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Abstract: 

In Part I of this paper we briefly review the history of seasonal 

adjustment and statistical time series analysis in order to understand 

why seasonal adjustment methods have evolved into their present form. 

This provides insight into some of the problems that must be addressed 

by seasonal adjustment procedures, and points out that advances in 

modern time series analysis raise the question of why seasonal adjust- 

ment should be performed at all. This leads to a discussion in Part II 

of issues involved in seasonal adjustment. We state our own opinions 
. 

about the issues raised and review some of the work of other authors. 

First, we comment on reasons that have been given for seasonal adjust- 

ment and suggest a new possible jusitification. Then we emphasize the 

need to precisely define the seasonal and nonseasonal components and 

offer our own definitions. Finally we discuss criteria for evaluating 

seasonal adjustments. We contend proposed criteria based upon empirical 

comparisons of estimated components are of little value, and suggest 

that seasonal adjustment methods can be evaluated based upon whether or 

not they are consistent with the information in the observed data. This 

idea is illustrated with "an example. 

Keywords: seasonal adjustment, model-based seasonal adjustment, season- 
ality, signal extraction, time series, Census X-11 



When most consumers of seasonally adjusted data - and that includes 
nearly every economically literate person - are confronted by the 
question of why they prefer such a series to the original, the most 
common and natural reaction is that the answer is obvious. Yet on 
further reflection the basis for such a preference becomes less clear, 
and those who give the matter extensive thought often finish by becoming 
hopelessly confused. Grether and Nerlove (1970 p.685) 

Introduction 

The impact of seasonally adjusted data upon modern U.S. society is 

pervasive. The Federal Reserve Board sets monetary policies based in 

part upon seasonally adjusted data , presidential and congressional 

economic policies are influenced by seasonally adjusted economic indica- 

tors, and seasonally adjusted values are routinely reported by the news 

media. While unadjusted figares are also published, they do not receive 

the attention of the adjusted data. Thus, society is conditioned to 

expect and even demand seasonally adjusted data. 

While the public appears for the most part to be comfortable with 

seasonally adjusted data, we doubt that many users of this data under- 

stand the methods by which it is produced. It may be too much to expect 

the statistically unsophisticated person to understand the procedures 

underlying seasonal adjustment, but even statistical experts are often 

mystified by these procedures, including the most widely used method, 

Census X-11. It uses a set of moving averages in producing seasonally 

adjusted data, the basic idea of which is simple enough, but the method 

in which they are applied in the X-11 program is extremely complex. 

Also, the theoretical statistical underpinnings of X-11 and many other 

seasonal adjustment methods are not understood by many users. Thus, 
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many users of adjusted data merely trust that the adjustment procedure 

is providing useful data, while critics have advocated the abolishment 

of seasonal adjustment. 

The purposes of this paper are to express some of our ideas about 

seasonal adjustment, to attempt to clarify certain aspects of the sub- 

ject, and to stimulate discussion in areas we feel need more attention. 

Our thinking pn seasonal adjustment has been structured around three 

questions: 

1. Why has seasonal adjustment been done in the past, and why 

have the current procedures evolved into their present forms? 

2. Why should one do seasonal adjustment? 

3. Given that seasonal adjustment is desirable, her? should it be 

done? 

In Part I of this paper we will attempt to answer the first ques- 

tion by giving a historical overview of developments in seasonal adjust- 

ment, and by relating these to developments in time series analysis. We 

shall see that seasonal adjustment was initially developed in the 1920's 

and 1930's as a tool for the analysis of seasonal economic time series 

in the absence of suitable statistical models for such series. The 

methods were developed empirically using tools such as moving averages. 

Adequate models for seasonal series were not used until the 1950's, and 

did not come into widespread use until after the publicaton of the time 

series book by Box and Jenkins in 1970, and the subsequent development 

of computer software for time series modeling. 
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In the 1950's, Julius Shiskin started doing seasonal adjustments on 

electronic computers at the Census Bureau, which permitted the adjust- 

ment of large numbers of time series. This also marked a transition for 

seasonal adjustment from a tool used by analyzers,of data to a require- 

ment of data publishers. 

As time series models and related computer software have become 

widely used in recent years, seasonal adjusters have looked to time 

series modeling to solve some of the problems in seasonal adjustment. 

This has led to approaches such as the X-11 ARIMA method and various 

model-based methods that have been developed. However, considering that 

seasonal adjustment developed as an analysis tool in the absence of 

suitable models for seasonal time series, and that it is now possible to 

adequately model many seasonal time series, then it is not clear what is 

gained in general by seasonal adjustment. The use of models in connec- 

tion with seasonal adjustment raises questions about whether seasonal 

adjustment should be done at all. 

This leads us in Part II to investigate the reasons for seasonal 

adjustment. In our view, reasons that have been given in the past for 

seasonal adjustment have tended to be too vague. We suggest that con- 

sumers of adjusted data should be concerned that simplifications result- 

ing from seasonal adjustment should not be at the expense of a signifi- 

cant loss of information. Seasonally adjusted data is useful to the 

statistically unsophisticated user only if information loss is small. 

We review the literature related to information loss in the seasonal 
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adjustment process and contend that the results to date are inconclu- 

sive, and that more research into this area is desirable. 

Since the question of whether or not to do seasonal adjustment is a 

difficult one, and since seasonal adjustment is presently a requirement 

of data publishers, we also consider how one should do seasonal adjust- 

ment given that it is desirable. Methods of seasonal adjustment are 

determined by the assumptions made, explicitly or implicitly, about the 

components. We thus argue that it is essential to rigorously define the 

components being estimated. This has not been done in the past. We 

present an approach to defining the components and attempt to justify 

our definitions. A rigorous definition of the components makes it 

possible to critically examine the assumptions underlying an adjustment 

method, and :o coaparc t& diEfer&nces in assumptions for different 

methods. 

Finally, we discuss the evaluation of seasonal adjustment proced- 

ures. Reviewing approaches that have been suggested, we argue that 

empirical comparisons based on criteria for a "good" adjustment are for 

the most part useless in evaluating competing methods. We recommend 

examining the assumptions underlying adjustment methods, which must 

remain subjective to an extent, but which can be partially checked . 

against the data. We therefore believe the most important criterion is 

that a seasonal adjustment method be consistent with the information 

about seasonality present in the data being adjusted. We present an 

approach to assessing whether or not this is the case. 
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We emphasize to the reader that we will not attempt to answer all 

the questions involved with seasonal adjustment. Many of the issues 

involved are complex, some are nonstatistical, and there will always 

remain some arbitrary elements. However, we do feel that insufficient 

attention has been paid to several of these issues. We hope to shed new 

light on some of them, and perhaps most importantly, to stimulate fur- 

ther discussion and research ultimately leading to a better understand- 

ing of seasonal adjustment. 

Preliminaries 

Seasonal adjustment involves the decomposition of an observed time 

series, Z,, into unobserved seasonal and nonseasonal components,. St and 

Nt' The underlying decomposition is usually viewed as either additive, 

Zt = St + Nt or multiplicative, Z, = St l N,, By taking logarithms the 

multiplicative decomposition becomes additive, thus for the purpose of 

analysis, we shall use the additive decomposition. The nonseasonal 

component can be further decomposed into trend and irregular components 

if desired, however we shall not consider this decomposition for reasons 

of simplicity. 

Many approaches to seasonal adjustment use symmetric moving aver- 

ages in estimating St and Nt. A symmetric moving average of Zt (of 

length 2M+l) is (2M+l)'l 
M 

or more generally 1 a Z 
j=-M j t+j (some- 

times called a weighted symmetric moving average), where a 
j 
= a 

-j 
and 

j=-M 
aj ‘= 1. In estimating St it is relevant to use seasonal moving 
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averages which use only values of a time series for the same calander 

month. For t near enough to the end of the observed data so that not 

all of Z t+j in !i! 
j=-M 

Oj Zt+j are available, either an asymmetric 

(aj f a-j) moving average is used, or the data are augmented with fore- 
b 

casts so that the symmetric moving average may be used. 

We shall use the seasonal autoregressive-integrated-moving average 

(ARIMA) time series model (Box and Jenkins 1970) 

(1-QIBS-... -OpBSP) (l-$lB-... -0pB') (1-Bd) (l-BS)D Zt = 

(l-elB-... -eqBq) (l-C)lBs-...-og~SQ) at 

or @(B') 4(B) (l-B)d (l-Bs)D Zt = 8(B) O(B') at' 

.Here B is the backshift operator (B Zt = ZtB1), the seasonal and nonsea- 

sonal AR operators, Q(B') and O(B), have zeroes outside the unit circle, 

the seasonal and nonseasonal MA operators, O(B') and 9(B), have zeroes 

outside or on the unit circle, and the at 's are independent and normally 

distributed with zero mean and variance (3:. For short, we will write 

this as 4*(B) Zt - e*(B) at, where (p*(B) = @(B') 4(B) (l-B)d (l-Bs)D, 

8*(B) = 8(B) O(B'). We will assume that we are dealing with monthly 

time series so that s = 12; however, our remarks apply equally well to 

other seasonal periods such as quarterly (s-4). 

When Z, follows the ARIMA(p,d,q)x(P,D,Q)12 model given above, its 

spectral density, fZ(X), is given by * 
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CT 
fZO) = 

,’ 5*(eix) B*(e”‘) 

2n +*(e") @*(emi') 
x E: [-n,n] 

a2 
a = 

2n lT(eix)II(emi") 
where 

~0) = G*(B)/e*(B). 

The model II(B)Zt = ,"; njzt-j = at is the infinite autoregressive form 

of the ARIMA model. Strictly speaking, fZ(X) above is not correct when 

d > 0 or D > 0, since then Zt is nonstationary and does not have a 

spectral density. However, fZ(X) as defined above is still useful in 

theoretical manipulations if one is careful to make sure the end results 

are correct. In particular, spectral densities defined in this way are 

useful in doing signal extraction, wnich is used in model-based seasonal 

adjustment. Bell (1984) discusses the assumptions under which such 

results are correct. 

Notice that f,(X) given above is well-defined (even when d > 0 or 

D > 0) for all A E [-x,r] except for X = 0, and for the seasonal fre- 

quencies X - ksr/6 k = &l,...,f6. The denominator in fZ(A) is zero for 

these X, and at these values we will define fZ(h) to be + =. 

Our use of ARIMA models in this discussion of seasonal adjustment 

does not imply that we could not have used other types of time series 

models. ARIMA models are widely used and are convenient for our pur- 

poses, but our comments would generally apply with other types of time 

series models. We are more interested in drawing distinctions between 
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time series modelling and seasonal adjustment than between different 

approaches to time series modelling. 

PART I: Historical Perspectives 

To investigate the first question posed earlier, it is useful to 

examine the historical development of both seasonal adjustment and of 

time series analysis. By comparing the development of both, we can see 

how seasonal adjustment and time series analysis dealt with various 

problems presented by economic time series, and why historically sea- 

sonal adjustment might have been preferred to other methods of analysis. 

We shall also review model-based adjustment methods to see why empirical 

methods of adjustment may have been preferred to these, and to under- 

stand what recently proposed model-based methods may have to say about 

seasonal adjustment today. 

In considering the historical development of seasonal adjustment, 

we must admit that tradition doubtless played an important role. Many 

seasonal adjusters, even to present times, may have studied unobserved 

components in time series because this was the traditional approach, and 

may not have worried about whether techniques other than seasonal ad- 

justment might better serve their ultimate objectives. To shed some 

light on issues surrounding seasonal adjustment today, we will examine 

what options were available to early seasonal adjusters and ask how the 

choices made among available methodologies could have been justified, 

though these alternatives may not have been seriously considered by some 

people. 
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1. Historical Development of Seasonal Adjustment 

This discussion of developments in seasonal adjustment concentrates 

on work done in the United States. This is partly justified by the fact 

that the Census X-11 seasonal adjustment method is today the most widely 

used method; therefore, it is relevant to look at the progression of 

events leading up to X-11, most of which took place in the U.S. Baron 

(1973) and Burman (1979) discuss seasonal adjustment methods used in 

other countries, and Dagum (1978) and Nerlove, Grether, and Carvalho 

(1979) give historical dis&ssions of seasonal adjustment from somewhat 

different points of view than the one given here. Pierce (1980a) dis- 

cusses recent work in seasonal adjustment. 

