k, k=l,Z,...,N such 

that yk = m. 

In this context a group test is a test on one or more items that 

furnishes us with the minimum of the item values in the tested subset, 

i .e., the value of m for the set tested. The subscript k of yk is 

sometimes used to refer to a unit. We say that a unit is defective if 

and only if its value is equal to the overall minimum, i.e., iff yk=m. 

We say that a set is contaminated if it is known to contain at least 

one defective unit. The minimum value in a set of size x will be 

denoted by mx and the corresponding random variable by Mx. 

Before performing any test we do not know the actual value of the 
-. 

overall minimum m, and based on the optimal procedure we may not know 

this value, even after several tests. The random variable M has a 

probability distribution which depends on the upper bound r of the 

uniform distribution and on the number N of random variables that we 

have at the outset. Thus it is easy to see that for any integer m, 



1 5 m L r we have, 

P(Il=m),[r-F+LJ 
N 

- [‘-mlN 
r (1.1) 

In the special case when the minimum value of the whole set is 

known and it is also known that there is exactly one variable equal to 

this minimum value, then the Halving Procedure solves this problem 

optimally (1974). In our case, if the minimum value is known to be m, 

then our problem becomes analogous to that studied by Kumar and Sobel 

(1971) and later by Hwang (1974). 



2. Finding a Sinqle Unit with Value Equal to the Minimum 

2.1 Preliminaries 

Under some strategies we find in the very first group test the 

value m of M=min(Yl,Y2,..., Y,) by testing simultaneously all the N 

units. However, the optimal strategy is not necessarily of this type. 

In fact we start by showing that we can improve on any procedure that 

starts by testing all the N units. 

Suppose that after testing all N units in the first group test 

and observing the value m of M our procedure requires us to test x 

units in the second group test. We now compare this with an 

alternative procedure which tests x units (the same x as before) in 

the first group test and then the remaining N-x units in the second 

group test. 

In both situations we have used up two group tests and we know 

with certainty that M = m, and moreover, after two tests we appear to 

be at the same stage with both of these starting strategies, but, are 

we really? For ‘* 1 arge” values of x, the x units will contain a 

defective unit with high probability, and in fact, if N is suffiently 

large, the probability that the overall minimum value is equal to one, 

Prob( M = 1 ) wil 

( with x < N 1 in 

value of the x un i 

be close to one. Hence, if by taking x units 

our first group test we find out that the minimum 

ts is one,*we do not have to test the remaining N-x 

units, and thus we have effectively saved one group test. In any 

case, the answer to our query above is that we have increased the 

amount of information about the N units by using the second starting 

procedure above. 



In this section we present severa 1 procedures for accomp 1 ishing 

our goal . We propose a procedure (denoted by R2) that entails the 

consideration of at most two sets at any given time. One set 

(possibly empty) will contain the untested units (if any) and the 

other set Vm (initially empty) , will contain v units known to have a 

minimum value equal to m. This procedure will be described in detail 

in (2.3) below. 

7 

In order to decribe the procedure mentioned above, we need to 

introduce some definitions and preliminary results. Let Vm denote a 

set of size v which is known to contain a minimum value equal to m and 

let XUY denote the pooled set of size x+y of which x units are taken 

from Vm and y units from the remaining untested units. Then we define 

P+,Y) by 

PLa) (X,Y) = Prob [ min(XUY) = a I X c V, ] (2.1) 

i.e., p ia)(x.y) is the probability that if we choose x units from a 

set Vm of size v known to contain a minimum value equal to m and y 

units from the remaining (untested) units, the minimum value in the 

pooled set of these x+y units is equal to a. Clearly for x=v and a>m 

we have 

,(a) 
v (XtY) = 0 l 

We also define the function f(m,y) as follows: 

f(m,y) = ( r - m t 1 )’ - ( r - m )’ = ry P( min(Y) = m). (2.2) 



Lemma 2.1 

For v#O, 1 I a I r, 1 Imir, Olxlv andOiyINwehave 

(2.3) 

c ‘:yk;I”;;’ ] f(a,x+y) a>m 
9 

p;a+x,y) = -!- f(m,y) t (r-m)Y (r-m+1 )‘-’ [ E ] a=m 
ry t 

f (a,y) a<m 

and for v=O ,x=0 and a, y as above, 

p o (0,y) = [ r - ; + l lY - [ +-- lY (a) ‘a 
. (2.4) 

Proof: 

See Rodriguez-Esquerdo (1983). 

