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1. INTRODUCTION

Hartley (1974) defines a multiple frame survey as "a set of several
(single frame) surveys whose samples are combined to provide parameter
estimates for the union of frames." This general methodology finds great
application in the case where there are two frames involved--one being a
telephone frame and the other an areal frame. The “dual frame" survey has
aﬁ‘advantage over the single frame telephone sample survey in that it offers
complete, coverage of the population and, therefore, can provide unbiased
estimators of population parameters. This, of course, comes with a higner
cost for data collection. In most cases, this cost is less than the cost
of a single frame area sample survey which also offers full coverage. A
number of authors have demonstrated this through simulation (see, for
example, Hartley 1962; Lund 1968; and Casady and Sirken 1980).

The potential advantages of low costs without loss.of population coverage
are especially attractive to government data collection agencies who report
characteristics, such as crime, unemployment, and health since these statistics
can be substantially affected by the omission of non-telephone domains (cf.,

‘
Thornberry and Massey 1978 and McGowan 1981). Recently, the Bureau of
the Census has initiated a considerable program of research and development
to investigate the many issues surrounding this new methodology. Among the
major sampling topics under.investigation are:

1. sample design strategies for the allocation of resources to

the two frames in order to minimize cost and error,



ABSTRACT
This paper provides a comprehensive and systematic framework for

evaluating a wide range of statistical information in order to optimize the
design of dual frame surveys. Formulae for the total mean square error of
dual frame survey estimators are derived for general stratified multistage
sample designs under a model which incorporates nonsampling bias and variance
terms. A general procedure for selecting resource allocations which minimize
the total survey error for a fixed budget is developed. The methodology is
applied to the Current P;pu1ation Survey for which a number of uses of the
procedure are illustrated.
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2. the estimation of population target parameters from dual frame
samples,
3. procedures for minimizing the impact on estimates and
costs of the conversion from an areal frame to a dual
frame survey; and
4, the estimation and evaluation of nonsampling errors as
they affect the accuracy of the estimators and the
allocation of resources.
Hartley (1962) addressed items (1) and (2) for simple random sampling
i; each frame and, subsequently, a number of authors have offered improved
estimaters. An important paper by Casady and Sirken suggested applying
the multiple frame metholodgy to telephone surveys; Casady, Snowden, and
Sirken (1981) consider a dual frame telephone survey for the National
Health }nterview Survey. However, it is clear that a more comprenensive
development of the methodology for complex surveys is needed in order to
handle most of the sampling problems encountered in practical dual frame
survey design.
This paper provides the methodology for addressing items (1), (2) and
(3) above for general stratified multistage survey designs. Since data
quality is a key issue in the decision to convert to a telephone/areal dual
frame survey, a simple model for studying nonsampling error (item (4)) is
proposed. Finally, a general method for dual frame survey optimization is
developed and applied to a current survey of the Bureau of the Census.
The types of surveys covered here are essentially general stratified
multistage surveys where the last stage units are selected with equal

probability within the next-to-last stage units. To simplify the exposition

of the results, the estimation and optimization formulae will first be
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described in terms of two-stage sampling in each frame and will then be

outlined for the general multistage situation.

2. THE GENERAL SURVEY SPECIFICATIONS

Consider a pair of surveys, referred to as Survey A and Survey B, for
estimating the total Y for some characteristic y of a population of M elements,
The population elements may be any units that can be uniquely defined within
the ultimate sampling units-~for example, persons, families, households, etc.
within dwelling units or groups of dwelling units. In our discussion,
Survey A is an area sample survey and Survey B is a telephone sample survey;
however, the methodology can be easily extended to handle any dual frame

survey for which the Survey B frame is contained in the Survey A frame.

2.1 Description of Survey A

The sampling frame is an areal frame (denoted by Frame A) where the
listing units are dwelling units. The sample design is a stratified two-
stage design (a condition to be relaxed later) where the secondary sampling
units are area segments of dwellings. The segments are selected by an
equal probability without replacement selection method (EPSEM) while any
equal or unequal probability selection method is possible for the primary
units. Interviewer assignments are composed of segments which are fandom]y
selected within a primary. Each interviewer is assigned the same number
of segments.

2.2 Description of Survey B

The frame contains a list (which may be implicit) of telephone numbers
(denoted by Frame B). For simplicity, it is assumed that each population
element may be linked to, at most, one telephone number. The sample is
selected completely independently of Survey A using a stratified two-stage

design (general multistage telephone samples are treated later). The
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secondary units are telephone numbers sampled with EPSEM without replacement
within each primary unit. Interviewer assignments are made up of telephone
numbers which are randomly assigned without regard to primary or stratum

boundaries.

3. MODEL FOR NONSAMPLING ERRORS

To view the impact of nonsampling error on the accuracy of dual frame
estimators, an additive error model (also used in more recent literature)
is adopted in which the errors made by a partich]ar interviewer are correlated
through an additive error term. The study is confined to one particular
content item. Further, to justify the subsequent model assumptions, the
data are supposed to be quantitative,

Denote the true content item of the tth elementary unit of the sth
secondary of the pth primary in stratum h for Survey A by Y Anpst and for
Survey B by yghpst. Denote by X phpst and xghpst the corresponding recorded
content items. For Survey A, let the subscript (h,i) denote the ith

interviewer in stratum h. Then for elementary units assigned to interviewer

(h,i), it is assumed that

Xphpst = Y fhpst + ahi + €fhpst

where apj is the systématic error contributed by the interviewer and epnpst
is the elementary error associated with the unit. Likewise, it is assumed

that

XBhpst = YBhpst * Bi * €Bhpst

where B is the systematic error associated with the ith interviewer for

Survey B and ephpst the elementary error associated with the unit.
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Now, let Dy refer to the elements in the population which belong only
to Frame A and let D» denote the elements belonging to both frames. [t is
assumed that api, Bi, eppst and ephpst are random samples from infinite

. . 2 2
populations with E(api) = E(8i) = 0, V(ani) = ogn, V(8i) = og,

E(eAhpStlDl) = Blh’ E(eAhpSt|02) = BZh and E(EBhpst) = BBh where E(' Dl) and

E(*

Dz) denotes restriction to Dy or DZ' Furthermore, assume that for a

given primary (h, p) in each survey,

2
V(ympst *+ <mpstiD1) = oinps
. 2
V(Y mpst *+ empstlD2) = 72np,
and
. 2
V“(¥Bhpst * *=Bhpst) = 9Bhp

where V” denotes variance over simple random samples of one element drawn from

the populations implied by the contents of the parentheses.

