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Making Tables Additive in the Presence of Zeros
James Fagan and Brian Greenberg

Given a two-way contingency table of non-negative reals in which the
internal entries do not sum to the corresponding marginals, there is often
the need to adjust internal entries to achieve additivity. In general, the
objective is to have the revised table, in some sense, close to the original
table and to have zero entries remain zero and positive entries remain
positive. Not all two-way contingencv tables can be adjusted to achieve
additivity subject to the constraints above and in this paper we present a
procedure that will determine whether a given table can be so adjusted.

I. INTRODUCTION

Given a two-way contingency table of non-negative reals in which the internal entries do
not sum to the corresponding marginals, there is often the need to adjust internal entries
to achieve additivity. In general, the objective is to have the revised table, in some
sense, close to the original table and to have zero entries remain zero and positive
entries remain positive. Not all two-wav contingency tables can be adjusted to achieve
additivity subject to the constraints above and in this paper we present a procedure that
will determine whether a given table can be so adjusted, and such adjustable tables will
be called feasible.

The most frequently used procedure for adjusting tables that are not additive is iterative
proportional fitting, often called raking. The raking algorithm alternately scales rows
and columns to achieve respective additivity, and if a table is feasible the algorithm
coverges. This algorithm is frequently used to reconcile tabular data when the marginals

and internal entries arise from different sources, for example see [ 7 1.

Raking has been extensively used for over forty years, and its statistical properties have
been well-studied, see [ 1 ]. However, there has never been a satisfactory answer to the
following question: given an arbitarary non-additive table, is it feasible? That is, there
was no known procedure to rigorously determine whether raking or any other table
adjustment methodology that preserves zeros and leaves positive entries positive will

converge for an arbitrary non-additive table. In this paper we present such a procedure.

In Section I we introduce terminology and provide an analyvtical formulation of the
problem. In the next section we attack the problem using the classical transportation
problem of operations research. We deseribe a finite iterative procedure which can be
applied to an arbitrary non-additive table, and by examining the outecome of the final



iteration, one can determine if the original table is feasible. The final section briefly
discusses alternative methods for table adjustment.

II. FEASIBLE TABLES
By a contingency table we mean a triple A= { (ai j ), r,el of arrays of nonm-negative
reals where (aij)is an RxC matrix, r = (rl, cee ,rR) , € = (cl, oo ,cC) , and

R
y r, = 5‘ c. .
i=1 j=1 !
We say that A is additive if
C
.E aij = r i=1,...,R
j=1
3
) a.. = c. i=1,...,C.
i=1 ) J

The table A is said to be feasible if there exists an RxC matrix (bi i ) such that b, i= 0
if and only if ai]. = 0 and such that B = {(bi].),r,c} is additive. That is, A is
feasible if and only if there exists an RxC matrix (xij) such that B = {(bi j ), r, elis
additive, where (bij) = (xij aij)’ andx; . > 0 whenever a;; > 0. In particular, A is

] ]
feasible if there exist X5 satisfving the following system:

C
1) j-zl 8i; Xij = Ty i=1,...,R
R
(2) izl ai]. i = ¢ j=1,...,C
(3) xij > nif aij >0 i'—'—l,...,R and j=1,...,c .

By way of examples, Table1 is clearly feasible and Tables 2 or 3 are clearly not.

015 015 101 4
114 11 4 1 011
3 6 6 3 011 4
011 4
5 4 4
Table 1 Table 2 Table 3

Note that Table 2 fails conditions (1) and (2) above, while Tahle 3 does satisfy these
conditions letting:



X114 X971 =1, X33 =Xg4 = X3 X4 =% and Xy3 =Xgq =0;

yet fails the joint conditions (1), (2) and (3).

If some Ty for g=1,...R (or ° for p=1,...,C) equals zero, then for a contingenecy table to be
additive or feasible it is necessary that 84qj = 0 for all j = 1,...,C (aip = 0 for all
i=1,...,R). That is, the entire row (or column) must be zero, and hence can be removed
from the table. Thus, we can assume without loss of generality that both r and e are

positive,

The objective of this paper is as follows. Given an arbitrary (non-additive) table
A= {(ai § ), r, e} find a finite iterative procedure that will determine if A is feasible,
That is, determine if there exists an RxC matrix (xij) such that (1)-(3) are satisfied. In
the next section we applv the classical transportation problem to obtain a finite step-bv-

step procedure that will solve the problem stated above.