We also define qpi to be the probability that a subset X of size 
9 

x, taken from a set Vm of size v contains a minimum va 

greater than m. It is easy to see (Rodrfguez-Esquerdo 

qFi= P( Yl>m,...,Yx>m I Mv= M = m)= (r-m)x [ (m,v- f z 
, f (m,v 1 

Lemma 2.2 

ue that is 

1983) that 

ll* (2.5 1 

Let Yl,Y2,..., YN be as above, i.i.d. unlformly distributed over the 

integers 1,2,3,...,r. If the minimum value of the N units is known 

be equal to m and if X is a proper random subset consisting of x un i 

from the N units ( x < N ) such that the minimum value in X is also 

equal to m , then the units in the set N\X are i.i.d. uniformly 

distributed over the integersm,mtl,...,r. 

Proof: 

to 

ts 

Let Y be a randomly chosen unit in the set N\X, then we are interested 

in the following probability for k 1 m: 

P = P(Y = k I min(N) = m, min(X) = m, X o N, Y E N\X). 
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We can write this probability P as follows: 

P= 
P(Y = k, min(N) = m, min(X) = m I X c N, Y E N\X) 

P(min(N) = mr min(X) = m I X c N, Y E N\X) 

P(Y = k = , min(N\X) > m, min(X) = m I Y E N\X) 
P(min(N\X) L m, min(X) = m) 

= P[Y = k, min((N\X)\Y) > m] P(min(X) = m) 
P(min(N\X) Z m) P(min(X) = m) 

1 
N-x- 1 

r [ 
r-m+1 

r 1 1 = 
r-m+1 l 

[r-F+ ljNTx 

which is what we wanted to 

in binomial group testing 

of size v is contaminated, 

set is given by Lemma 2.1, 

show. This result is analogous to a result 

(Sobe 

then 

sett 

and Groll, 1959). Note that if a set 

the distribution of any unit in the 

ng x=1 and y=O. 

2.2 The Conditional Procedure R (v I M = m) 
L 

Let H2(v I Mv = M = m) be the expected number of tests needed to 

find a single defective unit when the value of the overall minimum 

value M is known to be equal to m, we have a contaminated set of size 

v and we use the conditional procedure Rc, i.e., the procedure when m 

is known. This case, as we will see, can be interpreted as a binomial 

group testing problem with q = (r - m)/(r - m t 1). 

The (nested) conditional procedure Rc(v I M = m) for finding a 

single unit whose value is equal to m is then described implicitly for 

v>l by the following recursive relation , where the actual number of 

units to test at any stage is given by the minimizing value of x in 

equation 2.6 below. 
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H2(v I m) 04 = 1 tlT:;m {$!,H2(v-x I m) + (I - qx,,)H2(x I m)) (2.6) 

with the following boundary conditions: 

H2(l I m) = 0 and 

H2(v I M = r) = 0. 

There is a re lation (an ana 

and the procedure F(v) for find 

Sobel and Groll (1959) and also 

ogy) between our conditional procedure 

ng a single defective as defined in 

in Kumar and Sobel (1971). 

with the single boundary condition 

F(1) = 0. 

If we associate the q in Kumar and Sobe 1 with (r-m)/(r-m+ 1) then 

F(v) = 1 t min 
1 Ix<v 

( [ ;‘- qv ] F(v-x) t [ I-sx ] F(x) 1 
- 2 1 - qv 

i) H2(v I m) = F(v) and (ii) F(v) 

quantity q=(r-m)/(r-mtl), which 

value larger than m given that it 

integers m,mtl *..*. r. 

Theorem 2.3 

will depend on 

is the probabili 

m only through this 

ty that a unit has a 

stributed among the is uniformly di 

(2.7) 

If we let q=(r-m)/(r-mtl) then H2(v I m) = F(v) and the latter 

depends on m only through q. 

Proof: 

From the definition of q we inmed 

1 
r -mt l= 

l-9 
and -’ r - 

we have 

iatel 

m= 

y obtain 

+ -q 
and hence using (2.5) 
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,(m) = 
xvv [&I 

)( [+I’-“- [f+]“-” x- v 

[ [&I’ - ~iA$v I q q 
= 

1 -qv 
. 