4, ESTIMATORS OF THE POPULATION TOTAL

Two classes of general estimators are considered. The first is the
estimator proposed by Hartley (1974) which combines domain estimators over
all strata before weighting together to form the population estimator.
This estimator is applicable for any dual frame design and will be referred
to as the "combined" estimator. The second estimator is only appropriate
when the strata for Survey A and Survey B are the same or at least coin-
cide so that the strata for one are nested within the strata for the other.
This estimator, suggested by Bosecker and Ford (1976), will be referred to

as the "separate" estimator, First, a number of symbols must be defined.



4,1 Notation

Let

Mghp

MBhp

7s?.hp

X‘ﬂhp

;Bhp

Mghp

MBhp

A

as

number of sample elements belonging to Dy (2 = 1,2) in

primary (h,p) for Survey A,
Mihp * M2hp»
number of sample elements in primary (h,p) for Survey B,

It X phpst/Mghps 2 = 1,2,
(p,S,t) € D!, P P

X hpst/Mpnp s
XBhpst/MBhp s

total number of elements in Dy (2 = 1,2) in primary (h,p) for

Survey A,
Mihp + M2hp»
total number of elements in primary (h,p) for Survey B,

expected number of elements for a Survey A interviewer assignment
L4

in stratum h,

expected number of elements in a Survey B interviewer assignment,
number of interviewers working in primary (h,p) for Survey A,
number of interviewers avai]asle for Survey B,

set of sampled primary units for Survey A (Survey B),



nh(ngh)
Nan (Ngh)

8h or ®

-Y-ﬂ.hp

E(”‘Ahp | HA) s

Manp T anp/Map = E(mgnplla), 2 = 1,2,

number of strata defined for Survey A (Survey B),

number of elements in Dy for the stratum h for Survey A, ¢ = 1,2,

number of elements in stratum h for Survey 8,

N _
z MAND »
p p

gBh._
MBhp»
P p
Mih + Mz,
number of sample primaries in stratum h for Survey A (Survey B),
number of primaries in stratum h for Survey A (Survey B),
dual frame survey weight, a constant between 0 and 1 to be optimized,

true population mean per element for Dy (2 = 1,2) in primary (h,p),

true population mean per element for primary (h,p) Survey B,

¢

Tlhp = -Y-lhp’ £ =1,2,

Xghp = Yghps

4.2 The Combined Estimator

Define a new variable uppgt(®) for Survey A such that

Uhpst(8)

Xppst 1f (h,p,s,t) € Dy

8 x mpst if (h,p,s,t) € Dy.
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Since sampling within primaries is with equal probability, we consider

estimators of the form

N LA npn — Lg ngh _
XC = L I thp Uhp(e) +.(1-6) E‘ z WBhp XBhp (4.2.1)
p

where Upp(8) = T L u 8)/m and Wanp, W are the usual single frame
hp(8) LI hpst(8)/map Ahps WBhp g
sample weights which may depend upon the sets of sampled primary units, I

and mg. This estimator will be referred to as the combined estimator

since strata estimators in each frame are combined before weighting by the
parameter 8,

Let Ep denote conditional expectation with respect to the nonsampling
error destributions as well as within primary sampling given the primary
samples Tp and Mg and let E; denote the expectation over all possible T

Mg. Define the variance operators Vi and Vp analogously. Ignoring the

technical bias in ic, then Ez'ﬁhp(e) is given by

Unp(8) = t1hp X1hp + 8 T2hp X2hp (4.2.2)

where tipp = Minp/Mmp and t2hp = 1 - T1np = M2hp/Mmp-

A

The total nonsampling bias in ?c, B(X¢) = E(ic) - Y, is, therefore,

o N\ LA LB
B{Xc) = = Mp bm(8) + (1-8) = Mpp Bpp (4.2.3)
h h

where bpr(8) = 115 Bih + 6 t2h Bop.
A
The variance of X¢ can be decomposed into between and within primary

components using the identity

A A A
V(Xc) = ViEr X¢ + EpVo Xg.
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Considering the between primary components, we have

A LA nm _ , LB NBh —
VlEZ(XC) = ﬁ vy ; W php Uhp(e) + (1-9) a v g WBhp XBhp' (4.2.4)

The analytic form of these components depends upon the primary stage sample
selection scheme in each survey. Formulas are provided by classical sampling
theory (without nonsampling error), treating the primary stage as the last
stage with observations Uhp~and thp. Special cases of these formulas are
considered in the next section.

The within primary variance component of QC depends on the terms

2 —
L Wap V2 upp(e)
- P

in Survey A and
z W%hp V2 Xpgnp + T I wphp Weh-p+ Cov2(XBhp, Xgh-p-)
p (h,p)(h~,p~)
in Survey B where Covp is the conditional covariance operator analagous to
Eo and Vj.
Writing Uhp(8) as tihp X1hp + O tanp Xgnp where tipp = mypp/mppy and
tahp = 1 - tihp, it follows that, to terms of order 1/mppp,

_ .2 _ 2 2 -
V2 upp(®) = t1hp V2 X1hp + 8 T2np V2 X2np

- 2 Tpp Tohp V2 (Kinps Xonp) *+ (Xipp = 8 Xopg) 2 ¥y (topp). (4.2.5)
From Section 3, Eﬁhp can be written as
X1hp = (Y1np * €1np) *+ T vi(i;h.p) anj
1

where y1hp and €jpp are defined in analogy to Xipp and vy(i;h,p), a random
variable, is the fraction of D sample elements assigned to the ith

2 2
interviewer in primary (h,p). Approximating Ep vi(i;h,p) by 1/knp, we have

*
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— L] 2 — 2
V2 X1np = S1hp 91hp/Mihp * 9ah/Knp

- - = 2
where 81pp = Va(Y1hp *+ €1hp)Minp/o1hp is the within primary design
effect for Dj. (The analytic form of &ypp is considered in Appendix A.)

