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Making Tables Additive in the Presence of Zeros 
James Fagan and Brian Greenberg 

Given a two-way contingency table of non-negative reals in which the 
internal entries do not sum to the corresponding marginals, there is often 
the need to adjust internal entries to achieve additivity. In general, the 
objective is to have the revised table, in some sense, close to the original 
table and to have zero entries remain zero and positive entries remain 
positive. Not all two-way contingencv tables can be adjusted to achieve 
additivity subject to the constraints above and in this paper we present a 
procedure that will determine whether a given table can be so adjusted. 

I. INTRODUCTION 

Given a two-way contingency table of non-negative reals in which the internal entries do 

not sum to the corresponding marginals, there is often the need to adjust internal entries 

to achieve additivity. In general, the objective is to have the revised table, in some 

sense, close to the original table and to have zero entries remain zero and positive 

entries remain positive. Not all two-way contingency tables can be adjusted to achieve 

additivity subject to the constraints above and in this oaper we present a procedure that 

will determine whether a given table can be so adjusted, and such adjustable tables will 

be called feasible. 

The most frequently used procedure for adjusting tables that are not additive is iterative 

proportional fitting, often called raking. The raking algorithm alternately scales rows 

and columns to achieve respective additivity, and if a table is feasible the algorithm 

coverges. This algorithm is frequently used to reconcile tabular data when the marginals 

and internal entries arise from different sources, for example see [ 7 1. 

Raking has been extensively used for over forty years, and its statistical properties have 

been well-studied, see C 1 1. However, there has never been a satisfactory answer to the 

following question: given an arbitarary non-additive table, is it feasible? That is, there 

was no known procedure to rigorously determine whether raking or any other table 

adjustment methodology that preserves zeros and leaves positive entries positive will 

converge for an arbitrary non-additive table. In this paper we present such a procedure. 

In Section II we introduce terminology and provide an analytical formulation of the 

problem. In the next section we attack the problem using the classical transportation 

problem of operations research. We describe a finite iterative procedure which can be 

applied to an arbitrary non-additive table, and by examining the outcome of the final 
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iteration, one can determine if the original table is feasible. The final section briefly 

discusses alternative methods for table adjustment. 

II. FEASIBLE TABLES 

By a contingency table we mean a triple A= { (a i j ) , r, c) of arrays of non-negative 

reaIswhere(aij)isanRxCmatrix, r = (rl,...,rR), c = (cl,...,c,) ,and 

R 
7 ri= 

iL1 
$: cj . 

jil 

We say that A is additive if 

i = l,...,R 

y aij = cj 
iA1 

j = 1 c ,...,A . 

The table A is said to be feasible if there exists an RxC matrix (b. . ) such that b. . = 0 
1J iJ 

if andonIyifa..= 0 and such thatB = {(b. .),r,c} is additive. That is, A is 

feasible if and 0;: if there exists an RxC matri: J~Xij) such that B = { (b i j ) , r, cl is 

additive, where (bij) = (Xij aij), and x . . > 0 whenever a. . > 0. In particular, A is 

feasible if there exist xij satisfying the fLJ!Iowing system: 
iJ 

(1) 

(2) 7 aij xij = Cj j=l,...,C 
i 41 

(3) x.- >fIif a.. >O 
1J iJ 

i=l ,..., R and j=l,..., C . 

By way of examples, Table 1 is clearly feasible and Tabk 2 or 3 are clearly not. 

0 1 5 015 1 0 1 4 
1 14 1 1 4 1 0 1 1 
3 6 6 3 0 1 1 4 

0 1 1 4 
5 4 4 

Table 1 Table 2 Table 3 

Note that Table 2 fails conditions (1) and (2) above, while TabIe 3 does satisfy these 

conditions letting: 
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xl1 = 4 x21 = 1, x3? = x34 = x4? = x44 = 2, and xl3 = x2? = a; c < 

yet fails the joint conditions (l), (21 and (3). 

