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ABSTRACT 

Fellegi's (1974) improved method for estimating the interviewer compo- 

nent of correlated response variance is extended to a. groups of k interviewer 

assignments for-general multistage survey designs. Using a linear models 

approach suggestive of Hartley and Rao (1978), the independence of the two 

estimators of interviewer variance is established and the forms of the 

variances of the estimators are derived. Then, using 1980 Census data-to 

compute terms in the estimator variances, (1) the optimal design of inter- 

viewer variance studies is considered, (2) the improvement of the composite 

estimator is demonstrated, and (3) some principles of efficient study 

design are developed. 

KEY 'IWORDS: Response or interviewer variance; survey nonsampling error; 

optimal survey design; survey evaluation. 
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1. INTRODUCTION 

There are numerous references in the literature which document the 

importance of response, or measurement, error in sample surveys (see, 

e.g., (Dalenius 1977), for a comprehensive bibliography). Models have been 

used extensively to measure the impact of the various types of response 

errors on survey estimators. They typically assume that a survey response 

differs from a true response by an error term which is contributed by the 

various operations and other error sources in a survey. These models 

indicate that when the errors made by a specified error source (say, a 

*particular interviewer) are correlated, the variance of a survey estimator 

is increased by additive components called the correlated components of 

response variance (e.g., (Cochran 1977)). As a result of these correlated 

components, the usual unbiased estimators of the variances of means and 

totals are negatively biased, thus overstating the reliability of estimates 

(cf., (Sukhatme and Sukhatme 1970)). The models indicate that these biases 

can be eliminated or reduced if estimates of the correlated components are 

available. Further, it has long been recognized that the estimated compo- 

nents contain considerable information regarding the quality of the particular 

operation(s) under investigation (cf., (Hansen, Hurwitz, Bershad 1961), 

(Hansen and Marks 1951)). Therefore, a considerable number of studies 

have been conducted to estimate the components due to correlated response 

variance, especially for interviewers. These studies usually require the 

randomization or interpenetration of interviewer (or operator) assignments 

as a condition for the estimability of the response variance components. 

Fellegi (1974) introduced an improved estimator of the interviewer 

component which is a convex combination of two unbiased estimators formed 

as follows: 
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1) The usual components of variance estimator is formed based 

upon interpenetrated pairs of interviewer assignments. 

2) A second estimator is formed based on all interviewer assignments 

including those not interpenetrated. 

Fellegi speculated on the relative magnitude of the variances of the 

two estimators and conjectured that they are uncorrelated and, hence, 

might be combined to provide an estimator having smaller variance than 
r 

either taken separately. At least two applications of his procedure have 

been reported: Krotki (1978) and Bailey, Moore, and Bailar (1978). 

* 
Because of the costs and complexities of interpenetration studies, 

estimates of interviewer variance are often based upon a relatively small 

number of interviewers and are notoriously unstable. Exacerbating this 

problem is a void in the literature of methods for optimizing the design 

of interviewer (or operator) variance studies in complex surveys to take 

advantage of the existing resources. 

This paper provides a general methodology for the estimation of the 

correlated components of response variance. Estimators (1) and (Z), are 

generalized by allowing interpenetration of 11 groups of k interviewer 

assignments for general multistage survey designs. Their independence is 

established for the special case of normally distributed observations. 

Then a generalization of the Fellegi composite estimator is constructed 

and formulas for the variances of the three estimators are derived. Finally, 

the optimal design of interviewer variance studies (e.g., the choice of a 

and k) subject to survey budgetary contraints is considered using examples 

of population parameter configurations computed from 1980 Census data. 
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2. SURVEY ERROR MODEL 

The survey design considered is a general stratified multistage survey 

in which the units of the last stage are drawn with equal probability 

without replacement within the units of the next-to-last stage. The 

concepts will first be described in terms of a two-stage survey and then 

outlined for the general multistage situation. 

Let n denote the sample of n primary units selected from all strata 

according to some sample design. Consider the selection of the samplerof 

secondaries and the formation of initial interviewer work assignments within 

primaries which we label p = l,...n. (Here, the primary index p is actually 

a double subscript denoting the primary unit within its stratum.) Most 

surv:ys implement a procedure for forming assignments which is equivalent 

to the following: Each sample primary area, p, is partitioned into Ip 

('P > 1) enumeration areas (EA's) which are roughly equal with respect to 

the number of population units, where Ip is the number of interviewers 

required to handle the primary workload. A random sample of units denoted 

by ipa, a = l,...,Ip, is then drawn independently without replacement 

from each EA. Each [pa is then assigned to one intervietier for enumeration. 