Similarly, we have

- . 2 2
V2 X2hp = 82np 92hp/M2hp *+ 9ah/Khp

and
S1no Song B
_ - lhp O2hp 2 2
Covy (Xypps Xonp) = P12np ( ————— ) 91np 92np * %an/Knp
. Mihp M2hp
-1
2

where pjppp = COVZ(Ylhps Yth) (VZ(YEhp) VZ(yéhp)) and 8anp, opp are
2
defined similarly as for 81pp and oypp in (4.2.6). Finally,

V2 tohp = $mp Tlhp T2hp/M mhp

where ¢mp = Manp V2 (t2np)/Tihp T2hp is the within primary design effect
associated with tppp. |

Now, considering the within primary variance component for Survey B,
we follow a similar approach to the above; however, now we must consider
correlations introduced between primaries and strata as a result of the
systematic interviewer errors, B8j.

Let &ghp denote the within primary design effect for primary (h,p)

in Survey B and define

Lg ngh
vg = E [ﬁ ; WBhp VB(i;h,P)]Z

where, vg(i;h,p) is the fraction of primary (h,p) elements interviewed by

the ith interviewer for Survey B.

(4.2.6)

(4.2.7)
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It can be shown from (4.2.3), (4.2.4) and the above discussion that a
~
general formula for the total mean square error of Xg is,

Ao A La —
MSE(Xc) = B2(X() + I (V) L gy Tpp(0) + [V gy (831 1}
P

2 Lg -
+ (1-9) g {V] £ wghp Xghp + E1 [Vgwh(mg)1} (4.2.8)
p
where
2 2 2 2
Van(85ma) = Z wapltinp Sihp olhp + 8 T2np S2np o2hp
P
- 1/2
+ (28 t1hp t2np S1hp S2hp) Glhp 92hp P12hp
* + b T Tonn (X -8 X )2
Ahp *lhp *'2hp‘“*lhp 2hp
) 2 _
+ (Tlhp *+ 0 Topp)© o G l/manp

~and

2 2 _ 2
Vewh(Tig) = I Wehp SBhp 9Bhp/Mghp *+ kB YB og/Lg.
p

This result may be compared with Des Raj's (1966) general formulae for
determining the variance of an estimator from a multistage survey. Here we
have essentially extended his general formulae to cover estimators from
complex dual frame surveys and have added components for nonsampling

¢

variance and bias.

4.3 The Separate Estimator

When strata for one survey are subsets of the strata for the other
survey, we call the strata "nested." A stratum which is made up of a
number of strata from the companion survey is called a "superstratum." We

consider the case where there are L superstrata in the dual frame survey
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and consider an estimator of the form

A L Nm - Ngh -
Xg = ¢ [z Wanp Unhp(8n) + (1 - 8n) L wgpp thp] (4.3.1)
h=1 p p

called the "separate" estimator. Note here the dual frame weights 8p are
allowed to vary across superstrata indicating that each superstratum is to
be optimized separately with regard to the mix of telephone and area frame
sampling. In many cases, this allows the separate estimator to achieve
smaller variance then the combined estimator. In (4.3.1), Wlhps W2hp
and Wghp are the weights as defined in (4.2.1) where now the summation
extends_over all p within superstratum h,

A A
Using the results of Section 4.2, it can be shown that B(Xg) = E(Xs5 - Y)

is given by

> ™M

B(Qs) = T Mmlban(en) + (1 - en) t2n Bgnl (4.3.2)
where ban(8n) = ban(8) in (4.2.3) with 8 replaced by 8n and ton = Mop/Mpn.
Now Bip, Bop and Bgp are biases which are weighted averages of stratum
biases within superstratum h., For example, if Survey A strata are nested
within a Survey B stratum, Byp is a combination of Survey A stratum biases
weighted by the nested strata weights.
The variance of &5 can be obtained directly from previous results. It is
. L -

V(Xs) = rf Vi ;3 Wanp Unp(en) + E1 [Vawh(6n; Ta)l

+ (1 - 8% (v nghp Xgnp + E1 [Vgyn(Tg)J} (4.3.3)

where the variance terms have the same form as in (4.2.7), replacing 6 by 6p

and extending the summations over all primaries in superstratum h,
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4,4 Generalization to Multistage Sampling

Certain generalizations are feasible. The role of primary sampling

stage can be taken over by any lower stage which we will term the “inter-
mediate stage." The above formulae are restated by calling “"primary units,"
"intermediate units" and "secondary units," "ultimate units." No restrictions
must be made on the survey design for stages above the intermediate stage

so that unequal or equal probability sampling is permitted for all stages

from the primary down to and including the intermediate stage. However, we
must still assume that the ultimate units are chosen with EPSEM within the

intermediate stage.

® 5. THE SPECIAL CASE OF EPSEM SAMPLING WITHIN EACH STRATUM
Equal probability sampling within each stratum occurs quite frequently
in practice. This usually results in considerable simplification in the
form of the estimator and its variance. For ERSEM designs, we consider

self-weighting estimators satisfying

WAhp ) Mah
M Ahp M Ah
and
) wBhp  MBn
MBhp MBh

In this case, the estimators ic and 25 simplify to

A LA — — Lg -
X¢ = E Man(tin X1h + © t2n Xon) + (1-8) yE.l MBh XBgh (5.1)
and
A L - — —
Xs = ﬁ Ma(tin X1n + 8 tan x2n + (1 = 8n) Tt2n Xgn) (5.2)
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where ton = mop/mpy and typ = 1-téh. In this section, the mean square
errors of four estimators which are special cases of (5.1) and (5.2) are
examined, These are now described.

For some population characteristics, the té]ephone domain sizes
T2 and Mpp are known, for example, from previous Census data.

Incorporating this information in the estimators, we have, for the combined

form,
A La — -
Xk¢ = ﬁ Man(Tih X1h + 3n T2n X2h) (5.3)
L -
. + (1-8) T Mph Xgh»
: h
and, f&r the separate form,
A L - . - ' -
Xks = ﬁ Ma(tih X1h + 8h T2n X2n + (1-8n) T2h XBhH). (5.4)

Alternatively, for some populations, the telephone domain sizes may
not be known exactly and other estimators of Y may be preferred. It may be
possible to use information from "data banks" on the telephone population
or combine information from a number of surveys to estimate tpn or the Mgp.
For situations in which no information outside the survey is available, the
combined estimator considered is

A‘LA — — A
Xyc = ﬁ Man(tin xin + 0 tan xzn) + (1-8) Mg xg (5.5)

LA
where ﬂg = T Mp ton and Xg is the ratio mean of all observations for
h

Survey B, Thus, since the Mgp are unknown, there is no explicit stratification
of the Survey B frame, i.e., Lg = 1.

