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I. INTRODUCTION 

The selection of a variance estimator for large complex sample surveys 

is not straightforward. Most of the methods of variance estimation for 

such surveys are based upon some form of repeated subsampling. The random 

group, jackknife and balanced repeated replication methods differ primarily 

io the procedures for forming the subsamples. Previous comparative studies 

have been primarily empirical. One of our goals is to compare analytically 

the accuracy of these different subsample variance estimators. 

A first order Taylor series approximation is widely used in computing l 

variances for complex surveys; however, the analytical properties of the 

random group, jackknife and balanced repeated replication variance 

estimators are indistinguishable in their first order term. Koop (1968) 

.hypothesized the underestimate of variance he found was due to neglecting 

terms of order l/n* and l/n3. Sukhatme and Sukhatme (1970) suggested the 

use of a second order approximation. Our method of comparing these 
0 

variance estimators is to include all the terms of order n -2 in the Taylor 

series expansion. A more complete description of these procedures, which 

are summarized in section II below, can be found in Dippo (1981). 

Concurrent with our work, Rao and Wu (1983) have made an asymptotic second 

order comparison of the linearization, jackknife and balanced repeated 

replication methods. 

The second order Taylor series analytical expressions obtained for the 

bias of the variance estimators are complex and require the population 

moments and derivatives for evaluation. Since a second goal of this 

research is to investigate the properties of the variance estimators when 

the sample size is small and the underlying population is extremely 
. . 

skewed, the 1980-81 Consumer Expenditure Diary Survey (CES) is used to 

. 



evaluate the second order Taylor series expressions in section III. 

The CES, which is a complex multistage sample of only 5000 housing units 

per year with a design similar to the Current Population Survey, produces 

national estimates of mean expenditures, which have a distribution that is 

closer to log-normal than normal. .- 

Previous empirical studies such as Frankel (1971) and Bean (1975) have 

concentrated on the effects of the complex multistage cluster designs as 

represented by the Current Population Survey and the Health Interview 

Survey instead of the effects of the shape of the underlying finite 

population. Furthermore, although functionally equivalent, the ratio 

estimator of mean expenditures is conceptually different from the 

ratio estimator of a proportion investigated in Frankel and Bean. In 

section IV, the results of a Monte Carlo investigation of the confidence 

interval properties of the random group and balanced repeated replication 

variance estimators for the skewed CES data are presented. 



II. TAYLOR SERIES APPROXIMATION 

The method used to compare the different variance estimators is 

to approximate each estimator using a Taylor series expansion, including 

terms.of order n 
-2 

. 

. Consider a finite population of N units divided into L strata. 

A simple random sample of nh units are selected from the Nh units in the 

h-th stratum kith sampling independent between strata. Let xrhi be the 

the observed value of the r-th variable for the i-th unit from the h-th * 

stratum. Define the stratum mean for the r-th variable inthe h-th stratum 

as xrh = i 'hIxrhi ,,'= and its corresponding sample mean as zrh= 

The class of parameters to be considered is that which can be expressed 

as a function of stratum means, i.e., e=F(xI1 l *-S X ,.h,***S ⌧ ) = F(!) RL 

where r = 1, . . . . R and h = 1, . . . . L. The estimator of 8 to be considered 

. 
is the same function of the sample means, i.e., 6 = F(t). 

Let us assume F(e) is a real-valued function on RL-dimensional 

Euclidian space with continuous partial derivatives of order five at t 

and define F(')(Xrh) = s)( i...; 
airh x 

. 

k(4) 
(xr,&J&.,xz,) = 

aF($.h) 

s aStrhaZshaitha~zh x , 

. 

. . 

.-. /-- _ 



which are the first four'partial derivatives of 6 evaluated at the point 

where each x,his equal to its expected values x,h. Furthermore, let 

ii rh = 2 rh -E(irh) = zrh - X,,. Then, 

i= 8 + ; $ crhF (1+Xr,,) + 5 & h~hl~rh”sh’~(~)(~r~~s~l) 
. 