To describe the error of interviewers and respondents, we adopt an 

additive model and confine ourselves to only one content item. Let npas 

denote the true value for the s-th secondary in *&a and let Ypas denote 

the corresponding recorded content item. Assume 

ypas = qpas + bi + gpas + rpas Gf.1) 

where bi is the systematic interviewer error common to all units interviewed 

by the ith interviewer, Gpas is the elementary interviewer error and rpas 

is the respondent error associated with unit (p,a,s). (Generalizations to 



additional sourcesof error are feasible in the same m 

Rao (1978)). Folkwing Hartley and Rao, it is assumed 

where I = ~1 constitutes a random sample from the inf 
PP 

interviewer errorswith mean zero and Variance Ob, 2s (2) 

random variables &th zero means; and (3) the rpas are 

. 
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nner as Hartley and 

that (1) {bi,i=l,...,I) 

nite population of 

the &pas are i.i.d. 

zero mean random 

variables sampled from the finite population of respondents by the survey 

design implement&. For simplicity, we also assume that finite population 

corrections are %zgl igible as in their procedure. Denote the variance of 

the pooled terms fnpas - Yipa) + Gpas + rpas = epas, say, by o.?(p,a). 

-We must assume th& the bi are independent from the epas; however, no 

assumptions need& made about the independence of the three individual 

terms*comprising+as. Model (2.1) may now be written as 

Ypas = "pa + bi + epase 

To simplify the s&sequent components of var iance estimat 

convenient to retite (2.2) in matrix form as 

(2.2) 

ion formulas, it is 

Y, = X y + Ubb + CCWpa epa 
W" c." pa' - 

(2.3) 

where y , b and e+a are vectors of the components in (2.2) and X, Ub and Wpa 
" " .w e m - 

are the corresponing design matrices. 

3. DESIGN FOR INTERVIEWER ALLOCATION 

In this section, general guidelines are given for specifying the design 

matrices x, ub, W,d w 
2 

2 -- 
-pa 

in (2.3) so that (1) the variance components Ub and 

ae(p,a) are estimable by the synthesis-based variance component estimation 

technique (Hartlgjl, Rao, and La Motte 1978), (2) a second unbiased estimator 

0: may be compute&, and (3) the two estimators of 0: obtained for (1) and 

(2) are uncorrelxed. 
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The components of variance estimation procedure of Hartley, Rao, and 

La Motte provides a general necessary and sufficient condition for the 

estimability of the components ai and oE(p,a). Simpler sufficient 

conditions which-ensure that this general condition is satisfied and which 

pertain to the work assignments of survey personnel have been derived for 

general survey designs (Biemer 1978). These conditions require that 

(1) within each Epa there are at least two last-stage units interviewed 
r 

by the same interviewer, and 

(2) within at least one ipa there are at least two last-stage units 

. interviewed by different interviewers. 

Condition (1) is always satisfied by the usual assignment of Spa’s to 

interliewers; however, condition (2) specifies that for at least one Jpa, 

two or more interviewers should share the workload. This is essentially 

the requirement of interpenetration. We should stress that condition (2) 

is merely a sufficient condition which provides for only a single interviewer 

contrast. Without claiming any optimality properties for our procedure, we 

provide designs for maximizing the number of interviewer contrasts where 

feasible. We should further note that these conditions only provide for 

2 
the Hartley, Rao, and La Motte estimator of ab. A scheme for assigning 

secondaries to interviewers is now described which allows a second estimator 

2 
of ob to be computed. 

Let the I EA's formed in the previous section for the sample of primary 

units, II, initially be assigned to one enumerator. Now, group the EA's 

together into L non-overlapping blocks each containing k EA's. This may 

be done by any convenient grouping criterion. (We assume for simplicity 

that L = I/k is an integer.) Let a random sample of a blocks be chosen 

from the L and denote the sample by G. To each block of EA's in & apply 
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the Pattern I interviewer allocation scheme and to the remaining L - II 

blocks apply the Pattern II scheme below. 

Pattern I 

For this pattern of interviewer allocation, the k interviewers associated 

with each EA of a block in & split the workload in each of the k EA's. 

Let ftta(t,t' = 1 ,...,k) denote the fraction of the total sample of 

units in the t-th EA of a block that is randomly assigned to the interviewer 
e 

originally allocated for the t'-th EA of the block. Pattern I then 

specifies ftta > 0, for t,t’=l,..., k. 

This design may be regarded as a generalization of the concept of 

interpenetrated interviewer assignments for which each interviewer is 
I 

assigned the same fraction, l/k, of the sampled units in each EA. Our 

procedure only requires that the rank of the matrix F = [ftt#] be 
m 

less than k (justification is provided in Appendix C). For example, the 

classical interpenetration design for k interviewers is a special case 

where F = k-l1 is the kxk matrix of ones. 
. Jk 

where tkk 

Pattern II 

The allocation pattern for blocks in G'(the complement of;") is simply the 

original allocation of only one interviewer for each EA in the block. 

