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ABSTRACT 

At the U.S. Bureau of the Census, data in economic surveys may occasionally 

be missing as a result of a company's failure to respond to a certain question, 

for example. In addition, values of other variables may require editing because 

they are clearly implausible. Implausible (outlying) values may arise as a 

result of the failure of the respondent to understand the survey question. 

This paper develops a strategy for cleaning survey data with missing and outlying 

values in three stages: 1) detection of outlying cases; 2) detection of outlying 

values within outlying cases; and 3) imputation of likely values for missing 

and/or outlying and edited values. Methodological tools include distance measures, 

graphical procedures, and maximum likelihood and robust estimation for incomplete 

multivariate normal data. Data from the Annual Survey of Manufactures (ASM) are 

used to illustrate the method. 



KEY WORDS: Beaton sweep operator; EM algorithm; graphical methods; 

incomplete data; Mahalanobis distance; maximum likelihood 

estimation; multivariate data; outlier detection; robust 

estimation. 



1. INTRODUCTION 

The quality control of data has become an increasingly important 

aspect of survey work. Nonsampling errors affecting the integrity of ; 

data are possible at virtually every junction in a survey where data are' 

communicated or transcribed from one person or device to another. 

Without quality control of survey information, data intended for final i 

analysis or tabulation and publication can be spurious or missing. In 

this case analysis and publication of such information may be of dubious 

value and may jeopardize the credibility of the organization conducting 

the survey and preparing the analysis and report: bad data must be 

edited and values imputed when they are missing or have been deleted 

during the editing process. 

This paper discusses editing and imputation for a nxp rectangular 

data matrix X = (X1,..., Xn)T containing n cases each with p variables, 

Xi = (XiI,*.*,Xip), i=l,...,n. Some values in the matrix are missing 

because they were not recorded. Other values may be erroneous due to 

response errors or errors in coding or transcription. 

We develop methods for editing and imputation for this incomplete data 

matrix by combining ideas from three areas of statistical research: multi- 

variate robust estimation, multivariate outlier detection, and the analysis 

of incomplete data. The multivariate robust estimation problem has been 

discussed by Maronna (1976) and Huber (1977), and more recently by Campbell 

(1980), and Devlin, Gnanadesikan, and Kettering (1981). Research in outlying 

data has been recently reviewed by Beckman and Cook (1982). The literature 

on incomplete data is reviewed by Hartley and Hocking (1971), Orchard and 

Woodbury (1972), Dempster, Laird and Rubin (1977), and Little and Rubin (1983). 

Specific imputation methods for survey data are discussed by Kalton and 

Kasprzyk (1982), Little (1982), Sande (1982), Sedransk and Titterington (1980), 

and Chapman (1976). 
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Shih and Weisberg (1983) discuss the combination of outlier detection 

methods and methods for incomplete data in the regression context where one 

variable is dependent on the remaining variables. In contrast, we are 

concerned with methods which treat all the variables symmetrically. 

Our approach builds on the work of Frane (1976) in which outlying cases 

are identified by large values of the Mahalanobis distance, with estimates 

of the mean and covariance matrix estimated by maximum likelihood for 

incomplete multivariate normal data, using the expectation-maximization 

(EM) algorithm. The use of the Mahalanobis distance in editing has been 

previously suggested by several authors (Wilks, 1963; Gnanadesikan and 

Kettering, 1972; Hawkins, 1980). The EM algorithm for normal data is 

discussed in Orchard and Woodbury (1972), Beale and Little (1975) and 

Dempster, Laird and Rubin (1977); as noted below, the algorithm is incorrectly 

stated in Frane's article. We extend Frane's basic approach by (a) providing 

a graphical procedure for detecting outlying cases; (b) modifying the EM 

algorithm to provide robust estimates of the mean and covariance matrix 

analogous to those given by Campbell (1980); and (c) providing an efficient 

stepwise procedure for identifying outlying values within outlying cases. 

Our outlier identification procedure differs from (and in our view, improves on) 

the discriminant analysis suggested by Frane. Frane's procedures have been 

programmed and are available in the BMDPAM computer program (BMDP, 1981). 

Our methods are illustrated using selected data for a particular industry 

from the Annual Survey of Manufactures (U.S. Department of Commerce, Bureau of 

the Census, 1981). Sixteen variables were selected for analysis, eight 

current year variables, and the eight corresponding variables from the 

previous year. The variables are the number of production workers (PW), 

the number of all other employees (OE), legally required fringe benefits 



3 

paid (LE), voluntary payments to fringe benefit programs (VP), total man 

hours worked by production workers (MH), production workers wages (WW), 

all other salaries and wages (OW), and total wages paid (SW). When these 

variable labels are prefaced by an "A" they refer to current year information, 

and when prefaced by a "B" they refer to prior year information. 

The next section presents our procedures and illustrates them with ASM 

data. Section 3 discusses statistical assumptions we make about the data 

and the mechanisms leading to missing values. Section 4 discusses specific 

requirements of editing ASM data that are not met by our methods. One 

requirement in particular, deserves attention because it applies in many 

editing contexts. This requirement arises from the presence of logical 

constraints between variables, such as a total adding to the sum of its 

parts. The analysis of a complex set of editing constraints is discussed 

in Fellegi and Holt (1976). A general synthesis of logical or mathematical 

approaches to editing with the statistical methods we propose seems a 

challenging task. As a step in this direction, we show in Section 4 how 

relatively simple logical constraints can be included in our editing procedures. 

Section 5 summarizes our recommendations and notes areas for future research. 

Section 2. ESTIMATION, EDITING AND IMPUTATION 

2.1 Preliminaries 

As a preliminary to editing and imputation, rows and columns of the 

data matrix, X, are rearranged to group similar patterns of missing data together. 

Figure 1 illustrates the results of this operation. This step clarifies the 

pattern of missing data and reduces the computing time required in subsequent 

calculations. Another useful preliminary step is to display the marginal 
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distributions of the observed values. Figure 2 presents the marginal 

distributions of two of the ASM variables, AWW and APW. 

One might consider applying methods for univariable outlier detection 

to the marginal distributions of the variables. However, there are two reasons 

why this is not appropriate for economic data. First, the distributions of 

many of the variables are known to be skewed - see, for example, the marginal 

distributions in Figure 2. Thus, standard methods assuming normality cannot 

be applied without a preliminary transformation of the data. Secondly, even 

if an appropriate transformation can be applied, outliers based on transformed 

univariate data are plausibly valid members of the underlying population, 

at least in the context of ASM data: the crucial aspect of the data that 

univariate outlier detection methods ignore is association between the 

variables. It is these relationships (or lack thereof) that will indicate 

that a value is outlying rather than the value's location in the variable's 

marginal distribution. 

In our illustration we transform the data to the natural log (a~) 

scale to remove the skewness of the marginal distributions as in Figure 2. 

A more fundamental reason for the Rn transformation is that current 

imputation procedures for industrial data are often based on ratio estimates. 