If some rq for q=l,... R (or cp for p=l,..., C) equals zero, then for a contingency table to be 

additive or feasible it is necessary that a . = 0 for all j = 1 
Q1 ,...,c !qp = 0 for all 

i=l ,...,R). That is, the entire row (or column) must be zero, and hence can be removed 

from the table. Thus, we can assume without loss of generality that both r and c are 

posi ti ve. 

The objective of this paper is as follows. Given an arbitrary (non-additive) table 

A= {(a ij ), r, c) find a finite iterative procedure that will determine if A is feasible. 

That is, determine if there exists an RxC matrix (Xij) such that (Xl-(31 are satisfied. In 

the next section we apply the classical transportation problem to obtain a finite steo-bv- 

step procedure that will solve the problem stated above. 

III. A PROCEDURE TO DETERMINE PRASD3LILlTY 

A. The Transportation Problem 

A well studied and frequently used construct in the realm of operations research is the 

transportation problem. The objective (in its purest form) is to miminize the cost of 

shipping a commodity from a number of origins to various destinations. We assume that 

there are R origins and C destinations, r i > 0 units are to be shipped from the ith origin 

for i=l ,...,R and c j > 0 units are to be received at the J *th destination for j=l,.,.,C, and 

the cost of shipping a unit from origin1 to destination f is Cij. One usually defines 

C = (Cij) to be the cost matrix. In the classical transportation problem one further 

assumes that 

B ri = F Cj, 
i&l j=l 

and seeks to minimize the function 

(4 7 s c.. x.. 
i=l j=l 13 1J 

subject to the constraints 

6) E x 
j=l 

ij 
=ri i=l 9**-9 R 
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j=l c ,...,J 

i=l ,... ,R and j=l,..., C 

where xij is the number of units shipped from origin1 to destinationi. 

Given the transportation problem (4)-(7), if ri for i=l,...,R and Cj for j=l,...,C are 

integers, there exists an RC-dimensional vector, (Zij), such that (Zij) minimizes (4) 

subject to (5)-(7) and (Zij) has intee;er components, see C 4 1 for a discussion. Given a 

tableA = I(aii)9r9cl P we can scale r and c by the same factor and assume 

henceforth that r and c are integer vectors. 

R. The General Case 

IfwehaveatableA = {(aii ),r,c), wecanform thetableM = ((mij),r,c} 

where 

0 if a.. = 0 
m.. = 1J 

1J 1 if a ij # O’ 

It is clear that A is feasible if and only if M is feasible. Lookinq back to (I), (2), and (3), 

M = {(mij), r, c 1 is feasible if there exists xij such that 

(8) Fm =ri ij’ij 
i=l ).‘a, R 

jr1 
-R 

(9) 7 mijxij = cj 
i=l 

j=l 9**.9 C 

(10) Xi j > 0 if ltlij > 0 i=l ,..., R and j=l,..., C . 

Given the table M, consider the following sequence of transportation problems indexed by 

postive integers, q 

Minimize (11) 
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(13) Tlxij = 'j 
j=l P-*.9 C 

(14) x.. > 0, 
iJ - 

where 
0 otherwise , 

T= B r. = (f cj , 
i=l ’ jA1 

and for q > 1, 

I 1 if ~9. = 1 or xqj # 0 and mi j# 0 

cq+l = TifmlJ=O 
ij ij 

I 0 otherwise, 

where (x7 j ) minimizes (11) subject to (12~(14). 

Denote the region determined by constraints (8~(10) by $I and note that S$I is not empty 

if and only if M is feasible. 

theny.. = 0). 

Dzfine $,; { (yi j): fvi i) e Gand if mij= 0 

Clearly, S$,.l = QI,,I and if S$,,I # 0 , then $I # 0 , so W is feasible if 

andoAiif$,,i$ 0. Denoting the region determined bv the constraints (12&(14) 

by G+, weobserve that QI,,Ic.% . 