This corresponds to F = I, using the notation above. 
* w 

Specifying a particular interviewer allocation design according to the 

above principles is equivalent to specifying the design parameters k,a, and 

F. The optimization of k and 11 is considered in Section 6. The optimal 
m 

choice of F is not considered here; however, in most cases, the choice is 
- 

governed more by operational considerations than by precision concerns. 

Historically, F = k-'tkk, equal allocation, has been the mOSt administra- 
" 

tively convenient interpenetration method since it simply specifies that 
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the secondaries be dealt out to each interviewer in turn until the list of 

units for the EA is exhausted. This can be handled clerically in the field 

office. Further, the classical design is similar to the completely balanced 

one-way components of variance design which have certain optimal properties. 

Our formulas provide for general F, however, for situations where completely 

balanced interpenetration is not possible. 

Certain generalizations are feasible. The role of the primary stage 
v 

can be taken over by any lower stage. The procedures and conditions in the 

foregoing are then restated substituting "primary unit" by "next-to-last 

* stage unit" and "secondary unit" by "last-stage unit." No restrictions on 

the purvey design will be made for stages above the next-to-last stage so 

that now, unequal probability sampling is permitted for every stage except 

the last-stage. 

4. TWO ESTIMATORS OF INTERVIEWER VARIANCE 

In this section, we will derive two estimators of the interviewer 
2 

Component, Ub, which are estimable from the interviewer allocation design 

of the previous section. The independence of the estimators, proved formally 

in Appendix C, guarantees an estimator having smaller variance can be formed 

as an appropriate linear combination of the two. The variance formulas for 

the estimators which are used in the study of their performance in Section 6, 

are also given. 

To ensure the unbiasedness of the estimators under model (2.3), the 

following additional assumptions must be made: 

1. For a given sample of primary units, n, and set of Pattern I 

blocks 6, the design matrices X, ub, and ipa are constant. This 
m m 

is equivalent to assuming that the secondary sample size, mp, for 

primary p is predetermined for every primary in the population, 



2. The selection of secondaries and their assignment to interviewers 

within primaries (Pattern I blocks) and the assignment of EA's to 

interviewers (Pattern II blocks) is done by implementing simple 

random sampling. This requirement may only be approximated in 
r 

I 

practice. For example, systematic sampling from geographically 

sorted lists may be used rather than simple random sampling for 

Pattern I blocks. For Pattern II, interviewers may be assigned 

to EA's purposively based on administrative convenience. These 

deviations are tolerated in order to reduce the costs of studies 

since 

In Biemer 

synthes is or M I 

for multistage 
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that the design vector (k,a,F) does not depend upon n or 6, and the 

delineation of EA boundaries and block groupings determined for a 

sample II is independent of the set 6. 

their effects are believed to be small. 

(1978), a general method for estimating u: based on the 

VQUEO procedure (Hartley, Rao, and La Motte) was developed 

sampling without replacement. This method is briefly 

reviewed here under the simplifying assumption of negligible sampling 

fractions within EA's. Biemer has shown that even when sampling fractions 

2 
are not ignored, the formulas for estimating Ub are the same as below. 

Given the samples n and s, the model (2.3) represents a mixed analysis 

of variance model of the form 
I+1 

! = !f + c uq )Eq 
q=l' 

(4.1) 

where X,Ul 
-9 - 

,...,UI+I are design matrices, B is a vector of constants, bq is a 

vector of rando; variables with E(iq) = O-and V(b,) = u:I. Then Ul plays 
m e m 

the role of Ub from model (2.3), U2 
.u e 

,...,UI+l play the role of the Wpa's, 
w 

and bI, b2 
1 w 

,...,bI+I represent b and tpa, p=l ,...,n; a=1 ,..., Ip, respectively. 
" w 
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Assume that #has been reparameterized so that X'X = I and define 
* -0 v 

where, for q=l,., ,,I+l, 

(4.2) 

!y = (u_4 - XX'U,)(u_, - XX'Uq)'. (4.3) -en v mm m 

2 
Biemer (1978) has shown that an unbiased estimator of a2 = [uq ] is given by 

0 

where 

A2 
U = A-lQ - (4.4) 
v 0 0 

A =[Aqsl for q,s = l,...,I+l (4.5) e 0 

with 

%s = tr lJs'!qU,s (4.6) 

and Q = [Qql. Using the estimability conditions of Biemer, it can be 
w 

-1 
verified that h exists for survey designs and interviewer allocation 

0 

schemes consider& above. Finally, we see from (4.4) that 

-1 2 
with X, the first row of A , is an estimator of Ub. Let u:(l) denote 

L1 n/ 

Note that the quadratic forms (4.2) appear to 

tions y, i.e., those in interpenetrated EA's as we 
0 

EA's. It can be shown, however, that the observat 

contribute no information for the estimator $(l), 

use of in Appendix B. To see this, let 

; 
a+1 

” 
= i; t c iJqbq 

-- q=l - - 

this estimator. 

involve all the observa- 

11 as non-interpenetrated 

ions in Pattern II blocks 

a fact we shall make 

(4.8) 

(4.7) 

denote the analagous model to (4.1) where the design vectors and matrices 
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correspond only to observations of the tf = ak interviewers in Pattern I EA's. 