Nerlove, Grether, and Carvalho (1979) point out that the idea that 

an observed time series comes from several unobserved components is an 

old one that came originally from astronomy and meteorology and became 

popular in economics in England during the period 1825-1875. They also 

-give an extensive discussion of the work of Dutch meteorologist Buys 

Ballot (1847), who is frequently cited as an early seasonal adjustment 

reference. For our purpose, it is appropriate to begin our survey 

somewhat later. 

1920's and 1930's 

. 
There was a substantial amount of work on seasonal adjustment in 

the 1920's and early 1930's, much of it inspired by the work of Persons 

(1919). He viewed time series as being composed of (i) a long-time 

tendency or secular trend, (ii) wave-like or cyclical movements, (iii) 
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seasonal movements, and (iv) residual variation. He presented a method, 

called the link-relative method, for isolating the components, and used 

detrended and seasonally adjusted data to construct business indices. 

For a concise description of Person's method see Persons (1923, p. 714- 

716). Persons was not the first to do seasonal adjustment or to specify 

the four basic components; ' however, he may have been the first to come 

up with a method that people felt could adequately decompose economic 

series. At any rate his work led to an explosion of interest in sea- 

sonal adjustment. 

Several important concepts regarding seasonal components and ad- 

justment became fixed in the 1920's and early 1930's. These included 

(i) the idea that seasonality changes over time, (ii) the need to ac- 

count for trends and cycles when estimating the seasonal component, 

(iii) the impossibility of describing trends and cycles by explicit 

mathematical formulas, and (iv) the need to deal with extreme observa- 

tions. 

Changing seasonality was noted as early as 1852 by Gilbart (1852, 

quoted by Kuznets 1933), who found it in the circulation of bank notes. 

Persons (1919, p. 19), observed that, "Although we wish to ascertain if 

a systematic variation exists it is not accurate to think of seasonal 

variation (or, for that matter, the other types of fluctuations) as 

being exactly the same year after year." However, Persons used fixed 

seasonal factors when adjusting, probably because he did not see a 

convenient way to produce varying seasonal factors. According to King 

(1924), the first to adjust data with varying seasonal factors were 
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Sydenstricker and Britten of the U.S. Public Health Service, while 

investigating causes of influenza. Their graphical method is briefly 

described in Britten and Sydenstricker (1922). King (1924) modified 

Sydenstricker and Britten's method, retaining Lome graphical elements, 

but also using moving medians (taking the median of successive sets of 

2M+l data points) and reemphasized the need to account for changing 

seasonality. Snow (1923) suggested fitting straight lines to each 

quarter (or month) separately, and checking for varying seasonality by 

examining the lines to see if they were parallel. Crum (1925) gave a 

general discussion of varying seasonality and modified Person's link 
. 

relative method to handle changing seasonality. Other methods of deal- 

ing with changing seasonality were suggested by Hall (1924), Gressens 

(1925), Clendenin (1927), and Joy and Thomas (1928). Kuznets (1932) 

suggested a method to detect and adjust for changes in seasonal ampli- 

tude from year to year assuming the seasonal pattern remained constant. 

Mendershausen (1937) reviewed efforts made to that time to deal with 

changing seasonality. 

The early writers discovered it was necessary to adjust data for 

the effects of trend before, or at the same time as, estimating the 

seasonal.2 We will refer to this problem as nonseasonal nonstation- . 

arity. Several different approaches to this problem were used. Some 

authors made simple transformations of the data to remove trend, then 

obtained seasonal estimates and converted these to estimates of seasonal 

effects' in the original series. In this group Persons (1919) took the 

ratio of each monthly value to the preceeding value ("link relatives"), 
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and Robb (1929) took second differences of the original data. Other -. 

authors estimated trend first and then removed it, usually by division, 

. I.e., Zt/Tt - the "ratio to trend" approach. Here Falkner (1924) used a 

straight line trend, Ring (1924) a trend curve drawn freehand, and Joy 

and Thomas (1928) and Macauley (1931) used moving average trend esti- 

mates ("ratio to moving average*' method). Carmichael (1927) suggested a 

hybrid approach, taking first or second differences of the ratio of the 

data to a trend estimate. Finally, some authors (Snow 1923, Clendenin 

1927) estimated the trend separately for each series of values for a 

particular calendar month to simultaneously get at both trend and sea- 

sonality. 
a 

Although there was initially some use of specific trend functions 

such as the linear trends of Snow (1923) and Falkner (1924) mentioned 

above, by the 1930's it was generally felt that one' should not specify a 

functional form for the trend. The prevailing attitude was reflected by 

Macauley (1931 p. 38): "The type of smooth curve which might be ex- 

pected to appear in any particular time series if the series were unaf- 

fected by the minor or temporary factors which give rise to seasonal and 

erratic fluctuations is not necessarily representable throughout its 

length by any simple mathematical equation." Thus, it was natural for 

Macauley and others to consider using moving averages and actuarial 

graduation formulas to obtain trends, rather than using explicit func- 

tions of time. 

Finally, there was concern about the influence of extreme observa- 

tions. For example, Falkner (1924, pp. 168-169) objected to the use of 
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monthly means in seasonal adjustment primarily for this reason, stating 
- 

that, "The arithmetic average is peculiarly subject to extreme items, 

and it is for that reason that a monthly seasonal index obtained by this 

method may be governed more by an exceptional irregular deviation than 

by the systematic seasonal movement." Concern about the effects of 

outliers led Persons (1919) and others to use medians instead of means 

in deriving seasonal factors (some replaced moving averages by moving 

medians). Crum (1923a) suggested using medians or trimmed means, and 

Falkner (1924) and Joy and Thomas (1928) also advocated the use of 

trimmed means. These trimmed means involved considerable trimming, the 

mean being computed using as few as two or three observations. Although 

the need to deal with extreme observations was established early, the 

problem of how to do it has continued to the present day. 

Impact of Computers on Seasonal Adjustment 

The next major development in seasonal adjustment did not come 

until 1954 when Julius Shiskin started doing seasonal adjustments 

(Method I) on the Univac 1 computer at the Census Bureau (see Shiskin 

1957 and 1978). Method II was introduced in 1955, with successive 

variants continuing through the development of X-11 in 1965 (Shiskin, 

Young, and Musgrave 1967). Soon after Shiskin's efforts in 1954, other 

organizations in the U.S. and abroad began using the Census method or 

developing their own computer methods. As a result of the interest in 

doing seasonal adjustment on electronic computers, in 1960 a conference 

on' the 'subject was held in Paris (O.E.C.D. 1960). 
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One of the objectives in doing seasonal adjustment on computers was 

to increase the number of series that could be adjusted. Shiskin (1957, 

p. 245) states that in 1954, "Principal users of current economic series 

-- for example, the chairman of the Council of Economic Advisers and the 

chief economist of the National Industrial Conference Board - com- 

plained that many of the monthly series published by the government were 

not adjusted for seasonal variations at all; that many others were 

adjusted by crude methods; and that for still others the seasonal ad- 

justments did not reflect the most recent experience." He further notes 

that this was, ". . .attributable primarily to the huge amount .of compu- 

tation required and to the large costs involved," and that, "The large- 

scale digital electronic computer has brought an end to this situation." 

.With electronic computers literally thousands of time series could be 

seasonally adjusted by government agencies. This had important implica- 

tions for the procedures that were developed. 7% c:Lculations required 

could now be complicated, but the amount of time that could be spent in 

determining how best to adjust each particular series was reduced. This 

was something of a reversal of the situation prior to computers. The 

adjustment methods that were developed (including X-11) were basically 

complex modifications of previously used methods that attempted to 

incorporate automatically, at least to a degree, the professional judg- 

ment that was previously required. This helped lend an air of objectiv- 

ity to the seasonal adjustment process, so that seasonal adjusters would 

not be,accused of tampering with the data, a consideration that has 

become even more important in recent years. In this respect, the situa- 
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tion today is much different from the 1920's when some people advocated 

free hand smoothing (e.g., King 1924) as part of their adjustment 

method. 

Another important development in seasonal adjustment methodology 

made easy by computers was the use of regression techniques to account 

for trading day variation. Important work on this was done by Eisen- 

press (1956), Marris (1960), and Young (1965), whose approach was incor- 

porated into the X-11 program. Before this work adjustments for trading 

day effects were generally based on a priori evidence or opinions about 

the proportion of activity occurring on each day of the week. Young 

(1965) discusses some of the difficulties with such an approach. Holi- 

day effects are important in some series and have been considered for 

many years: see, for example, Joy and Thomas (1927) and Homan (1933). 

However, even today adjustments for holiday effects tend to be made on 

an ad-hoc basis, although recently Hillmer, Bell, and Tiao (1983) have 

suggested a modeling approach to dealing with holiday effects in sea- 

sonal adjustment. 

Recent Developments 

In recent years there have been many attempts to improve the sea- 

sonal adjustment process. The most important recent development is the 

X-11 ARIMA method of Dagum (1975), which involves forecasting the data 

one year ahead using an ARIMA model. The forecasted values are used as 

if they were actual data so that the filters used in adjusting current 

data are closer to the symmetric filter that will eventually be used 
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when more data are available. Similar approaches using autoregressive 

models have been investigated by Geweke (1978a) and by Kenny and Durbin 

(1982). The idea of foricasting the series for this purpose is not new; 

it was recommended by Macauley (1931, p. 95-96). Statistics Canada and , 

the U.S. Federal Reserve Board use X-11 ARIMA. Also, in the U.S. the 

Bureau of Labor Statistics uses it on many of their series and the 

Bureau of Economic Analysis on some of their series. It remains to be 

seen what action the Census Bureau will take. Eventually (typically 

after 3 years) the X-11 ARIMA adjustments converge to the X-11 adjust- 

ments, so that discussion of the characteristics of X-11 is relevant to 

X-11 ARINA as well. 

2. Historical Development of Time Series Analysis and its Relation to 
Seasonal Adjustment 

In considering historical developments in time series we are inter- 

ested in the question of why people used seasonal adjustment as an 

analysis technique rather than other time series methods. The develop- 

ments mentioned here were chosen with this in mind. We concentrate on 

relevant developments in time series modeling, but also mention some 

important developments in spectral analysis and signal r7xL::.'(:tion. 7'1 

reviewing the history of time series analysis it is useful to keep in 

mind the following essential problems presented by data being seasonally 

adjusted: (i) changing seasonality, (ii) nonseasonal nonstationarity 

(trends and cycles), (iii) the impossibility of describing seasonality, 

trends, and cycles by simple mathematical functions of time, and (iv) 

outliers. 

, 
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Time Series Nodeling 

The first important developments in time series modeling were the 

introduction in 1927 of autoregressive models by Yule and of moving 

average models by Slutsky. Yule (1927) discussed properties of autore- 
. 

gressive models, introduced partial autocorrelations, and fit low order 

models to Wolfer's annual sunspot series by least squares. In his 1927 

paper, Slutsky (see 1937 translation) introduced moving average models 

and investigated how these models could lead to cyclical series. 
9 

Wold (1938) was the first to fit moving average models to data. He also 

introduced the important innovations representation for stationary 

series and solved the prediction problem. 

During the 1940's progress was made in the area of inference for 

time series models. Mann and Wald (1943) derived asympotic theory for 

parameter estimation in autoregressive models. Champernowne (1948) 

suggested the use of least squares estimates for autoregrzszi-T.2 z?tl; 

and autoregressive models with regression terms, although he did not 

derive properties of the estimators. Cochrane and Orcutt (1949) sugl- 

gested autoregressive filtering or differencing of the dependent and 

independent variables when using a regression model with autocorrelated 

errors. The asymptotic theory for sample autocorrelations was developed 

by Bartlett (1946) and Moran (1947). 

Whittle (1952) seems to have been the first to use high lags in 

time series models to account for seasonality, Using a‘model dis- 

crimination procedure he arrived at a model of the form Zt - $lZ,,l - 

+2zt-2 - +fJz,-8 = at for the Beveridge wheat price series. In Whittle 
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(1953a, 1954a) he used the model Z, - $lZ,-1 - +22Zt-22 for 6 month sun- 

spot data with a cycle of 22 periods. About the same time, Whittle 

(1953a, 1953b) derived properties of approximate maximum likelihood 

parameter estimates for a general model that includes autoregressive- . 

moving average models as a special case. He then (Whittle 1954b) ob- 

tained results for simultaneous estimation of regression and time series 

parameters. In an effort to find simpler procedures than Whittle's, 

Durbin suggested another approach and obtained results for moving aver- 

age models (1959), models with regression terms and autoregressive 

errors (1960a), and mixed autoregressive-moving average models (1960b). 