Therefore, we can write (2.6) in the form 

X V 

H2(v I m) =lt minEq -q 
lLx<v l-qv 

H2(v-x I m) + l-qx H2(x I m) } 
1 - qv 

= F(v). 

Hence, after the value of the overall minimum has been found the 

conditional procedure Rc(v I m) becomes analogous to that of Kumar and 

Sobel provided we associate the probability q of any one unit being 

non defective with (r-m)/(r-m+l). This procedure was shown to be 

optimal by Kumar and Sobel (1971) and later by Hwang (1974). 

2.3 The R,(N) Procedure with At Most Two Sets (AMTS) 
I 

We propose a procedure that accomplishes efficiently our goal, it 

finds the value of the minimum m and a subscript k such that yk = m. 

At any given point this procedure will never consider more than two 

distinct sets, i.e., the units within each set do not have to be 

numbered or otherwise identified. One set (possibly empty) will 

contain the untested units and another set Vm, (initially empty) is 

known to contain a minimum value equal to m among the v units in this 

set. R2 is unconditional in nature, it does not assume any prior 

information about the overall minimum value other than the initial 

conditions of the model which we repeat below explicitly. 
. . 

The proposed procedure works as fol 

Initial conditions: N i.i.d. units 

uniform distribution over the integers 1 

Step 1: Choose a random set V of v 

lows: 

that have the discrete 

92 ,***, r. 

units and test it. If the 

minimum value m in this set is equal to 1 or if v=N and m>l is 
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observed, then use the Conditional Procedure Rc(v I M=m) on these v 

units. Otherwise go to step 2. 

Step 2: Choose a subset X from Vm and a subset Y from the 

remaining untested set N\V. Test the pooled set XUY and let the 

minimum value observed here be equal to s. If s=l then perform the 

Conditional Procedure Rc(y I M=l) on the y units. Otherwise go to 

step 3. 

Step 3: If y<N-v (i.e., if there are still untested units) go to 

step 4, otherwise: 

i) if s<m perform the Conditional Procedure R,(y I M=s) on the y 

units. 

ii) if s>m perform the Conditional Procedure Rc(v-x I M=m) on the v-x 

units. 

iii) if s=m perform the Conditional Procedure Rc(min(xty,v) I M=m) on 

the smaller of the two sets XUY and V. 

Step 4: Update N to N-v-y (i.e. for the next test we will have 

N-v-y untested units). 

i) if s<m discard the v units, replace the set Vm by Ys and go to 

step 2. 

ii) if s>m discard the set (XUY)s, replace the set Vm by (V\X)m and 

go to step 2. 
. . 

iii) if s=m discard the largest of y and v-x, replace the set Vm by 

the smaller of the two sets (XUY), and Vm then go to step 2. 

The number of units to be tested at each step (the quantities 

v,x,y above) are such that they satisfy the recursive relations (2.8) 

and (2.9) below. This procedure decreases the size of at least one 
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set after each test and thus will eventually find the value of the 

overall minimum. The boundary conditions (2.11), (2.12) and (2.13) 

below guarantee that the procedure will terminate succesfully. 

In order to write the recursive relations that describe 

implicitly our proposed procedure we need some notation. 

Let H(N) denote the expected number of group tests needed to be 

performed if at the outset we have N units, we use the AMTS Procedure 

and the only information available to us initially is that the units 

are i.i.d. uniformly distributed among the integers 1,2,...,r. 

Let Hl(v,m;n) denote the expected number of tests to be performed 

if we have a set V, of size v known to contain a minimum value equal 

to m and we have n untested units. 

We can now implicitly define the AMTS Procedure R2(N) by the 

following recursive relations. For N L 1 

H(N) = 1 t min [ph’) 
1 lylN 

(0,y)H2(ylM=l) + c: pArn) 
m>l 

(O,y)Hl(y,m;N-y)] (2.8) 

For m > 1 and n L 1 

Hl (v,m;n) =lt min min [PA’) 
OSx<v 15yin 

t0,y)H2tylM=l) 

t c Py 
1 <s<m 

tO~~)H~ty,s, n-y) 

+ c Py (x,y)Hl(v-x9 m;n-y) 
s>m *. 