It can be shown that A defined in (4.5) can be written as 4 =diag[;\,I] with 

h for the model (4.8)Odefined in analogy to (4.5). 

0 v 

This leads to the result 
v 

that the estimator of $(l) is the same regardless if (4.1) or (4.8) is 

used. 

Let E3 and V3 denote the conditional expectation and variance operators 

given particular choices of n and 6, and let E2 and V2 denote the operators 
r 

over all possible selections of 6 holding II fixed, and let El and VI denote 

the operators over all possible samples II. If the y are assumed to be normally 

'i distributed, the variance of the estimator u:(l) is 

0 

I V(l) = Var u:(l) = hEz(L,“‘3(Qh,), v v - (4.9) 

I+1 
where V3(Q) = [2tr iJqUs;], and ,C = V3(y) =qil~$q..~, which follows 

v 0 = 

since E3(y')AqE3(y) = 0. 
v 5 

2 2 
Now consider a second estimator of Ub, which will be denoted by $b(2). 

Let the EA blocks formed in Section 3 be labeled by y =l,...,L and let 

- 0 = (Yyl 2 
,...,Yyk) denote the kxl vector of EA sample means for 

block y. Define the quadratic forms 

for y =l,...,L where 

(0 = I - FF- 
v v -0 

with F' denoting the generalized inverse of L. 
v 

Let 

(4.10) 

(4.11) 

(4.12) 



and 

&I = & E By(y). 
rq’ - 

. 
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(4.13) 

From (4.1), the f&llowing relationship holds: 

and 

zy = jy + Fby + Fy for every y~g, 
VW 

(4.14) 

ty = !y + Ib, + iy for every YE;', 
VW 

(4.15) 
v 

where Ty is the k-vector of EA population means in block Y,$~ is the 
v 

k-vector of interviewer variables, bi, for the k interviewers of block y, 
* 

and e ' = (eyl 
BY 

,..-,eyk) where e yt is sample mean of the composite error 

terms epas, for lthe t-th EA in block y. 

Then, for YE;, 

E3(By(y)) = !y’@Ty + tr OFF-U: 
v v-4 e-v 

+ tr @V3(ey) 
I 0 

or, since from (4.11) tr OFF- = 0 
v-m 

= 13'; + tr Qv(Ty) 
.y v-Y 0 

= H,(n,@, say. 

Since tr Q = k-r where r = rank F, we have for y~i; 
0 

2 
W,(Y >> = Hy(II& + (k-r)ub. 

0 

Thus, from (4.18) and (4.19), 

E2(BII - BI) = (k-r)ug. (4.20) 

It follows that, for k > r, 

6(2) = 27 (%I - &I 

(4.16) 

(4.17) 

(4.18) 

(4.19) 

(4.21) 
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2 
is an unbiased estimator of ub given II and is, therefore, unconditionally 

unbiased. b 

The variance of $(2) can also be derived under the assumption of 

normality of y. It is shown in Appendix A that 
0 

V(2) = Var SE(Z) 

= El I 
1 

(k-r)(L-!z) ' 

+ 40; -R(n)] + 2&} (4.22) 

. 

where S:(n), I, and I are given by (A.3) through (A.5) and (A.lO). 

*In Appendix C, the independence of the estimators $(l) and &t(Z) 

is established for normally distributed y. Thus, for our model, it follows 
0 

that the unbiased estimator 

2 
ab = a G:(l) + (l-a) ii:(Z) 

for a = wvw) + V(2)) 

has variance y/ 
L = w)w)/(w) + VW). 

(4.23) 

(4.24) 

(4.25) 

)'is never greater than the smaller of V(1) and V(2). 

5. SPECIAL CASE: SIMPLE RANDOM SAMPLING 

In this section we show the form of the estimators $t(l) and ",:(2) 

and their variances for the special case where 5 = k-l 1 _kk, the balanced 

interpenetration scheme, and where each of the Fpa' s initially assigned 

to one interviewer constitutes a simple random sample of m units with 

negligible sampling fraction. 