Walker suggested still another approach and obtained results for moving 

average (1961) and autoregressive-moving average (1962) models. 

More recently, the publication of the book by Box and Jenkins 

(1970) and the development of suits&L computer software has led to a 

growing popularity and widespread use of ARIMA models in the analysis of 

time series data. ARIMA models use nonseasonal and seasonal differenc- 

ing to deal with nonseasonal and seasonal nonstationarity. While dif- 

ferencing had been suggested many years before in other contexts by 

Carmichael (1927), Robb (1929), and many others (e.g., the literature c:: 

the "variate-difference method," see Tintner 1940), and seasonal differ- 

encing was even considered by Yule (1926), Box and Jenkins popularized 

it as part of a modeling procedure for nonstationary series. Also, for 

ARIMA models to be useful in the analysis of seasonal time series, lags 

._ as high as the seasonal period are needed. Other than Whittle's at- 

tempts in the 1950's, this type of model was not widely used. Box and 
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Jenkins' introduction of the multiplicative seasonal model was important 

because it provided a representation involving relatively few parameters 
. 

which was a good approximation for many seasonal time series. 

Finally, approaches to handling outliers when modeling time series 

have been presented by Fox (1972), Abraham and Box (1979), Denby and 

Martin (1979), Martin (1980), and Chang (1982) (see also Hillmet, Bell, 

and Tiao 1983). For outliers with an assignable cause the intervention 

analysis of Box and Tiao (1975) is relevant. Historically, outliers 

would have presented more of an obstacle to time series modeling than 

they do today, although for series with no serious outliers this would 

not have been a problem. Still, more work needs to be done on outliers 

both for time series modeling and seasonal adjustment. 

Spectral Analysis 

Spectral analysis actually became available before time series 

modeling and the work on seasonal adjustment discussed earlier, with the 

introduction of the periodogram by Schuster (1898). Since spectral 

analysis can be used to look for periodic components in time series it 

would seem to be useful to investigators of economic cycles. Beveridge 

(1921, 1922) in fact used the periodogram to look for cycles in a de- 

trended series of wheat prices. Fisher (1929) suggested a significance 

test for detecting periodicity in a time series. Daniel1 (1946), Bart- 

lett (1950), and Tukey (1950) suggested smoothed periodogram spectral 

estimators, and many other spectral'estimators have been developed since 

then. Also, spectral analysis has become more prZctica1 in recent years 
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with the advent of electronic computers and improved computational 

techniques, especially the Fast Fourier Transform (Cooley and Tukey, 

1965). Spectral analysis for nonstationary time series has been inves- 

tigated by Priestly (1965) and Hatanaka and Suzuki (1967). For a more , 

extensive historical survey of spectral analysis see Robinson (1982). 

Despite Reveridge's work, spectral analysis was not widely used on 

economic time series in the early days of seasonal adjustment. One 

problem, as noted by Kendall (1945), was that people used the periodo- 

gram to look for exact periodicities but economic cycles are not exactly 

periodic. This problem was overcome with the development of improved 

spectral estimators and a better understanding of spectral analysis. A 

more permanent problem was identified by Crum (192313) who criticized use 

of the periodogram on economic series. saying that seasonality influences 

the appearance of cycles in the periodogram making them more difficult 

to detect (Crum advocated seasonal adjustment). In modern terms this is 

known as "leakage." A typical approach today to doing spectral analysis 

with seasonal series is to remove or reduce the seasonal effects by 

prefiltering the data, which leads right back to seasonal adjustment. 

Signal Extraction 

The signal extraction problem is to estimate the signal St in Zt = 

St + Nt when the observations Zt contain “noise" Nt. Kolmogorov (1939, 

1941) and Wiener (1949) independently solved this problem for stationary 

time series, obtaining it to minimize E[(St - it)2] for any linear func- 

tion, St, of the observations Zt . Hannan (1967), Sobel (1967), Cleve- 



- 21 - 

land and Tiao (1976)) and Bell (1984) have extended this result to 

nonstationary time series. Identifying St and Nt as the seasonal and 

nonseasonal components, signal extraction can be used, in conjunction 

with suitable models for Zt, St, and N,, to do seasonal adjustment. , 

This approach has been taken in recent years by a number of authors, 

whom we discuss in the next section. 

3. Model-Based Seasonal Adjustment 

Some early authors criticized the popular empirical approaches to 

seasonal adjustment. For example, Snow (1923, p.334) criticized the 

approach of Persons by saying, "The method of allowing for seasonal 

variations seems cumbersome and the logic of it is not clear." Also, 

Fisher (1937, p.179) said "To the student of mathematics it appears 

strange that economists and statisticians have adopted such rather 

primitive methods in measuring seasonal variations when, as a matter, of 

fact, more elegant and also more practical mathematical tools, requiring 

. 
a far smaller amount of tedious arithmetical calculations than the 

methods of the gifted academic schoolmen, have been available for more 

than half a century." (The more elegant and more practical tools he 

refers to are the orthogonal polynomials of J.P. Gram and the quasi- 

systematic error theory of T.N. Thiele.) This dissatisfaction with the 

empirical nature of many seasonal adjustment methods led these and later 

authors to investigate the use of time series models to do seasonal 

adjustment. We shall refer to such methods of seasonal adjustment as 

model-based methods. 
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Nodel-based methods of seasonal adjustment generally use an addi- 

tive decomposition, Zt = St + N,, or an additive decomposition for some 

transformation of Zt (such as InZ,), and use explicit statistical models 

(or spectral densities) for Zt, St, and N,. The model for Zt can be 

' estimated from observed data, but since St and Nt cannot be observed , 

their models depend on more or less arbitrary assumptions (see Part II 

of this paper). The various methods differ in the type of model fit to 

the observed Zt's and in the assumptions used in specifying models for 

St and N,. St and N, are estimated either directly when fitting the 

model for Zt (as in regression methods), or after fitting the model for 

Zt using signal extraction theory. 

Regression methods provided the first model-based approaches to 

seasonal adjustment. The basic approach consists of specifying func- 

tional forms for the trend and seasonal components which depend linearly 

on some parameters, estimating the parameters by least squares, and 

subtracting out the estimated seasonal component. The most popular 

specifications use polynomials in time for the trend component and 

seasonal means for a stable seasonal component (with modifications to 

handle changing seasonality). The error terms are generally assumed to 

be white noise, although Rosenblatt (1965) points out that the regres- 

sion residuals tend to be autocorrelated and this should be allowed for. 

Regression methods of seasonal adjustment have been proposed by 

Hart (1922), Snow (1923), Fisher (1937), Mendershausen (1939), Cowden 

(1942), Jones (1943), Hald (1948), Eisenpress (1956), Hannan (1960, 

lg63), Love11 (1963, 1966), Jorgenson (1964, 1967), Rosenblatt (1965)s 
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Henshaw (1966), and Stephenson and Farr (1972). These efforts seem to 

have had little effect on the way U.S. government agencies do seasonal 

adjustment. It may be that the regression approach was doomed from the 

start since it requires explicit specification of the mathematical forms l 

of the trend and seasonal components. We have indicated that as early 

as the 1930's seasonal adjusters felt that this could not be done effec- 

tively. 

Recently there has been considerable interest in using either 

stochastic models or spectral estimates to do seasonal adjustment by 

signal extraction. The first such model-based approach to seasonal 

adjustment was that of Hannan (1964), who filtered the data to remove 

trends and chose a model for the seasonal component consisting of. trigo- 

nometric terms at the seasonal frequencies multipled by independent time 

series following first order autoregressive models. These models were 

stationary, but the approach was extended to nonstationary (random walk) 

models by Hannan (1967) and Hannan, Terrell, and Tuckwell (1970), where 

the approach is described in detail (see also Sobel (1971)). The method 

required ad-hoc specification of the relative magnitude of the seasonal 

and nonseasonal spectral densities near the seasonal frequencies. 

Methods based on spectral estimation have been suggested by Melnick 

and Moussourakis (1974) and Geweke (1978b). Melnick and Moussourakis 

estimated the spectrum of the data after detrending it with a least 

squares straight line, and then empirically determined neighborhoods of 

' the seasonal frequencies that they assumed contained all the seasonal 

power. They used spectral ordinates outside these neighborhoods in 
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estimating the (detrended) nonseasonal spectrum within the neighbor- 

hoods, and thus obtained their seasonal adjustment filter. Geweke 

estimated the spectrum of the original data at the seasonal frequencies 

by the periodogram ordinates, and at other frequencies by smoothing the , 

periodogram while leaving out the seasonal ordinates. The spectrum of ' 

the nonseasonal was estimated by smoothing the periodogram with ordi- 

nates at and near the seasonal frequencies left out. He also used this 

approach with spectral density matrices to do multivariate seasonal 

adjustment via multivariate signal extraction - simultaneously season- 

ally adjusting several time series. 

Several authors have suggested seasonal adjustment methods which 

involve fitting an ARIMA model (possibly with deterministic terms) to 

zt' and using this alon g with some assumptions to determine models for 

St and Nt. Pierce (1978) suggested using ARIMA models and deterministic 

terms to allow for both stochastic and deterministic trends and season- 

ality. After estimating and removing the deterministic effects, he 

filtered the resulting series (e.g., by differencing) to remove stoch- 

astic trends and specified a seasonal ARMA (1,l) model for the filtered 

stochastic seasonal component when stochastic seasonality was present. 

This model was identified using assumptions including one that the 

variance of the seasonal be the minimum value consistent with the model. 

Wecker (1978) suggested an extension to Pierce's approach. Box, 

Hillmer, and Tiao (1978) started with the model (l-B)(l-B'2)Zt = 

(l-6 B)(l-8 
1 

B12) 
12 at 

and derived models for the seasonal, trend, and 

irregular components consistent with this overall model, using certain 
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assumptions including one that the variance of the irregular component 

should be maximized, which minimizes the variance of both the seasonal 

and the trend. This approach was later extended to more general ARINA 

models by Burman (1980) and by Hillmer and Tiao (1982), who discuss some , 
i 

. properties of the approach (see also Hillmer, Bell, and Tiao (1983)). 

Cleveland (1979) fit ARIMA models to the observed data after removing 

seasonal means and used simple ARIMA models for the components. He 

chose their moving average parameters to try to make these models ap- 

proximately consistent with the model for the original series (the 

autoregressive parameters are determined by assumptions). 

The preceeding methods all involved determining ARIMA models for 

the components and then using signal extraction theory to estimate 

them. Brewer, Hagan, and Perazelli (1975) took a different approach, 

fitting an ARIMA model to Z,, and then decomposing interpolated values 

of Zt (estimates of Zt using the data other than the observation at t) 

into seasonal and trend-cycle components. This was done by considering 

a seasonal-trend-cycle-irregular decomposition of the filter that pro- 

duces one-step-ahead forecasts. A modification of this approach was 

later suggested by Brewer (1979). Roberts (1978a) suggested a related 

method where part of the fitted ARIMA model is identified as a seasonal 

adjustment filter. 

The final model-based approach we shall mention involves specifying 

parametric models for the components, which leads to a model for Zt 

subject to constraints. Estimating the model for Z, subject to the 

constraints also yields models for St and Nt, which can then be used to 
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. 

do seasonal adjustment by signal extraction. Engle (1978) used +RIMA 

models for the components, but found estimation of the model for Zt 

subject to the constraints to be computationally burdensome, so he 

relaxed some of them. Others used models for the components that made , 

the constrained estimation somewhat simpler. Abrahams and Dempster 

(1979) used fractional Brownian motion for the trend component and a 

modification of this for the seasonal.component. Fractional processes 

generalize the idea of differencing a time series to stationarity, thus 

providing a generalization of AEIMA models - see Granger and Joyeux 

(1980) for a discussion. Akaike (1981) took a smoothness priors ap- 

proach (related to that of Schlicht (1981)) which led to ANNA type 

models for the components, and used an information criterion to select 

from among alternative models. Kitagawa and Gersch (1983) further 

developed this approach, extending it to allow a wider variety of AEIMA 

type component models. 