4 r,g,t h, k ',h81Urh sh'Uth"F ii - (3+xr,,Xs,,,~t,,' I) (1) 

‘. 
+ :a r,sflt,z h,h',hk',hi" "rh"shi$h""zhi"F ~4~~xr~xs,l~,,l'~Z~lll) 

+ Op(max nh 
-53 

, 

h 

and 

var G = E(i.- E+2 = & i E(~rh;Sh)F(l)(Xrh)F(')(X,h) 

0 + 
r,SC,t if E&,~s/,$,);(1) ($.&F(2) (x,,x,,) 

r,&, i E(3,.,&$.,“zh)F (1)(R,,)F(3)(xShX,,RZh) (2) 

t r,sft,z &,I E(3r#sh)E(“th’~zh’ )F(1)(xrh)F’3)(x,x,,IK,h’) 
. 

l c +4 r,s,Lz i [E(~rh~sh”t#zh) -E(“rh”sh-~E(“th”zhf ‘(2)(R,hxs,)F(2)(xt,X,h) 

r,sft,z hf;hl E(“rhi$h)E(ishl”zhl )F(2)(xrhxshl )F(Z)(xthxzhl)+O(m;x nk3), 
e 

where Op is the usual notation for J'bounded in probability" and where Nh 

and nh + aD in such a way that nh/Nh + Al. The expectation operator is 

defined with respect to the probability distribution generated by repeated 

sampling using the stratified design described above. 

To make expressions such as (1) and (2) rigorous, we must work in 

terms of a conceptual sequence of finite populations of increasing size. 



Krewski and Rao (1981) and Isaki and Fuller (1982) give alternative 

formulations of the conceptual sequence. In this paper, the assumed 

sequence is such that L is fixed and the strata sample sizes nh increase l 

without bound. To simplify the presentation,.the formal definition of the 

sequence is omitted. . . 

. Each of the estimators considered is based upon dividing the sample of 

size n = 
it 

nh into different subgroups. For the random group (RG) method, 

the nh sample'units in each stratum are divided into k equal groups of 

size m 1 k A 
h. The random group estimator of e is e,G = 17 a$ ea, where ia is the' 

estimator of the same functional form as 8 based upon the a-th random 

group. The random group estimator of the variance of 6 to be considered 

here is 

where 5: = F(q xrha), $, = nh/Nh, and xrha is the sample mean based 

upon the a-th random group. 

The jackknife (JKK) estimator to be considered is one proposed by Jones 

(1974) 

6 
JKK= (1 + f? ‘h)’ - f? I h 

%a 3 
(hi) 

where wh = (Nh' nh)(nh- l)/Nh, ah = Wh/nh, and I is the estimator of 

the same functiona: form as 6 but which omits the hi-th unit. Therefore, 

the jackknife. estimator is based upon n groups of size n-l. Jones’ 

"jackknife estimator of the variance of 6 is 

. 2 1 
iJKK( ‘)=Ef aht6(hi )- ‘(h)) , where ‘(h) = zhf ‘(hi ) ’ 

The balanced repeated replication (BRR) estimator to be considered 

is similar to the random group estimators in that the nh units 'in 



each stratum are first divided intq (k=) two random groups of size mh=nh/2 

across strata as in the random 

inations of one random group 

However, instead of forming only two groups 

group estimator, orthogonally balanced comb 

from each stratum are created. In studying 

balanced half samples, where k' is the smal 

this estimator, we use k' 

le.st integral multiple of four 

greater than or equal to the number of strata L. The BRR estimator of 

a 1 k' fi 
’ is OBRR = ~1 g ea9 where ia is the estimator of the same functional 

form as e based upon the a-th replicate. The BRR estimator of the variance 

of 6 is 

1 k' 
fBRR( ‘) = 17’ i (‘h- 6’ 

2 

BRR) ' 
where 8: = F( c+,X;ha) l 

By expanding ia, "f, e*(hi), etc, in a Taylor series, as in (1), 

approximations for the bias and variance of i,,, gJKK, b,,,, f,,(s), 

. 
'JKK ( i), and iBRR 

can be obtained. Table 1 presents the coefficients of 

the derivatives (columns) in terms of expected values needed to express the 

bias of the variance estimators in a Taylor series. To construct the 

exact expression for the bias of one of the estimators, substitute the 
. 

coefficient in the table for the one corresponding to the same derivative 

in (2). For example, 

e 

Bias ii (i) = 
r,$,t 

4 - 

{;-;]3" 
[E(i rha"sha"tha) - E("rh"sh"th)l 

- E($h"shith) F(1)(Rrh)F(2)(R,hxth) + . . . . 

