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U.S. Bureau of the Census 

1. INTRODUCTION 

The problem of coverage error in surveys and censuses has become an important 
statistical issue, supported by the fact that the U.S. Bureau of the Census has been sued 
in Federal court more than 50 times regarding the completeness of the1980 census. The 
main purpose of this articleisto discuss certain aspects of coverage error and to provide 
careful exposition of some alternative statistical models for such error. 

Coverage error has been studied for several decades. In the U.S., coverage error 
has been estimated for each of the past four decennial censuses of population and 
housing, starting with the1950 census. In Canada,coverage error has been estimated for 
each of the past five quinquennial censuses, starting with the 1961 census. Other 
countries such as Australia, Austria, Finland, and Korea have also produced estimates of 
the coverage error associated with their population censuses. Despite the apparent vast 
amount of research on coverage error, previous authors have not, to our knowledge, 
presented explicit statistical models for such error, although models have been implicit 
in all of the previous work. 

The models we discuss are equivalenttothe capture-recapture models employed in 
estimating the size and density of wildlife populations, and to the dual-system models 
employed in estimating the number of human vital events. They are also related to the 
log-linear models employed in the analysis of discrete multivariate data. Capture- 
recapture models originated in the17th century,andthe modern development dates from 
Peterson (l896), Lincoln (l930), and Schnabel (l938). Excellent recent reviews are given 
by Seber (1973) and Otis et al.0978). The application to human vital events wasinitiated 
by the pioneering workofekar and Deming (l949). Extensive recent discussion is 
presented by Marks, Seltzer, and Krotki (1974). Bishop, Fienberg, and Holland (1975) 
discuss the subject of log-linear models and their relation to the capture-recapture 
problem. 

In Section 2 we present the basic coverage error model and discuss several 
important special cases that are useful in estimating the level of error. The model 
denoted Mth is the one employed implicitly in several of the previous coverage error 
studies. The basic model is extended in Section 3toincludethe sampling error associated 
with a postenumeration survey. Statistical adjustments to census data designed to 
compensate for coverage error are discussed briefly in Section 4. We expose a clear 
connection between the basic coverage error model and the method of small domain 
estimation known as synthetic estimation. The paper closes with a general summary in 
Section 5, where we discuss future research possibilities as well as possibilities for 
relaxing some of the assumptionsimposedin earlier sections. 

2. COVERAGEERROR MODELS 

We consider a given human population U, and let N denote the size of U. It is 
assumed that N is fixed but unknown, and the main problem to be addressed is that of 
estimating N. The reader will note that this problem differs fundamentally from that 
treated in the traditional literature on survey sampling, where N is assumed known and 
.&hem ain problem _is~.ta.estim~~~~the.fioif;~.po~~~a U. 
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We'assume that %censEofU 
----.--.. .-. ~_ -- --__- . 
is conducted at a parZic~a~-~~~~~~~~rn‘e~~~d'~~~~ 

the census, more orless,attemptsto enumerate each and everyindividualin U . Let GA 
denote the general conditions present in and during the census enumeration. For a 
variety of reasons someindividuals are missed by the census,however,andthe difference 
between the census count and N is defined as the error of coverage. The census count 
may be greater than the true N (an the error mechanism is such 
that the census countislessthanthe 

One of the pernicious features of coverage erroristhat internal measures cannot 
be computed from the census data itself. In orderto produce measures of coverage error 
we assume additional information in the form of a sample survey of the same population 
U. The survey either preceeds (a preenumeration survey) or follows (a postenumeration 
survey) the census, but in either case employs the same reference period as the census. 
For a variety of reasons,someindividuals in U are missed by the survey procedures. We 
let GB denote the general conditions present in and during the survey enumeration. 

In the remainder of this section we describe some basic coverage error models that 
treat jointly the census and sample survey processes. We discuss estimation ofthetrue 
population size N and make explicit the assumptions used. For notational convenience, 
we shall refertothe census population as List A and the survey population as List B. For 
now we shall assume that the survey is in fact a complete enumeration of List B,i.e., a 
conceptal enumeration of U given general conditions GB. In Section 3 we shall consider 
the case where the survey involves observation of only a part of List B. 

2.7 Mg: The General Model 

The general coverage error model is set forth in the following paragraphs. 