4. Summary and Conclusions 

Seasonal adjustment originally developed in the early part of this 

century out of a tradition of looking for unobserved components in time 

series. Early seasonal adjusters found that their time series contained 

nonstationary trends and changing seasonality, and that this behavior 

could not be described by explicit mathematical functions of time. They 

empirically developed seasonal adjustment methods using such tools as 

moving averages to deal with these problems. Some early authors criti- 

cized the empirical nature of the early adjustment methods. However, 
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time series models capable of dealing with the series being adjusted 

were not available at that time, thus, early attempts at modeling and 

model-based adjustment failed. 

In the 1950's Whittle began using models suitable for the sort of , 

time series being seasonally adjusted. Widespread use of such models 

followed the publication of the book by Box and*Jenkins in 1970. While 

these models were being developed, government agencies started using 

electronic computers to seasonally adjust large numbers of time series. 

This made model-based methods impractical by comparison, at least until 

the recent development of computer software for use in modeling time 

series. 

Whereas seasonal adjustment was originally done as part of the 

analysis of time series data by statisticians and econoafsts, ccT:>:i";or- 

ized seasonal adjustment has come to serve the needs of political offi- 
e 

cials, business managers, and journalists - largely a statistically 

unsophisticated group with little interest in time series modelling. 

Also, the responsibility for performing seasonal adjustments has shifted 

from the analyzers of the data to the publishers of the data. L 

In recent years with the further development of time series models 

and associated computer software, seasonal adjusters have looked to time 

series models to improve seasonal adjustment methods. Examples are the 

X-11 ARIMA method, which is now being used by several government agen- 

cies, and the recently proposed stochastic model-based methods. How- 

ever, we shall see in the next section that if one can model a time - 

series, then it is not clear what is gained by arbitrarily decomposing 
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the series into seasonal and nonseasonal components. Thus, the use of 

modeling in connection with seasonal adjustment raises the basic ques- 

tion of why seasonal adjustment should be done at all. 

Part II Current Issues in Seasonal Adjustment. 
l 

While seasonal adjustment has become a well-established practice 

for historical reasons discussed ,in part I, we feel it is time to take a 

fresh look at seasonal adjustment and seasonal adjustment methods. 

Thus, in part II, we will address the second and third questions listed 

in the Introduction - those regarding the why and how of seasonal ad- 

justment today. We will not dwell on technical details but rather hope 

to stimulate discussion about some of the broader issues. We will 

express some of our own opinions about the issues raised and attempt to 

provide the reasoning which shaped our opinions. Our hope is not that 

everyone will agree with our opinions, but rather that readers will see 

that there are a number of important issues which require extensive 

thought and discussion before they can be satisfactorily resolved. 

5. Reasons for Seasonal Adjustment 

In Part I, we noted that seasonal adjustment was developed in the 

1920's and 1930's as a tool for analyzing seasonal economic time series 

in the absence of suitable statistical and economic models for such 

series. In recent years, as new modeling procedures have become avail- 

able, the reasons for doing seasonal adjustment have become less clear. 

Reasons that have been given for seasonal adjustment have typically been 

rather vague, but seem to follow three main themes: (i) to aid in doing 
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short term forecasting, (ii) t o aid in relating a time series to other 

series, external events, or policy variables, and (iii) to achieve 

comparability in the series values from month to month. 

Shiskin (1957, p. 222) argues that adjusted data are useful in 

short term forecasting when he says .- . 

A principal purpose of studying economic indicators is to determine 
the stage of the business cycle at which the economy stands. Such 
knowledge helps in forecasting subsequent cyclical movements and 
provides a factual basis for taking steps to moderate the amplitude 
and scope of the business cycle. 

He goes on to say that knowledge of the seasonal pattern in sales of 

products ". . . is needed by all companies to determine the level of 

production that is most efficient . . ." and suggests forecasts of a 

series can be obtained by taking forecasts of annual totals and allocat- 

ing these to months in proportion to the seasonal factors. Burman 
c 

(1980) says that the most common purpose of seasonal adjustment ". . . 

is to provide an estimate of the current trend so that judgmental short- 

term forecasts can be made." 

Several authors have argued that seasonal adjustment is useful 

because seasonality in a series can obscure the relationships between 

the time series and other series, external events, or policy variables. 

It is hoped seasonal adjustment will make these relationships easier to 

investigate, and in the case of relationships with policy variables, 

make them easier to exploit. With regard to using adjusted data in 

relating several series, Burman (1980) says that seasonal adjustment, 

II 
. . . may be applied to a large number of series which enter an eco- 

nomic model, as it has been found impracticable to use unadjusted data 
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with seasonal dummies in all but the smallest models . . ." Also, 

Granger (1978a) sees a possible advantage in that, '*By using adjusted 

series, one possible source of spurious relationship is removed." An 

example of the use of seasonally adjusted data to,examine the effect of 

external events on a series is provided by BarOn (1978), who relates 

several seasonally adjusted economic series to unusual external events. 

Finally, governments use seasonally adjusted data in setting policy i 

variables designed to control various aspects of their economies. 

According to Dagum (1978, p. lo), "The main causes of seasonality, the 

climatic and institutional factors, are exogenous to the economic system 

and cannot be controlled or modified by the decision makers in the short 

run." Thus, the nonseasonal component may be what can be controlled, to 

some degree, by government intervention, and so seasonally adjusted data 

are useful because'they ". . .provide the basis for decision making to 

control the level of the economic activities," (Dagum, 1978, p. 14). 

However, note that for some series, seasonality may also be control- 

lable. For example, the Federal Reserve Board has effectively removed 

seasonality from interest rates through monetary policy. 

The third reason given for seasonally adjusting data is that it 

makes values comparable from month to month. This may be true, but do 

we really want comparability, or should observations for different 

months be regarded differently? For instance, atmospheric temperature 

data are highly seasonal, but people seem comfortable With the original 

data. We suspect the desire for comparability has something to do with 
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the two points discussed above - forecasting series, and relating 

series to other series, external events, or policy variables. 

Justification for Signal Extraction 

. 
Seasonal adjustment may be viewed ad a signal extraction problem. . 

In both cases we observe Zt - St + Nt, where St and N, are unobserved 

components we wish to estimate using the observed series Zt. In signal 

extraction St and N, are "signal" and "noise", while in seasonal adjust- 

ment they are "seasonal" and "nonseasonal." Zt can be a transformation 

of the original series, such as the logarithm, in which case we can view 

the decomposition as multiplicative. To put the issues regarding justi- 

fication of seasonal adjustment in perspective, let us consider how one 

might justify doing signal extraction in general. That is, if we ob- 

serve Zt, why should we try to estimate St and N,? To answer this in 

any given situation, we must consider three basic questions: 

(1) Is there reason to believe the observed data Zt are generated 
as Zt = St + N,? 

(2) Given Z, - St + Nt, are we really interested in St and Nt, 

rather than Zt or something else related to Z,? 

(3) Given that we are interested in St and Nt, how can we estimate 

them? 

For signal extraction to be appropriate, we must be able to adequately 

answer these three questions. In conection with the third question, it 

should be- noted that standard signal extraction results on estimating 

the components require that the models for St and N, be known. 
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Much of the original motivation:~r studying signal extraction came 

from problems in the field of communidations engineering. In this field 

there are physical reasons which imply 4, = St + Nt (see for example, 

Section 7 of Chapter 13 in Blanc-LapWre and Fortet, 1965). Here St is ' 

an emitted signal, and the received@ignal, Zt, is corrupted by noise, 
L 

%' The problem is to produce an es&mate, St, as close as possible to 

the emitted signal St by attempting&o remove the noise Nt. It is 

obvious that in communications enginearing (1) the decomposition Zt = St 

+ N, makes sense and (2) the interest.& in the signal St rather than 

the observed data Zt. Furthermore,-zYa@orn (1962, pa 127) notes 

i. the model for Z, is calcuI&e&(or estimated) from observed 

data 

ii. the model for N, ". . . c&~~be'determined by using the same 

measuring device and the SW <observer . . . to make a series 

of measurements of any quantity whose value is known precisely, 

e.g., which equals zero be-i&e of the conditions of the exper- 

iment." 8 

Thus, the models for Zt and N,, and h&ce for St = Zt - Nt, can be ob- 

tained, so that standard signal extraotion results can be used to esti- 

mate the components. Therefore, theuse of signal extraction methods in 

communications engineering is sensibl& 

Consider now how seasonal adjustment of economic time series fits 

into the framework of the three questions. Question (1) can always be 

answered affirmatively, in tha; mathematically the decomposition Z, = St 

+ N, is always possible. Whether or not St was physically generated 
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this way, by certain economic forces generating St and Nt separately and 

then combining them (additively or otherwise) to get Z,, is another 

question. Some writers have regarded the seasonal, trend, and irregular 

components as arising from different economic factors. In particular, , 

Mendershausen (1937, 1939) advocated this point of view and attempted to' 

model seasonality in terms of meteorological and social variables. 

Factors generating seasonality in financial data are discussed in Board 

of Governors of the Federal Reserve System (1981). Trading day adjust- 

ments, as done today, provide a causal explanation for some of the 

seasonality in economic series. Also, the idea that the nonseasonal 

component is subject to control through manipulation of policy variables 

while the seasonal component is not, relates to the idea of St and N, 

being generated separately. However, today little emphasis is placed on 

physical causes when adjustment is actually done, so without physical 

justification we view the decomposition as a mathematical one. 

For seasonal adjustment, the answer to question (2) depends upon 

what the components will ultimately be used for and on our ability to 

precisely define the components. For instance, if the purpose is short 

term forecasting of Zt, then St and Nt are not of direct interest, and 

some would argue that seasonal adjustment is unnecessary. We shall 

argue in section 6 that the components have not been precisely defined. 

Lentil a more rigorous definition of the components is provided it is 

difficult to justify the proposition that the components are of interest 

as ends in themselves. 
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Question (3) is not difficult to answer if the components can be 

precisely defined. If not, it is difficult to construct estimators 

since we don't know what is being estimated. With precisely defined 

components, it seems logical to use signal extraction theory to estimate l 

them. 

Justification of Seasonal Adjustment 

We favor modeling series in terms of the original data, accounting 

for seasonality in the model, rather than using adjusted data. Others 

have voiced similar opinions. For example, Watts (1978) states ". . . I 

have yet to be convinced that seasonal adjustment is the best thing to 

do to a series. I believe, rather, that the aim of time series model 

building should be to develop forecasting models that yield white-noise 

residuals." Also, Roberts (1978b) says that ". . . it appears to me 

that seasonal adjustments can be only a source of trouble to a statis- 

tician interested in forecasting unadjusted values . . ." and ". . : 

surely the route to better scientific understanding is to incorporate 

the seasonality directly into multivariate models that are formulated in 

terms of unadjusted data so that the source, transmission, and effects 

of seasonal variations can be better understood." Some econometricions, 

see Crutchfield and Zellner (1963), Plosser (1978), and Wallis (1978), 

have argued that knowledge of a series' underlying economic structure 

can provide an understanding of the nature of seasonality in specific 

time series. This can permit the incorporation of seasonality directly 

into an economic model, eliminating the need to work with seasonally 
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adjusted data. In fact, Plosser (1978) argues that use of adjusted data 

could lead one to tisspecified models, misleading inferences about. 

parameters, and poor forecasts. 

In light of these remarks and the previous discussion, it is rele- 

vant to ask whether seasonal adjustment can be justified and, if so, 

how? It is important to remember that the primary consumers of sea- 

sonally adjusted data are not necessarily statisticians and economists, 

who could most likely use the unadjusted data, but people such as poli- 

ticians, business managers, and journalists, who often have little or no 

statistical training. We thus offer the following possible justifi- 

cation for seasonally adjusting time series. 

Seasonal adjustment is done to simplify data so they may be more 
easily interpreted by statistically unsspLL;ticated users, without 
a significant loss of information. 