For example, if it is required to impute for A on the basis of a correlated 

variable B and prior year values A' and B' of A and B, respectively, 

current imputation procedures impute for A as follows: A = (Al/B') B. 

Taking logarithms, this relation"becomes linear: ~nA=anA'- RnB' + anB. 

Our imputation procedure can be viewed as a generalization of this kind 

of edit where a linear relationship between R~A and R~A', !?.nB', !?,nB 

and other available predictors are empirically determined by regressions 

based on available data. 
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2.2 Identification of Outlying Cases: I.I and >, Known. 

Let Yi = (yiI,**=,Yip) denote the Rn transformed vector of values 

for case i, in the absence of missing values and contamination by response 

errors. Let Xi = (Xi1 ,...,Xip) denote the corresponding vector of observed 

An-transformed values for a completely recorded case, where the components 

are subject to error. Suppose that yi are independently distributed with mean 

u =(q ,...,IJ~) and covariance matrix 1 = {ojk) . The Mahalanobis 

distance 

Df = (Xi- ~)T C -l(Xi- ~) (1) 

is a natural measure of the distance of case i from the mean of the multivariate 

distribution. If yi is multivariate normal and case i is not contaminated 

(that is, Xi = yi), then it is well known that D: has a chi-squared 

distribution with p degrees of freedom. Large values of D$ are evidence 

that one or more of the components of Xi are contaminated. If case i is 

incomplete, let X(pi) denote the vector of variables oresent in case i. 

and let pi denote their 

restrict the distance D 2 i 

parameters, only. That 

J . 

number. An obvious adaptation of (1) is to 

to the present variables and their related 

define is, 

pi ) Df = (X(pi) - P (2) 

where v (pi) and c (ppi) are the (pixl) vector of means and (pixpi) covariance 

matrix corresponding to the present variables X(pi). If yi is multivariate 

normal, the observed values are not-contaminated (X(pi) = y(pi)) and the missing 

data are missing at random (MAR) in the sense defined by Rubin (1976), then 

0: N x; , and large values of 0: suggest contamination in the observed 

compone;ts of X(pi). 
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Let X(mi) denote the missing components of case i with mean p(mi) 

and covariance matrix C(mmi). Dropping the subscript i for simplicity, 

we can decompose 

(x- j.l)T 1-l (X- u) = 
[X(P)-YP)lT HPP) [X(p)-YP)J 

+ Ix(m) -U(m.p)lT l(tY4.p) cx(m)-V(m.p)l 

where P(m.p> = U(m) + C(mp) ~(ppjl(X(p)- u(~)) is the best linear 

predictor of X(m) based on X(p), C(mp) is the covariance of X(m) and X(p) 

and C (mm.p) is the covariance matrix of the residual X(m) - p(m.p>a 

If the missing values in case i, X(mi), are imputed from their best 

linear predictors, v(~.~), then letting XT denote the (pxl) vector of 

present and imputed values for case i, 

Of = (X; - u)T 1-l (X; - U) . (3) 

In this case (2) and (3) are identical and imputations formed from best 

linear predictors have no effect on the Mahalanobis distance, Of. Our 

strategy is to replace I.I and 1 by estimates and to use (3) to determine 

outlying cases. In the next section we describe a method of obtaining 

robust estimates of lo and 1 in the presence of missing data. 

2.3 Estimation of v and 1 . 

In practice, p and 1 are unknown and must be estimated from available 

data. With a data matrix with no missing values, the standard procedure 

(Wilks, 1963) is to replace lo and 1 by the sample mean and covariance matrix, 

yielding the Mahalanobis squared distance for case i. With missing data, Frane 

(1978) estimates p and 1 by maximum likelihood (ML), assuming the data are 

multivariate normall. The ML estimates can be found by the iterative EM algo- 

1 The estimates are consistent for p and 1 under any underlying distribution 
with finite fourth moments (Beale and Little, 1975). Thus the multivariate 
normality assumption is not essential for the utility of the method. 
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rithm (Orchard and Woodbury, 1972; Beale and Little, 1975; Dempster, Laird and 

Rubin, 1977). To describe the EM algorithm let G(~)=(u(~), l(t)) denote 

current estimates of p and 1 at iteration t. Each iteration of the algorithm 

involves an E-step and an M-step. The E-step calculates the expected values of 

the complete data sufficient statistics given the observed data and current 

estimates o(t): 

EI.i 
l- 'ij Ix(pi), 

,(t) ) = 

1 
i Xijt) 
i=l 

E1.i 
l- 'ij'ikl'(pi), 

&I} 

1 

where 

, j=l Y-*-Y P, 

I, j,k=l ,..p, 

xip = 
I 
xij if Xij is present, or 

EE xij Ix(pi) 3 
&)> , if Xij is missing, and 

cjkft) = 0 

I 

, 

COV {Xij ,xik 

if Xij or xik present, or 

l'(pi), 
& > 1, if Xij and Xik llliSSSitlg. 

The imputed values E{X ij Ix(pi), Q(t)> and the adjustments Cjkft) 

are found from the regression of the missing variables in case i on the 

observed variables, X(pi), by applying the Beaton sweep operator (Beaton, 

1964; Goodnight, 1979; Clarke, 1982) to the current estimates of u and 1 . 

The M-step of the algorithm computes new maximum likelihood estimates 

&+l) = (J t+l),l(t+l)) from the expected complete data 

sufficient statistics, as for complete data: 

(4) 

(5) 
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i=l 
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(6) 

ojLt+l 1 = n-1 ~ {Xi~t)Xi~t) 
i=l 

+ Cjkft)] -n,St+l 1 lylt+l) 

=n -1 ; ~(XiSt)-~(t+l))(Xi~t)-dt+l)) + c ft) } 
i=l 

J jki l 

Frane's (1976) formula for computing the covariance matrix on page 161 is incorrect 

in that P should denote the mean of observed and imputed cases, and not the mean 

using all available cases of each variable, as defined in the paper. 

One possible procedure for identifying outlying cases is to estimate 

u and 1 using the iterating equations (4) and (5), yielding estimates 

(?,$ and then calculating distances 

0: = (X(pi )-Tcpi > IT?(,,Tf (X(pi) -Ic\(pi)) (7) 

from present variable i only, for each case i. By the same argument as 

that relating equations (2) and (3), this quantity can also be computed as 

0: = (x~-~ )Tj-(x;- ?I, 03) 

where XT is the vector of observed and imputed values from the final step of 

the EM algorithm. We define (7) or (8) to be the Mahalanobis distance for 

case i for an incomplete data set. Note that for complete data sets 

A A 
FC and 1 are the sample mean and covariance matrix, and (7) and (8) reduce to 

the usual form of the Mahalanobis distance for complete data. 
A 

A drawback with this procedure is that cand 1 are calculated from data 

contaminated by outlying or erroneous values and hence are not consistent 

estimates of P and 1 . Frane (1976) proposes the simple expedient of 

reestimating P and 1 , excluding cases with large values of 0:. In 

contrast, we modify the M-step of the EM algorithm by downweighting extreme 

observations. Specifically, we propose the expectation-robust estimation 
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(ER) algorithm defined by replacing the M-step (6) by the R-step which 

yields robust estimates: 

,j(t+‘) = ~ Wi XiJ(t)/ ~ Wi 

i=l i=l 

and 

c,jit+l)= ii;f{[XiJ(f)- ~~t+')][Xi~t)- TJ~~"'I + Cjkft)j 

n . 
1 wf-1 

i=l 

where 

wi = w (di) / di, 

and 

di = ICx(pi jtt 
> - u(pi) w]qp -1 [X(,,) 0) - ypi) (t)]jl/2 

(PiI 
(9) 

is the square root of the Mahalanobis distance for present variables at iteration 

t . 