Notation: Denote by RxC the set {(i, j): i=l,. . . ,R, j=l,. . . ,C), and by Cq 

the minimal value of (11) subject to (12)-(14). 

Lemma 1: There exists a positive integer k such that Ck 1 T . 

Proof: If Ck < T, there exists (t,s) e RxC such that c:, 
k > 0. For if not, 

k k 
= Oandxts 

wheneverx.. >O,thenc.. > 1, so 
13 1J - 

Ck = B ~ C~j Xii 1 i-l j-1 Xlj = T. B F 
i=l j=l 
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Accordingly, if Ck < T there exists (t,s) c RxC such that cLt = Oandc;;l = 1. 

Hence, since the set RxC is finite, for some positive integer, k, Ck > T. 

Notation: LetN = min { k e Z+:Ck ?T ) . 

Lemma 2: If Cl# 0, then C1 > T and I is not feasible. 

Proof: If C1 $ 0 there exists an integer arrav (wi j 1 e ,QT such that 

cl = ‘;; s: djWij. iG1 j=l 

For some (t,s) e RxC, cts = T and wts > 1, (otherwise C1 = 0). Thus, if C1 # 0 , 

thenC1 > T. 

If M is feasible, let (Yij) e !$,,I and observe that 

cl=J1 ,E, 4jyij = O* 
= 

That is, if Cl # 0 then M is not feasible. 

Lemma 3: If Cl= 0, then CN = T, and Ck is a non-decreasing function of k for 

k=l,...,N. 

PrOof: Note that C1 = 0 if and onIv if there exists (xl . ) e a,.,, such that for all 

(i,j) e RxC if mij = 0, then X: j = 0 . Thus, if X: j # 0 th’eJn mij = 1, so c& < 1, for 
- 

all k=l ,...,N and so 

Ck < T f: c&xij 2 j1 JFlx;i = T. 
- i=l jil . = ‘- 

Hence, if C1 = 0, then Ck < T for a.II k=l ,...,N. It is clear that Ck is a non-decreasing 

function of k. 

Theorem 1: Suppose C ’ = 0 and N is as above. Then M is feasible if and only if c i j N+l> 0 

for all (i,j) E RxC. 
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Proof: (only if) Suppose M is feasible and there exists (t,sl e RxC such 

that cyil = 
N+l 

0, and note that cts = 0 implies that cys = 0. 

Choose (Yrj ) e QM and note 

The strict inequality holds because: (1) if y!. # 0 then c?. 2 1 by the definition 
N 

of $I, and(2) yys >01 yet cfs= 0. But this’dontradicts thieJfact that C? = T. 
I 

(if) For each (t,sl E RxC such that mts = 1, there exists a q such that (XT j 1 e RT 

and x9 
ts 

> 0 because c r;’ > 0 for all (i,jl e RxC. 

Let 

(zij) = 7 (xlj)lN. 
k& 

Since f xii ) E QT, for all k=l,..., V, then (Zij’ E nT because RT is a convex set. Also, 

if m. . = ‘1, then z.. > 0, so (zik) e 4. ThusMisfeasible. 
1J iJ - 

Iterative Procedure to Determine Feasibility Given a contingency table 

A= {(a i j 1, r, c) , to determine whether or not it is feasible proceed as follows. Scale 

r and c so that they are integer and form M = ( (m. . 1, r , c) as above. Solve the first 

transportation problem above, obtaining C1 . Ifig’+ 0, then A is not feasible. 

If cl= 0, form C2, C3, etc., until CN 
N+l 

= T, and examine the cost matrix (c . . 1. 

If cN+l 
1J 

st 
= 0 for any (s,t) E R x C, then A is not feasible, otherwise A is feasible. 

C. Non-degenerate Solution 

Recall that when given an R by C transportation problem, we say that an optimal 

solution is non-degenerate if there are exactly R+C-1 non-zero variables in the solution. 