These expressions are complex and their interpretation requires knowledge 

of the population moments and derivatives. 

. 

-- _ 



The bias of the random group estimator with two random groups per 

stratum differs from that of the BRR estimator in the cross-stratum 

F(2)(XrhXsh,)F(2)(XthXzhl) term only (see table 1). This larger between 

stratum component of the BRR estimator makes the BRR estimator more biased 

than the random group estimator with two random groups. However, when the 

number of random groups is increased, the random group estimator becomes 

more biased than the BRR estimator. This reflects the fact that as more 

random groups are formed, the sample size per random group used in 

computing each io decreases. Again, the two parameters where the numerator* 

is a subset of the denominator are exceptions. The reader will recall the 

variance of the variance estimator is generally a decreasing function of 

the number of random groups, k, whereas here we find the bias of variance 

estimator is an increasing function of k. 

For Sample sizes Of nh= 6 and 12, the jackknife is the least biased 

with the exception,of the parameter average weekly cost of gasoline per 

vehicle. However, when the sample size is nh= 24, the bias of the 
,' 

jackknife variance estimator is similar to that of the random group 

variance estimator with two random groups. 

. , 



III. COMPARISON.OF VARIANCE ESTIMATORS 

A. STUDY POPULATION 

In order to obtain some insight into the properties of the variance 

estimators, data from the 1980-81 Consumer Expenditure Diary Survey has 

been treated as a finite population. The 14,360 consumer units (CU's) 

classified as complete income reporters have been divided into 20 

approximately equal sized strata based upon region and city size. A 

consumer unit is a single financially independent consumer or a family of 

two or more persons living together, pooling incomes and drawing from a 

common fund for major expenditures. The following thirteen parameters have 

been considered: 

R1 . = average cost per reporting CU for flour (FLOUR) 

R2 . 
= average cost per reporting CU for ground beef (GRBEEF) 

R3 = average cost per reporting CU for eggs (EGGS) 

R4 = average cost per reporting CU for candy and chewing gum 
(CANDY) 

R5 = average cost per reporting CU for food away from home 
(FOODAWAY) ,' 

R6 . =aaverage cost per reporting CU for food at home (FOODHOME) 

R7 = average cost per reporting CU for gasoline (GASCOST) 

R8 = average number of vehicles per CU owning at least one 
vehicle (VEHQ-FAM) 

R9 
= average annual CU income before taxes (FINCBEFX) 

RIO= average per capita wage and salary income (WAGE-CAP) 

RII= average weekly' gasoline cost per vehicle (GAS-VEHQ) 

R12= proportion wage and salary income of total CU income before 
taxes (wAGEJNC) 

R13= proportion of civilian labor force that was unemployed 
during last 12 months (UNEMJLF). 

The variable names in the parenthesis above such as FLOUR and GRBEEF are 

used in the accompanying tables. 



For RI to R13, the general form of the estimator is 
k NhXlh 

i? 

_ . For 

Nhx2h 

. 

example, in RI, 

'lhi 
= the cost reported by the hi-th CU for flour in one week 

and 
.- 

- X2hi= 

( 

1 if the hi-th CU purchase flour during the week 

0 if the hi-th CU does not purchase flour during the 
week 

In R1OV 'lhi is the total annual wage and salary income reported by the . 

hi-th CU and X2hi is the number of persons in the hi-th CU who reported 

wage and salary income. Rg is a linear estimator since X2hi= 1 for all 

units. 

subset 

total i 

T a 

R12 and RI3 
differ from the others in that the numerator is a 

of the denominator, e.g., wage and salary income is a subset of 

ncome. 

ble 2 displays some basic distribution statistics for the 

expenditure and income variables. Figures 1 and 2 present the frequency 

distributions of weekly expenditures for ground beef and food away from 

home. All of the expenditure and income variables exhibit similarly skewed 

distributions. Since the second order term in the Taylor series is a 

function of the third order moments,, one might expect the first order 

be 

later resu 

Taylor series approximations to the bias and variance of 8 to 

biased when the finite population is highly skewed. Indeed, 

confirm this hypothesis. 