We say "possible" justification because we believe its validity has not 

yet been established. The key phrase is "without a significant loss of 

information." Obviously, many people have found seasonally adjusted 

data to be simpler to use than unadjusted data, but to establish that 

the above justification is valid, we need to know that the amount of 

information lost in adjusting is not excessive in some appropriate 

sense. We believe that in general there will be some inforiation loss 

from seasonal adjustment, even when an adjustment method appropriate for 

the data being adjusted can be found. The situation will be worse when 

the seasonal adjustment is based on incorrect assumptions. If people 

will often be misled by using seasonally adjusted data, then, in our 

opinion, their use cannot be justified. 
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Loss of Information from Seasonal Adjustment 

There has been some work on the consequences of using seasonally 

adjusted data. It has concentrated on how seasonal adjustment affects 

(I) forecast accuracy and (ii) relating one series to another. 

Makridakis and Hibon (1979) forecast Ill time series by various 

methods and compared the overall accuracy of the forecasts produced by 

different methods. They used methods which handled seasonal series 

directly (such as ARIMA modeling), and nonseasonal methods applied to 

seasonally adjusted data. With these latter methods, forecasts were 

reseasonalized by applying seasonal factors. They used their own method 

?f seasonal adjustment which produced fixed seasonal.factors. Their 

results do not permit direct assessment of the effects of seasonal 

adjustment on forecast accuracy because (i) the forecast results for 

seasonal and nonseasonal series are not separated, and (ii) most of the 

methods used directly on the seasonal series were not used in nonsea- 

sonal form with the adjusted data. Still, they found the methods which 

used seasonally adjusted data did somewhat better than the methods which 

handled seasonality directly - including forecasting with ARIMA models. 

Their results may be influenced by their use of constant seasonal fac- 

tors, and by their use of measures of forecast accuracy that aggregate 

over series that differ in forecastibility (thus giving undue influence 

to series that are inherently difficult to forecast). 

Plosser (1979) forecast five economic time series with seasonal 

.ARIMA models, and forecast the X-11 adjusted series with nonseasonal 

ARIMA models. Instead of reseasonalizng the forecasts of the adjusted 

. 
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data, he converted the monthly forecasts to annual totals to compare 

forecast accuracy. He used fully revised seasonally adjusted values, 

which could favor the use of the adjusted data since they are obtained 

using future values of the series. He found the seasonal ARIMA models 

performed substantially better on two series, slightly better on-two 

series, and slightly worse on one series. These results seem to be 

inconclusive, since direct comparisons were not made in the Nakridakis 

and Hibon paper and Plosser examined only five series. 

However, there is an important aspect of forecasting not considered 

in these two studies. This is the estimation of forecast error vari- 

ances and the subsequent provision of confidence intervals for the 

future observations. There are well-established procedures for estimat- 

ing forecast error variances and getting forecast intervals when using 

ARIMA or other time series models (Box and Jenkins 1970, chapter 5). 

However, use of seasonally adjusted data in forecasting, whether the' 

forecasting is done formally through a model or informally, would seem 

to preclude estimation of forecast error variances and production of 

forecast intervals. This is obviously true for forecasting the unad- 

justed data, but it is also true if one wishes to forecast the adjusted 

data (though we question why anyone would want to do this). Future 

adjusted values depend on future seasonals'through the future unadjusted 

data, hence forecast error variances for adjusted data should allow for 

errors in forecasting the seasonal, and there is no way to get at this 

with adjusted data. These problems will not be solved if, as has been 

recommend.G, government agencies start publishing standard errors for 

__. -. 
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seasonally adjusted data, because it is not clear how to get from these 

to forecast error variances. 

Seasonally adjusted data have been used in relating time series, as 

in econometric modeling, presumably on the assumption that their use 

would eliminate the need to deal explicitly with seasonality in the 

model, without altering the relati$nships between the series. We now 

survey some of the work that has been done on the consequences of using 

adjusted data for this purpose. A more detailed discussion of some of 

this work is given by Nerlove, Grether, and Garvalho (1979, p.162-171). 

Love11 (1963, 1966) and Jorgenson (1964, 1967) investigated regres- 

sion approaches to seasonal adjustment and the appropriateness of sea- 

sonally adjusting time series before subsequently using them in a re- 

gression analysis. Love11 (1963) showed that prior adjustment by re- 

gressing the dependent and explanatory variables on seasonal dummy 

variables can be appropriate in that this gives the same results as 

including the seasonal dummy variables in a regression with the unad- 

justed data. He also noted that adjusting effectively uses up some 

degrees of freedom and that results with the adjusted data should be 

modified accordingly. Jorgenson (1964) discussed optimal (minimum mean 

squared error) estimation of the seasonal component (in 'a regression 

, model). Their subsequent papers (Lovell, 1966; Jorgenson, 1967) point 

out the interesting result that the optimal estimate of the seasonal 

component is not generally appropriate for adjusting series prior to 

relating them in a regression model. 
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Sins (1974) considered the estimation of a distributed lag relation 

between the nonseasonal components of two time series y and x, when they 

are observed with seasonal noise added. He observed that the estimated 

lag distribution can be biased (especially if a smooth, one-sided, 

rather than long, two-sided lag distibution is estimated) and that 

seasonal adjustment of both y and x by a linear filter that removes 

seasonality in x can reduce the bias. He constructed adjustment filters 

for this purpose, noting that official procedures (or seasonal differ- 

encing or removal of seasonal means) may not be suitable. He found if y 

and x are adjusted with different filters, then the bias may be reduced, 

but it may be made much worse, so it is usually safer to use the same 

filter on y and x. The exception to the rule occurs when the seasonal 

components of y and x are unrelated, in which case optimal (minimum mean 

squared error) adjustment of x alone will remove the bias. 

Wallis (1974) also observed that adjusting y and x with different 

filters can distort the lag relationships between them so that using the 

same filter is safer. He further observed that using the filter which 

reduces the residuals in the distributed lag regression of y on x to 
. 

white noise will produce efficient estimates, since this is the same as 

doing generalized least squares. He then used simulated time series to 

, verify his conclusions regarding the effect of seasonal adjustment on 

estimated relations between series, and also to check that a linear 

filter approximation to X-11 that he devised behaved similarly in this . 

respect to X-11 itself. 
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An additional point of interest was made by Granger (1978a). He 

showed that if the seasonal‘components of two series are correlated 

while the nonseasonal components are independent, then if both series 

are adjusted separately with linear filters, the adjusted series will be 

correlated. Thus, the adjusted series will exhibit a relationship even 

though the nonseasonal components are unrelated. 

Newbold (1980) illustrated some problems that can arise when relat- 

ing one adjusted series to another through a transfer function (distrib- 

uted lag) model. For his example, nonseasonal models were inadequate 

for his adjusted series and led to distortions in the estimated transfer 

function and noise models. He remedied these problems by putting "anti- 

seasonal" terms (leading to negative correlations at seasonal lags) in 

his model to correct for this. His example illustrates that it is 

dangerous to assume, at least without checking, that nonseasonal models 

will be appropriate for seasonally adjusted data, and he shows how one 

might proceed when a nonseasonal model is inappropriate. 

From these studies we might conclude that it is hard to say what 

effect using seasonally adjusted data has on forecast accuracy. How- 

ever, seasonally adjusted data has a severe disadvantage in forecasting 

in that its use prevents estimation of forecast error variances and 

production of forecast intervals, something wh.tch can be done with the 

unadjusted data. Adjusted data can be useful in relating series; here 

it is usually safer to use the same adjustment filter on all series, 

unless the seasonal components of the series are known not to be re- 

lated. Sims (1974) and Uallis (1974) offer guidance here, the latter 
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pointing out in a footnote that using X-11 (With standard options) on 

all series is close to using the same linear filter on all of them. 

However, it should be kept in mind that the simplicity of using adjusted 

data is bought at some risk of biased or inefficient estimation of 

relationships between series, that degrees of freedom need to be modi- 

fied if adjusted data are used, and that, as illustrated by Newbold 

(1980), even the simplicity of adjusted data is.sometimes, illusory. 

6. Defining the Components 

It is surprising to us that so many people have provided estimates 

of seasonal, trend, cycle, and irregular components without bothering to 

define what it was they were estimating. Statements that have been made 

as to what the components are have tended to be vague - really being 

descriptions rather than definitions. For example, Falkner (1924) said, 

"Sea+sonal variation is that part of the fluctuation due to the persist- 

ent tendency for certain months of each year to be regularly higher than 

certain other months of the year . . ." and "Secular trend is the long- 

time tendency of the items of the series to grow or decline . . .I' 

Shiskin, Young, and Musgrave (1967) state that, "The seasonal component 

is defined as the intrayear pattern of variation which is repeated 

constantly or in an evolving fashion from year to year." Although few - 

would argue with these statements, they are certainly not enough to 

define what is being estimated. 

In, recent years, there have been efforts in the direction of more 

mathematically precise def.initions of the seasonal component based on 
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spectral considerations. The first of these was by Nerlove (1964) who 

defined seasonality as "that characteristic of a time series that gives 

rise to spectral peaks at seasonal frequencies." Granger (1978a) gave a 

reasonably precise definition of when a series is seasonal and when it 

is strongly seasonal. He suggested taking intervals of width 6 for some 

small 6 > 0) about the seasonal frequencies - 2rk km1 
12 s . . . . 6 and 

. 
defined a time series to be seasonal when its spectral density has peaks 

somewhere in these intervals, and strongly seasonal when the spectral , 

density integrated over all these intervals almost equals the integral 

of the spectral density over [0, IT]. The problem is that these defini- 

tions only tell us when a series has a seasonal component, not what the 

seasonal component is. 

In our opinion, it is essential that the component models be pre- 
n i“i *> 

cisely specified, for otherwise it is not'known ~~~~~1s being estimated 
. . 

in seasonal adjustment. We now present an approich to defining the 
c 

seasonal and nonseasonal components for the additive decomposition Zt = 

St + Nt' Zt -Y, of course be transformed data. We assume that trading 

day and other deterministic effects have been removed from Z,. The 

definitions of the components are based upon the following assumptions, 

grouped for purposes of discussion. 

Basic Assumptions 

1. Zt = St + Nt 

2 l * {St}, {I?,} are independent of each other3 



- 43 - 

Harmless Assumptions 

3. Zt follows a known ARIMA model $*(B)Z, = O*(B)at 

4. St follows an unknown ARIMA model I$~(B)S~ - OS(B)bt 

5. Nt follows an unknown ARIMA model $N(B)Nt = BN(B)ct 

6* s 
$ (B) and $(B) have no common zeroes 

A 

Arbitrary Assumptions 

7. d@B) = 1 + B + . . . + B1' 

8. the order of es(B) 5 11 

9. Ob2 = Var(bt) is as small as possible consistent with assump- 

tions l-8. 

Under these assumptions, the results of Hillmer and Tiao (1982) can 

be used to show that the models for St and N, are uniquely determined.4 

We then define the components St and Nt to be the unobserved time series 

satisfying these assumptions. This definition does not allow us to . 

exactly calculate St and Nt from Z,, nor should it, but it does tell us 

what models they follow, which allows us to use signal extraction theory 

to estimate them. We believe it is vital to discuss why it might be 

reasonable to make the above assumptions. 

The basic assumptions, 1 and 2, def he the problem. Someone who 

does not want to make these assumptions is working on a different prob- 

. 
lem. In 3, it is assumed that an ARIMA model can be built from the 

observed data to adequately approximate the covariance structure of 

Zt’ , This allows us to handle a wide range of time series since data 

that are seasonally adjusted can often be modeled with ARIMA models. A 
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larger class of models than pure ARIMA models is actually allowed, since 

it SS assumed that deterministic effects, such as trading day variation, 

have been subtracted out. With regard to assumptions 4 and 5, if Zt 

follows an ARIMA model, it seems harmless to assume that St and Nt also 

follow ARIMA models. For all the ARIMA models here, we assume the 

autoregressive and moving average polynomials for a given model have no 

common zeroes and the white noise series (at, b,, et) have zero mean and 

constant variance. If 6 does not hold, then the spectral densities of 

St and Nt will have peaks of similar intensity at the same frequency, 

which in our opinion seems unreasonable. 

Based on our experience with series that are seasonally adjusted, 

appropriate models for these series typically have 

$*(B) =I $(B)(l - B)d(l - B12) = r@(B)(l - B)d+l(l + B + . . . + Bl') 

where d 1 0 and $(B) is of low order in B (say < 3). Given assumptions 

1 'through 6, Findley (1982) has shown that $*(B) - $S(B) (PN(B), so that 

for the above Cp*(B) we let 

QS(B) = 1 + B + . . . + B= #N(B) - 4(B)(l - B)d+l 

which leads to assumption 7. 