Let y*js denote the s-th observation recorded by the j-th interviewer 

in the t-th EA of the y-th block. A dot in place of a subscript denotes summing 



13 

k m/k 
over that subscrie; e.g., yy.j. = c c Yytjs. 

t=1 s=l 

It is shown in Apmdix B that 

k(m-1) a k 
g(l) = mn[k(m!Z)+i] [(k-l), y& jtl(yy.j. - Y~.*.)2 

L k k f 
-c c c c (Yytjs - yrt.. 1’1 

y=l t=l j=l s=l 

* where yy.. . =Y Y..Jk) Yyt.. = yyt../m, and f = m/k is assumed to be 

integral for SimpIicity. It is also shown there that 

* 

V 
22 2 

= tk-l) {[ub ' n ub Eip(y,t)] 

zu:(v,t 
t 

Further simplific&ion results when we assume &y,t) = u:. 

V(1) 4 2 2 2 k(m-1) 4 = 2 

efik-1) 
Cub ' m Ub ue ' 

m2(km-2k+l) 
Uel* 

II). 

Then 

USiflCJ F- = k-l LkC, we have from (4.10) through (4.13) and (4.19) that 
0 

k 
= (k-1)” [n-l c c (YYt” - ;,)’ 

YE;‘ t=l 

- (L-&)-l c 
k 
1 (yyt.. - ;,I21 

ye;’ t=1 

(5.2) 

(5.3) 

(5.4) 

where i, = yy...&m. Then from (4.22) 
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V(2) = [(k-l)(L-n)]-’ {(k-l)-l[(Le)(S;tv) + 4&l + 2u$ (5.5) 

where from (A.lO), (A.4), and (A.3) respectively 

L 2 
a = E,a(n) = L-l z { - 

k 4 k 2 

y=l k2m2 
C(k-2)tflue(Y.+-) + (1 ue(Yst))‘l 

t=1 

k 
+m -l E (11, - 

t=1 

L k 
R = E$(n) = L-l c + (k- 

2 
l) ue 

2 2 
SH = ElSH(II). 

Assuming uE( y,t) = u’, we have 

V(2) = (k&m&) $$ [(L/n)(s; + 4(k-l)oe>km2 + uf y/m> 

t 40&i + (k-1)&m)] 
4 

+ 2fJb) 

L k L 
where 5 = c C (nyt-yy)'/L =yflvy/L and 

y=l t=1 

2 L 
SH = c (Vy -V)2/(L-1) . 

y=l 

(5.6) 

(5.7) 

(5.8) 

For the important case of k = 2, or interpenetration of pairs of assignments, 

also considered by Fellegi (1974), we have from (5.1) 

2 2 m/2 
-c c C (Y*js - Yyt..l/~(Zm-3) 

t=l j=l s=l 

and from (5.4) 
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.2 
a#) = 11-l c [xylem - y,2..)'/2 - (L-i)-' c cyl.. - y,2..)'/2. 

YE;; Y$ 

These estimators are precisely those given by Fellegi (1974, eqs. 

(3.8) and (3.12)), when his weights, Wk, were all identical and equal to 

their average value. In his paper, Fellegi speculates on the independence 

of the two estimators and their relative variances. Their independence 

under the assumption of normality is proved in Appendix C and their rel'ative 

efficiency can be explored using the variance formulas developed in this 

section. . 

6. OPTIMALITY CRITERIA 

In this section, the optimal design of interviewer variance studies is 

considered analytically using the variance formulas developed in the last 

section. In addition, data from the 1980 Census of Population and Housing 

are used to compute the terms in the variance formulas in order to empirically 

investigate other aspects of optimal design which do not lend themselves to 

an analytical study. We assume for this section that y has a multivariate 
v 

normal distribution so,the variance formulas and the independence of the 

two estimators apply. 

One can show by considering each term of (5.3) separately and holding 

the number of interpenetrated interviewer assignments, 4 = ka, fixed that 

V(1) decreases slowly as k increases if m > 2. The same can be shown to be 

true of V(2) from (5.5). In other words, the greater the number of EA's 

to be grouped per block, the more precise are the estimators. For most 

applications, however, there is a practical limitation to the size of k. 

For personal interviewing, the major disadvantage is the increased travel 

costs as k increases and the interviewers' assignments are dispersed over 

larger geographic areas. 
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One of our goals is to determine the values of k and a that minimize 

2 
the variance of fib when the additional cost of interpenetration is taken 

into account. Our second goal is to establish criteria for determining the 

efficiency of using the composite estimator (4.23) instead of the estimator 

s:(l) alone . 

Suppose that costs of an interviewer evaluation study are a function 

of G, the number of interpenetrated interviewer assignments. Further assume 
I 

that interpenetration of a block containing k EA's will increase the usual 

cost of interviewing (or enumerating) in that block by a factor of a. 