Its 

. 8. TAYLOR SERIES APPROXIMATION TO VAR 6 

Table 3 indicates the general magnitude and sign of the population 

moments by presenting the average stratum population moments and . . 

derivatives, which are similar in'magnitude. When the corresponding 



individual stratum moments and deri,vatives are substituted in the 

expression (2) for var 5, the second order Taylor series approximation to 

the variance is obtained. 

Table 4 presents the second order Taylor series approximation to the 

variance along with the proportion of the variance associated with the 

first and second order terms for three sample sizes. For the ten nonlinear 

parameters where the numerator is not a subset of the denominator, the 

first order term accounts for about 98.9% of the variance and the second 

order terms 1.1% ,when the stratum sample size is nh=6. When the sample 

size is doubled to nh=12, the relationship is 99.4% to .6%, When doubled 

again to nh=24, the relationship is 99.7% to .3%. On the other hand, when 

the numerator is.a subset of the denominator (UNEM-CLF and WAGE-INC), the 

first order term accounts for 100.8% of the variance when the stratum 

sample size is 6, 100.4% when nhis 12, and 100.2% when nh is 24. That 

is, the total of the second order terms is negative and the first order 

approximation provides an overestimate of the variance. Overall, for the 

three sample sizes and the twelve nonlinear parameters examined, the 
. 

percent of the Taylor series approximation to-the variance associated with 
. 

the second order terms is at most 5%. 

In table 5, the percent of the Taylor series approximation to the 

variance associated with the second order terms when the sample size is six 

per stratum is given in rank order along with the derivatives which are not 

a function of the numerator. All the derivatives which are a function 

Of ‘1, 
or the numerator do not show a relationship with the relative 

importance of the second order portion of the variance and, therefore, are 
. 

not shown. An examination of table 5, ignoring the four parameters with 

non-indicator function denominators, indicates the second order variance 



becomes more important as the proportion of the population purchasing an 

item in a given week decreases. 

C. COMPARISON OF THE EXPECTATION OF ME VARIANCE ESTIMATORS 

The first order Taylor series approximations to the expectations of 

the random group, jackknife and BRR variance estimators are identical. 

Therefore, although the contribution to the expectation of the variance 

estimators from the second order terms may be small, an analysis of the 

second order terms should give some indication of the relative merits of l 

the different estimators. . 

The expectations of the random group, jackknife and BRR variance 

estimators obtained by substituting the population moments and derivatives 

'in the Taylor series approximation to E[i(;)] are compared to the Taylor 

series approximation to the variance of 6, var 6, in table 6. These 

expectations are computed by substituting the population moments and 

derivatives in the formulas given in table 1. The appropriate finite 

population sampling coefficients of the population moments are also 

needed. For example, (Nh-nh)/[nh(Nh-l)] is the coefficient of the full 

sample second order stratum population moment when sampling is without 

replacement. All of the variance estimators are positively biased for each . 

sample size for all the ratio estimation parameters where the numerator is 

not a subset 'of the denominator. When the numerator is a subset of the .( 

henominator, the random group estimator is negatively biased for all three 

sample sizes and each choice of the number of random groups. The BRR 

estimator is negatively biased for the larger proportion. The jackknife 

estimator is negatively biased for only one of the proportions *and for only 
r , 

the smallest sample size. 



IV. MONTE CARLO INVESTIGATION 

For comparison purposes, 1000 without replacement samples of size 6, 

12, and 24 units per stratum have been selected, resulting in samples with 

total size 120, 240 and 480. Two additional parameters have been 

considered for the Monte Carlo portion of this study: 

R14= correlation between total food at home and family income 
(R FH INC) 

R15= 
correlation between food away from home and family income . 
(R FA INC) 

Table 7 presents the population parameters and the average relbiases 

of the sample estimates of 8. As in other similar empirical studies, e.g. 