Here w denotes a two parameter bounded influence function (Hampel, 1974) 

defined by 

w(di) = 
di if di G doi 

d oi exp {-(di-doi)2/2b$ } if di > doi 

where doi =fi + bl/2, pi denotes the number of present variables for 

case i, and bl and b2 are quantities to be specified by the data analyst. 
-. 

In the R-step of the ER algorithm the square root Mahalanobis distance, 

di 3 represents the measure of proximity from case i to 1-1 tt). The 

influence function is designed to give a full weight of 1 to clearly inlying 

observations in the computations for the updated means uj (t+1) 

and covariances ojk (t+1)* However, observations whose square root 
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distance exceeds the specified cut off, doi, receive decreasingly smaller 

weights in these computations as the distance increases beyond doi. 

Under standard assumptions, d: - xp:, and Fisher's square root 

approximation gives di L N(fi; m) (Kendall and Stuart, 1968). 

Consequently, square root distances beyond doi represent less likely 

observations since they lie beyond bI standard deviations of their mean 

fi. The choice of bI specifies this cut off. Also, b2 specifies 

how rapidly the weights decrease beyond doi. Hampel (1973) has suggested that 

bl = 2 and b2 = 1.25 are good choices. 

A similar robust covariance matrix estimate (HUB) performed well in 

simulations by Devlin, Gnanadesikan and Kettering (1981), directed at 

comparing estimates of eigenvalues of the correlation matrix from 

contaminated normal data. Other robust estimates that did well in that paper 

such as the method MLT based on the p-variate elliptical t distribution, are 

also candidates for the R-step of the ER algorithm. However, comparisons of 

alternative robust procedures lie outside the scope of this paper. 

The ER algorithm iterates between the E and R-step until the 

estimates converge. In the case of complete data (pi = p, i=l Y.--Y n) the 

E-step of the algorithm is redundant, and the R-step corresponds to one step 

of the robust estimation procedure proposed by Campbell (1980). Thus the 

ER algorithm combines Campbell's robust method with the E-step of the normal EM 

algorithm for filling in missing data. 

In so far as the EM algorithm is guaranteed to converge, and in the 

absence of missing values, Campbell's procedure is known to converge to 

robust estimates of l.~ and 1 , we conjecture that the ER algorithm converges. 

Further work is currently being conducted to substantiate this conjecture. 
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Finally, we suggest that initial estimates of P and 1 be obtained from 

complete observations. Tables 1 and 2 show the results of applying the EM 

algorithm and the ER algorithm respectively to the ASM data. The slightly 

reduced variance estimates in the second table compared with the first show 

the effect of downweighting the more outlying cases in the R step of the 

algorithm. 

2.4 Identification of Outlying Cases: P and 1 estimated. 

Our procedure identifies outlying cases as those that are improbably 

distant from the robustly fstimated centroid of observations. We measure 

this distance for each case by the Mahalanobis distance, D2i, which is the 

square of the quantity di of equation (9) from the final iteration of the 

ER algorithm: 0: = d$. A statistical criterion may be developed to 

specify what is meant by "improbably distant." In the absence of missing 

or contaminated values and under normal assumptions, the Mahalanobis distance 

0: in (8) has the property that (n-p)nD$/[(n-l)(n+l)p] has an F 

distribution with p and n-p degrees of freedom, (Anderson, 1958; Hawkins, 

1974). If the data are incomplete the exact distribution of 0: in (7) 

is unknown, but it is clear that since the ML estimates of P and 1 are 

consistent, then asymptotically 0: m xp2. Taking into account the 

robust estimation of lo and 1, we conjeciure that (n,-pi)ncD:/[(nc- 

(=Fi, say) has approximately an F distribution with pi and nc-pi 

degrees of freedom, where nc is the number of the completely recorded 
-. 

cases. This conjecture has little theoretical justification at present, 

but the use of the number of complete cases to determine degrees of freedom 

has done well in simulation studies for a related problem in Little (1979). 

Using Fi, we may compute a p-value for each case. This p-value may be 

interpreted as the probability of observing a more extreme observation than 
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the one at hand, and describes the improbability of the case. Those cases 

with a p-value less than a specified significance level (e.g., 0.01) are 

designated as outlying. The choice of significance level, however, is somewhat 

arbitrary, and even if the approximate distribution theory of the previous 

paragraph is adequate, the F-test is based on normality assumptions that may be 

overrestrictive. Thus we advocate the use of an informal graphical procedure 

for detecting outlying cases which is more empirically-based. 

Our procedure extends the graphical method of Gnanadesikan (1977) for 

multivariate data to incomplete multivariate observations. We noted in Section 

2.1 that if case i is uncontaminated and the data are normal and missing values 

are missing at random, then 0: h xQ2. The Wilson-Hilferty (1931) 

transformation of the chi-squared distribution yields (Df/pi)1'3 L 

N(l-2/(9pi),2/(9pi)), Consequently, a probability plot of 

Zi = C(D;/Fi)1'3 - 1 + 2/(9pi)l / C2/(9pi)l 1’2 (10) 

versus standard normal order statistics should reveal atypical observations. 

Figure 3 gives a probability plot of the Zi for the ASM data. 

In the interval between .Ol and .90 of this figure, the Zi'S plotted 

versus @ -I[(i-1/2)/n ] exhibit a strong linear trend typical of normal 

data. However, beyond the expected normal statistic corresponding to 

the cumulative probability of .90, the Zi’S begin to deviate greatly from the 

linear trend. This departure suggests that these observations beyond .90 are 

atypical and may be considered to be outlying. 

2.5 Selecting Outlying Values Within Cases: The Variable Selection Procedure 

In the variable selection procedure each present variable in an outlying case 

is ranked according to the marginal decrease in Mahalanobis distance obtained 
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by removing that variable and all more influential variables from the computation 

of the distance. Letting ?J and c denote the robust estimates of u and 

c 9 we obtain this ranking via the following algorithm: 

STEP 1: For outlying case i, compute for each present variable k 

Di(k) = (xi(k) 
1 

- i(k))' y(i) ('i(k) - i(k)). 

the Mahalanobis distance with variable k omitted. This distance shows the effect 

of eliminating k in computing the distance of the observation from the mean. 