(i) (The Closure Assumption) We assume the population U is closed and of fixed 
size N. In practice,thisimpliesthatthe census'reference period is well defined and that 
no recruitment (birth or immigration) or losses (death or emigration) occur during that 
period. 

distri(iJiion(The Multinomial Assumption) Let si denote the following multinomial 
. 

List B 

List A b”,, I W[ p 

i+ pi+2 

j We assume that the joint event thatthei-thindividualisin List A or not andin List B-or 
'not is correctly modeled by the distribution #i. 

iresult of N mutually independent 
(iii) (Type I Independence) We assum:;i",",a,"iaytie;e;i$ List B are created as a 

, utilizing distributions 
j 51, 52’ l *-S EN� The resulting data are 
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x++ = N (2.1) i 

where x b = 1 xi b, and Y+ 
or not th$ i-th individeal is in ce "R 

is an indicator random variable signifying whether 
(a,b), for a,b = 1,2, +. The census count x + is 

considered observable. The cell counts x 1, x 2, and x 
t 1 zii 

are considered f observab e on 
the basis of the survey data and subsequen ma thing to e census. The cell count x22, 
and thus the size ofthetarget population N,is considered unknown and to be estimated 
on the basis ofthe model. 

The reader will note that the census count xl+ is ygarded as a random-variable ; 
underthe model, with mean pl+ = c pil+ and variance al+ = ' pil+pi2+* I 

(iv) (The Matching Assumption) We assume thatitis possible to match correctly 
the sample survey results to the census results. 

i 
That is, we assume that it is possible to I 

make a determination, without error, of which individuals recorded in the sample survey i 
are presentinthe census, and which are not. I 

(v) (Spurious Events Assumption) We assumethat both List A and List B are void 1 
of spurious events, or that such are eliminated prior to estimation. This means that all 
errors are avoided in recording both the census and survey results. In practice,important 
spurious events that do occur include a) duplicates on the census list, b) "curbstoned" 
reports in either the census or sample survey, and c) out-of-scope cases, such as an 
individual bon afterthe reference period,thatare recorded erroneouslyinthe census. 

nonreiviinse(The Nonreponse Assum.ption). There will necessarily be some degree of 
We assume that sufficient identifying information is gathered about the 

nonrespondehtsin both the census and the sample survey to permit exact matching from 
the surveytothe census. 

(vii) (The Poststratification Assumption) As will become clear in the sequel,it is 
often desirable to employ some poststratification in the estimation of N. For example, 
one may wish to poststratify on age, producing age-specific population estimates, then 
aggregating to give an estimate of the total population N. We assume that any variable 
employed for poststratification is correctly recorded for allindividualsin both the census 
and the sample survey. 

Readers familiar with the capture-recapture literature or the dual-system 
literature will recognize many of these assumptions. For further discussion see Otis et 
,al.(l978), Seltzer and Adlakha (1974),and Cowan and Bettin (l982). 

Unfortunately the model M is grossly underidentified and further assumptions are 
:neededto estimatethetrue popu ation size N. In Sections 2.2to 2.6 we consider various B 
special cases of the general model, each identified through additional restrictions on the 
multinomial process. The taxonomy of models is due to Pollock 0974). 

2.2 MO: The Equal Catchability Model 

In the equal catchability model, each individual in the population U has the same 
~robability..of~ptur~-@r_r;av_erage).jn_h~hn$~~.~~t~o~~-a~~ene~~t~d__ 
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independently. The additional assumptionsare 

(viii) (Type II Independence) The event of.being included in List A is independent i 
of the event of beinq includedin List B. Thatis.the cross-oroduct ratio satisfies 

'i 
= pillpi22/~pil2pi2l) = 1, fori=l,l.., N. ' 

(ix) The marginal probabilities of capture satisfy pil+ = pi+1 = p for i = l,..., N. 

The likelihood associated with this model is 

N 2N-x 
LO(N,p) = (xl1 92 91) PX'(I-P) l , 

where x = 2x11+x1 +x~~~s the total number of captures in both lists. The sufficent 
statistic* for this pro lem I? is (XI, x.), where x1 = XI 
number of distinct captures,andthe maximum likelihoo h 

+ x12 + x21 denotes the total 
estimators are 

A 

X2. 