In this case, by reordering the rows and columns of the underlying matrix, we can start at 

the upper left corner and traverse (more or less) staircase fashion to the bottom right 

corner stopping only at positive cells, see C 4 I. The following result enables one to 

possibly shorten the Iterative Pnxxxlure outlined above. That is, if any of the 

transportation problems above has a non-degenerate solution with optimum less than or 

equal to T then A is feasible. Thus, if Ckl T one needs only count the non-zero 

variables in the solution vector. If that count is equal to R+C-1 then A is feasible, 

otherwise proceed to the next iteration and continue as indicated in the Iterative 
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Procedure with this addendum at each juncture. 

Theorem 2: IfA = {(a. .), r ;c ) is a contingency table, then A is feasible if the 

following transportation pP’dblem has a non-degenerate optimal solution of value less than 

or equal to T. 

(15) Minimize Cq= 7 es j yi j 

subject to 

(16) 

(17) 

for i=l,...,R 

for j=l 9***9 C 

(18) y.. > 0 
1J - 

for i=l ,..,R and j=l 9***9 C 

9 where c. . 
1J 

is defined-as earlier. 

Proof: Since A is feasible if and only if M (as above) is feasible we can focus our 

attention on M. 

that Cq 

Assume (Zij) is a non-degenerate optimal solution to (15)-(18) such 

< T , and suppose ak II # 0 and z 
kll 

= 0 for some (k,ll) E RxC. Form a 

closed path starting and ending at ak %, transversing onlv positive elements Zij such that 

no three consecutive path elements are in the same row or column. That is, form the 

(+,-) path used in updating feasible non-degenerate solutions of the transportation 

problem (usually used in conjunction with the so-called Northwest corner solution). Let z 

be the minimal positive value for the cells in the path, and starting with the (k , R) - 

position alternately add and subtract z/2 from each Zij in the path updating the values of 

the zij. Repeat this procedure for all (i,j) positions such that a i j # 0 and z . . = 0. 
1J 

When there are no such cells remaining, then conditions (8) - (10) are satisfied by letting 

(Xij) = (Zij) and hence I is a feasible table. 

IV. STATJSTICAL AND PRACTICAL CONSIDERATIONS 

IfA= {(aij), r , c ) is a contingency table, we can let 



r. 
71. = ------- 

1. 

ci-- . 
“*j = ‘~3:’ 

IF 'j 

j=l 

Observe that A is a feasible table if and only iflI = {(nij),(Xi.),(X .j)~ is a 

feasible table. Note further that 

so we enter the realm of probability theory. 

Notation: Let V = {(i,j) : (i,j) E RxC and Xij # 0), 

V(i) = {j : (i,j) s V), and 

V(j) = {i : (i,j) E V). 

Given a feasible table of probabilities, lI = { (IT 

additive table P = I( p 

ij)‘(“i.),(~.j)} we seek an 

ij),(~i.),(~.j)~suChthatpij=Xij*ijandXij’Oforall 

(i,j) E V. We say that P is derived from II, write (1) - (3) as 

(19) 7 . II.. = R. 
jE\;;(i) ‘iJ 1J 

i=l 1. 9**** R 

(20) 7 . 
iEv(j) ‘iJ 

71.. = 'II 
1J l j 

j=l 9��9 C 

(21) 'ij > 0 (i,j) E V, 

and note that P is also a table of probabilities. 
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For some tables, there is a unique derived table (the deterministic case), for example: 

l 13 - :38 10 0 
0 .07 

:SO 35 

0 0 32 .05 
. 10 . 40 :50 

Table 4 

If there is more than one derived table, there are infinitely many since any convex 

combination of derived tables is also a derived table. 

In general, given the feasible tableII , we seek a derived table P such that P is close 

ton. Of course, the notion of “close” is not unique, and for every criterion of closeness 

a different objective function must be optimized subject to (19) - (21). Listed below are 

three objective functions which are candidates for a criterion of closeness. Each 

objective function is convex up as is easily seen by examining the Hessians, see (: 5 1. 