If variable k is the only outlying value in this observation, then Dik) will 

be significantly smaller than D:. 

STEP 2: min Dik) is determined: 
k 

The single most influential variable contributing to the extremity of obser- 

vation i is found. Let us call this variable jl. By removing jl, the proba- 

bility of case i's remaining attribute values is the greatest. 

STEP 3: Compute Di(kjl), the Mahalanobis distance with both variable jl 

and k removed, for all present variables k # jl. 

STEP 4: Determine min Di Ml ) 

k 

The variable minimizing Di (kjl) is the next most influential variable, 

conditional on the removal of variable jl in Step 2. Let j2 denote this vari- 

able. The algorithm then proceeds to find j3, the next most influential 

variable, conditional on the prior removal of variables j2 and jl, and so on 

until all the present variables in observation i are exhausted. 

Table 3 gives a summarization of this algorithm for one outlying case, 

number i=65. The total distance computed using p and 1 for this case is 

D6:= 136.27 which corresponds to a p-value much less than 0.001. 



As with the selection of outlying cases, the appropriate choice of critical 

p-value above which this procedure is terminated is not at all clear, given the 

fact that the case has been preselected as extreme, and the choice of reference 

F distribution relies on normal assumptions. An alternative strategy to 

setting a critical value that is feasible for modes t sized data sets is to 

determine graphically how deeply to edit the case. At each editing step for a 

given out lying case the Wilson-Hilferty transformation may be applied to the 

remaining Mahalanobis distance, with edited variables treated as missing. The 
. 
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Removal of the most influential variable, BWW, reduces the distance to 

59.03, a 56.68% incremental decrease in distance. If BWW was the only outlying 

value, then by removing it the p-value associated with D6iBWW) would 

be, at least, moderately large. However, on removing BWW, the p-value is still 

rather small (it is <O,OOl) and consequently we are led to search for other 

outlying variables in the case. 

Conditional on removing BWW, BPW is the next most influential variable. 

Removing it yields a remaining distance of D6,$Bww,BPW) = 33.84, again with a 

significant p-value (0.004) indicating that the case with both BWW and BPW re- 

moved is still unlikely and that other outliers must be imbedded in the case. 

Conditional on removing BWW and BPW, ALE is the next most influential variable. 

Removing it yields a remaining distance of D65 (BWW,BPW,ALE) = 22.47 with an insig- 

nificant p-value. Consequently, we stop our search here having identified three 

outlying variables, BWW, BPW, and ALE. 

transformed remaining distance for the case may then be graphed along with all 

other cases' transformed distances in a normal plot, as discussed in Section 2.4. 

If the outlying case lies along the diagonal line described by the body of well- 

behaved normal data, then the appropriate depth of editing for that case has 

been found. Otherwise, the next most influential variable should be edited also 
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and the transformed remaining distance plotted as before. Editing further 

variables according to their rank of influencti .a rd plotting their remaining 

transformed distance would then continue until that case's point no longer 

lies off the diagonal line described by the body of well-behaved normal data. 

Our procedure is in a sense analogous to backward elimination in linear 

regression. It shares with that procedure the property that it does not ensure 

that the best set of a given number of variables remains unedited. Elaborations 

of the procedure to stepwise selection, where previously deleted variables are 

allowed to reenter if they no longer add significantly to D2, or to all 

possible subset selection, might be feasible for small data sets. However, we 

believe that the simple backward selection approach should eliminate distinctly 

outlying values in most practical applications. 

Our procedure can be contrasted with Frane's (1976) method, which applies a 

two group backward elimination discriminant analysis, where the first group 

consists of the outlier and the second group is defined by the vector of means 

P l This form of elimination removes the variable that adds the least to the 

discriminant function, that is, the most inlying variable. Our procedure 

eliminates outliers first, whereas the last variable removed in Frane's discriminant 

analysis is the least inlying. The latter is an outlier with respect to its 

marginal distribution, rather than its conditional distribution given other 

variables present, which forms the basis of our method. Consequently, in 

determining the most outlying variable Frane's procedure fails to exploit the 

associations between the edited variables and other observed variables, which 

as we noted in Section 2 are a key feature of our problem. We prefer our 

stepwise procedure since multivariate relationships are taken into account in 

determining the outlying variables. 
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A pragmatic test of the properties of our variable selection procedure, is 

! to consider how well it works for particular cases. In our examp le of case 65 

.in Table 3, the procedure found the values for prior year production workers 

/(BPW), prior year production workers ' wages (BWW), and current year legally 
i 
required payments to pension programs (ALE) to be outlying. Important ratios 

involving these variables are the average hours worked by a production worker 

in one year, BMH/BPW; the average hourly wage rate for production workers, 

BWW/BMH; the average yearly wage rate for production workers, BWW/BPW; the 

ratio of voluntary to legally required pension payments, BVP/BLE; and these 

ratios' current year versions. For case number 65 these ratios are given in 

Table 4. 

From this table the prior year ratio for the average number of hours 

worked by a production worker is BMH/BPW = 1.1 thousand, or 1,100 hours per 

year. This corresponds roughly to a 23 hour work week for 48 working weeks 

per year. Full time employment throughout one year corresponds roughly to 

1,730 hours, agreeing very closely with the computed ratio in Table 4 of 1.7 

thousand for the current year. However, the prior year computed ratio of 

BMH/BPW = 1.1 would not seem inconceivable if most workers in this factory 

worked approximately half time for the entire year. But probing more deeply 

into the data, further doubt is cast on the BMH/BPW ratio: the average prior 

year yearly wage is BWW/BPW = 3.3 thousand dollars, and the average prior year 

hourly wage rate is BWW/BMH = $2.90 per hour. These figures are very low 
. . 

indeed: the hourly wage is well below the legal minimum hourly wage rate of 

$3.45 per hour, and if this job was the wage earner's sole source of income, 

the salary of $3,300 per year is below the poverty level of $4,620 per year 

(U.S. Department of Commerce, Bureau of the Census, 1982-1983). The current 

year values for these ratios are strikingly different and correspond to an 
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average hourly wage of $6.30 per hour and an average annual salary of $11,000 

per year. These values are much more concordant with our particular industry's 

average. 

Also, the current to prior year voluntary legally required pension payments 

ratio is AVP/BVP = .2 . This value is known to be low for our particular industry 

and is caught by the variable selection procedure. 

The adjusted (imputed) ratios corresponding to variables selected as out- 

lier for case 65 are also given in Table 4 and will be discussed further in 

Section 2.4. 

In spite of the evidence listed in Table 4 one could argue that the original 

data used to compute the alleged outlying ratios are valid. For example, one 

might plausibly contend that this factory improved salaries, hourly wages, and 

the total working hours between the prior and current year by lowering the 

current year voluntary payments to pension plans. Without excellent prior 

information vilification of the data is as plausible as its vindication. What 

our variable selection method offers is an empirically based and statistically 

principled procedure for the selection of unlikely values. 