Frankel (1971), the relbias is relatively small for the ratio estimates but 

not for the correlation coefficients. On average over the 12 nonlinear 

ratio type estimates, the relbias consistently decreases as the sample size 

increases. 0 

120 240 480 

ave I relbias I .00653 .00242 .00194 

ave relbias ,,.00430 .00148 -.00003 

The variation 
1000 A 

among the 1000 sample estimates of 8, izl(ei- --2 0) 1999, 

provides an empirical estimate of the var 6. When the Monte Carlo 

sampling variances are compared to the second order Taylor series variances 

discussed in section III, the two estimates are within 10% of each other in 

8 of the 13 cases for the smallest sample size. For the largest sample 

size, the two estimates are within 10% of each other in all but one case. 

For each of the 1000 samples, three sample sizes, and 15 parameters, 

random group and BRR variance estimates have been computed. Due to budget 
. 

restrictions, jackknife variance estimates have been delayed until next 

fiscal year. Although a comparison of the variance estimators using these 



empirical estimates of variance does not show the same clear relationships 

as table 6 due to the noise in the data, they are useful in investigating 

the performance of the variance estimators with respect to confidence 

intervals for 0. 

If e^ is a normally distributed random variable and v^(e^) is a 

a'consistent estimator of var 3, then (6 - e)/[i(d)]I/2 has a standard 

normal distribution. Figures 3, 4 and 5 present the cumulative 

distribution functions of the t values computed as (6 - e)/[i(G)]li2 

for different choices of a variance estimator for each of the 1000 samples.' 

The five lines on each graph correspond to the normal distribution and the 

empirical t-distributions for the smallest and largest sample size where 

the estimate of variance is either the BRR estimator or the random group 

estimator with the maximum number of random groups considered (k = 2 if n = 

120, k = 8 if n = 480). 

Figure 3 for ground beef is representative of the ratio estimation 

parameters when the numerator is a function of a variable from a skewed 

population and the denom-inator is a function of a Bernoulli variable. None 

of the sample t-distributions crosses the normal distribution for this type 

parameter. Theoretically, five percent of the observed values should be 

less than -1.645 and five percent should be greater than 1.645. For ground 

beef, an average of 35. percent of the 1000 values are less than -1.645 and 

less than 2 dercent are greater than 1.645. While one-half of-the observed 

values should be on either size of zero, the median is almost one standard 

error less than zero. The t-distribution of the random group estimator, 

when the sample size is small and the number of groups is therefore 

limited, has an especially long negative tail indicating the BRR variance 
. , 

estimator would be a better choice. When the sample size is 24 per stratum 



I . 

. 

for a total of 480, there does not-appear to be any significant differences 

between the BRR and random group estimator with a fairly large number of 

groups. 

One hypotheses for explaining the greater than expected number of t 

values at the lower end of the distribution is that it is due to the high 

. correlation between 6 and 8(g). In the following table, the seven mean 

expenditure per CU variables are listed by increasing skewness of the 

expenditure variable along with the correlation between e^ for nh= 6 and 

&R(')* 

Parameter Skewness 
of Numerator 

Population 

Correlation 
Between 

Q and v*(e^) 

FOODAWAY 4.0 .53 
GASCOST 5.0 .59 

. FOODHOME 5.7 .53 
FLOUR .67 
CANDY K .66 
GRBEEF 22.6 .86 
EGGS 40.2 .84 

When the numerator population is very skewed, 8 is negatively biased if an 

extreme value (see figure 1) is not included in the sample. At the same 

time, the estimate of variance is a significant underestimate. Ground 

. beef, which has the highest correlation, has the poorest coverage ratio. 

For the ratio parameters of this type, the correlation between 6 and i(8) 

appears to be related to the skewness of the population. 

Figure 4 is for the ratio of wage and salary income to total income. 

The sample t-distribution has a median at approximately zero. Excluding 

the random group estimator for the smallest sample size, approximately 5% 
. 

of the t-values are less than -1.645 and almost 10% of the t-values are 

greater than 1.645. 



The t-distribution of the correlation between food at home and family 

income is presented in Figure 5. As in a previous study by Mulry and 

Wolter (1981), the lower end of the distribution appears close to the . 

normal; but instead of only 5% of the values being greater than 1.645, more 

than 10% are greater. The median t-value is .greater than zero. 