+ pp) (x,y)Hl (min(xty,v), m;n-y)]. 

(2.9) 
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For n > 1 (as a result of boundary condition (2.13) below we need) 

H2(nIM=m) = 1 t min [qp,!,H2(n-xlM=m) t (l-q~m~)H2(x:M=m)] (2.10) 
lix<n ’ . 

where the value of q:,), is given by (2.5) above. 
f 

For R2(N) we have 

the following boundary conditions 

H(1) = 1 (2.11) 

H2(11M=m) = 0 (2.12) 

H2(nlM=r) = 0 for every n. 

Hl (v,m;O) = H2(vIM=m) for every m. (2.13) 

We can define an alternative procedure R,(N) to the AMTS Procedure 

for achieving our Goal that starts by testing all of the N units in 

the first group test. It finds the value of the overall minimum in 

only one test and thus is optimal for the problem of finding this 

value. But to achieve our Goal we also have to find the location of 

the minimum value. The procedure may be described as follows: 

H,(N) = 1 t ; p;m) (0,N)H2(NIM=m) (2.14) 
m=l 

where H2(NlM=m) is given by (2.10) above. We have shown that we can 

actually do better (smaller expected number of tests) than by using 

this procedure. 

2.4 The Nested Procedure R (N) 
II . . 

The nested procedure for this problem is an extension of the idea 

that as soon as we have a contaminated set we go and search for the 

defective item in that set. As a result, it can be derived directly 

from the AMTS procedure by setting x=0 in (2.9), i.e., we do not test 



15 

units from the contaminated set until we find out the value of the 

overall minimum. 

2.5 The One at a Time Procedure (OAT) 

For our Goal, we can test units one by one. It is clear that 

using the OAT procedure we stop testing units only when the value of 

the unit tested is equal to one or when we have tested all the units. 

The probability that a unit has value one is given by (2.4) above, 

setting v=O, x=0, a=1 and y=l, namely 

Phl) (0,l) = 1 - * = +. (2.15) 

Goa 

Let Ho(N) denote the expected number of tests required to achieve 

1 1 under the OAT procedure, then using (2.15) above we can write 

HO(N) = ; 
N-l 

C i(y) 
i-l r-1 N-1 

+ Nt,) = r[ r-l l-(7 Y 1 (2.16) 
i=l 

We can also write a recursive equation for HO(N) as follows: 

HO(N) = 1 + (+HO(N-1) with the boundary (2.17) 

condition that Ho(O) = 0. 

2.6 The Continuous Case Problem 

In this section we consider essentially the same problem and 

Goal 1 as before with one important distinction, we suppose here that 

we have N i.i.d. random variables Yl, Y2, . . . . YN that have the 

continuous uniform distribution over the interval (0.1). In this case 

we know, with probab ility one, that there is exact 1 y one unit with 
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value equal to the overall minimum value. 

Since it is well known that the Halving Procedure Rh(N) is optimal 

for the problem of finding a single defective when it is known that 

there is exactly one (Sobel, Pasternack and Thomas, 1974) we can be 

tempted to use Rh(N) for accomplishing our Goal. The difficulty here 

is that, at the outset, we do not know what a defective unit is, since 

we do not know the value of the overall minimum. In this section, we 

describe two procedures that accomplish our Goal and are no worse than 

the procedure that tests all the N units in the first group test for 

finding the overall minimum value and then uses the Halving Procedure 

for finding a single defective unit. These two proposed procedures 

have the property that they reduce to the Halving Procedure when the 

value of the overall minimum is known. 

Before continuing we need to compute some probabilities. The 

distribution of the minimum value of y i.i.d. units uniformly 

distributed in (0,l) is given by 

P(MCm) = 1 - (l-mJY. 