* (Justification: The average distance between randomly distributed points 

in a plane is increased by fi when the density of those points is decreased 
. 

by a factor of k. Thus if the interviewers' assignments were randomly 

distributed and if the additional cost of interpenetration were due to 

within-block travel, this assumption would be reasonable.) Therefore, the 

added cost of interpenetrating a blocks of k EA's each is c$& - cri = 

c4(&-l), where c is the usual per-EA cost of interviewing. 

The optimal allocation of k and R for an interviewer variance estimator 

is defined as that which minimizes the variance of the estimator for a 

fixed evaluation budget, or, equivalently for a fixed proportional increase 

in cost per EA i.e., c4(4~-l)/c& = (a/L)(fi-1) = A,. 

We denote (5.3) and (5.6) by Vl(k(A,) and VZ(klA,) respectively, upon 

substituting a = LA,/(J~-1) and L = d/k. Then it can be shown by minimizing 

over k that: 

1. Vl(klA,) is monotonically increasing for k > 2 if m > 2. 

2. VZ(k(A,) is monotonically decreasing for k > 2. 

Thus if ",i( 1) were to be used alone, the optimal choice of k would be 2, 

2 
whereas if 8b(2) were to be used alone, one should choose k as large as 



17 

possible. The optimal allocation for the composite estimator, however, 

must be addressed empirically since it depends on the configuration of the 

other parameters in the variance formulas. 

The variability of EA means within block y is reflected by vy, and 

the mean and variance over all blocks of the vy's is given by 7 and Si in 

(5.7) and (5.8). The larger is either of these parameters, the worse is 

the estimator s:(Z). Therefore, to improve the efficiency of the composite 
v 

estimator, attempts should be made to keep the blocks as homogeneous as 

possible (small v) or at least equally homogeneous (small Si). 

* Fellegi (1974) speculates that the arithmetic mean of the two 

2 2 
estimators $b(I) and $b(2) iS likely to be an improvement on either. 

This Gill not be the case if v and/or Si are large and dominate V(2). In 

fact, even the optimal linear combination of the two estimators given by 

(4.23) and (4.24) will sometimes be virtually no improvement over a:(l), 

even when a/L is quite small. (This effect is exemplified in the numerical 

results that follow.) When SE and 7 are dominated by the other terms in 

the variance expression, the composite estimator can be a substantial 

improvement. From (4.25) we see that the relative efficiency of g:(l) to 

to St, denoted by RE($(l), a',), is V(Z)/(V(l) + V(2)). In the 

2 
extreme case where SW = 7 = 0 and k = 2, one can show from (5.3) and (5.6) 

that RE(eE(l), GE) 

(Ll~)+2(1-P)lP+C(1-P)/p12 
= (a/L) 

C2-(~/L)1Clt(2m-~)-11~~~~~-~)/pl+C(1-p)/~12 (6.1) 

where 

P = &(u~ + u2b, (6.2) 

is the intra-interviewer assignment correlation coefficient defined by 

Kish (1962). 
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In order to i1Wtrate some principles of optimal interviewer variance 

study design, data @From the 1980 U.S. Census of Population and Housing was 

2 
used to estimate th parameters ae, Si and 7 for a number of demographic 

and housing variabk. About 1400 Census EA's in a random sample of 57 

Census Districts ilathe New York and Boston Census regions were paired 

together clerically using Census maps to form 700 mutually exclusive pairs 
2 

of contiguous EA'r, Table 1 reports the parameters v/u: and SH/Ue for 

several character&tics. As would be expected, the variable "Sex" shows- 

the least amount ti heterogeneity within blocks and the housing character- 

istics show the most. 

(Insert Table 1 about here) 

TIhe variance formulas developed in the previous section were not 

intended to be- used with variables of this type, since they are categorical. 

It is not known hw robust the variance expressions are to deviations from 

normality. However the numerical results that follow are useful to describe 

the behavior of t& variances of the estimators and the optimal choice of k 

2 2 2 
for various confi rations of the parameters ub, ae, SH, and v. 

Figures A and B show graphs of Vl(kjA,), V2(klA,), and V(klA,) as 

functions of k for selected variables and categories from Table 1. A 

typical value of ofor the variable shown is used (obtained from Kish (1962)) 

and A0 is set to 35 which is equivalent to interpenetrating about 12% of 

the blocks. Several characteristics about the curves are illustrated by 

these figures: 

1. The precision of the composite estimator for fixed cost is virtually 

unaffected by the size of k. Thus a choice of k = 2 is probably 

best frarr the point of view of simplicity in block formation and 

minimizirg within-block heterogeneity. 
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2. The larger is k, the greater is the improvement in precision of 

the composite estimator over &g(l). 