. WAGE-INC and R-FH-INC, which are examples of two different types of 

estimators, have negative correlations. Of the 15 parameters studied, only 

the correlation coefficients and WAGE-INC have negative correlations and 

only these three parameters with a negative correlation between 8 and v^(e^) l 

have t-distributions with a heavier upper tail than lower tail. 

Figures 6, 7 and 8 show the relationship between the number of random 

groups and the t-distribution for the largest sample size 480. RG3 refers 

to two random groups, each of size 12 per stratum. RG2 has four random 

groups of size 6 per stratum and RGl has eight random groups of size 3 per 

stratum. For ground beef, the number of random groups has a significant 
. 

effect on the lower tail and little effect on the median or upper tail. 

For the other variables, the effect/is more symmetric. As the number of 

random groups increases, the distribution of the t-values approaches 

normality. Therefore, although the bias of the random group variance 

estimator is reduced as the size of 'the groups increases and the number 
. 

decreases, a larger number of random groups is better with respect to 

coverage properties. ' 
. 

;.. 



V. CONCLUSION 

The results of this study indicate the bias of the variance estimators 

studied is relative ly small. If one assumes the variance estimators can be 

accurately approximated with a second order Taylor series, the random 

group, jackknife and BRR variance estimators are all positively biased when 

the estimator of interest is a ratio estimator where the numerator is not a 
. 

subset of the denominator. If the ratio estimator is a proportion, the 

,. variance estimators could be negatively biased. The bias of the random 

group variance estimator decreases as the number of the random groups 

decreases or the size of the groups increases. But over all the 

parameters, sample sizes and variance estimators studied, the maximum 

relbias is only 9 percent. The Monte Carlo results support the conclusion 

that the relbias is small. 

e 
On the other hand, the variance of the variance estimators is not 

insignificant, and the normal-theory confidence intervals do not always 

have the desired coverage probabilities when the estimator is of a ratio 

type or a correlation coefficient. "For the ratio estimator where the 
. 

s 

numerator is a function of a variable from a very skewed population, the 

sample may not include enough extreme values if the effective sample size 

is small. Consequently, not only may 6 be small and negatively biased, 

but v^(e') may be significantly smaller yielding large negative t-values. 

These situations are indicated,by a-large correlation between 8 and v^(e^). 

When 8 and v^(e^) are negatively correlated, the t-distribution has a heavy 

upper tail. Users should be warned that the construction of confidence 

intervals and tests of hypothesis assuming normality may not be 

appropriate in these situations. As shown in,the Mulry and Wolter paper, 

confidence intervals based upon transformations.may be better. 



When the effective sample size is small, the balanced repeated 

replication variance estimator is a better choice than the random group 

estimator with only two random groups. As the sample size increases 

allowing more random groups, the difference in these two variance 

estimators appears to be minimal. .- 
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PAI? AMET CR 

FLOUR 
CAIiDY ' 
G R r; c I'. F 
EGGS 

ARAMETLR M2 (X1X1)* 

ANDY 'I.0402 
GGS 1.9692 
INCDEFX 2.3781 E08 * 
LDUR 0.3750 
OODAWAY ' 486.0245 GODHOME 1450.4602 , 

ASCOST 450.6975 
AS-VEH? 450.6975 
RDEEF I 56.1506 
NEM-CL F * 0.0246 
EtlQ FAM 1.1476 

0.1935 0.4062 109.7989 0.1866 2.6708 
0.2474 0.3618 105.3453 0.0256 0.8196 
0.0000 0.0000 9.6022 E42 0.0000 0.0000 
0.1162 0.1251 2.9231 0.0879 0.2940 
0.1791 3.7475 42011.7899 -1.9642 48.7934 
0.4788 3.0627 299670.4069 -2.4921 17.8264 
0.2078 5.‘2381 39407.0712 -2.0720 * 40.3502 
1.1476 9.0153 39407.0712 5.5500 278.0115 
0.2332 1.1455 13673.7427 0.2810 32.4989 
0.9576 0.0225 0.0308 0.0330 0.0276 
0.1406 0.2435 . -2.2732 -0.1557 -0.1531 