(2.18) 

The distribution of the minimum value in a set Y, given that this 

minimum value m’ in Y is less than the current minimum value m is 
. . 

given, for Olm’im by 

P(min(Y)Lm’lm’<m) = 
P(min(Y) s m’, min(Y) < m) 

P(min(Y) < m 
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l- ( l-m’jY = 

1 - ( l-m)Y 
(2.19) 

And, lastly, we need the probability that if we chose a set X of x 

units from a set Vm of size v known to contain a minimum value equal 

to m and y units from the remaining (untested) units, the minimum 

value is equal to m, 

v-l 

P(min(XUY) u = mIX 5 Vm) = ‘-l 
t;, 

( l-m)Y = F( l-m)Y. (2.20) 

Using the same notation as before we describe the first procedure 

R cl for accomplishing Goal 1 in the continuous case by the following 

recursive relations: For N 1 1 

1 
Hcl(N) = 1 + min I/ Hcl(y,m;N-yIy(l-m) y-ldm] . (2.21) 

l<ylN 0 

For n > 0 

m 
Hcl(v,m;n) = 1 t min min [ 

Olx<v liycn s 0 
Hcl(y.m’;n-y)y(l-m’)Y-ldm’ 

t (7 )(l-m)YHcl(v-x,m;n-y) 

t (~)(l-m)YHcl(min(x+y,v)t m;n-y)]. (2.22) 

We need the following boundary conditions, 

Hcl(l) = 1 

Hcl(v,m;O) = Hh(v) 

where 

(2.23) 

(2.24) 

Hh(V) = K t 2J where v 
V 

= 2K t J and 0 5 J < 2K. (2.25) 

The procedure Rcl requires some explanation. It is an analogous 
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procedure to R2(N) (see section 2.3). but here, once the value of the 

overall minimum is known, we use the Halving Procedure (see 

Pasternack, Sobel and Thomas, 1974). In the Hl situation (when we 

have a set size v with current minimum value m and n untested units) 

we can make some further savings on the expected number of tests if we 

are willing to allow inference based on probability one to be made. 

Suppose that we test XUY and that the minimum value contained in XUY 

is equal to the minimum value contained in Vm (recall that XCVm), then 

we may infer with probability one that the minimum value is contained 

in the set X. 

We now describe a recursive procedure, Rc2 for accomplishing Goal 

1 in the continuous case, when inference with probability one is 

allowed-as follows: 

For N 1 1 

1 
Hc2(N) = 1 + min Ii Hc2(y,m;N-y)y(1-m)y-1dm]. 

1LySN 0 
(2.26) 

For n L 1, 
m 

Hc2tv,m;n) =lt min min [ 
Oixtv liyln 0 

Hc2(y,m’;n-y) y (l-m’ )Y-ldm’ 

t (y )(l-m)YHc2(v-x,m;n-y) 

t (~)(l-m)YHc2(x,m:n-y)l, (2.27) 

where the boundary conditions are the same as for R 
cl’ 

namely, (2.24) a. 

and (2.25) still hold. 

Note that Rcl and Rc2 differ only on the approach to the situation 

when the minimum value in the set XUY is equal to the current minimum 

value m. R cl keeps the smallest of the two sets XUY and V while Rc2 
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only keeps the set X. We conjecture that Rc2 is an optimal group 

testing procedure among all group testing procedures that have 

probability one of identifying a single defective when the units are 

uniformly distributed in the interval (O,l]. Rc2 considers all 

possible outcomes and by backward optimization chooses the best action 

to take. 

In the following section we discuss some interesting results and 

comparisons between the different procedures discussed here and in the 

previous sections. 

3. Results On The Procedures For Accomplishinq Our Goal 

Here we present several results on the procedures described in the 

previous section. We also present a discussion of the non-optimality 

of the proposed AMTS procedure. 

Theorem 3.1 An Upper Bound for H(N). 

Let r, the upper bound of the uniform distribution and N, the 

initial number of units be fixed, then, for the At Most Two Sets 

Procedure we have: 

r (ml H(N) 5 1 t C p o (0,N)H2(NlM=m) = H,(N) (3.1) 
m=l A. 

Proof: 
H,(N) is a special case of H(N) occurring when we test y=N units in 

our first test. It is interesting to note that for r=lOO we have 

Ha(3)=2.9701 > 2.3332=H(3). More extensive tables can be found in 

(Rodrfguez Esquerdo, 1983). 
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Theorem (3.1) above tells us that the expected number of tests, by 

our.proposed AMTs procedure R2(N) will be no more than the expected 

number of tests needed if we test all the N units in the first test 

and then look for a specific unit whose value is equal to the observed 

minimum. 

Theorem 3.2 A Lower Bound for H(N). 