(insert figures A through C about here) 

In Table l,'the range of RE($, "o;(l)) is shown for each variable 

category which results when p is in the interval (.005,.05) and when k = 2, 

m= 125, and A~ = .05. It can be shown and is illustrated by these examples 

that: 

1. Characteristics having the smallest within-block heterogeneity 

show the most gain (i.e., 
2 2 

Small t?E(@,, nab(l))) from Using the 

2 * 
Composite estimator Over Ub(l). 

2. RE($, G;(l)) is a decreasing function of p. 
* 
The behavior of the curves was investigated for values of A0 between 

.Ol and .lO and m between 50 and 500. Large values of A,, will moderate the 

for variables having large within- benefit of using the compos 

block variability and/or p. 

RE(bE, &i(l)) for the oppos 

ite estimator 

Large values 

ite set of var 

of m have the effect of increasing 

iables, those having small 

within-block variability and/or p. For none of the variables described in 

Table 1, however, would a change in A, or m within the ranges considered 

2 2 
affect RE(bb, $b(I)) substantially enough to change the decision of 

whether to use the composite estimator. 

7. SUMMARY 

This investigation into the properties of the estimators s;(l), s:(Z), 

2 
and $b has led to several observations. 

1. The composite estimator can be a substantial improvement over the 

usual estimator of interviewer variance "o:(l). The characteristics 

which show the most benefit are those having large interviewer 

correlation p and/or homogeneous block groupings. 
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2. For personal interviewing, the number of EA's grouped per block, k, 

has little effect on the precision of the composite estimator. 

3. The precision of 6:(Z) and '&E is adversely affected by hetero- 

geneity'of EA means within blocks (large 7) and by discrepancies 

in this heterogeneity between blocks (large Si). Thus care should 

be exercised in formation of the blocks if use of the composite 

estimator is contemplated. 



. 
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APPENDIX A 

To derive (4.22), note that 

V(2) = WzE3&) + hVZd(2)) + ElEzV3dV)) (A-1) 

= El[VZE3(*oi(2)) + E2V3($(Z))] 

since the first term of (A.l) is zero from (4.18). From (4.16) and (4.17), 

d(2)) = {Cc H,(b$) + (k-r)oi]/( L-a) - c H,(n&)la)l(k-rf- 
YEY;- YEG’ ’ 

1) = C(elL)S~O)l(L-e) + 

+ S$fl)/Ll/(k-r)2 

Thus 

I (A4 

where 
3 

s&o = k [H,(n) - m)12/(L-1), (A-3) 
y=l 

Hy( n) = E2Hy(n,;), (A.4) 

and 

im) = k Hy(n)/L. (A-5) 
y=l 

2 
To determine V3(+,(2)) = V3(gII - BI)/(k-r)', we find from (4.14) and (4.15), 

V3&) = C v3[By(y)lle2 
YE; 

= 1 c2 93(fy))2 + 4jyy3(~y)~~y]/g2 
YE% 

ICI 

= c Vy(n,G)/e2; 
YE6 

VW 



V3(&1) = 2(k-r)u$(L-t) + E CVy(nsG) 
YEjC 

2 
+ 4Ubtiy ,(n,;l)l/ (W2, 

and 

COV3(BI,BII) = 0. 

Thus from (A.6), (A-7) 

EZV3(&2)) 

where 

, and (A.8), 

{[Z(k-r)ut + v(n) + 4u$(X)]/(L-it) 

+ Y(n)/n11(k-r)2 

I 

V(n) = k E2Vy(n, )/L. 
y=l 

Combining (A.l), (A.Z), and (A.9) yields (4.22). 

22 

(A.7) 

(A.8) 

(A-9) 

(A.lO) 
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APPENDIX B 

To confirm (5.1) and (5.2), we return to the notation of model (4.8). 

We define the left-hand Kronecker product as A $,B = [jbij] where 5 = [bij]. 
N N 

Then d FGlm $ IJ; ;l 
0 = Jf @ [Jk...Ik]mkxk g I,;, with f = m/k; and 

. 

L!i ' =[fl~,...,~,,...,$l, i=l ,...,& with the identity matrix in the (i-l)th 

position. From (4.3), A.1 = lff $'(Ik-k-l1 ) @>J and 
0 M Jk 

Ai . . = ((&s***shln I -m-',Jrrm,...,,Om), i=Z,..., --i, with the non-zero matrix in the 

(i-l)th position. 
w 

Then from (4.2), we have 

. 
Q,(y) = i! 

k 
E (Yy.j. - Yyese12 

y=l j=l 
(B.1) 

* 
f 

and Qq($ = : E (Yytjs - yytea)2 for 4 = kh-Wa+L 
j=l s=l 

u3.2) 

with Yy... = Yy...lk and Tyt.. = yyt..h From (4.5) and (4.6), 

one can show thatr 

I 1 
m2( k-l) 

I 
(k-l)fi .;c; ’ 

A= -----‘---’ 
‘, 

(k-w& 
I 

I 
(m-l)! c( 

Thus 

k(m-1) I 

(k-l)em2[k(m-2)+1] I Sl' 
v 

A-l= :------I----__; 
(B-3) 

I 
6i.J 

I 
BJ;d + (a-B)!3 / 
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where 6 = -E/mg[k(m-Z)tl], a = il t 

and B = $-l)/(m-l)ka[k(m-Z)tl]. 