As a final check on the efficacy of the variable selection procedure we 

recompute the distances 0: from equation (7) for each case accounting for 

present and unedited variables, only. Applying the Wilson-Hilferty transfor- 

mation (1U) to these distances and letting pi denote the number of present 

and unedited variables for case i, a normal probability plot of the Zi's will 
. . 

reveal atypical observations and serve as a check on how well the variable 

selection procedure worked: if the observations lie along a 45" line in the 

probability plot, then the variable selection procedure has removed the outlying 

values. However, if one selects a very large significance level for the tests 

of the variable selection procedure, one runs the very real risk of editing 
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"good" data. In this case the transformed data will fall below the 45" line 

of inclination in the probability plot, indicating that the data has been 

overedited. Consequently, we advocate smaller significance levels for the 

tests in the variable selection procedure. Also, plots of these "edited" 

transformed distances may be used to help determine an appropriate level: 

starting with a very small significance level one may perform the variable 

selection procedure, and then draw the normal probability plot of the edited 

transformed distances. If too many values appear to be atypical from this 

plot then a larger significance level can be chosen. One may then iterate 

between the variable selection and probability plotting procedure and selection 

of increasingly larger significance levels until the analyst is satisfied 

with the final probability plot. 

2.4 Imputation 

In the final step of our procedure we "edit" values found to be outlying in 

Section 2.3: these values are treated as if they were originally missing at 

random. To impute for the edited and missing values, u and 1 are re-estimated 

via the EM algorithm (Orchard and Woodbury, 1972; Beale and Little, 1975; 

Dempster, Laird, and Rubin, 1977). The Beaton sweep operator is used in the 

E-step (5) of the final iteration of the algorithm to produce regressions of 

missing (or edited) variables on non-missing and unedited variables for each 

case. Missing values are then imputed from these regressions and a clean data 

set produced. 

An ideal evaluation of this imputation procedure would be to attempt to 

obtain true values of the data from a reinterview, and then compare the edited 

values with the truth. In the absence of reinterview data, our evaluation 

is limited to looking at the data before and after editing and imputation, 
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and checking whether the imputed values are substantively plausible. We 

present here the results of applying our method to two cases from the ASM data set. 

Table 3 shows observed and edited values for case number 65. Values 

of four important ratios calculated from the data in Table 3 are presented 

in Table 4. In this example the imputed ratio for BMH/BPW is 2.0 thousand 

hours. This corresponds more closely than the observed ratio to the average 

number of hours a production worker works in one year as given by the 

current year ratio, 1.7 thousand hours. Also, this imputed ratio corresponds to 

approximately a 40 hour work week for 50 working weeks per year. 

The imputed ratio for the prior year average hourly wage rate, BWW/BMM, 

is $5.70 per hour. This rate is very much in line with the industry average, 

is well above the unedited $2.90 per hour figure, and corresponds closely to 

the current year hourly wage rate of $6.30. Similarly, the imputed prior 

year average salary, BWW/BPW, $11.1 thousand, is in line with the industry 

norm, well above the unedited prior year ratio, $3.3 thousand and corres- 

ponds closely to the current year ratio, $11.0 thousand. 

Finally, the procedure imputes .4 for the current year ratio of volun- 

tary to legal payments to fringe benefit programs. This figure is twice 

that of the original ratio and is identical to the prior year figure. 

This example and others not shown suggest that the edit/imputation 

method identifies cases with ratios that are implausible and imputes for 

these values in such a way so as to restore the ratios to reasonable values. 

Very often these imputed ratios correspond closely to the prior year (or 

if the prior year ratio is bad, the current year) value. 

The original and imputed variate values for our second example, case 

number 78, appear in Table 5 and the ratios associated with selected outlying 

variables appear in Table 623 In this case the imputed ratios are in 
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rough agreement from current to prior year. This is quite an interesting 

result considering that 6 of the 14 variables were either missing or edited. 

In this example the ratio OW/OE, denotes the average annual salary for 

other employees. Usually "other" employees is understood to mean executive 

or professional staff as opposed to production staff. In this regard the 

prior year annual sa 

staff but is brought 

average and the curr 

ary of $9.2 thousand is apparently low for professional 

closer into line (to $20.6 thousand) with the industry 

nt year value, $22.1 thousand. 

Because the current year man hour value, AMH, is missing the average 

production man hour per year figure, MH/PW, is imputed as 1.7, very close 

to the industry average and concordant with the pr ior year ratio, 1.8. 

The procedure likes neither prior nor current year values for the pro- 

duction worker average hourly wage, WW/MH (because data required to compute 

these ratios are outlying and missing, respectively). The prior year 

ratio value seems to be too high, $7.60 per hour. Consequently, the proce- 

dure imputes $5.90 and $5.60 for current and prior year hourly wage: 

these values are concordant with each other and other variables in the 

case not edited and present. 

Both the current and prior year average production worker annual salary 

WW/PW, has been edited. The original current year ratio, $17.1 thousand, 

appears to be high and the prior year ratio appears to be high also, $13.8 

thousand, although not as extreme. The procedure imputes ratios are nearly 

congruent: $10.3 and $10.1 thousand. 

However, with regard to the ratio of voluntary to legally required pay- 

ments to fringe benefit programs, VP/LE, our rule that year to year ratios 

are at least approximately preserved is broken: the current imputed year 

ratio is three times smaller than the prior year figure. 
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2.5 Addition of Random Residuals to Imputed Values 

Our imputation method described thus far fills in a case's missing and 

edited values by their conditional means given the case's present and un- 

edited variable values. This procedure is easily implemented using the 

Beaton sweep operator and the EM algorithm. Kalton (1981), Santos (1981), 

Kalton and Kish (1981), Sedransk and Titterington (1980), and Kalton and 

Kasprzyk (1982) have noted that this type of mean value imputation leads to 

efficient estimation of univariate item means but distorts the distribution 

of the item: the concentration of imputed values at their conditional means 

creates spikes in the distribution. The consequence of this is the artificial 

reduction and underestimation of item variance. Whereas this procedure is 

efficient as far as estimation of means is concerned, it may be highly 

unsuitable from the point of view of producing a "clean" data set that 

fairly represents the underlying distribution. This objective is highly 

desirable when a single clean data set must be produced for various and 

diverse statistical analyses, an important Census Bureau activity. 

In our context, the distortions created by imputing conditional means 

for missing and edited variables can be corrected by adding perturbations 

to the predicted means. If the normality assumptions underlying the EM 

algorithm are accepted, then the perturbations for an observation with 

m missing or edited items should have a zero-centered m-variate normal 

distribution. The appropriate dispersion matrix is the residual covariance 
. . 

matrix of the m missing or edited items given the p-m present and 

unedited items. An estimate of this matrix is already available in the 

swept covariance matrix calculated in the final E-step of the EM algorithm. 

These perturbations provide consistent estimates of the variances and 

covariances from the observed and imputed data. The distributions of 
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imputed items may still be distorted because of departures from multivariate 

normality. An alternative procedure that places less reliance on the 

normality assumption involves matching each incomplete case with a complete 

case and calculating for the complete case a vector of residuals from the 

regression of missing and edited variables on present and unedited variables. 