The separate form considered for L superstrata is

A —— — —
Xys = T Mm(tin X1h + 8h tan X2n + (1-8n) tan xpn) (5.6)

= o I
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additional notation is required:

Nah _
I Mzhp thp/Mzh’ L= Al,2,
p

NBh

I Mgnp XBhp/Mshs
p

Mgn/Nas £ = A1,2,

Nanh Mghp _ -
I — (T - X)) (N - 1), 2 = ALL2,
P 2
Mgh
Ngh

- 7 12
g Mahp (Xgnp = Xgn)“/Mgn>

N : 2 '
I Mlhp Sghp °£hp/Mzh: L= Al1,2,
p

Ngh 2
T Mgnp Sghp 9Bhp/MBh>
P

Nah 2
P

A A
5.1 MSE(Xyc) and MSE(Xgs)

It is quite common in the literature of survey design optimization

to assume simple random sampling without replacement (SRSWOR) of primaries

in order to provide a useful form of the between primary variance (see,

for example, Hansen, Hurwitz and Madow 1953 and Cochran 1977). If primaries

are sampled with unequal probabilities, this approximation tends to overstate
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the between component. As an alternative, useful approximations can bde
obtained assuming primaries are sampled with probabilities proportional to
size and with rep]acement'(PPSWR). Since this approximation ignores finite
population corrections, the between variance may again be overstated in
strata where primary sampling fractions are large.

OQur approach will be to assume SRSWOR of primaries for the area survey
(Survey A) as is customary in the literature, since area strata tend to have
small numbers of primaries. However, PPSWR of primaries will be assumed
fqr the telephone survey (Survey B) since, for most designs, the primary
finite population corrections are usually negligible. Llet fpy = ng/Npp

denote The primary stage sampling fraction. The between component for the

separate form (for the combined form, replace 6y by 8) is

— . 2 ’1 2
Vi[Z wamp Unp(en)] = Ma(1 - Fandnpm [8n Spn
p

2 2 2 2
+ (1-8p) t1n Sih - 8n(1-8p) 2R S2hl

(see Cochran, 1977, p. 250). For Survey B, the between component is

- . 2 =1 =2
V1(z wghp Xghp) = Mgh Mgh Sgn
‘ p
A A ~A 2 .

The bias in Xgc and Xgg is still given by B(Xc) and B(Xg), respectively.
Further, it can be easily verified that variance of an estimator with 1pp
known can be obtained directly from the previous formulas by setting
V(tznp) = 0. For simplicity, we give the forms of the variances for the

case where pjonp = 0 (as it is for the special case of simple random

2 2
sampling within primaries) and approximate yg defined in (4.2.7) by Mp/kg.
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Therefore,
. La vV bh(8) Vaeh(8)
MSE(X o) = B2(X) + 2 L1 - ) + ]
nph nAh E‘Ah

L 6 8
. ZB [VBbh( ) \ vBwh( )]
h

Ngh NBh MBh

where mp = Eo(mm/nan), mgh = E2(mgh/ngh),

~

2 2 2 2 2 2
Vaph(8) = Man [® Sp + (1-8) 71 Sin - 6(1-8) t2n S2nl

2 2 2 2
Vawh(8) = Mm {t1n Solpp + 8 712n Sogn

2 ~2
* U ogn [typ + 8 tpn)% + (1-9)% S D)
2 ~2
2 2 2 2

VBwh(e)

Similarly, we have

¢

vioh(eh)  vawn(en)
[(1-f gy) +

N Ah iy ';‘Ah

L] 2
MSE(Xys) = B (Xg) *+

T

vgbh( éh) VBwh(®h)
+

NBh Ngh MBh

(5.7)
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where the form of the variance terms are identical to (5.7), replacing s

by 6h.

5.2 MSE(Xyc) and MSE(Xys)

A
As in the case of known telephone domain sizes, we have E(Xyc) - Y

B(&C) (with Lg = 1) and E(QUS) - Y= B(?s). Thus, there is no increase in

bias as a result of estimating tpn and Mg.

Applying the general formulae of previous sections, it can be shown that

-1 20 -1 2
" V(ton) = (1-Fm) nph Seh + My Sogn
where
i N r42
2 A M Ap
s.rh = X (T2hp - TZh)Z/(Nph-l)
p
Man
and
2 Nan Manp
Somn =L —— 9mp Tihp Tohp:
P Man

The mean square error of QC can be obtained directly from (4.2.8) with

A
Lg = 1 and adding terms for the covariance between ﬂB and Xyc. The result

is given by (5.7) with Lg = 1 and replacing vppp(8) by

¢

Vipn(8) = vapn(8) + gapn(e)
and v pn(8) by
Vawh(8) = van(8) + gamn(e)

where

2 2 - - — 2
Sapn(®) = M Sen [(Xyp - @ Xppy - (1-8) X3)2 - By, (0)1,

Dh(8) = Xip - 8 Xpp for the variable Dnp(®) = Xipp - @ X2hps
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and
2 M Mmp _ -
San(®) = Man {2 =% Tinp 2p (Xipp - & Xonp)
1

2 - - - —_ —
+ Sarn(1-8) Xg [(1-8) Xg - 2(X1nh - 8 Xon)1}

A useful approximation to this form results by assuming ?Ap Tlhp T2hp =

bm tln T2h, for average design effect ¢pm. Then gpun(8) becomes

2 ~2

" Smin(8) = May v Tip Ton [(Xpp - @ Top - (1-)T)% + Spp(0)] (5.8)
where

~2 _

Sph(8) = T Many (Do (8) - Dy (9)1%/My, .

P

A
Similarly, MSE(Xys) is approximately given by (5.8) replacing v abh (8n) by

Vapn(8h) = v an(8n) + G apn(en)

and

vV aeh(8) by

Vavh{(8h) + g aen(ep)

V pwn (8n)

where

) 2 2 _ - _ 2
Ipon(0h) = May Senl(Xyp = 8y Top - (1-87)%g,)% = Bp(0y)]

and, in its simplest form,

. 2 _ _ _
Ian(8n) = Mg ppn Tin Ton [(Xppy - 8y Top = (1-8,)%g,)2

~2

+ Sph{en)]
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6. MINIMUM MEAN SQUARE ALLOCATION
The procedure for determining the optimum dual frame design is similar
in approach to Hartley (1974) applied to a total survey error model and
with provisions for dual frame weight, 6, which may vary from stratum to
stratum.. The optimization method for the separate estimator 25, will be
discussed in detail. For the combined estimator, changes to Hartley's
procedure which allow MSE minimization will be discussed. Where possible,

we follow the notation of Hartley.