0.089: 
0.0177 
0.0000 
0.0827 

-0.0917 
-0,064f 
-0.081: 
2.273: 
0.0569 
0.7975 

-0.0894 
AGE-CAP 2.2152 E08 0.8322 8644.1466 6.0509 El2 ' 3088.1557 6.3185 E07 0.5935 
AGE:INC 2.2152 FO8 2.3782 E08 1.9651 E08 6.'0509 El2 6.2841 El2 '6.0931 El2 9.6022 El; 

PARAMETER p('Q ) 
lh 

AVERAGE STRATUM DERIVATIVES FOR THE POPULATION 
Fu) 

(x2h) 

F(2) 
(xlhx2h) 

F(2) 
(x2hx2h) 

F(3) - 
(Xlhji211k2h) Ft3) (i&hX2h) 

CAtIDY 0.1889 --0.3972 
EGGS 0.1077 -0.1578 
FJIICDEFX 0.0500 -925.1747 
FLUUR 0.3652 -0.3959 
FOUDAWAY 0.0656 -1.4026 
f3)urxtfmE 0.0547 -2.1446 
GASCOST 0.0712 -1.8057 
GAS -VEtiQ 0.0344 -0.4206 
GRUEEF 0.1326 -0.6509 
UHEM-CLF 0.0358 -0.0005 
VEHQ-FAM 0.0603 -0.1059 
WAGE-CAP 0.0410 -497.6624 
blAGGE_INC o.ooflo - -0.0000 

1990 1.07 1.329ft 6.6883 
3800 2.1F 3.4714 8.5827 
5415 4.91 11 .6’1Gl 7.2.62r11 
6668 1.47 1.7851 GO.1976 

10971 25.33 21.ttG16 $.9581 
10934 21.36 23.3353 3.9731 
11268 18790.80 14656.3233 2.OGOl 
13113 39.17 38.3054 5.6814 
14360 18503.50 15675.23’tl 2.6230 

TARLE 3 
AVERAGE STRATUM POPULATION MOMENTS 

f-l2 (X,X,) M2 (x1x2) M3 (X)XJX,) M3 (X,X;IX$ 

,97.7728 
121.8822 
680.2998 

2508.2701 
53.5673 
37.1022 
15.2658 
91.8096 
24 .146% 

1 

M3 (x,x&) M3 (x, 

-0.0357 0.1503 0.0135 
-0.0116 0.0340 0.0025 
-0.0025 92.6449 0.0002 
-0.1335 0.2896 0.0978 
-0.0043 0.1844 0.0005 
-0.0030 0.2351 0.0003 
-0.0050 0.2578 0.0007 
-0.0011 O.U289 0.0000 
-0.0176 0.1728 0.00’16 
-0.0012 0.0000 0.0000 
-0.0036 0.0128 . 0.0004 
-0.0016 40.9444 0.0001 
-0.0000 0.0000 0.0000 

x’ 
211) 

2 
, etc. 

-0.0854 
-0.0110 

-13.93r,8 
-0.3182 
-0.0364 
-0.0367 
- 0 0 5 5 :! 
-0: 0030 
-0.0689 
-0.0000 
-0.0023 
-5.0598 
-0.0030 
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Table 5. Comparison'of the Second Order Component 

of, the Var 6 with Some Derivatives (nh=6) 
. 

Percent 

Second 
Order x2 

&-1 
2. 

,,&(-2 
2 

=2N3jy-3 
2 

-1.52 

- .15 

.08 

.14 

.18 

.27 

.34 

.65 

.8l 

; .26 

2.20 

4.87 

13113 

10934 ' 

10071 

6668 

5415 

3800 

1990 

0 

.04 

.05 _ 

.03 

.06 

.07 , 

.07 

.04 6 

.ll 

.13 

.19 

.37 

0 * 0 

-.OOl .00009 

-.003 .00033 

-.OOl .00008 

-.004 .00044 

-.004 .00057 

-.005 .00073 

-.002 .ooc14 

-.012 .00251 

-.018 .03468 

-.036 .01356 

- .'l 34 .09782 

. 