This vector then serves as a set of perturbations for the incomplete case 

in the match. The choice of matching criterion is an interesting issue. 

In the context of univariate nonresponse, Little and Samuhel (1983) argue 

for matching on the predicted mean from the regression of the missing item 

on the observations. In our multivariate setting, a natural generalization 

is to match on the vector of predicted means for the set of missing items, 

scaled by their residual covariance matrix. Colledge, Johnson, Par;, and 

Sande (1978) present a simpler matching scheme in an applied setting. 

The addition of noise to the predicted means has an attractive feature 

in our problem, where the variables are measured on the log scale. Exponenti- 

ating the predicted means yields estimates on the original scale which are 

downward biased, whereas exponentiating the imputations with noise added 

yields consistent estimates. Simple adjustments for the bias in the 

exponentiated means can be developed (see, for example, Eddy and Kadane, 1982; 

Little and Samuhel, 1983) but are not included in our illustrative example. 

3. Model Assumptions 

Any missing data analysis makes assumptions about the missing data 

mechanisms, that is, the processes leading to missing values. Rubin (1976) 

formalizes these mechanisms in terms of the distribution of missing value 

indicators and given the hypothetical complete data matrix X. If this 

distribution depends on observed values of X but not missing values, he calls 

the missing data mechanism missing at random (MAR). If the distribution of 
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the indicators does not depend on observed or missing values, he calls the 

mechanism missing at random and observed at random, or missing completely 

at random (MCAR). We can apply Rubin's (1976) theory to determine conditions 

for our problem. 

Our test procedures for detecting outlying cases and outlying values 

within cases make the strong MCAR assumption, since they fall in the framework 

of what Rubin calls sampling distribution inferences. The imputations from 

the EM algorithm, however, are conditioned on the observed, unedited values 

of each case and are consistent estimates under the model if the (weaker) MAR 

assumption is satisfied. A complication in applying these definitions to our 

problem is that the observed data is dependent on the editing process, since 

an observed value changes to missing when it is edited out of the data set. 

The MAR assumption cannot be evaluated without knowing the true values 

of the missing variables. The MCAR assumption can be assessed, however, by 

comparing the distributions of observed variables classified by data 

pattern. Table 7 shows summary statistics of the observed values classified 

by whether the observation was complete or incomplete. More detailed break- 

downs were considered inadvisable given the modest sample size. 

From this analysis it seems that with the exception of BLE, variables from 

observations with complete data only have roughly the same means values as 

variables from observations having missing values. Also, *for the most part, 

the variability of variables from observations with complete data only is 

roughly the same as for variables from cases having missing values. For 

variables where the variances for these two groups tested to be significantly 

different, the variability for variables from observations with incomplete data 

is somewhat greater. However, for only one of the 16 variables (BLE) does the 

mean and variance test to be significantly different. In view of these results 

we feel that the MCAR assumption is by and large reasonable. 



24 

A second assumption our analysis makes is that the M transformed data 

is multivariate normally distributed (MVN). This assumption is required only 

in the variable selection procedure when hypothesis testing is employed. How- 

ever, as noted previously in Section 2, an alternative is to employ a graphical 

method for identifying outlying variables. If the graphical procedures are 

used the MVN assumption can be somewhat relaxed. 

Figure 2 depicts the typical shape of distributions of our variables 

both in their original and En transformed scale: the distribution in the 

original scale is typically skewed whereas the in transformed distribution 

has a much more symmetic shape. 

For our example Figure 3 gives a probability plot of the Wilson-Hilferty 

transformed Mahalanobis distances for each case. Under the MVN assumption 

of the Rn transformed data, these transformed distances should be roughly 

normal. Except for the outlying cases in the upper right hand corner of 

Figure 3, the transformed distances behave as typical normal data does: it 

is linear in the probability plot. In Figure 4 the outlying variables have 

been edited. The transformed distances calculated from the remaining 

unedited data are given in this figure and behave nearly throughout as 

normal data should. However, cases beyond the cummulative probability of 

.95 in Figure 4 fall below the 45' line of inclination, suggesting a slight 

overediting of the data. 

Since this article is presented in the context of the analysis of survey 

data, some remarks are warranted on the impact of complex survey designs 

involving unequal probability sampling, stratification and clustering. Our 

methods are not formulated to allow explicitly for the survey design. 

However survey design variables, such as dummy variables indicating strata, 

can be included as variables in the data matrix, where they serve as predictors 
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for missing or edited variables (cf. Little, 1982). Alternatively, large 

data sets may be disagcjregated into separate strata and our methods applied 

separately within each stratum. For unequal probability designs, the 

appropriate role of selection probabilities is a matter of debate, as in 

other areas of multivariate analysis. For example, a recent discussion of 

the role of design weights in regression is given in DuMouchel and Duncan 

(1983). Alternative strategies include the following: a) ignore the design 

weights; b) apply the methods proposed here with cases weighted by the inverse 

of the selection probabilities; c) ignore the design weights for editing and 

imputation but weight final estimates of the mean and covariance matrix of the 

variables by the inverse of the selection probabilities; or d) form strata 

that are homogeneous in the selection probabilities and include dummy 

variables for these strata as variables in the analysis. Motivations for 

the latter strategy are given in Rubin (1983) and Little (1983a, 1983b). A 

theoretical discussion of the relative merits of these strategies lies 

outside the scope of this article. The practical expedient of comparing 

the results from weighted and unweighted analyses appears worthwhile. 

4. Linear Constraints 

In many industrial examples, a multivariate case may include variables 

representing totals of other variables in the case. A limitation of the 

procedures described so far is their failure to take into account 

linear constraints between variables. Barnett and Lewis (1978) and Fellegi 

(1975) comment on the presence of outliers in the editing of multivariate 

' data where such "pre-identified" relationships must hold. For example, in 

our ASM example, the variables OW and WW sum to a third recorded variable, 

the wages and salary of all workers (SW) which is checked from an independent 

data source. If the procedure causes OW or WW to be changed, then the 
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linear constraint WW + OW = SW will not be satisfied. Modifications of 

the basic procedure are required to produce imputations that satisfy such 

linear constraints. 

The modifications should reflect the nature of the linear constraints 

in a particular problem. Two issues need particular attention: (a) does 

the fact that a linear constraint is satisfied by the recorded values 

increase one's confidence in their validity? If two or more independent 

data sources are involved in the recorded values, then the answer to this 

question is probably yes; on the other hand, if the total is obtained by 

summing the individual components, or one of the components is found by 

subtracting the other components from the total, then the satisfaction 

of the constraint simply confirms the arithmetic and does not confer any 

particular validity to the recorded values. 