6.1 Optimization with the Separate Estimator

For the general separate estimator in stratified multistage sampling,

denote the variance of ?5

v(ks) = ; [V (an, on) + Vgh(Bh, 8h)]

where an and Bh are the design vectors for Survey A and Survey B in
stratum h, The bias in (4.3.2) does not depend upon ap or Bh and is

of the form
A
B(Xg) = g Br (8h)

where Bph(6n) is a linear function of 6,. Hence, the mean square error

has the form
A 21‘ N
MSE(XS) = B (XS) + V(XS).

Denote by Ep(an) and Egn(By) the expected costs of Survey A and
Survey B for stratum h, We wish to determine ap, 8p and on for each h so
h . - -
that MSE(Xg) is minimized subject to a fixed budget C. This minimization

problem will be solved in four stages:
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Stage 1: For each stratum h and for given 9p, yh and Ch

minimize Van (eh, Op)
an -
subject to Ealan) = vp Ch
and
minimize Vgnh (Bnhs ©p)
gh =T
subject to Eg(Bh) = (1 - yp) Gy

where Cn is a given budget to be allocated to stratum h and Yn is a given
fraction of Cp to be allocated to Survey A, 0 < y, < 1 and hence, 1 - Yh is the
fraction to be allocated to Survey B in stratum h,

The solutions to these mathematical programs yield
Van(Chs Yh, 8n) and vgn(Ch, Yhs 8h),
the minimum conditional variances in each stratum, .
Stage 2: For given Cn and 6p, perform the following minimization:

minimize {van (Chs vn, o) + veh (Ch» Yhs 8n)}
Yh

]

which will yield conditional variance vp (Ch, 8n) to be entered in Stage 3.

Stage 3: For given 6y,

minimize L vh (Chs 6p).
Ch h
subject to ICh = C
h

We denote this conditional minimum by V(6) where 6 = [el,...,eL].
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Finally, we solve
Stage 4:

minimize M (9) (6.1.1)
9 -

where M (8) = [z B, (g,)1% +  V(s).
In Appendix B, it is established that the procedure yields the global
minimum-of MSE(QS). The following application should clarify the procedure.
Consider a stratified two-stage telephone/area dual frame survey with

MSE given by any of the forms in Section 5. If we ignore all fpc's, then

v abh(eh) Vawh (8n)

Vph (ah, eh) = + (6.1.2)
B aih a1he2h
and
vgoh (6h)  vawh (®n)
Vgh (Bns 8y) = + (6.1.3)
Blh 81h B2h
where an = [npn, ;Ah] and Bp = [ngh, ;Bh]- Let the cost function be of
the form,

L4

C= ﬁ (Caphalh + Cawhalhazn + CgbhBilh

+ CgwhB1hB2h)

where Cppp, Cgbh are the respective costs associated with primary units and
Cawhs Cpwh are the respective costs associated with secondary units in each

survey,
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For Stage 1, we apply the Lagrangian method with the following results:

~o|

a1h Yh Ch (vaon (8n)/Cpon) /a(en),
1

L(v aun(8)/Cavh) (Cabh/v soh(en))]

azh
1
2
Bih = (1 - vn) Ch (veoh (8n)/Cebh) /b(6n),
1

B2n = [(vewh(8)/Cgwh)(Cbh/vBon(eh))]

where

< 1
a(en) = (Cpoh Vaon (5))° + (Can vam (on)°
and
1l 1
2 2
b(en) = (Cgbh vebh (8n)) + (Cgwh VBwh (8h)) .
By substitution into (6;1.2) and (6.1.3), we have
Van (Gos vps 85) = a2(8,)/ (¥ Gy) s (6.1.4)
and
. VBh (Ghs Yns 8) = b2(8y)/C(1 - v,) Cyls (6.1.5)

Entering (6.1.4) and (6.1.5) into Stage 2 produces the optimum fraction

Yh to be allocated to the area frame survey, viz.

v, = a(e,) [a(e,) + b(e,)]"}

and substitution into the sum of (6.1.4) and (6.1.5) yields

vh (Chs o) = (a(en) + b(en))>/Ch (6.1.6)
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For Stage 3, the application of the Lagrangian method yields

Ch = C[a(ep) + b(ep)] {E Ca(ep) + b(ep)] }-1

with conditional variance from (6.1.6), summing over all strata, given by

We) = iz [alon) + o(on)] /e,

which is similar in form to Hartley's equation 12.

For the final stage, we minimize

M(8)= [ﬁ B (8)1% + V(8)

where Bp(8n) = E(Xg) - Y given by (4.3.2).

Ar analytic minimization of M(9 ) is not feasible, however, any
convex programming algorithm will yield the optimal dual frame weights

* *

81s0eesBL.

6.2 Optimization with the Combined Estimator.

The problem of optimal dual frame survey allocation for the general
combined estimator was treated in Hartley (1974) for the case of no
nonsampling errors and unbiased estimators. When nonsampling errors are
introduced, his procedure for optimization remains the same for the first
two stages. For these stages, bias component is ignored. However, in the
third stage, the conditional mean square error M(8) is minimized ingtead

of v(8) in his equation 12, where
M(8) = B(8) + v(8)

and B(8) = E(X¢) - Y is given by (4.2.3).
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7. AN EXAMPLE

The Current Population Survey (CPS) is a household sample survey
conducted monthly by the Bureau of the Census to provide estimates of
unemployment and other characteristics of the general labor force. To
illustrate the minimum mean square optimization method of Section 6, the
required cost and error parameters were estimated for CPS assuming 51
superstrata corresponding to the 50 states and the District of Columbia.

The CPS sample design is essentially a stratified two-stage design
with counties as primary sampling units and areal segments of dwelling
units as secondaries. The following estimators of the U.S. monthly
unemployment rate and their approximate MSE formulae obtained from

Section 5 shall be illustrated and compared:

1. Separate Estimator, ton Known

XKs ﬁ Wh(tih X1h + 8n t2n X2n + (1-8n) T2n XBh)

and

MSE(Xys) ERNCPICORE Bgp )12

2 -1 -1
C+ ﬁ Whin m v m(en) + ngh vah(en)]

where Wp = Man/Z Man, bpn(8n) and Bgp are as defined in Section 5.2,
h

2 2 2 2 2
Van(8n) = ey Sm + (1-8y) t1n Sih - 8n(1l-8h) t2n S2h

=-1 2 2 2
+ Mpn {t1h 81h O1h + 8h T2h S2h oO2n
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2 2 2
+ [{tin + &h t2n) ¢+ (1-6h) (®an = #an) T1h T2n] 9oh Al

and

= ] 2 2 2 2 2
mgh veh(6h) = (1-8y) (t2n SBh oBh + T2 ogh Gg/L).

