BUREAU OF THE CENSUS
 STATISTICAL RESEARCH DIVISION REPORT SERIES
 SRD Research Report Number: CENSUS/SRD/RR-84/04

USE OF ONE INSTEAD OF TWO OBSERVATIONS
by
Beverley D. Causey
U.S. Bureau of the Census
Washington, D.C. 20233

This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The views reflected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or practice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.

Recommended by: Paul P. Biemer
Report completed: November 14, 1983
Report issued: January 19, 1984

USE OF ONE INSTEAD OF TWO OBSERVATIONS

The use of a single sample observation to estimate the center of a (symmetric) distribution can be, in important senses, preferable to the use of the mean/ median/midrange of a sample of 2.

Key words: sample mean of two; closeness to true parameter

Beverley D. Causey
Mathematical Statistician
Statistical Research Division
Bureau of the Census
Washington, DC 20233
November 14, 1983

Let x_{1}, x_{2}, and x_{3} denote independent observations from a continuous distribution symmetric around (for the sake of simplicity) 0 ; let $\bar{x}_{2}=$ $\left(x_{1}+x_{2}\right) / 2$. For given $\varepsilon>0$ we let P_{1} denote $P\left(\left|x_{1}\right|<\varepsilon\right)$ and P_{2} denote $P\left(\left|\bar{x}_{2}\right|<\varepsilon\right)$. Stigler (1980) gives examples of density functions for which $\varepsilon>0$ can be found such that $P_{1}>P_{2}$ and thus for which x_{1} might in a sense be preferred to \bar{x}_{2} as an estimator of 0 , the mean (i.e., center) of the distribution. Here we continue this review of the perverse circumstances under which x_{1} might be preferred to \bar{x}_{2} and then under which, even when all moments are finite, x_{3} might be preferred to \bar{x}_{2}.

Example 1. We begin with "symmetric stable distributions" (Stigler 1980); one seeks a distribution for which the log of the characteristic function (LCF) (of t) is $-|t|^{\alpha}$; thus the LCF of \bar{x}_{2} is $-|t / 2|^{\alpha} 2=-|t R|^{\alpha}$ with $R=2^{(1-\alpha) / \alpha}$. For $\alpha<1$ we have $R>1$; thus the distribution of \bar{x}_{2} is that of $R x_{1}$ with $R>1$ (by taking a close to 0 we can make R as large as we like), and we of course have $P_{1}>P_{2} \forall \varepsilon$. The corresponding density function $f(x)$ is $(1 / \pi) \int_{0}^{\infty} \exp \left(-t^{\alpha}\right) \cos t x d t$, in general not readily computable, with $f(0)=(1 / \pi) \Gamma(1 / \alpha+1)$.

Example 2. For $\alpha=1$ and $R=1$ we have a Cauchy distribution. Let y_{1}, y_{2}, and y_{3} be independent observations from this distribution, with density function $1 / \pi\left(1+y^{2}\right)$; let $\bar{y}_{2}=\left(y_{1}+y_{2}\right) / 2$; let x_{i} have the magnitude y_{i}^{2} and the sign of y_{i}. Thus the density function $f(x)$ is $1 / 2 \pi|x|^{\cdot 5}(1+|x|)$ (with $f(0)=\infty)$, and the c.d.f. is $.5+(\operatorname{sign} x)(1 / \pi) \operatorname{arc} \tan |x| \cdot 5$. We now show that $P_{1}>P_{2} \forall \varepsilon$. It is well known (and implied above) that y_{1} and \bar{y}_{2} have identical distributions; thus for any $\delta>0$ we have $P\left(\left|y_{1}\right|<\delta\right)=P\left(\left|\bar{y}_{2}\right|<\delta\right)$. Let $\varepsilon=\delta^{2}$; we have $P\left(\left|y_{1}\right|<\delta\right)=P_{1}$, and also $P\left(\left|\bar{y}_{2}\right|<\delta\right)=P\left(\left|\frac{2}{y_{2}}\right|<\varepsilon\right)$. The proof is completed by showing that $\left|\bar{x}_{2}\right|>\frac{2}{y_{2}}$ always (so that $P_{2}<P\left(\frac{2}{y_{2}}<\varepsilon\right)$). Let $t_{i}=\left|x_{i}\right|$; suppose first
that x_{1} and x_{2} are of the same sign; then $\left|\bar{x}_{2}\right|-\frac{2}{y_{2}}=\left(t_{1}^{2}+t_{2}^{2}\right) / 2$
$-\left(t_{1}+t_{2}\right)^{2} / 4=\left(t_{1}-t_{2}\right)^{2} / 4>0$. Suppose they are of different sign with $t_{1}>t_{2}$ (the case $t_{1}<t_{2}$ is of course similar); then $\left|\bar{x}_{2}\right|-\frac{2}{y_{2}}$
$=\left(t_{1}^{2}-t_{2}^{2}\right) / 2-\left(t_{1}-t_{2}\right)^{2} / 4=\left(t_{1}^{2}+2 t_{1} t_{2}-3 t_{2}^{2}\right) / 4$
$=\left(t_{1}+3 t_{2}\right)\left(t_{1}-t_{2}\right) / 4>0$.
Example 3. Stigler (1980) considers the density function $f(x)$
$=(1+|x|)^{-c}(c-1) / 2, c>1$, with c.d.f. $.5+.5(\operatorname{sign} x)\left[1-\cdot(1+|x|)^{1-c}\right]$. For c a multiple of .5 one may obtain P_{2} explicitly; for $c=1.5$ and 2 we have found empirically that $P_{1}>P_{2}$ (apparently) $V \varepsilon_{\text {. }}$