Let r and N be fixed, then, for the At Most Two Sets Procedure we 

have : 

H,(N) - 1 = (0,N)H2(NIM=m) 5 H(N) (3.2) 

Proof: 

Suppose that we knew the true value m of the overall minimum M 

without any costs at all to us. Then, since we the conditional 

Procedure is optimal for finding a single defective unit when the 

value of the minimum is known, we would use it to find optimally a 

single defective. As an alternative we can make no use of this 

knowledge and use the AMTS procedure assuming that the true value of 

the minimum is unknown, thus for any N and any m, we clearly have the 

inequality 

H2(NIM=m) i H(N), since the left side is optimal. 

Since P(M=m) L 0, i P(M=m) = 1 and the above inequality is true 
m=l 

for all values of m, m=l, 2 )...,r we have from the definition of H,(N) 

in (2.14) 

H,(N) - 1 = (0,N)H2(NlM=m) I H(N), 
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which establishes our theorem. 

Theorem 3.4 An Upper Bound for H,(N). 

For the nested procedure we have: 

H,(N) I 1 t i PF) 
m=l 

(0,N)H2(NlM=m) 

Proof: 

The proof is identical to that of 

= H,(N) 

Theorem (3.1). 

(3.4) 

Theorem (3.4) tells us that the Nested Procedure is also no worse 

than the Alternative Procedure Ra that tests all the N units on the 

first test and then looks for a specific unit whose value is equal to 

the observed minimum. 

Theorem 3.5 

If N and r are fixed, and H(N) denotes the expected number of 

tests for the AMTS Procedure and H,(N) the expected number of tests 

for the Nested Procedure, then, 

H(N) 5 H,(N) 

We have a corollary that follows 

(3.2). (3.4) and (3.5) above. 

Corollary 3.6 a. 

H,(N) - 1 I H(N) 5 H,(N) i H,(N) 

(3.5) 

immediately from Theorems (3.11, 

(3.6) 

We now consider the OAT procedure and show that this procedure is 

no better than the AMTS procedure. In order to do this we first 
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r a Lemma. 

3.7 , 

r, n be fixed and m any integer in {lr2r...rr}, then 

Hl(l,m;n) I Ho(n) . 

-0of: 

(3.7) 

We prove (3.7) above by induction on n. For n=l we have 

Hl(l,m;l) = 1 = Ho(l). 

For n=2 we have 

Hl(l,m;2) = 1 t min {ph’) (0,y)H (yll) t C 
1 Iy52 l<s<m 

P~O.Y)H~(Y.~:~-Y) 