Hillmer and Tiao (1982) show that our choice for 4S(B) leads to a 

spectral density for the seasonal having infinite peaks at the seasonal 

frequencies and relative minima between them. Also, 7 implies that 

summing St over 12 consecutive months produces a stationary series with 

mean zero, which is consistent with the general belief (as in X-11) that 
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(in an additive decomposition) the seasonal component should SUHI to 

something near zero over a year. The nonseasonal component will be 

nonstationary and its spectral density will have an infinite peak at 

zero frequency. Thus, in our view, assumption 7 leads to reasonable 

seasonal and nonseasonal component models. 

One issue that should be addressed in relation to the choice of 

autoregressive operators in assumption 7, is what to do with seasonal 

autoregressive operators. For models including a factor 1 - B12, we 

invariably find seasonal moving average terms to be more appropriate 

than seasonal autoregressive terms. We have modeled a few series with- 

12 out a 1 - B , 
12 

but with'a seasonal autoregressive operator, 1 - @12B , 

where $12 is not near 1. We have chosen not to adjust such series 

because the seasonal pattern of the data tends to change very quickly - 

the highest month could become the lowest month after four or five 

years. A similar choice was made by Hannan (1964). It is possible to 

make a different choice of gS(B) and still use the above framework if a 

set of rules replacing 7 for specifying $S(B) and $N(B) given Cp*(B) is 

provided. 

Hillmer, Bell, and Tiao (1983) note that 8 implies that the fore- 

cast function in the model for St follows a fixed annual pattern that 

sums to zero over 12 consecutive months. In contrast, if the order of 

es(B) exceeds 11, then the forecast function for the seasonal component 

will change its annual pattern. We believe the forecastable change in 

the seasonal pattern should be part of the trend, and hence in N,. 



- 46 - 

Given assumptions 1-8, Hillmer and Tiao (1982) show that ob2 must 

lie in some known range [Gb2, Zb2], and that the models for St and Nt 

are uniquely determined once a choice of u b2 is made. They call the 

decomposition corresponding to a ot in [zt, Zt] an admissible decomposi- 

tion, with corresponding admissible seasonal and nonseasonal components, 

and they call the decomposition corresponding to the choice ob2 = zb2 

the canonical decomposition. Thus, we have defined the seasonal com- 

ponent to be the canonical seasonal, St, corresponding to the choice 

2 -2 
ob = 'b ' 

The canonical nonseasonal, m,? is then 2, - 5,. Hillmer and 

Tiao (1982) show that choosing ob2 = 'Jb2 minimizes Var[(l + B + . . . + 

Bll)St], making the seasonal pattern as stable as possible. In addi- s 

tion, they show that for any other choice of ob2, the corresponding 

seasonal component, S;, can be written 

s; = St + et 

where et is white noise. Thus, any admissible seasonal is the sum of 
. 

the canonical seasonal, which follows as stable a pattern as possible 

and is as predictable as possible, and white noise, wh$ch is totally 

unpredictable and nonseasonal. We see no reason to add white noise to 

3, when defining the seasonal component. 

Assumptions l-9 lead to precise definitions of the seasonal and 

nonseasonal components. If we have built a model for the observed data 

z,, then once assumptions l-9 are made, we know the models for St and nt 

and can use signal extraction theory to estimate these components. This 

is the approach to seasonal adjustment taken in Burman (1980), Hillmer 
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and Tiao (1982), and Hillmer, Bell, and Tiao (1983). Of.-course, assump- 

tions other than l-9 can be made about St and N,, even while remaining 

consistent with the model for Zt; in particular, a choice of 

2 
'b 

in [Zb2, ib2] 
-2 

other than u 
b 

could be used. Different assumptions 

will lead to different definitions and models for the components which, 

when used in signal extraction theory, will lead to different methods of 

seasonal adjustment. 

This discussion points out the arbitrariness inherent in seasonal 

adjustment. Different methods produce different adjustments because 

they are making different assumptions about the components and, hence, 

are estimating diff&ent things. This applies even to methods (such as 

X-11) which do not make their assumptions explicit, since they must 

implicitly make the same sort of assumptions as we have discussed here 

(the assumptions implicit in additive X-11 with standard options are 

investigated by Cleveland and Tiao (1976) and-in Section 7.4). Unfor- 

tunately, there is not enough information in the data to define the 

components, so these types of arbitrary choices must be made. We have 

tried to justify our assumptions but do not expect that everyone will 

agree with them. However, if anyone wants to do seasonal adjustment, 

but does not want to make these assumptions, we urge them to make clear 

t what assumptions they wish to make. Then the appropriateness of the 

various assumptions can be debated. In our opinion this dialogue would 

be more productive than the current ongoing one regarding what seasonal 

adjustment procedure should be used, in which no one bothers to specify 

:- :..: r';l'r: .a ticin; estimated. Thus, if debate can be centered upon what it 
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is we--want to estimate in doing seasonal adjustment, then there may be 

no dispute about how to estimate it. 
\ 

7. Evaluating Seasonal Adjustments and Seasonal Adjustment Methods 

Given the arbitrary nature of seasonal adjustment, people have 

found it difficult to decide when a "good" adjustment has been done, or 

when one method is "better" than another. In this section we discuss 

the problems with approaches that have been used to evaluate adjustments 

and adjustment methods, including criteria for evaluating adjustments, 

simulation studies, and revisions comparisons. Finally, we make some 

suggestions as to how this subject might be approached. 

7.1 ‘Criteria for Evaluating Seasonal Adjustments 

Various criteria have been proposed for assessing the adequacy of a 

seasonal adjustment and for deciding when one method does a better job 

adjusting a series than another. Attempts at designing such criteria 

have failed so that today there are no accepted standards by which 

adjustments can be judged. 

Criteria proposed for evaluating seasonal adjustments have gener- 

ally reflected properties that were thought desirable for nonseasonal 

components. These have been phrased in both spectral and time domain 

terms. It was thought that a method performed adequately if the ad- 

justed series exhibited properties similar to those of the "true" non- 

seasonal component, and the performance of different adjustment methods 

has been compared based upon this belief. Unfortunately, although the 

suggested criteria may reflect desirable properties for the nonseasonal 



- 49 - 

component of a series, this does not mean that they reflect desirable 

properties for the adjusted series, which is an estimate of the nonsea- 

sonal component. Anderson (1927) emphasized long ago that the estimated 

components are not the same as the true components. Furthermore, even 

if models for Zt, St, and N, are known the true underlying components 

cannot be calculated, and the best estimates of the components will 

behave differently enough from the true components so as to make the 

criteria that have been proposed of little or no value in evaluating 

seasonal adjustments. To substantiate this, we cite two examples. , 

Nerlove (1964) suggested various spectral criteria that a "good" 

adjustment should satisfy, including (i) high coherence between original 

and adjusted series, except at seasonal frequencies, (ii) minimal phase 

shifts in the cross spectrum between the original and adjusted series, 

and (iii) removal of peaks at the seasonal frequencies in the spectral 

density of the original series, without producing dips at these frequen- 

cies or greatly affecting the spectral density at other frequencies. 

Subsequently, Grether and Nerlove (1970) investigated empirically (by 

simulating series from known component models) and theoretically the 

performance of the optimal (minimum mean squared error linear) method of 

adjustment. They discovered that the optimal method did not look good . 

in terms of these criteria. It reproduced all the undesirable features 

that Nerlove (1964) noted for X-11. Since the minimum mean squared 

error linear estimator is a reasonable choice if it is available, they 

concluded the criteria in Nerlove (1964) left much to be desired. 
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As a second example, Granger (1978a) reviewed some criteria which 

could be used for evaluating adjustments, including (i) and (iii) of 

Nerlove (1964) which he referred to as "highly desirable." In their 

discussions of Granger's paper, both Sims (1978) and Tukey (1978) show 

that the spectral properties he suggested have unreasonable parallels in. 

other situations and that the minimum mean squared error linear adjust- 

ment need not satisfy these properties. ' Granger (1978b) then re- 

sponded, "The criteria I suggested have been shown to be impossible to 

achieve in practice, and thus, should be replaced by achievable kri- 

teria. However, I am at a loss to know what these criteria should be." 

We believe that empirical studies comparing the performance of 

different adjustment methods on various sets of data using the previ- 

ously proposed criteria are of little value in determining which methods 

of adjustment are "better" than others. We doubt that useful criteria 

which are functions only of the adjusted data can be found. However, 

there may be a role for the previously mentioned criteria. Since these 

criteria are reasonable when applied to the true nonseasonal component, 

they may be useful in evaluating the assumptions made about the compon- 

ents by adjustment methods. Thus, in our approach to defining the 

components discussed in Section 6, we used some criteria to evaluate the 

properties of the assumed underlying component models. These and other 

criteria might be applied to the assumptions underlying other seasonal 

adjustment methods. We believe that eEforts would be better spent 

evaluating the assumptions underlying adjustment methods, rather than 

trying to evaluate methods by looking at adjusted data. 
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7.2 Simulation Studies 

Another approach that has been suggested for evaluating seasonal 

adjustment methods is to check their performance on simulated series. 

The St and Nt components are generated and an adjustment method applied 

to Zt = St + Nt to see how accurately the method estimates the compo- 

nents. We think little will be learned in general from such studies. 

The basic problem with this approach is that the results depend 

heavily on what the adjustment methods being considered are actually 

estimating. This can vary considerably from method to method. If 

method I makes assumptions about St and N, which are similar to those 

used in generating them, while method II makes different assumptions, 

then method I will estimate the components more accurately than method 

II. This phenomenon is reflected in the results of Godfrey and Karreman 

(1967). Comparing different methods on simulated data will merely 

verify that the methods make different assumptions. 

To illustrate the above remarks, we generated St and Nt series of 

length 900 

which will 

1. 

from each of the following two models, the rationale for 

become apparent. 

Min Seasonal Model 

(1 + B + . . . + Bll) Sit = (1 + 1.45B + 1.50B2 + 1.44B3 + 

1.24B4 + ,99B5 + .72B6 + .45B7 + .23B8 + 

.002Bg - .llB1' - .43B11)blt 

bit i.i.d. N(0, .0107) 

(141)~~' It = (1 - 1.38B + .39B2)dlt dlt i.i.d. N(0, .8223) 
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,2 . Max Seasonal Model 

-. 

(1 + B + . . . + B'lj S2t = (1 + l.lOB + l.10B2 +. 1.05B3 + 

.99B4 + .96B5.+ .94B6 + .94B7 + .86B8 + 

.80Bg + .83B1' + .87B11)b2e 

. b2t i.i.d. N(0, .4422) 
. 

(1 - B>2N2t = (1 + .OlB - .98B2)d2, d2t i.i.d. N(0, .0740) 

For both of these models the resulting model for the sum Zit = Sit + Nit 

is the same, and is given by 

(1 
1). 

- B)(l - B12)Zit = (1 - .4B)(l - .8B1')ait ait i.i.d. N(0, 

a 

Actually, the Min Seasonal Model corresponds to making assumptions l-9 

given in Section 6 (lowest possible CT:), while the Max Seasonal Model 

makes assumptions l-8 and then chooses the maximum possible o2 
b' 

The 

series were generated in such a way that in fact the same series was 

obtained from both models, that is, we have here Zt = Sit + Nit i = 

1,2. The following model was identified and estimated for the observed 

data Zt: 

(1 - B)(l - B12)Z t - (1 - .4lB)( l- .85B12)a t Q = .967 
a 

Using signal extraction theory and the estimated model for Zt, Sit and 

Nit (i-1,2) were estimated from Z, under two assumptions: 

(i) that the true model for Sit had minimum oi, and 

(-ii) that the true model for Sit had ma.ximum oi. , _, . . . __ a 
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Thus, there are four cases: 

Model Used to Model Assumed in ; 
Case Generate Data Constructing Sit, Nit 

A Min Seasonal Min Seasonal 

B Min Seasonal Max Seasonal 

C Max Seasonal Max Seasonal 

D Max Seasonal * Kin Seasonal 

In cases A and C, the correct models for Sit and Nit (within parameter 

estimation error) have been used, and in cases B and D incorrect models 

have been used. %he error series eit = Sit - sit - ii,, - Nit were 

computed in each of the four cases, and the eit's were standardized by 

dividing them by their standard deviation (from signal extraction 

theory) when the correct model is used. The results are shown in 

Figures 7.1 through 7.4 for the middle 100 observations. 