In the above formulas, &ip, 82n, 8gn are average with primary design
2 2 2
effects, ojp, o2n, oph are average within primary sample random sampling
variances, @p, is the total sample design effect and ¢py is the average

within primary design effect associated with tipn defined in (5.8).

2. Separate Estimator, ton Unknown

Xy = f‘ Wn(tin X1h + 8h t2h X2n + (1-8n) t2n Xan)

and MSE(Xys) = MSE(Xks) replacing v p(8ep) by

. =-1 .
van(en) = van(en) + many gam(en)
where
- — — — 2
ami8n) = t1h t2n (8m[(Xih = &n Xon = (1-8n) Xgh)

- 2
- {%an - ¢m) (X1h - en X2n) 1]

3. Combined Estimator, ton Known

!

XK¢ = z Wh(tih X1n + © T2n X2p) + (1-8) 12 XB
and
- . 2 2 ‘1 '1
MSE(Xyc) = [Z Wy by (8) + 8 Bgl + T Wy npy Van(8) + ng vg(8)
h h

where b an(8) and Bg(e) are as defined in (4.2.3) for Lg = 1, vph(8) = vmp(en)

with ep = ¢ for all h, and
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- 2 2
mg vg(8) = (1-8)2 1, (83 o5 + qg o)

2
where &g is the total sample design effect and og is the sample random

sampling variance for Survey B.

4. Combined Estimator, ton Unknown

xyc = ﬁ Wh (tin X1n + 6 ton X2n) + (1-8) to Xg

and MSE(xyc) = MSE(Xy¢) replacing vy (8) with
» =-1 »
Vin(8) = van(9) + mpaq ganr(8)

where

97 (9) = 1y Ton (0p[(Kpp - 8 Ny - (1-8) Np)?
- (o = om) (Rqp - 8 Xpp)?] .

7.1 Data Set
In 1982, the average CPS interviewer workload was about 50 dwellings
and currently the average number of interviewer assignments per PSU (primary
sampling unit) is about 2. These parameters, which determine the Gpn and
;Ah’ shall be held fixed. Thus, for Survey A, only npy, the number of
PSUs per stratum, is to be optimized.
In current RDD studies at the Census Bureau, the Waksberg (1978)
sampling method is used with the within primary sampling quota equal to six
residential telephone numbers., This parameter, which determines the ;Bh’
shall also be held fixed. Then only ngh(or ng) need be optimized for Survey B.

The following simple cost models shall be used in the optimization:

C=Co + Z[100CpH nm + 6Cgn nppl
h
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for the separate estimator and

C=Cy + L 100Cp npph + 6Cg ng
h

for the combined estimator where C is the total survey budget, C, is the
fixed survey cost and Cpp and Cgh (Cg) are the average variable cost per unit
for Survey A and Survey B interviewers, respectively. For simplicity we
shall assume that the total fixed costs, Cy, will not change over current
levels for a dual frame survey. Thus, we only need tb know Can, Crn (Cg),
.apd VC = C - C, in order to optimize npy and ng.

The population target parameter is the CPS monthly unemployment rate.
For nod?elephone and telephone households, the assumed rates are Py = 15%
and Pp = 6%, respectively. (This relative difference is consistent with
available data.) We shall assume they are the same in all strata, as are
the within primary design effects §py = 1.33 and épgh = 1.25: which
were cbmputed from available data for the CPS. We use the usual sample
sampling formulas to compute °§ and cg and the domain design effects &§1h
and &on are obtained using the forﬁu]as in Appendix A.

Table 1 summarizes the optimization parameters that vary across strata.
The telephone coverage rates, tyn, are proportions of households with
telephones from the 1980 Census. The between PSU variance components, Sih»
are obtained from CPS as the percent of Sih to Sih + 8 Gih/;A, denoted
by BPSUh. We shall assume that S%h = S%h = Sih.

Variable costs per household by state (Cpn) were synthetically estimated
for Survey A using available data on regional costs per household, interviewer
time and mileage by state, and CPS state workloads. The stratum weights,

Wn are based on recent CPS data on civilian labor force by state.
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There is little information available on biases for area/list or
telephone frame surveys. To simulate the effects of biases which may vary
by state for each frame, we shall assume that biases are proportional to
Survey A nonresponse rates (NRp).

The parameter values in the optimizaf{on are summarized in Tables 1
and 2.

(Insert tables 1 and 2 about here.)

7.2 Optimization Results

The results of the dual frame survey optimization procedure for the
separate estimator are given in the last two columns of Table 2. The MSE
of Ehs‘ﬁas minimized subject to total variable costs, YC, set at about
51 million which is %7 the estimated total annual variable cost for CPS.
ALLOCy, the optimal allocation of sample to the telephone survey, is
reported in the next-to-last column for the casé of zero nonsampling biases.
For example, for estimating monthly unemployment, seven states would not
use the telephone frame (ALLOC, = 0) while 27 states would allocate at
least 50% to RDD. The total telephone sample allocation is 23%.

Suppose a small differential bias between the two surveys, say 5% of
the proportion to be estimated, is assumed. In the last column, TBIAS,
the telephone survey bias parameter, is 5% while ABIAS, the area survey
bias parameter, 0. Now ALLOCh, = O for 29 states and only 1 state would
allocate as much as 50% tb the telephone survey. Nationally, only 3% of
the sample would be allocated to RDD. The table illustrates how widely
ALLOC, can vary between states as well as the potential impact of telephone
bias and other survey parameters on dual frame allocation.

Using the data in Table 1 and 2, in Table 3 we compare the relative

efficiency of the four dual frame estimators. Here, our measure of
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efficiency is the reduction in MSE of the estimator from the minimum MSE
for the single frame design. Even though the reduction is small for all
cases, it is at least twice as great for the separate estimators than for
the combined estimators for both values of TBIAS. It also appears that,
for these data, the effect of estimating tpp in each stratum by ton (for
xys and xyc) is a relatively small loss in efficiency over the case of 2h
known (xgs and xgc).