t c PAS) 
s>m 

(OIY)Hl (1 ,m;2-y) t p~m)(O.y)Hl (1 .m:2-y)l 

i 1 t p;l) (0,1)H2(111) + C 
1 <s<m 

~~~+0,l)H,(Ls:~) 

+ c PAS) 
s>m 

(0.1) Hl(l.m;l) t p~m)(O,l)Hl(l.m:l) . (3.8) 

(a) 
Using the fact that Hl(l,m;l) = 1, H2(lll)=0 and that p. (O,y)=l/r 

for all a, a=1,2,3,..., r we get for inequality (3.8) above 

Hl(l,m;2) 5 1 t C r 

l<sCr r 
Hot21 l (3.9) 

Suppose now that (3.7) is true for all integers k, k=1,2,3,...,n-1, 

then 
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Hl(l,m;n) 5 1 t ;HO(lll) t; C 
1 <s<m 

Hl(l,s;n-1) 

t1 
r 

C Hl(l,m;n-1) t 
s>m 

$ Hl(l,m;n-1) . (3.10) 

Using the induction hypothesis and the fact that H2(l11) = 0 we get 

for (3.10) 

Hl(l,m;n) 5 1 t k (m-2) HO(n-1) t r - F ’ ’ HO(n-1 1 

= 1 t HO(n-1) (% 3 = Ho(n), 

using (2.17) above. This proves our lemma. 

We can now prove 

Theorem 3.8 

Let N,r be fixed, then H(N) 5 HO(N). 

(3.11) 

(3.12) 

Proof: 

From (2.8) we have 

H(N) = 1 t min {ph’) (o,~)H~(~IM=~) + C p~%,Y) H+ymN-y) 1 9 
m>l 

setting y=l in the minimization we get 

H(N) I 1 t 1 f Hl(l,m;N-1) 51t; C HO(n-1) = HO(N). (3.13) 
m>l m>l 

which proves our theorem. 

We now prove a convergence result for the AMTS procedure. 

Theorem 3.11 

For a fixed value of N, as the upper limit r of the discrete uniform 

distribution increases without bound, the AMTS procedure R2 approaches 

the Continuous case procedure Rcl, where inference based on 

probability one is not allowed. 

Proof: 

The problem of finding the minimum value and a unit whose value 

is equal to it, when the units are i.i.d. uniformly distributed over 

the integers 1,2,3,..., r is equivalent to the problem of accomplishing 
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this goal when the units are i.i.d. uniformly distributed over the 

rational numbers l/r,2/r,...,l. 

The probabi 1 i ty pp) (x,y) in (2.3) when m and a are in the set 

(192 ,...,r) can be rewritten for m and c in the set {l/r,2/r,...,l} as 

fol lows 

Define g(m,x) = (l-mtl/r)x - (l-m)X 

then 

l!J(c,x+y) , c>m 

pk) 
v (x,y) = g(m,y) t (l-m~Y(l-mt~)V-x[$$$--], c=m . 

, c<m 
(3.14) 

It is easy to see, using L’Hopital’s rule that 

(i) 1 im rpiC)(x,y) = y( l-c)‘-’ for c < m, 
r-W 

(ii) 1 im pF)(x.y) = :( l-m)Y for c = m, and that 
r-R0 

(iii) 1 im I: pL’)(x,y) = 1 im * = ( l-m)Y (7) 
r+co c>m t-+0 9 

Using the expression for p(‘) v (x,y) in (3.14) we consider (2.9) and 

show that the terms in brackets converge one by one to the respective 

terms in brackets in (2.22). 

The first term is P:“~) (0,y)H2(yll/r) and it is easy to see that 

1 im phl’r) 
r-W 

(O.Y)H~(YI ; ) = 0. 
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Consider now c pp 
+<s1m 

(O,y)Hl(y,s;n-y) where s 

ranges over the rational numbers of the form i/r, i=1,2,...,mr-1. 

Rewrite this term as: 

c 
k<s<m 

rp~s’(O.y)Hl(y.s;n-y) f . 

Since Hl(y,s;n-y) is a bounded function and using (i) above, this term 

converges to the integral 

m 

s 
y( l-s)Y-+ 

0 
Hl(yls;n-y)ds. 

Using (iii) above and the same reasoning, we see that 

I: Py 
s>m 

(x,y)Hl(v-x,m;n-y) + (l-m)Y(~)Hl(v-x,m;n-y). 

Using (ii) above we have that as r + 03, 

,(m) 
v (x,y)Hl(min(x+y,v),m;n-y) -$ (l-mIY (:I Hl(min(xty),m;n-y). 

Therefore Hl(v,m;n) converges to 
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lt min min [ 
OSx<v llyin 

I 
my( l-sjy-‘Hl (y,s, ;n-y)ds 
0 

t ( l-m)Y(E v IHl(v-x,m;n-y) 

t (l-m)Y(~)Hl(min(xty).m;n-y)] (3.15) 

this is just expression (2.22) with Hcl replaced by Hl. Now we need 

to show that 

PO 
(1/rJ(0,y)H2(ylM=l/r) t C 6:’ (O,yN$ (y,m;N-y) 

m>l 

m=l/r 
,s) (O,y)Hltytm:N-y) 

coverges to 

s 

1 
y( l-mIY-’ 

0 
Hclty~m;N-y)dm. 

Rewriting the left hand side of (3.16) above as 

(3.16) 

1 
II rp(m) ,, (O,y)H,o’,m;N-y)I/r, using (i) above and by 

m=l/r ” 
I 

the definition of the integra 

to the desired integral. It 

1, the left hand side of (3.16) converges 

is easy to see that boundary condition 

(2.13) converges to the Halving Procedure. 

Therefore, as r increases without bound Hl(v,m;n) + Hcl(v,m;n) 

and H(N) + Hcl(N). 
*. 

3.3 Optimality Discussion 

The question about the optimality of R2(N) remains to be 

answered. We present the reason why R2(N) is not optimal when 