When the correct model is used, as in Figures 7.1 and 7.3, the 

standardized eit 's vary about zero reasonably within *2 limits. How- 

ever, when the incorrect model is used, as in Figures 7.2 and 7.4, the 

eit's are considerably larger. This does not tell us that either the 

Min Seasonal or Max Seasonal method of adjustment is better, it merely 

. illustrates how the accuracy of the estimator depends heavily on what is 

being estimated. 
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73 Revisions 
. 

. 

Most seasonal adjustment methods are based on symmetric two-sided 

filters. When the observation for the current time period is adjusted, 

future observations are not available, thus near the end of the series 

one-sided filters must be used.' As more observations become availabLe, 

one can come closer to using the symmetric filter. This results in 

changes in the seasonally adjusted values as additional observations are 

added which are called revisions. 

Many researchers who have conducted empirical studies of seasonal 

adjustment methods have used measures of the magnitude of revisions as 

one criteria for evaluating the different methods. This makes sense 

when comparing adjustment methods that give the same final adjustment, 

such as X-11 and X-11 ARIMA, or X-ll in year-ahead and concurrent modes. 

In this case the different methods are all shooting at the same target 

value, the final X-11 adjustment. Comparisons of the magnitudes of 

total revisions (changes from the initial to the final adjustment) 

reflect how close the initial adjustments come to the target. Since, 

presumably, the final adjustment is better than the earlier adjustments 

(or we would not bother to revise as additional data became available), 

lower total revisions are better. Studies comparing total revisions for 

. X-11 and modifications to X-11 still yielding the same final adjustment 

have been done by Dagum (1978), Geweke (1978a), Kenny and Durbin (1982), 

and lIdCenz3.e (1984). 
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However, there is a fundamental problem with using revisions as a 

standard of comparison when the methods being compared produce different 

final adjustments, and are estimating different nonseasonal components. 

In this case the magnitude of revisions can be greatly affected by the 

choice of the nonseasonal components. This choice should be based on 

information in the data and beliefs about seasonality (see sections 6 

and 7.4), not on the magnitude of revisions. In the extreme one could 

use a method based exclusively on one-sided filters, which leads to no 

revisions - an approach that has seldom been adopted. 

To illustrate the dependence of the size of revisions on the final 

adjustment used, we shall consider additive X-11 with standard options, 

the model-based method of Section 6 (min seasonal), and the max seasonal 

variant of this discussed in Section 7.2. Suppose these methods are 

used by applying their symmetric filters to data extended with minimum 

mean-squared error forecasts and backcasts. This minimizes the mean 

squared revisions (MSR) (Geweke 1978a, Pierce 1980b), so that differ- 

ences in MSR between the methods for a given model for Zt are due only 

to the different final adjustment targets. Using results of Pierce 

(1980b) we computed mean squared total revisions for the particular case 

where Zt follows the model 

(l-~)(i-Bl~)~ t = (1-01B)(l-~12B'2)at 

for various values of Cl and 012, with oz = 1. Table 7.1 presents some 

illustrative results. Notice that the magnitude of revisions for a 

given model depends dramatically on the relevant final adjustment. It 
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also depends on the characteristics of the data, so the relation in MSR 

for different adjustment methods can be different for different series. 

These results point out the inappropriateness of using total revisions 

to evaluate seasonal adjustment methods giving different final answers. 

We might also consider how the behavior of yearly revisions, the, 

changes in the adjusted values as each additional year of data is added, 

depend on the final adjustment underlying a method. It might be argued 

that first year revisions are relevant since some users will not be 

concerned about revisions more than a year or two after the initial 

adjustment, and thus will not be concerned with the actual final adjust- 

ment. 6 Under the assumptions and model given above, Hillmer, Bell, and 
. 

Tiao (1983) found theoretical first year MSR are smaller for the min 

seasonal model-based method when 0 12 > .4 and smaller for X-11 when 

al2 < .4, with the difference being more pronounced the further el,, is 
L . 

from .4 (the max seasona& method was not considered). These theoretical 

calculations were confirmed empirically by studying the first .year . 

revisions of 76 times series which were modeled and adjusted by both 

approaches. They found that the model-based approach gave substantially 

lower first year revisions, and argued this was because the estimated 

values of the seasonal moving average parameter, 3 12, for the 76 series 

was almost always substantially larger than .4. Since the model-based 

method effectively uses longer filters than X-11 when 8 12 >.4 and 

shorter filters when 0 12 < .4, this leads to the conclusion that longer 

filters lead to smaller first year revisions. The filters used to 

adjust the most recent observations for both methods are modifications 
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of the symmetric filter used for the final adjustment, and the lengths 

of the filter used for recent data correspond to the lengths of the 

filters used for the final adjustments. Thus, the final adjustment 

underlying a method has a profound effect on first year revisions. 

To reemphasize our point, these results illustrate that it is 

inappropriate to use measures of revisions to judge the relative merits 

of seasonal adjustment methods g.Cving different final adjustments. The 

decision as to what final adjustment is appropriate should be based on 

information in the data, beliefs about seasonality, and, when possible, 

on the objectives of the seasonal adjustment. Therefore, in choosing a 

seasonal adjustment method it is important that attention be concen- 

trated upon what is being estimated, the target, rather 

sions. Using revisions to evaluate seasonal adjustment 

different final adjustments is like judging a parameter 

rapidly it converges as the sample size increases, even 

to the wrong value. 

than upon revi- 

methods giving 

estimator by how 

if it converges 

7.4 Consistency with the Data 

Consider the ideal situation where we know the spectral densities 

for Zt, St, and Nt (fz(h), fS(h), and fN(X) respectively). From Z, - St 

+ Nt the spectral densities (and hence the models) are constrained by 

the relation 

fZW = fS(X) + fN(h). (7.1) 
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The minimum mean squared error estimator, it, of the nonseasonal com- 

ponent is obtained by applying a symmetric linear filter, WN(B), to the 

observed data: 7 

h 

Nt 
= WN(B>Zt 

*. (7.2) 

where 

WN(eBiX) - $ WN k eBihk = fN(X)/fZ(X) = 1 
3 

- fSW/fZ(U. 

Notice that any two of fZ(A), fS(X), fN(h), and WN(B) are sufficient to 

determine the other two using (7.1) and (7.2), but no one of them is 

sufficient to determine the other three. 

1 In practice, while we will not know fZ(A), we can at least approxi- 

mate it by modeling Zt. Let I,(x) be our estimate of fZ(h). Now sup- 

pose that we have a linear filter, WN(B), to be used in adjusting Zt. 

From (7.2), the implied spectral densities for St and N, are 

I,O) = ;,(h)[l-WN(e -ix)] g,(X) = Zz(A)WN(e-iX). (7.3) 

By examining ;,(A) and &(A) we can investigate the assumptions that are 

implicit when Zt is adjusted with WN(B). 

, 

Suppose WN(B) results from signal extraction theory for some set of 

models for Zt, St, and Nt, which we assume are expressed in infinite 

autoregressive form as , 

IIZ(B)Zt = at JIs(B)St - ‘bt lIN(B)Nt = ct. 
. (7.4) 
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. 

Then, WN(B) satisfies 

-ix oz/IIN(elX >n,(e -ix 1 
WN(e > = fNw/fZo~ = 

-3.⌧ l ~~/~Z(eih)llZ(e > 

We cannot say adjustment with WN(B) implies the models 

if al.2 the models in (7.4) are replaced by the models 

in (7.4), since 

a(B>nz(B)Zt = at, a(B>fls(B>St = bt a(B)nN(B)Nt = ct (7.5) 

where a(B) = i j’ 
a B' has all its zeroes on or outside the unit circle, 

the adjustment filter is .' 

fN(A)/a(eiX)a(e-iA) 

f (A)/a(eiX>a(e-i") 
= 'Nce 

-ix 
> 

Z 

so the adjustment filter stays the same. This reflects the-fact that 

WN(B) alone cannot determine the modeis for Zt, St, and Nt. However, if 

we have an estimated model iz(B)Zt = at, then setting a(B) = iZ(B)/IIZ(B) 

in (7.5) leads to implied models for St and Nt: 

&(B)St = b, iN(B) = ct 

+3) = iZ(B)nS(B)/RZ(B) iN(B) = GZ(B)RN(B)/nZ(B) 
(7.6) 

Of course, if (7.4) uses the estimated model for Z,, then IIZ(B) = iZ(B) 

and the models in (7.6) are the same as those in (7.4). The implied 

spectral densities for St and N, are obtained from the relations 
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The above suggests an approach to evaluating the suitability of any 

linear adjustment method for a particular time series. In our opinion 

the overriding consideration is that any method of seasonal adjustment 

should be consistent with the information in the data, which is summa- 

rized, at least approximately, by the estimated model (spectral density) 

for Zt. If the implied models (spectral densities) for St and N, in 

(7.3), (7.6) and (7.7) are then unreasonable, such as if the model for 

Nt is seasonal, we would conclude that seasonal adjustment using WN(B) 

is inconsistent with the information in the data. If the implied models 

(spectral densities) appear reasonable, we would say seasonal adjustment 

with WN(B) is consistent with the information in the data. This leads 

us to propose the following criterion for evaluating a method of sea- 

sonal adjustment with respect to a given set of data: 

A method of seasonal adjustment should be consistent with an 
adequate model for the observed data. 

This condition is not sufficient for a "good" seasonal adjustment 

in the sense that just because a method satisfies the condition for a 
, 

given set of data it does not follow that the resulting seasonal adjust- 

ment is "good." Since many different seasonal adjustments can be con- 

sistent with an adequate model for the data (see section 7.2), judgments 

about whether a method that is consistent with the data is "good" must 

either be made subjectively, or will require additional information, 

such as the use to be made of the adjusted data. However, we feel the 

criterion is necessary for a good seasonal adjustment, in that we would 

say any method not consistent with the information contained in an 
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adequate model for a g.iven set of data is certainly "bad" for that set 

of data. Application of the criterion depends on arbitrary judgments 

regarding the adequacy of the fitted model for Zt and the reasonableness 

of the implied models (spectral densities) for St and Nt. Even with 

these difficulties we feel application of the criterion can be informa- 

tive, and sometimes the conclusions will be obvious, as we shall illu- 

strate with an example. 

We should point out that (7.3) may not be deftned at X = kn/6 

k==O,fl ,...,f6, since i,(X) may well be SaD at these frequencies, while 

WN(e 
-ix 

> or 1 - WN(eBix > may be zero at any given one of these frequen- 

cies. Depending on g,(X) and WN(B), it may be sensible to set 

; (A> s 
= $0 at the seasonal frequencies and I,(X) = so1 at X = 0: This 

problem does not arise if WN(B) corresponding to models (7.4) and (7.6) 

is used. We present our criterion as a general approach to evaluating 

the consistency of a seasonal adjustment method with a model for the 

data, and hope to investigate the computational considerations further. 

Example 

We evaluate the use of the X-11 method (additive version with 

standard options) on the series Zt.= employed nonagricultural males, 20 

and older (from the Bureau of Labor Statistics) from January 1965 

through August 1979. Young (1968) found a linear filter which'approxi- 

mates additive X-11. Cleveland and Tiao (1976) then found approximately 

the same filter results from signal extraction theory using the follow- 

ing models for St and Nt:8 
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(1 - B12)S t = (1 + .64B12 + .83B24)bt 

(1 - B)2N, = (3 - j.252B +- .4385B2)ct 
(7.8) 

. 

cYc2/csb2 = 24.5 

These lead to a model for Zt: 

(1 - B)(l - B12)Z t - (1 - .337B + .144B* + .141B3 + .139B4 

+ .136B5 + .131B6 + .125B7 + .117B8 + 

.106Bg + .093B1' + .077B" - .417B12 + 

.232B13 - .001B2’ - .003B21 - .004B22 - 

.006B23 + .O~EIB~~ - .021B2')at 

= n(B)at. tTa2/Ob2 = 43.1 (7.9) 

For the employment series we obtained the model 

(l-.26B)(l-B)(l-B12) z 
1-.88B12 ' t = ‘t 'a2 * 1615o (7.10) 

The sample autocorrelations of the residuals, 4, from (7.11) are re- 

ported in Table 7.2. The statistics (Ljung and Box 1978) 

QL = n(n+2) t rk(i)2/(n-k) 

. 

k=l - . . 

are approximately distributed as XtW2 if the model is adequate. For 

this example none of the rk(i)'s is larger in magnftude thanitwo stan- 
I 



- 63 - 

dard errors (.16), and Q12 = 10.2, 424 = 20.6, and Q36 = 33.9 are all 

insignificant. We proceed with the estimated model (7.10). 