(Insert table 3 about here.)
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Appendix A - Form of the Within Primary Design Effects

We consider $§ipp, the within primary design effect for D elements in
Survey A. The forms of &ppp and §ghp can be obtained analogously.

Let

Yfhpst = Ylhpst * €lhpst

and define the following notation:

Jhp = number of secondaries samples in primary (h,p),
Jhp = total number of secondaries in primary (h,p),
Mihps = number of elements in D; for the s-th secondary in primary
° (h,p),
Jhp '
Mihp = I Qinhps, the total number of Dj elements in the sample for
s
primary (h,p),
51hp = E(mppp|h,p), the expected number of sample elements in
Dy for primary (h,p),
Mihp = total number of D; elements in primary (h,p),

Jhp Qihps .
Y{p = I L Yihpst» sample total for the primary,
S t

Ythp = Yfhp/minp, sample mean per element for the primary, and

;ihp Yihp/inp, sample mean per secondary for the primary,

Mhp = Mhp/Inp, average number of sample D elements per secondary,

Ythp = E(ythpst|h,p).
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The large sample (Taylor's series) approximation of V(}Ehp) is

1 ~ ~
v(yihp - Y1hp mlhp)
1 ~
= V(A1) (A1)
E2(mlhp)

where Athps = A (Yfhpst - Yihp) and 81hp = T &1hps/Jhp-
1 S

Consider the special case where secondary stage units are drawn with SRSWR.

Then qulhp) = Mihp/Jdnp and alhp = Jhp Mphp/dhp. (A.1) now has the form

JZ 1

hp 2

—— — E(1hps)
2 Jhp

Mihp

1 2 1
oipp (1 +

M1hp M1hp

glhp thp)

where

2 Jhp - -
Mhp olhp 15'- § ; E‘(-Ylhpst - Yinp) (¥1hpst~ - Yinp)

91hp

9ihp = I Minps (Minps - 1),
S

2
and ojpp is as defined in Section 4.2. Note that ginp/Miphp may also be

written as
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M1hp Re]var(ﬁlhp) + E(;ihp)-l
Therefore, the design effect §ipnp defined in (4.2.5) has the form
Sthp = 1 + AtppL(Relvar(Minps) + 1) E(mypp)-1]
which takes the familiar form
Sthp = 1+ AlnplE(minp)-1] (A.2)

when the relative variance of the Mihps is negligible, This same procedure
can be applied to $1hp and Sghp. Note that, for the particular application
in this paper, Alhp and Aohp are intra-segment correlation coefficients

while iéhp is a intra-housenhold correlation,
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Pppendix B - Proof of Optimality

We shall establish that under very general conditions the four stage
optimization procedure of Section 6 produces the global minimum of the

constrained function

M(n, 8) = ﬁ[VAh (an, 8n) + Vg (Bn, ©n)l
+ [fi By (8h)1° (8.1)
subject to
. C(n) = ﬁ [Em (an) + Egn (Bn)]1 = C

where ﬁ.= [Sh, fh] and 9 are the variate vectors and C(E) is a linear function
of n. Clearly, the method produces a stationary point of the function (B.1).
To establish that this point is the unique minimum point, it suffices to

prove (1) the strict convexity of (B.l) for general survey designs and (2)

the strict convexity of M(9) (defined in (5.1.1)) as a function of @.

Theorem 1: The variance functions

Van (ans 8n) = V1 Z wap Unp (6n) + Ep [Vpun(on; 1p)]
p .
and ‘
Ven (o, ) = (1 - 8y)% (V) nghp Xghp + E1 [Vpyn(ng)

given in (4.3.3) are strictly convex functions when sampling fractions are
ignored at all stages.

Proof: Consider the between primary component of Vpn(ap; 8h). Ignoring
sampling fractions, sampling theory without nonsampling error provides

formulas of the form
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_1__ _
at  Up” Q¢ Up

n e x

v (zWﬁhpUh)=

akl "p'

‘p t=1

where Up is the vector of primary population means, the 0y are symmetrical
and non-degenerate positive definite matrices, k + 1 is the number of sampling
stages, and at is the number of units drawn at the tth stage above the last

stage. Thus, applying Hartley's (1974) Theorem 1 proves V (I W php U}p) is

etmirtdly rAnuvay
L1 |\ob|J CUHVYTA,

Consider now the within primary component of Vpn(an, 6n). This term

may be written as

-~

-1 2 2
.« E1Zap wamp (finp + 8n fonp + 20n fiznp) (8.2)
P
where
2 2
fihp = Tlhp S1hp 9lhp * ¢shp Tihp T2hp X1lhp
2 2
+ Tlhp %ah A
2 2
fahp = T2hp 82hp o2hp * ¢np Tlhp T2np X2hp
2 2
+ T2hp 9qh A
and ‘

1/2
fi2hp = (Tihp T2hp Sihp S2hp)  Glhp 92hp P12hp

- 9mp Tlhp T2hp Xlhp X2hp

2
+ Tlhp T2hp %9ah 94h
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The (npy + 1) x (ngy + 1) Hessian matrix for the summation in (B.2) before

expectation has the form

-1
where 911 Z ap thp’
Y

g* = [gp] with, for p = 1,...,npm,

- 9p = ap (8n fonp + f12np)s

and

to
"

diag (dp) with, for p = 1,...,02n,

-3

2
dp = ap (finp + enp f2np * 28n f12np).

Clearly, since all dp > 0, the principal minor determinants of order np,
or less are positive. Therefore, we must show det(ﬂ) > 0 in order to
establish that H is positive definite.

Using the well-known identity

-1
« det(H) = det(D)(911 - 970  9),

it can be shown that det(ﬁ) >0 if
2
finp fonp - f1i2np =

2
Tlhp T2hp Sihp S2hp Olhp 92hp (1 - P12hp)

2 2
2 2 2 81hp 91hp * S2hp I2hp
* Thp T2hp %h I ]

Ylhp T2hp
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1/2
S1hp $2h

D
= 2l———)  91pp Fnp P12hp)]
Tihp T2hp _

+ (positive cross product terms) > 0.