IlI. A PROCEDURE TO DETERMINE FEASIBLILITY
A. The Transportation Problem

A well studied and frequently used construct in the realm of operations research is the
transportation problem. The objective (in its purest form) is to miminize the cost of

shipping a commodity from a number of origins to various destinations. We assume that

there are R origins and C destinations, ry > 0 units are to be shipped from the ith

th

origin
for i=1,...,R and c]. > 0 units are to be received at the j- destination for j=1,...,C, and

the cost of shipping a unit from origin i to destination j is ¢;; One usually defines

ju
C= (ci]-) to be the cost matrix In the classical transportation problem one further

assumes that

and seeks to minimize the funetion

R c

(¢ )] izl jzl iy Xij

subject to the constraints:

(5) i=1,...,R

X. . .
ij i

n ~10
1
-3



R
(6) 5' X.. = €, ji=1,...,C
¢4) X.. >0 i=1,...,R and j=1,...,C

where Xi3 is the number of units shipped from origini to destination j.

Given the transportation problem (4-(7), if r; for i=1,...,R and ¢; for j=1,...,C are
integers, there exists an RC-dimensional vector, (Zi]-), such that (Zij) minimizes (4)
subject to (5)-(7) and (Zij) has integer components, see [ 4 ] for a discussion. Given a
table A = {(aii),r,c} y we can scale r and ¢ by the same factor and assume

henceforth that r and ¢ are integer vectors.

B. The General Case

If we have a table A = {(ai‘.),r,c},wecanform the tableM = {(mi].),r,c}

where

0 if a.. =10
- 1]
m, .
1]

1 if 85 #0.
It is clear that A is feasible if and only if M is feasible. Looking back to (1), (2), and (3),
M= {(mij ), r, e} is feasible if there exists x;; such that

)
C
(8 Zl mp X = ry i=1,...,R
]R
(9) izl M Xi5 = ¢ j=1,...,C
(10) X5 >0 if m;; > 0 i=1,...,R and j=1,...,C .

Given the table M, consider the following sequence of transportation problems indexed by
postive integers, g

R C
Minimize (11) YV e,
i=1 j=1 ' 1)
subject to
o)
(12) Y x.. = r, i=1,...,R



R
(13) izlxij = ey | j=1,...,C
(14 X > 0,
T if m, . = 0
where Cii = ]
] 0 otherwise ,
R C
T = Z r; = Zc] ,
i=1 i=1
andforq> 1,
1 if e9, =1 0r x9, # 0 and m,.# 0
q+1 . 1] 1) 1]
cl. = (T if m,, = 0
1] 1]

0 otherwise,
where (x?j ) minimizes (11) subject to (12)-(14).

Denote the region determined by constraints (8)-(10) by Q:;[ and note that Q;:/l is not empty
if and only if M is feasible. Define Q‘M = {(y ) (vi;) € QMand if my;= 0
then Vii = 0}. Clearly, Q’M QMand if QM ¥ @, then S'ZM # g, so M is feasible if
and only if QM # #. Denoting the region determined bv the constraints (12)-(14)

by Q’T" we ohserve that QMC Q”I‘

Notation: Denote by RxC the set {(i,j): i=1,...,R, j=1,...,C}, and by C
the minimal value of (11) subject to (12)-(14).

Lemma 1: There exists a positive integer k such that Ck >T .

Proof: If Ck < T, there exists (t,s) € RxC such that clt(S = 0 and x],fs > 0. For if not,

whenever x‘i(j >0, then c'i(j > 1, so



Accordingly, if Ck < T there exists (t,s) ¢ RxC such that cls(t = 0 and c::1 = 1.

Henece, since the set RxC is finite, for some positive integer, kK, C™ > T.

Notation: LetN = min { k ¢ 2 :C > T } .

1

Lemma 2: If Cl# 0, thenC” > T and M is not feasible.

Proof: IfC1 # 0 there exists an integer array (wij) € s‘szuch that
R C
cl = y y elow. ..
i=1 j=1p 'Y

For some (t,s) ¢ RxC, C}(S = Tandw, > 1, (otherwise C! = 0). Thus, ifcl 7 0 ,
thenC1 > T.

If M is feasible, let (Vij) e Oy and observe that

1

R C
y ¢iiVij = 0.

i=1 i=1

That is, if C! # 0 then M is not feasible.