PARAtlET f:R 

I 

Vhli IAttCE 
TfiElA 
IfAT 

CAtIDY 0.38 
EGGS 0.06 
1.It1CMFX 1965738.08 
FLOUR 0.11 
FOODAWAY 5.85 
FOuDtIOME 13.22 
GAS VEffQ 1.59 
GASCOST 5.45 
GRBEEF 3.03 
UNEI-l-CL F 0.00 
VEflQ-FAtl 0.01 
WAGE CAP 75ft106.5rl 
WAGE11 ttC 0.00 

JOtiES tlALhNi:ED 
JACKKtfIFi: REf’FAl ED 

REf’LICATPONS 

SIZE06 

1.013 
1.005 
1.000 
1.028 
1.001 
I .OOQ 
1.002 
1.002 
1.007 
1.001 
1.001 
1.003 
0.999 

SIZE12 

, 

CANDY 0.19 ~. 1.009 
EGGS 0.03 3.004 
FIHCDEFX 974587.11 1.000 
FLOUR 0.05 1.019 
FOODAWAY 2.90 1.001. 
FOODffOME 6.55 1.000 

. 

GAS-VEHQ 0.79 1.002 . 
GASCOST , 2.70 1.001 
GRDEEF 1.50 1.005 
UNEM CLF 0.00 1.001 
VEttQ-FAM 0.00 1.001 
WAGE-CAP 372674.20 
WAGE11 NC 

1.002 
0.00 1.001 

SIZE24 

CAllf)Y 
EGGS 
rTf!cnEFx 
FLOUR 
FOODAWAY 
FOODlfOME 
GAS-VEHQ 
GASCOST 
GRDEEF 
UHEM-CL F 
VEfiQ.-FAil 
WAGE-CAf’ 
WAGE-INC 

0.09 
0.01 

479011.63 
0.03 
1.12 
3.22 
0.39 
1.33 
0.73 
0.00 
0.00 

182872.23 
0.00 

1.005 1.010 1.005 1.015 1.035 
1.002 l.OO(t 1.002 1.005 1.012 
1.000 1.000 1.000 1.000 1.000 
1.011 1.022 1.011 1.034 1.078 
1.001 1.001 1.001 1.002 1.004 
1.000 1.000 1.000 1.001 1.001 
1.001 1.001 1.000 1.001 1.001 
1.001 1.002 1.001 1.002 1.005 
1.003 1.006 1.003 1.008 1.020 
1.001 1.000 0.991 0.999 0.997 
1.000 1.001 1.000 1.001 1.003 
1.001 1.003 1.0'01 1.004 1.010 
1.001 0.997 0.996 0.988 0.973 

1.041 
1.016 
1.000 
1.091 
1.005 
1.001 
1.005 
1.006 
1.02'1 
1.002 
1.003 
1.011 
0.990 

f 

3 .a20 
1.007 
1.000 
1 . 0 fl fl 
1.002 
1.001 
1.001 
1.003 
1.012 
0.998 
1.002 
1.006 
0.984 

1.021 1.010 
1.008 l.OOr, 
1.000 1.000 
1.056 1,022 
1.002 1.001 
1.001 ' 1.000 
1.003 1.000 
1.003 1.002 
1.012 1.006 
1.001 0.999 
1.002 1.001 
1.005 1.003 
0.995 0.992 

TIC!; FOUR EIGI1T 
HAllooM RhNf)OM RAtff)OM 
GRCUi’S GROUPS GROUPS 

, . 
. . 

. 
. . 
. . 
. . 
. . 
. . 
. * i 
. . 
. . 
. . 

, 
1.030s . 
1.011 . 
l..OOO . 
1.068 
1.004 : 
1.001 
1.001 : : 
1.005 . 
1..017 . 
0.997 . 
1.002 
1.009 : 
0.976 . 

TllE VARTAtlCE 
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CO1Y';PAZISON OF POPULATION SKEWNESS AND THE CORRELATION BETWEEN 

[n,= 6 and i,,,(Q)). 

Parameter 

FOODAWAY 

Skewness Correlation 
of h'umerator -- Between 
Population 6 and V(i) . 

4.0 .53 

GASCOST 5.0 .59- 

FOODHOME 5.7 .53 

FLOUR 6.7 - .67 

CANDY 8.6 .66 

GRBEEF 22.6 .86 

EGGS 40.2 .84 