-

The first term on the right is positive since P12hp < 1 and the second
term is positive since the term in parentheses is equivalent to mpyp times
A = X%hn
hp = % P

he sum of convex functions is convex,

' < Al ’ — —-—
X L_ + UnlxXow = 2 Cov X |_ X9

1hp) + Va(xznp) -

—~

- wo) = VolXtn > 0
p n/—I\l\ SOV e

2
the strict convexity of (B.2). Since

c O

the expected value, Vy, is convex and Vpy (an, 6p) is a strictly convex

function. A similar argument applied to Vgh (Bns 8n) proves the theorem,
Theorem 2: Under the conditions of Theorem 1, the constrained function

Mc (n, 3) = {M (n, 0)|C(n) = C},

»~

for linear cost functions C(n), is a strictly convex function of n and o .
Proof: By Theorem 1, Vpn (gh’ 8n) and Vgp (Eh, 8p) are strictly convex
variance functions. Hence, the sum of the components over the L strata is
strictly convex.

Since By, (6y) are linear functions of 8, (£ 8y (ah))2 = § “J ? where
E is the L-vector of the functions Bp (8n) and J is the L x L matrix of 1's, has
a positive definite Héssian matrix with respect to g and is, therefore, convex.
The sum of convex functions is convex and, thus, convex over a linear subspace.
Thus, MC(D’ 9) is strictly convex.

Theorem 3: Under the conditions of Theorem 1, the function

M(8) = min Mc(n,9)
n|® - -

~ ~

is strictly convex.
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Proof: Because of Theorem 1, the program

min T [Va (ans 6n) + Vgn (Bhs 9p)]
n|8 h ~ -

has a unique solution vector which will be denoted as n* (8). C(hoose two
8-vectors, say 81 and 6, and two constants X1 > 0 and 2 > 0 with

Al + A2 = 1. From Theorem 2, Mc (n, 8) is strictly convex. Hence, we have

- Mc (A3 n* (81) + A2 n* (82), A1 81 + A2 82)
- < a1 Mo (% (81), 81) + A2 Mc (n* (82), 92)
= A1 M (81) + A2 M (87). (B.3)

But, M (A3 81 + Xz 82) cannot be larger than (B.3) since it is the minimum of

Mc (n, A3 81 + X2 82) over all n . This proves M (8) is strictly convex.



1. Parameter Summary

Parameter Value
Total variable costs VC = $997,864.00/month
Survey B costs/unit Cg = $11.50
survay A gaffs S = 1.33, u=l,...,51
Dorpain Dy S§ih = 1 + (T11n ;m-l)(ém-l)/(;m—l)
Domain Dj Son = 1 + (121 ;M-l)(ém-l)/(;ph-l)

om = 1, h=1,...,51
om =1, h=1,...,51

Survey B deff égh = 1.25, h=1,...,51
Proportion with characteristic Pmh = T1h P1 + t2n P2
Domaih D3 Py = .15
Domain Dy P2 = .06
2 BPSUR =
Between PSU variance Spp = ———— S Pan(1-Ppp)/mp
1-BPSUp
) 2 2
Domain Dj Sih = Sah
. 2 2
Domain Dy So2h = Stn
Survey A bias Let gn = NRp/(Z Wp NRp), then
Domain Dq Bip = 9p ° ABIAS * Py
Domain D, Bop = 9 ABIAS ° Py
Survey B bias Bgnh = 9h TBIAS - Py
Household size HHSIZE = 1.12 civilian

labor force/household

Interviewer Assignment Size
Survey A qQpn = 50 ° HHSIZE, h=1,...,51

Survey B qg = 90 ° HHSIZE

Within PSU sample sizes =
Survey A Man = 133 ° HHSIZE, h=1,...,51

Survey B Mgy = 6 ° HHSIZE, h=1,...,51



2. CPS Data Set and Optimum Telephone Allocation for TBIAS = 0% and 5%.

Parameter Values ALLOCh
Stratum Wh 2h BPSUp Can NRp TBIAS=0%  TBIAS=5%
us 100% 93% 10% 514 4% 23% %
AL 1.5 87 9 17 3 43 10
A 2 84 8 20 6 54 8
Mo W4 B < 17 5 I v
AR 1.0 87 9 20 3 51 39
CA 11.0 95 2 9 5 0 0
co 1.6 94 6 16 4 58 0
cT 1.4 97 0 15 4 60 0
DE 3 95 0 20 3 69 41
bc o3 96 0 19 7 71 7
FL 4.5 91 1 11 4 0 0
GA 2.4 88 6 15 4 34 0
HI 4 95 .02 22 4 68 43
ID_ A 93 7 19 2 62 43
IL 4.9 95 2 11 7 0 0
IN 2.3 93 5 13 4 33 0
IA . 1.3 97 11 14 2 62 38
KS 1.0 95 10 17 4 62 0
KY 1.6 87 7 17 3 41 0
LA 1.8 90 3 18 4 49 5
ME .5 93 3 13 2 44 0
MD 2.0 96 4 15 4 60 0
MA 2.6 96 0 10 4 5 0
MI 3.9 96 2 11 4 13 0
MN 2.0 97 7 13 2 59 0
MS 1.0 84 8 19 3 42 26
MO 2.0 95 5 13 2 42 0
MT A 93 9 18 3 60 31
NE o7 96 9 19 4 70 42
NV 5 91 3 21 4 58 22
NH .5 94 0 14 3 51 0
NJ 3.2 95 0 11 7 11 0
NM 5 86 5 20 5 45 0
NY 7.0 92 1 8 6 0 0
NC 2.7 , 89 2 14 4 23 0
ND o3 96 14 18 3 70 53
OH 4.5 94 .3 11 5 0 0
0K 1.4 92 5 17 5 54 0
OR 1.3 93 4 18 4 59 0
PA 4.8 96 2 10 4 0 0
RI A4 95 0 17 3 51 29
SC 1.3 87 10 17 4 44 0
SD o3 94 14 17 3 64 41
TN 2.0 89 7 17 3 47 8
TX 6.8 90 6 11 4 0 0
uT o7 95 3 17 4 59 9
VT 2 93 0 16 2 59 20
VA 2.4 93 13 15 4 50 0
WA 1.9 94 4 18 4 61 7
WV .7 90 6 17 4 46 4
WI 2.1 97 11 14 2 63 0
WY o3 92 7 24 4 66 44



3. Performance of Xgs, Xys, XKC» and xyc
Relative to the Optimum Area/List Frame Estimator

MSE Reduction Telephone Allocation

TBIAS = 0% TBIAS = 5% TBIAS = 0% TBIAS = 5%

Xks 7% 2% 244 3%
XUs 6% 1% 23% %
XK e 3% 1% 31% 1%

Xuc 2% 0% 29% 1%
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