Lemma 3: IfC1= 0, then CN = T, and ckis a non-decreasing funection of k for
k=1’...,N'

Proof: Note thatC! = 0 if and only if there exists (x%j) ¢ Qnp such that for all

(i,j) € RxC if m;;j = 0, then xij = 0. Thus, if x}j # 0 then my; = 1, so cli(i < 1, for
all k=1,...,N and so “

Cki

H~1=
~1
(e]
~
b
[eury
A

i=1 j=1 = i=1 j=1

Hence, if C1 = 0, then Ck < T for all k=1,...,N. It is clear that cKisa non-decreasing
function of k.
Theorem 1: Suppose Ccl=0andN is as above. Then M is feasible if and only if clfpfl >0

1]
for all (i,j) € RxC.



Proof: (only if) Suppose M is feasible and there exists (t,s) € RxC such

that ¢y} = 0, and note that ¢} = ! = 0 implies that oy, = 0.

Choose (yl?j ) € @y and note

R C R C
My V7 i< T e
i=1 j=1 Y "1} 42 y=1 M)

The striet mequahtv holds because: (1) if y # N then cNJ < 1 by the definition
of Q> and (2) y ts > 0, vet crg 0. But thls contradlcts the fact that C\ =

(if) For each (t,5) € RxC such that m,, = 1, there exists a q such that (x?j) € Qp

and x?s > 0 because cN] LN 0 for all (i,j) € RxC.
Let N ,
(zi.) = Y (xi.)/N.
A
Since (x!i(]. ) € QT’ for all k=1,...,N, then (z--) € QT because QT is a convex set. Also,
. -— * * . k3
1fmij = 1, then Zjj 2 > 0, so(z ) € QM Thus M is feasible.

Iterative Procedure to Determine Feasibility: Given a contingency table
= {(a ) r,cl, to determine whether or not it is feasible proceed as follows. Scale

rand ¢ so that they are integer and form M= {(ml ] ), r, ¢} as above. Solve the first
1 If(“ # 0, then A is not feasible.
N+ 1)

transportation problem above, obtainingC .

If Cl= 0, form 02 ’ C3, ete., until CN = T, and examine the cost matrix (c

N+1
If ot

= 0 for any (s,t) € R x C, then A is not feasible, otherwise A is feasxble.

C. Non-degenerate Solution

Recall that when given an R by C transportation problem, we say that an optimal
solution is non-degenerate if there are exactly R+C-1 non-zero variables in the solution.
In this case, by reordering the rows and columns of the underlying matrix, we can start at
the upper left corner and traverse (more or less) staircase fashion to the bottom right
corner stopping only at positive cells, see [ 4 ]J. The following result enables one to
possibly shorten the Iterative Procedure outlined above. That is, if any of the
transportation problems above has a non-degenerate solution with optimum less than or
equal to T then A is feasible. Thus, if Ck_<_ T one needs only count the non-zero
variables in the solution vector. If that count is equal to R+C-1 then A is feasible,

otherwise proceed to the next iteration and continue as indicated in the Iterative



Procedure with this addendum at each juncture.

Theorem 2: IfA = | (ai j ),ryc } is a contingency table, then A is feasible if the
following transportation problem has a non-degenerate optimal solution of value less than

or equal to T.

(15) Minimize C9= J ef. y.

i 7]
subjeet to
C
(16) 2' Vij = T ~for i=1,...,R
j=1
R
17 Y v.. = e, for j=1,...,C
i=1 1) )
(18) Vij 2 0 for i=1,..,R and j=1,...,C
where ¢ 9. is defined-as earlier.

ij

Proof: Since A is feasible if and only if M (as above) is feasible we can focus our
attention on M. Assume (Zij) is a non-degenerate optimal solution to (15)-(18) such

that c¢ < T, and suppose 8o # 0 and z = 0 for some (k,2) € RxC. Form a

k2
kY transversing onlv positive elements Zij such that
no three consecutive path elements are in the same row or column. That is, form the

closed path starting and ending at a

(+,-) path used in updating feasible non-degenerate solutions of the transportation
problem (usually used in eonjunction with the so~-called Northwest corner solution). Let z
be the minimal positive value for the cells in the path, and starting with the (k, %) -
position alternately add and subtract z/2 from each z;; in the path updating the values of

]

the zije Repeat this procedure for all (i,j) positions such that aij # 0 and zij = 0.

When there are no such cells remaining, then conditions (8) - (10) are satisfied by letting
(xij) = (zi]-) and hence M is a feasible table.