Thus, if the original table II is feasible it is not too hard to see each has a unique 

minimum subject to (19)-(21). There has been interesting work to discover iterative 

procedures which will allow a user to start with a feasible tableII and proceed to an 

additive table P optimizing the objective functions below. 

(i) Iterative Proportional Fitting: 

Minimize 7 -Elii PijRn 'II - over (Pij), which is equivalent to, 
(i,j)sV ij 

Minimize 7 II. .x. .Iln X. . over (Xij). 
(i,j)EV 13 1J 1J 

(ii) Maximum Likelihood: 

Minimize 1 II . .Rn 3i - 
(i,j)sV lJ pij 

over (pii), which is equivalent to, 

Minimize - 7 71. .Rn x, . 
(i,jleV lJ lJ 

over (Xi j). 



-ll- 

(iii) Minimum Chi-Square: 

Minimize 7 
( i, j )eV 

( pi j - TI i j ) 2/p i j over (pij), which is equivalent to, 

Minimize 1 
(i,jJEv’ij’xij over (Xi j)* 

It is proved in both [: 3 1 and c 7 1 that given a feasible table, the “raking algorithm” 

(alternately scaling rows and columns to achieve respective additivity) converges to a 

table minimizing the objective function for iterative proportional fitting. This algorithm 

has been put to many uses and the reader is referred to C 6 1 for further discussion and 

extensive bibliography. It has been lmown for quite a while that raking converges when 

all entries in the contingency table are positive. If there are zeros in a table, and raking 

aopears not to converge, adjustments are made to internal entries so that raking will 

converge for the revised table. 

When raking does converge for some table, it does so rapidly, and less than ten iterations 

usually suffice so that successive internal values are within a reasonable tolerance. 

Accordingly, the practice has been to presume that raking will not converge for a table if 

it fails to converge within a prescribed number of iterations, and at that time, zero cells 

are promoted to non-zero status or cells are collapsed. We have presented here a 

procedure that can be used to test for feasibility if raking seems not to converge. That 

is, if there is no convergence after a fixed number of iterations one can now draw upon 

the procedures described above to determine if raking does fail to converge, or if it just 

needs more time. 

For maximum likelihood and minimum chi-square, algorithms have been proposed for 

positive tables , see 1 2 3 for more details. It would be interesting to see proofs that 

these algorithms (iterative procedures) do, in fact, coverge to additive tables; although it 

is easy to see that when they do converge to additive tables, they converge to tables 

optimizing the respective objective functions. It would be even more interesting to learn 

something about the existance and convergence of algorithms for tables containing zeros. 

This paper will be presented at the 1984 Annual Meeting of the American Statistical 

Association in Philadelphia, Pennsylvania and will appear in the Proceedings of the 

Section on Survey Research Methods. 



-12- 

REFERENCES 

1. Bishop, Y., Finberg, S., and Holland, P., (1975) Discrete Multivariate Analvsis: Theory 

and Practice. MIT Press. Cambridge, Mass. 

2. Causey, B. (1983) Estimation of Proportions for Multinomial Contingencv Tables 

Subject to Marginal Constraints. Communications in Statistics (A). 12, 22. 

3. Darroch, J.M. and Ratcliff, D., (1972) Generalized Iterative Scaling for LogLinear 

Models. The Annals of Mathematical Statistics. 43, S. 

4. Gass, S. (1975) LinearProgramming. McGraw-Hill. New York. 

5. Luenberger, D. (1973) Introduction to Linear and Nonlinear Programming. Addison- 

Wesley. Reading, MA. 

6. Oh, H.L. and Scheuren, F.J. (1982) Some Unresolved Application Issues in Raking 

Ratio Estimation. Proceedings of the Section on Survey Research Methods, American 

Statistical Association. 

7. Thompson, J. (1981) Convergence Properties of the Iterative 1980 Census Estimator. 

Proceedings of the Section on Survey Research Methods, American Statistical 

Association. 