From (4.7) and (g-1) through (B.3), we have "o;(l) as given in (5.1). From 

(4.9), V(1) is &wn to be given by (5.2). 



. 
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APPENDIX C 

We shall establish that $(l) and S:(Z) are independent. The 

2 2 
COVarianCe of $b(I) and hab(2) may be decomposed as follows: 

Cov&I),&Z)) = CovIE2(&1)), E2(&2)) 

+ El Cov2(ub(l) ,&2)) 
A2 

where Cov2 denotes covariance given the samples II and 6, CovI denotes 
e 

covariance over all possible samples II and ; and EI, E2 are analogously 

- defined. 
A2 

Since E2(ab(I)) = ui, the first term on the right is zero. 

We shall show that 
I Cov2(&1), $52)) = 0 (C.1) 

Given n and 6, X, in (4.7) is fixed since it depends only on the design 

matrices X, and tq, q=l,..., Itl. Furthermore, '$(2) defined in (4.19), is 

a linear combination of the By(y), y=l,..., L, whose coefficients are fixed 
I) 

given the sets II and E. Therefore, (C.l) is true if the Q,(y) given by (4.2) 
v 

are uncorrelated with the By(y) given by (4.7). 
0 

Assume the vector y is ordered by block and within block by EA's. Let 
0 

myt denote the number of units sampled in the t-th EA of block y. Define 

the block diagonal matrix 

T= 
0 di ag {mytml imytl 

ordered as for y. Then, the vector of EA means for block y, can be rewritten 
0 

as 

where ,Gy = CgytiI with gyti = 1 if the t-th element of yy corresponds 

to the i-th EA of the vector y and 0 otherwise. Thus, By(y) can be rewritten 
0 0 
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as 

Assume that the cond 

By($ = Y' T G,' f (jr 1' Y. v WV 0 

itional distribution of y given fl and ,g is norma 1 
0 

with mean lo = X .?i and var 
P-' vv 

I+1 2 
iance z = 4" lJq fq' uq. 

Then the Q,(y) and the By(y) are independent if and only if 
v 0 

I 5 e ? Ey T' Y Aq = 0 v 0 0 

( see, for example, Searle 1971, p.59) which is satisfied if 

(c.2) 
v 

. 

for all q and y. 
I 
Because of the ordering of y, LJq, for q=Z,...,I+l, is given by 

v 

yq = (fl,*Jq..l,-_ 01) where the component matrices are square and are 

of the same dimension as the non-zero portion of the corresponding column 

in T. 
v 

From (4.3), it follows that iq X = 0 which implies by the similar 
v 

form of T to X that 
v v 

T' I;ls Us* As = 0 
v . . 

for s=2 ,. . . ,I+l, q=l,. . . ,I+l. 

Now consider UI. 
v 

Clearly, the non-null columns of !y T' UI make up 
0 I 

the columns of F. Hence, o G, T' UI = 0 and, consequently (C.3) follows 
v 

from the form of @ in (4.8;: 

0 0 

v 

It can be shown that if rank F = r = k(ful1 rank), the only matrix @ 
v 

(C.3) 

satisfying (C.2) is the null matrix. Hence, r < k is a necessary condition 

(C.2) to hold. 
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1. Parameters of Selected Characteristics and Performance of U: 

for k = 2, A0 = .05, m = 125, p =.005 and .05 

2 RE($, &l)) 
sHIOe v/u; 

P =.005 p =.05 

Sex 
Male or Female 

Race 
White 

. Black 

Marital Status 
-Single 
Married 
Divorced 

Plumbing Facilities 
All or Lack Complete 

Units/Address 
1 
2-9 
lo+ 

.015 

.124 .020 .99 .82 

.079 .OOl .97 .68 

.066 .Oll .96 .66 

.041 .013 .91 .58 

.012 .005 .68 .45 

.llO .021 .98 .79 

.321 .127 .99 .89 

.226 .080 .99 .87 

.379 .086 .99 .90 

.003 .70 .44 - 



. 
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Figure A Variants of CT:(~), 
2 2 
q,(2), and ab for characteristic “Marital 

Status - Divorce&" 
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Figure B Variances of $(I), 
2 2 
ab(2), and ab for characteristic "Number 

of Units - One Unit." 

. 
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