Let $P_{12}=P\left(\left|x_{1}\right|<\left|\bar{x}_{2}\right|\right)$. In spite of the result $P_{1}>P_{2} \quad \forall \varepsilon$ in these examples, we have (for any distribution) $P_{12}<.5$, it is easily shown. We compute $P_{12}=.445$ in Example 2, and $.433(c=1.5)$ and .412 $(c=2)$ in Example 3. Thus more than half the time \bar{x}_{2} is closer than x_{1} to 0 ; but in these examples, apparently, the difference in closeness is generally greater when x_{1} is closer than when \bar{x}_{2} is closer.

Let $P_{32}=P\left(\left|x_{3}\right|<\left|\bar{x}_{2}\right|\right)$. Although we always have $P_{12}<.5$, it is possible to have $P_{32}>.5$, e.g., in Example 3.860 and .529. These values, like the above values for P_{12}, are obtained by numerical integration: for $0<u<1$ let ε_{u} be such that $P_{1}=u$, and let $h(u)=P_{2}$ (for ε_{u}), then $P_{32}=1-\int_{0}^{1} h(u) d u$. For Example 2 we may show $P_{32}>.5$ based on the fact $P\left(\left|y_{3}\right|<\left|\bar{y}_{2}\right|\right)=.5$ and on the above reasoning to show $P_{1}>P_{2}$.

In all the above "heavy-tailed" examples no moments of x exist. We now consider the variate z having the distribution of x except truncated $a t \pm T$: that is, for $-T<a<b<T, P(a<z<b)=P(a<x<b) / P(|x|<T) ; a 11$ moments of z are finite. By taking $T(>0)$ as large as we like, we can (in analogous notation) make $P\left(\left|z_{3}\right|\langle | \bar{z}_{2} \mid\right.$) as close to $\left.P_{32}(\rangle .5\right)$ as we
like. Despite this result we have (along with $\operatorname{Var}\left(\bar{z}_{2}\right)=.5 \operatorname{Var}\left(z_{3}\right)$ and the fact that $P\left(\left|z_{1}\right|<\varepsilon\right)>P\left(\left|z_{2}\right|<\varepsilon\right) \forall \varepsilon$ is impossible) the fact $E\left(\left|\bar{z}_{2}\right|\right)<.5\left[E\left(\left|z_{1}\right|\right)+E\left(\left|z_{2}\right|\right)\right]=E\left(\left|z_{3}\right|\right)$. Thus in these examples more than half the time z_{3} is closer than \bar{z}_{2} to 0 , but apparently the difference in closeness is generally greater when \bar{z}_{2} is closer than when z_{3} is closer (cf. the pattern for P_{12}).

REFERENCES

STIGLER, S.M. (1980), "An Edgeworth Curiosum," Annals of Statistics, -8, 931-934.

WILKS, S.S. (1962), Mathematical Statistics, Wiley, New York.