The logarithm of ;,(A), the estimated spectral density correspond- 

ing to (7.10) is plotted in Figure 7.5. It has infinite peaks (trun- 

cated at 20 for the graph) at A = 0 and at the seasonal frequencies 

X = nk/6 k=1,2,...,6. From (7.6) and (7.8)-(7.10) the implied models 

for St and Nt are 

(1-.26B)(1-B12)n(B) s p b 

(1~88Bl~)(1+.64Bl~+.83B~~) t t 
A 2 
‘b 

* 374.7 

(l-.26B)(l-B)%(B) 

(l-.88B12)(l-1.252B+.4385B2) 
Nt = =t 

(7.11) 

(7.12) 

ii2 = 9176.1 
C 

The implied spectral densities, is(h) and ;,(x), were obtained9 and 

their logarithms plotted in Figures 7.6 &d 7.7. ;,(A) has infinite 

peaks at the seasonal frequencies" and may appear reasonable. However, 

;,(A) has (finite) dips at the seasonal frequencies which is unreason- 

able. This is not the same as the overadjustment phenomenon referred to 

In Section 7.1, which has to do with dips in the spectral density of the 

adjusted data. Here we have dips in the implied spectral density for 

the underlying nonseasonal component, which is unreasonable. Thus, we 

conclude that X-11 is inconsistent with the information in the data for 

this series. 
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(i+B+...+~ll)~~ = (1 + 2.093B + 2.722B2 + 2.977B3 + 

2.869B4 + 2.581B5 + 2.169B6 + 

1.670B7 + 1.206B8 + .745B9 + 

.411B1° - .007B")b 
'b 
2 

t' = 82.11 and 
(7.13) 

(1 - .26B)(l - B)2Nt = (1 - .990B -t .001B2)ct 

a2 = 14412. 
C 

The logarithms of the implied spectral densities for St and Nt are 

plotted in Figures 7.9 and 7.10. i,(X) has infinite peaks at the sea- 

sonal frequencies and minima in between, as was noted in general in 

Section 6. ;,(A) has an infinite peak at h = 0, and decreases smoothly 

after that, with no dips or peaks at the seasonal frequencies. This is ' 

reasonable behavior for the implied spectral density of an underlying Nt 

series. Thus, the canonical adjustment appears reasonable in this case 

while additive X-11 with standard options does not. 

7.5 Classification of Linear Seasonal Adjustment Methods 

As a general aid to comparing linear methods of seasonal adjustment 

and assessing their consistency with observed data, we present a scheme 

for classifying them. Since model-based approaches are linear and Young 

(1968) and Wallis (1974) have shown X-11 (and, hence, X-11 ARIMA) to be 

approximately linear, this scheme covers a large number of proposed 

adjustment methods. What counts in a linear adjustment method is the 
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To see why the dips ‘arose in ;,(A) notice that, to a rough approxi- 

mation, n(B) in (7.9) is 

n(B) g (1-.35B)(l-.4B12) 

so that (7.12) becomes 

(l-.26B)(1-.35B)(l-B)2(l-.4B12) N 
Gc. 

(1-1.252B+.4385B2)(1-.88B12) t ' 

. Thus, ;,(A) contains 

(1-.88e12") (1-.88e-12iX) p 1.7744[1-.992 cos(lSX)] 
(l-.4e12iX) (l-.k-12ih) r 1.!6[,1-.690 cos(l2X)] . 

This function is plotted in Figure 7.8. It is near zero at the seasonal 

frequencies since the l-. 992 cos(l2X) in the numerator is quite small, 

while the l-.690 cos(l2X) in the denominator is at least ,31 at all 

frequencies. The end result is dips at the seasonal frequencies in 

;,(⌧) l All this is due to the fact that the estimate (.88) of the 

seasonal moving average parameter in (7.10) is considerably larger than 

.4, the value implicitly used by X-11. Thus, this behavior can be 

expected whenever the estimate of 8 12 is much greater than .4, which 

seems to be the case is most of the time (see Section 7.3). 

In contrast, we examine the ~nonical decomposition. For the model 

(7.10), the component models turn out to be I 

c. c l 
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linear filter used, so our classifications are made according to how the 

linear filter is arrived at. Our scheme and some of the methods that 

fall in each group are as follows. 

I. Methods which choose filters directly 

(f> x-11 
(ii> x-11 AKIMA 
(iii) SABL 

II. Methods which directly choose models for the components St 
and Nt 

(i> Hannan, Terrell, and Tuckwell (1970) 
(ii> Engle (1978) 
(iii) Abrahams and Dempster (1979) 
(iv> Cleveland (1979) 

Akaike (1980) 
Kitagawa and Gersch (1983) 

IIIC Methods which model the observed data and deduce models for 
the components from that model 

(i> Melnick and Moussourakis (1974) 
(ii) Brewer, Hagan, and Perazelli (1975) 
(iii) Geweke (1978b) 
(iv> Pierce (1978) 

(2; 
Cleveland (1979) 
Burman (1980) 

(vii> Hillmer and Tiao (1982) 

Actually, SABL is not really linear since it uses moving M-estimates 

instead of moving averages. However, ". . . the philosophy of its 

overall approach is exactly the same as that used in the X-11 proced- 

ure. . ." (Cleveland, Dunn, and Terpenning 1978), so it can be viewed as 

a robustification of a linear method, and the considerations we will 

discuss, here should apply to it. Cleveland (1979) uses elements of both 

II and III since his approach is to fit a model to Z,, directly choose 
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component models, and then set the parameters in the component models to 

approximate the overall model for Z,. 

It should be obvious that for methods in group I, one would have to 

be extremely lucky to make a choice of filter which is consistent with 

an adequate model for Zt in that it implied reasonable component models. 

The example in the last subsection illustrates this point for X-11. Use 

of nonstandard options in X-11 or other methods in group I may increase 

the chances that an adjustment method will be consistent with the data, 

but the number of available options in such methods is necessarily 

limited and options are generally selected subjectively, not objectively 

based on a model for the data. Thus, methods in grdup I are at a disad- 

vantage when it comes to being consistent with the data. 

The methods in group II afford the opportunity to begin with rea- 

sonable component models. Because the model fcr Zt is determined (up iO 

parameter estimates) by the specified component models, it is important 

when using these approaches to perform diagnostic checks upon the ade- 

quacy of the resulting model for Zt. Even when the originally specified 

component models appear reasonable, if the model for Z, is deficient in 

some way then these component models may not be consistent with an 

adequate model for Zt. To determine 1f the resulting seasonal adjust- 

ment is consistent with the data, one would first have to find an ade- 

quate model for Z,, and then proceed in the manner discussed in Section 

. 7.4. 

Another point to consider about methods in group II is that the 

overall model for Z, should be estimated subject to the constraints 
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imposed by the component models. DeTending on the complexity of the 

component models, this may be a difficult task -- Engle (1978) was 

unable to estimate his model for Zt subject to all the constraints of 

his component models, while Akaike (1980), using simpler component 

models, was able to do this. 

In striving for consistency with the data, methods in group III 

have a potential advantage in that they begin with a model for the 

observed data. However, this advantage ,will be completely lost if the 

starting point is an inadequate model for Z,; hence, diagnostic checking 

of the model is important here, too. The reasonableness of the assump- 

"tions leading from the model for Zt to the component models should also 

be considered. Usually these assumptions are spelled out explicitly for 

these methods, which allows them to be readily evaluated. 

In Section 7.4 we saw that a seasonal adjustment filter does not 

completely determine models for the components and Z,. This makes it 

somewhat difficult to evaluate the assumptions being made about the 

components for methods in group I, requiring an analysis like that of 

Section 7.4 for each series. Typically methods in group I are applied 

without knowing what is being assumed. Regarding methods in groups II 

and III,,there generally exist multiple sets of component models leading 

to the same model for Zt. To avoid this identification problem, a 

particular choice must be made. In our opinion, problems arise when 

this process is given insufficient attentton and the choice is not 

justified - this is why we attempt to justify our choices in Section 

6. Again, methods in group III have a potent.ial advantage here in that 
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this approach forces consideration of the range of possible component 

models consistent with the model for Z,. Methods in group II often 

choose component models based on considerations other than the suita- 

bility of their expression of beliefs about seasonality - considerations 

such as simplicity of the resulting estimation of the model for Zt. 

In conclusion, we favor adjustment methods in group III because we 

believe the model for Z, is a logical starting pofnt in developing an 

adjustment method that will be consistent with the data, and because we 

feel that acceptable assumptions, such as those offerred in Section 6, 

'can be made leading from the model for Z, to component models. 
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e1 812 
- 

.3 .5 .123* .133 

.5 .9 .059 .032* 
l 9 .7 l 130 .079 

Table 7.1 

Mean Squared 'Total Revisions When 

(i-B)(i-d2)2 t = (l-0 B)(l-6 1 12 
B12)a 

t 

x-11 
Model-Based 
(min seasonal) 

(0 2 a = 1) 

Model-Based 
(max seasonal) 

.177 

.114 

.049* 

*minimum across the row 
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Table 7.2 

k 1 2 3 4 5 6 7 8 9 10 11 12 

rk(i) .oo .oo .ll -.06 .02 .13 -.07 .07 .02 -.02 .06 -09 

k 14 15 16 17 18 19 20 21 22 23 24 ~~~~ 
rk& -.03 .04 -.Ol -.13 -.08 -.02 .lO -.08 -.08 -.Ol -.03 -.05 

k 25 26 27' 28 29 30 31 32 33 34 35 36 

rk(i) -.02 -.Ol -.Ol .Ol -.12 -.02 .oo -.14 -.02 -.03 -.14 -.07 
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Footnotes 

1 Persons himself refers to a 1910 study by E.W. Kemmerer in which sea- 
sonal adjustment was done. Yule (1921) says that the four components 
were fixed by 1914, and quotes March (1905) as saying that one must 
distinguish ". . . des changements annuels, des changements polyannuels 
(dhcennaux par exemple), des changements secul&ires, sans parler des 
periodes plus courtes qu' une anncC," which roughly translate to the 
seasonal, cyclical, secular trend, and residual components. 

2For example, direct estimation of seasonal effects using complete 
calendar year data with an upward trend will result in seasonal factors 
that are too low in January and too high in December. Also, seasonality 
in a series makes direct estimation of trend difficult. This dilemma 
eventually led to iteration between trend and seasonal estimation - 
something currently done in X-11. 

3Since St and N, will be nonstationary, they will require starting 
values. We may want to allow these starting values to be correlated, 
and only assume b, and et are independent. 

41t is mathematically possible for the model for Z, to be such that a 
decomposition according to these assumptions does not exist; however, we 
have rarely found this to happen in practice. 

'Wecker (1978) makes similar comments about why "overadjustment," the 
production of dips at seasonal frequencies in the spectrum of the ad- 
justed series, should not be regarded as a problem. 

6n ror X-11 with standard options the final adjustment is effectively 
obtained three years after the initial adjustment, Young (1968). For 
the model based methods considered (min and max seasonal) the filters 
can be quite long so that the final adjustment comes much later or is 
effectively never achieved. 

7 Bell (1984) discusses the assumptions under which (7.4) provides the 
minimum mean squared error (linear) estimator of N, when St or Nt or 
both is nonstationary. 

'They actually give models for the trend (Tt) and irregular (It). The 
model for N, = T, + I, can be obtained from these. 

'f;No) was computed directly using (7.U), but fs(X) was obtained as 

fZW - - f,;(X) to satisfy (7.1). Due to the small number of significant 
A 

digits' provided by Cleveland and Tiao (1976), computing fS(h) directly 
from (7.11) would not have satisfied (7.1). 
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"There is also an infinIte peak at X = 0 due to the Cl-B) factor im- 

plied by the l-B1* in (7.9). It would not necessarily appear if another 
set of models, e.g. Cleveland's (1972), were used to approximate X-11. 

. 

_. 

i 
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