The second issue requiring particular attention is: (b) is the total 

more reliably recorded than its components? In the A.94 context, the SW 

variable is checked against official records and is regarded as more trust- 

worthy than the values of other variables: it has been previously reported 

to the Internal Revenue Service, and is imputed from IRS administrative 

records when it is missing from the ASM survey. Furthermore, it is felt 

that salary and wages for production workers, SW, is very well known by 

each industrial establishment.(since it is usually a major expenditure of 

the firm) as compared to the number. of production workers, PW, which changes 

over the course of one year and consequently is less clearly defined. 

Regardless of the answers to (a) and (b), we suggest that one of the 

variables in each constraint is dropped from our algorithm, to avoid problems 

of near-collinearity. At the conclusion of the algorithm, the value of 

the omitted variable may be changed if necessary to satisfy the linear edit 
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constraint. If the linear constraint is not satisfied by the edited and 

imputed variables we propose an additional editing procedure following the 

imputation step. In this procedure the variable in the linear constraint 

may be changed that results in the smallest Mahalanobis distance for the 

case. The total might change in this procedure; this would not be allowed 

to happen if the answer to (b) is yes. 

If the answers to (a) or (b) are yes, then further improvements to the 

algorithm can be achieved by assigning priority levels to the variables in 

the stepwise variable selection procedure. If (a) is answered as yes and the 

linear constraint is satisfied by the unedited values, then the variables 

in the constraint may be assigned lower priority for selection than other 

variables. If (b) is answered as yes, then the total should be included 

as a variable in the algorithm and assigned low priority for selection. 

These rules require straightforward modifications to handle data where 

some of the components of the linear constraint are missing. 

For the ASM we describe how a procedure may be implemented that accounts 

for the linear constraint that ASW = AWW + AOW. Since there is a great 

amount of confidence in the recorded value of ASW, it should be included 

in the analysis. One of the two addends, say AOW, would then be dropped 

from the procedure to avoid problems of collinearity with the other variables, 

ASW and AWW. Its removal does not remove information regarding it from 

our analysis, however: information aobut it is carried in AWW and ASW 

and, obviously, by the difference ASW-AWW. 

With ASW, AWW and the remaining varibles, P and 1 may be estimated 

as before via the ER algorithm. However, since ASW is believed to be 

correct, all other variables present in the case are removed before it 

in the variables selection procedure. Because it is unknown whether AWW 



is obtained via subtraction this variable receives no particular editing 

priority and is entered in the variable selection procedure as all other 

variables: it is removed or retained according to its influence in reducing 

the Mahalanobis distance. 

Following this modified variable selection procedure imputed values for 

missing and edited values may be obtained as before in the final iteration 

of the E-M algorithm. 

Finally, each case is checked to determine whether the linear constraint 

ASW = AWbl + AOW is satisfied by the edited data. We propose the following four 

distinct strategies for "correcting" AWW or AOW when the edited data fail to 

satisfy the additive constraint. Each strategy is specific to a particular 

pattern of missingness for AWW and AOW: 

(i) Both AWW and AOW are present and unedited. In this case we advocate 

editing the least likely of the two addends and imputing the difference between 

ASW and the more likely addend for the least-likely variable. This strategy 

may be implemented as follows: Aw^w = ASW - AOW is computed. Then the 

Mahalanobis distances D(A$W) and D(AWW) may be computed. These distances 

represent -2an likelihood of the case based on the imputed value Pw^W and 

the actual value AWW, respectively. If D(AGW) < D(AWW) then AOW is more likely 
A 

than AWW and the imputed value, AWW, may be retained. Otherwise, the original 

value of AWW is retained and AtW = ASW - AWW is imputed for AOW and the linear 

constraint is satisfied. 

(ii) AWW is originally present and is unedited but AOW is missing. In 

this case we suggest imputing A$W = ASW - AWW for AOW. 

(iii: AWW has been imputed by AtW but AOW is present. In this case we 

compute AWW = ASW - AOW. 
A 

If D(A;W) > D(AWW) then we revise the imputed value 

A 
of A$W to be AWW. Otherwise, we impute A$W = ASW - A$W for AOW. 
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(iv) Finally, if AWW has been imputed by AGW and AOW is missing than 

we suggest imputing AtW = ASW - AWW. 

5. Summary 

This article draws together statistical methodology in robus? estimation, 

graphical procedures, outlier detection, and multivariate analysis and extends 

and applies these methods to the problem of editing and imputation for survey 

data. The ER (expectation-robust estimation) algorithm is presented 

(Section 2.3) yielding a procedure for robust estimation of P and 1 from 

multivariate data where values may be missing or outlying. Graphical and 

testing methods are given to identify outlying cases (Section 2.4) and 

outlying values within outlying cases (Section 2.5). The EM (expectation- 

maximization) algorithm is used in conjunction with the Beaton sweep operator 

to impute values for edited or missing values (Section 2.4). Also, the 

problems of addition of random residuals to imputed values (Section 2.6) 

and satisfaction of special linearity constraints by imputed values (Section 

4) are discussed. 

Data taken from the Annual Survey of Manufactures are used to illustrate 

the statistical methods we advocate. This data set is composed of attributes 

from the 1981 survey and each firm's corresponding prior year 1980 data. 

Although our methods do not require current and prior year data as we have 

for our illustration, particular care for editing and imputation should 

be taken where this type of data is available. For example, when current 

and prior year data are available, a case may be identified as being outlying 

as a result of the firm's sudden growth or decline from one year to the 

next. In these cases, data may represent bonafide information about the 

transition of the firm although it may be highly discordant from year to year. 
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This transition may be confirmed by recontacting the firm. Clearly, 

if a firm's data appear to be outlying as a result of a sudden year-to-year 

transition, its data should not be edited. 

Much work remains to be done in establishing the statistical properties 

of the techniques we advocate. Also, further applied work is needed to 

adapt our methods to the specific edit and imputation requirements of real 

surveys. We believe that the examples presented in this article and other 

examples we have seen indicate that our edit/imputation method works 

well: values that are clearly improbable are edited and reasonable values 

are imputed. 



TABLE 1. Estimated Means and Covariances of m Transformed Data 

Computed from EM Algorithm. ASM Data. 

ESTIMATED MEANS 

BPW BWW BLE BVP BMH APW AWW BOW ALE AVP AMH BOE AOE AOW 
5.13 7.63 5.72 5.48 5.78 5.08 7.65 6.15 5.77 5.57 5.71 3.19 3.15 6.23 

ESTIMATED COVARIANCE MATRIX 

BPW 

BWW 

BLE 

BVP 

BMH 

APW 

AWW 

BOW 

ALE 

AVP 

AMH 

BOE 

AOE 

AOW 

BPW BWW BLE BVP BMH APW AWW BOW ALE AVP AMH BOE AOE AOW 

.97 

.97 1.09 

.94 1.08 1.20 

1.03 1.24 1.28 1.81 

.87 .90 .91 .98 .85 

.96 .97 .97 1.05 .87 1.04 

.91 1.02 1.02 1.17 .85 .95 1.01 

.63 .74 .86 1.05 .63 .64 .72 1.13 

.89 1.00 1.08 1.18 .84 .94 .98 .81 1.05 

1.03 1.26 1.31 1.79 .98 1.09 1.23 1.07 1.22 1.95 

.89 .92 .96 1.03 .86 .98 .92 .66 .91 1.07 1.01 

.69 .72 .83 .95 .66 .70 .69 1.00 .80 .97 .69 1.18 

.72 .78 .89 1.03 .71 .74 .75 1.05 .86 1.07 .73 1.16 1.27 

l 71 .82 .93 1.11 .69 .73 .80 1.13 .90 1.18 .72 1.06 1.19 1.32 



TABLE 2. Estimated Means and Covariances of in Transformed Data 

Computed from ER Algorithm. ASM Data. 