cons idered in the set of all pass i ble group test ing procedures. An 

optimal procedure keeps track of all the possible states and 

situations arising in the problem, uses all of the available 

information and then makes the best choice of action to take (group to 

test) without any restriction. We show that our proposed procedure 

actually throws away some information. 

of units and have no knowledge of the overall minimum value (except 

for the distributi on of the units). We then test a non empty subset V 

of N (for the foll owing discussion we assume that V is a proper subset 
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Initially, the only state possible is the one where we have a set 

of NJ and find the value m of the minimum M in this set V (which then 

becomes V,). Now we have a new state with two sets, N\V and Vm. Our 

proposed procedure now proceeds to choose a subset X of Vm (possibly 

empty) and a nonempty subset Y of N\V, pool them in a set XUY, and 

then test this set. Here we have three possible outcomes: 

ti) min(XUY) < m 

(ii) min(XUY) > m, and 

(iii) min(XUY) = m. 

cases or when the set X is empty. Consider the last case 

X is nonempty, R2(N) chooses the smallest of the two sets 

Vm and calls it the new Vm. No mention is made about the 

know that X is the intersection of two sets whose minimum 

equa 1 to m. The probability that X contains a minimum va 

No loss of optimality or difficulties arise in the first two 

(iii), when 

(XUY), and 

set X. We 

va lue is 

lue m has 
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increased with the test from 

pF)(~,O) = [$+](r-m+l)V-X to 

f (m,x) (r-m+1 )‘-‘+’ 

(r-m+1 1 V-x(r-m)Yf(m,x) t (r-mtl)xf(m,v-x)f(m,y) 

after the test, where f(m,x) is given by (2.2) above. Our proposed 

procedure does not take this latter probability into consideration 

since it does not keep the set X separated at all times from the set Y 

(or V\X), rather it mixes the x units with the y units (or v-x units) 

to get a new set Vm and losses this information. 

In Rodriguez-Esquerdo (1983) a specific counterexample is given, 

where another procedure that takes this information into consideration 

is presented and shown to achieve the goal in a smaller expected 

number of tests than the AMTS. The proposed procedure, however, is 

practical and simple enough to be carried out manually. It is also 

conjectured that the proposed procedure is optimal in the set of all 

findi 

poss 

procedures 

sets. Tab 1 

given here 

Among the topics that need to be considered further is the 

ng of an overall optimal policy for achieving our goal. A 

ble model to follow is Friedman’s formulation of the Binom 

that allow information to be kept on at most two different 

es for the AMTS and the other discussed procedures are also 

group testing problem. However, this is computationally expens 

al 

ve and 
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amounts to exhaustive search among all possible alternative 

procedures. A new approach must be found, perhaps using the 

relationship between the AMTS and the continuous case procedures. We 

also need to prove the conjectures that were presented in this paper. 
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N 
-i- 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

Minimum Expected Number of Tests 
r=lOO 

t-I(N) H (N) H (N) H (N) 
AMTS Ne%ed AlteFnative ORT 

1 .oooo 1 .oooo 1 .oooo 
x=1 x=1 x=1 

1 .oooo 
x=1 

1.9900 
x=1 

1.9900 
x=1 

1.9999 
x=2 

1.9900 
x=1 

2.3332 2.6419 2.6616 2.9701 
x=2 x=2 x=3 x=1 

2.7447 2.9800 3.0000 3.9404 
x=2 x=2 x=4 x=1 

3.0645 3.3632 3.3925 4.9010 
x=3 x=3 x=5 x=1 

3.3179 3.6201 3.6586 5.8520 
x=3 x=4 x=6 x=1 

3.5135 3.8130 3.8521 6.7935 
x=4 x=4 x=7 x=1 

3.6897 3.9604 4.0000 7.7255 
x=4 x=4 x=8 x=1 

3.8623 4.1652 4.2136 8.6483 
x=5 x=5 x=9 x=1 

4.0211 4.3297 4.3867 9.5618 
x=5 x=6 x=10 x=1 

4.1555 4.4648 4.5304 10.4662 
x=6 x=7 x=11 x=1 

4.2772 4.5778 4.6520 11.3615 
x=7 x=8 x=12 x=1 

4.3862 4.6816 4.7566 12.2479 
x=8 x=8 x=13 x=1 

4.4849 4.7718 4.8478 13.1254 
x=8 x=8 x=14 x=1 

4.5749 4.8513 4.9282 13.9942 
x=8 x=8 x=15 x=1 

x denotes the number of units to test. 
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