IV. STATISTICAL AND PRACTICAL CONSIDERATIONS

IfA= {(a ij ), r, e} is a contingency table, we can let



a. .
.. = —=-<-2l_____
ij R C
T T ey
- i=1 j=1
S W
ie I};
. r'
i=1 !
c.
SR SR
.] C)-:
(]
j=1 !

‘Observe that A is a feasible table if and only if I = {(ni].),('ni.),(n.j)} is a
feasible table. Note further that
C R R C
X 7 ﬂij = 5 m, = X mT.. =1,
j=1 i=1 = j=

so we enter the realm of probability theory.

Notation: Let A = {(i,j) : (i,j) € RxC and “ij £ 0},
V(i) = {j ¢« (i,j) € v}, and
V(i) = {i : (i,j) e V}.

Given a feasible table of probabilities, T = {(nij),(ni_),(n.j)} we seek an

.+ . . and X;; > 0 for all

additive table P = {(pij),(ni.),(n.j)}such that Pij = Xjj i § §

(i,j) € V. We say that P is derived from 1, write (1) - (3) as

(19) je\g(i) Xi5 "ij < Ti. i=1,...,R
20 . . .. = . ji=1,...,C
B0 dgy T T T e

(21) xi]. > 0 (i,j) eV,

and note that P is also a table of probabilities.
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For some tables, there is a unique derived table (the deterministic case), for example:

.13 - .10 0 .35
0 .38 .07 .60
0 0 .32 .05
.10 .40 .50
Table 4

If there is more than one derived table, there are infinitely many since any convex

combination of derived tables is also a derived table.

In general, given the feasible tablel , we seek a derived table P such that P is close
toll . Of course, the notion of "close" is not unique, and for every criterion of closeness
a different objective function must be optimized subject to (19) - (21). Listed below are
three objective functions whieh are candidates for a ecriterion of closeness. Each
objective funection is convex up as is easily seen by examining the Hessians, see [ 5 1.
Thus, if the original table I is feasible it is not too hard to see each has a unique
minimum subject to (19)-(21). There has been interesting work to discover iterative
procedures which will allow a user to start with a feasible table I and proceed to an
additive table P optimizing the objective functions below.

(i) Iterative Proportional Fitting:

p. .
Minimize y P; An —i-l-l- over (Dij)’ which is equivalent to,
(i,j)ev I ij
Minimize y T..X..9n x.. over (x;:.
(i,i)ev iiv1j ij 1]

(ii) Maximum Likelihood:

..
Minimize Y L An -=21- over (pi]-), which is equivalent to,
(i,jlev I ij ‘
Minimize - ) T..0n X, over (x;;).

(i,j)ev 1] 1)
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(iii) Minimum Chi-Square:

Minimize Y (p - Tr..)z/p

i i ] over (pij), which is equivalent to,
(i,j)ev

ij
Minimize y T../X.. over (x::).
(i,j)ev 131 )

It is proved in both [ 3 1 and [ 7 ] that given a feasible table, the "raking algorithm"
(alternately scaling rows and columns to achieve respective additivity) converges to a
table minimizing the objective function for iterative proportional fitting. This algorithm
has been put to many uses and the reader is referred to [ 6 ] for further discussion and
extensive bibliography. It has been known for quite a while that raking converges when
all entries in the contingency table are positive. If there are zeros in a table, and raking
appears not to converge, adjustments are made to internal entries so that raking will

converge for the revised table.

When raking does converge for some table, it does so rapidly, and less than ten iterations
usually suffice so that successive internal values are within a reasonable tolerance.
Accordingly, the practice has been to presume that raking will not converge for a table if
it fails to converge within a prescribed number of iterations, and at that time, zero cells
are promoted to non-zero status or cells are collapsed. We have presented here a
procedure that can be used to test for feasibility if raking seems not to econverge. That
is, if there is no convergence after a fixed number of iterations one can now draw upon
the procedures described above to determine if raking does fail to converge, or if it just

needs more time.

For maximum likelihood and minimum chi-square, algorithms have been proposed for
positive tables , see [ 2 ] for more details. It would be interesting to see proofs that
these algorithms (iterative procedures) do, in fact, coverge to additive tables; although it
is easy to see that when they do converge to additive tables, they converge to tables
optimizing the respective objective functions. It would be even more interesting to learn
something about the existance and convergence of algorithms for tables containing zeros.

This paper will be presented at the 1984 Annual Meeting of the American Statistical
Association in Philadelphia, Pennsvlvania and will appear in the Proceedings of the
Section on Survey Research Methods.
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