ESTIMATED MEANS 

BPW BWW BLE BVP BMH APW AWW BOW ALE AVP AMH BOE AOE AOW 
5.14 7.67 5.77 5.55 5.79 5.12 7.70 6.20 5.82 5.65 5.77 3.19 3.18 6.28 

ESTIMATED COVARIANCE 

BPW 

BWW 

BLE 

BVP 

BMH 

APW 

AWW 

BOW 

ALE 

AVP 

AMH 

BOE 

AOE 

AOW 

BPW BWW BLE BVP BMH APW AWW BOW ALE AVP AMH BOE AOE AOW 

.95 

.94 1.03 

.91 1.00 1.09 

.99 1.14 1.16 1.67 

.88 .89 .87 .92 .84 

.91 .91 .89 .97 .84. .91 

.89 .99 .97 1.12 .85 .89 .97 

.63 .68 .78 .96 .61 .63 .69 1.05 

.88 .96 1.03 1.12 .84 .88 .95 .78 1.03 

.99 1.18 1.20 1.70 .94 .99 1.17 1.00 1.16 1.83 

.83 .84 .83 .89 .79 .81 .82 .59 .82 .92 .77 

.67 .67 .78 .88 .64 .67 .67 .99 .78 .92 .63 1.14 

.70 .70 .81 .92 .67 .70 .70 1.00 .81 .96 .65 1.13 1.16 

.68 .73 .83 1.00 .65 .68 .73 1.06 .85 1.05 .64 1.02 1.05 1.15 

. 



TABLE 3. Variable Selection Procedure for Case Number 65 

TOTAL DISTANCE = 136.27 
P-VALUE = .OOO 

Variable 

BWW 
BPW 
ALE 
BOE 
BOW 
BVP 
AMH 
AVP 
BLE 
AOW 
AOE 
AWW 
BMH 
APW 

Recorded Value 
(Raw Scale) 

473 
143 
209 

3 
;: 

140 
49 
99 
117 

6 
887 
162 
81 

Rank 

: 

3 
4 
2 

7 
8 
9 

10 
11 
12 
13 
14 

Imputed 
Value 

925 
83 

115 

Incremental Distance P 
Decrease in Distance Remaining Value 

56.68 59.03 .ooo 
75.17 33.84 .004 
83.51 22.47 .044 
90.96 12.32 .328 
95.91 5.57 .809 
97.47 3.45 .914 
98.06 2.64 .924 
98.25 2.38 .890 
98.39 2.20 .830 
98.52 2 .Ol .743 
99.28 .97 .812 
99.56 .60 .745 
99.57 .58 .448 

100.00 .oo 1 .ooo 



Table 4. Important Ratios Involving Edited Variables from Case Number 65 

Ratio 

MH/PW 

WW/PW 

WW/MH 

VP/LE 

Current Year Prior Year 

Original Imputed Original Imputed 
Value Value Value Value 

1.7 1.1 2.0 

11.0 3.3 11.1 

6.3 2.9 5.7 

.2 .4 .4 



TABLE 5. Variable Selection Procedure for Case Number 78 

TOTAL DISTANCE = 169.47 
P-VALUE = .OOO 

Recorded Value Imputed Incremental Distance P 
Variable (Raw Scale) Rank Value Decrease in Distance Remainina Value 

BWW 3198 
APW 35 
BOE 36 
AWW 597 
ALE 123 
AVP 139 
BVP 434 
BOW 330 
BPW 231 
BMH 419 
BLE 368 
AOE 18 
AOW 408 
AMH MISSING 

1 
2 

4” 

6” 

ii 
9 

10 
11 
12 
13 

2335 15.21 
192 50.72 

16 62.89 
1976 73.39 

344 90.57 
99.16 
99.53 
99.68 
99.73 
99.81 
99.96 
99.96 

100 .oo 
1643 

143.69 .ooo 
83.51 .ooo 
62.89 .ooo 
45.10 .ooo 
15.99 .065 
1.42 .986 

.79 .993 

.54 .991 

.46 .978 

.32 .958 

.07 .965 

.06 .800 

.oo 1.000 



Table 6. Important Ratios Involving Edited Variables from Case Number 78 

Ratio 

OW/OE 

MH/PW 

WW/MH 

WW/PW 

VP/LE 

Current Year 

Original Imputed 
Value Value 

22.1 

1.7 

’ 5.9 7.6 5.6 

17.1 10.3 13.8 10.1 

1.1 .4 

Prior Year 

Original Imputed 
Value Value 

9.2 20.6 

1.8 

1.2 
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Table 7. Summary Statistics for MAR Analysis. Data are measured on Rn scale. 

Observations With Observations With 
Complete Data Only Incomplete Data p-values 

Variable "1 si; SC “2 r2 S22 H: Q=Q H: g=q 

APW 130 5.0 1.4 
BPW 120 5.1 1.2 
AOE 125 2.8 2.1 
BOE 115 2.9 2.1 
ALE 80 5.5 2.5 
BLE 75 5.1 3.6 
AVP 71 5.6 1.1 
BVP 67 5.3 1.6 
AWW 110 7.5 2.2 
BWW 100 7.5 1.8 
AOW 105 5.6 4.7 
BOW 95 5.6 3.9 
ASW 90 7.9 .8 
BSW 85 7.8 .9 
AMH 63 5.4 2.6 
BMH 59 5.8 .7 

5 3 
:; 512 
30 3.4 
40 3.1 
71 5.9 
77 5.9 
83 5.8 
87 5.6 
44 7.8 
55 7.7 
49 6.3 
59 6.2 
65 8.0 
69 7.9 
88 5.7 
95 5.8 

1.0 
1.2 
1.7 

::i 

::; 
1.8 
1.2 
1.2 
1.5 
1.3 
1.0 
1.0 
1.3 

.9 

.2 .4 

.8 .5 

.04 .26 

.08 .17 

.04 c.001 
c.01 c.001 

.26 .26 

.08 .32 

.32 .Ol 

.5 .06 

.04 c.001 

.04 C.001 

.56 .14 

.52 .28 

.lO c.001 

.88 .19 



FIGURE 1. Missing Data Pattern Analysis 
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FIGURE 4, Normal Probability Plot of Transformed Distances 
Calculated from Cleaned Data 
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