NO = ++-Jll* 

and p = 2(x l - ⌧1 >/⌧ Y . 
where [[.]I denotesthe greatestintegerfunction. 

2.3 Mb: The Trap Response Model 

One of the criticisms of the simple model MOisthatthe assumption regarding Type 
II independence may not obtain in surveys and censuses of human populations. The 
concern is that both Lists A and B may tend to miss or capture the same individuals. In 
the capture-recapture literature,this tendency is described as a behavioral response,and 
individuals are said to be "trap happy" or "trap shy." Thatisthe odds of capturein List B 
(survey population) given capture in List A (census) are either greater or less than the 
odds of capture in List B given noncapturein List A. This problem isthoughtto be more 
seriousin human populationsthanin wildlife populations. 

One possibility for modeling this situation is to impose assumption (x) in place of 
assumptions (viii) and (ix): 

(x) The probability of first capture is the same for each individual in the 
population. That is, 

Pr{i-th individual is capturedin List A) = pil+ = p 
Pr{i-thindividualis capturedin List Bli-thindividualis not capturedin List A} 

for i = 1, . . . . 
=Pi2I/Pi2+= P 

N. The probability of second captureis also the same for eachindividualin 
the population. That is, 

Pr{i-thindividualis capturedin List Bli-thindividualis capturedin List A) _ 

for i = l,..., 
= Pill/Pi 

N. The cross-product ratio forthis mode is eb = C(l-p)(l-cf' P" , t 
+ = c 

and 8b> 1 (positive association between lists) whenever c > p and 8b< 1 (negative 
association between lists) whenever c < p. Thus, the lists are positively associated 
whenever the odds of second capture are greaterthanthe odds of first capture,andthe 
lists are negatively associated whenever the odds of second capture are less than the 
odds of first capture. Implicitinthis assumption is the condition that List B follows List 
A in time. 



.- -._. .- 
The likelihood associated with this modelis 

Lb (N,i',c) = (x11 Xy2 X2+ P xlcxll~~_c~xl+-xll~~-p~ 
2N-xl -x1 + t 

/ . 

The sufficient statistic for this problem is (xl, xl+, x11), and the maximum likelihood / 
estimators are 

I 

ib = (2x1+- x1 )x;;, and ; = -1 
x11x1+' 

2.4 Mt: The Petersen Model 

A second extension of the simple model M occurs when we assume time variation 
in the capture probabilities. We assume (i) - (viii ? and 

(xi) The capture probabilities satisfy pii+ = q+ and pi+1 = ~+~fori = l,..., N. 

The likelihood associated with model Mtis 

Lt(kPl+,Ptl) = (x1, iI x2,) P lt 
xlt 

P t;+l(l-Plt) 
N-x1+ 

(l-p,,) 
N-x+1 

l r 

The sufficient statistic is now (XI, xl+, +I , x ) andthe maximum likelihood estimatorsare ! 

i = cc 
xl+xt1 3-J 

= [I: “‘;“t’ 11 Y 
I / 

x, .-l-x. - -x. , , I+ +I I I I 

-1 
r;,, = (Xl++ x+1- x,)x+, Y and p,, = (xlt+ x+~- x,)x;:. 

The estimator N has a long history, dating back several hundred years. In the 
modern era it has bee k called variously the Petersen estimator,the Schnabel estimator, 
the Lincolnindex,the Chandrasekar-Deming method,andthe dual-system estimator. 

2.5 Mh: The Heterogeneity Model 

A third extension of the simple model occurs when the capture probabilities are 
allowed to vary across individuals but not across time. We assume (i)- (viii) and 

(xii) The capture probabilities satisfy pil+ = pi for i =l,..., N. 

The likelihood for model Mhis N 

+,(N,P$'y 

2-Xi 
. . . . PN) = ' Pi xig (l-pi) ', 

i=l 

I 

I 

where Xi = 2x* 
It 1: 'c~e$'$hfatxi? 

denotesthetotal number of times thei-thindividual was 
captured: . = 0, 1, or 2 for i = 1, . . . . 
likelihood is not useful for es&mating the population size N. 

N. It is also clear that this 

A possible procedure for estimating N is to divide the population U into L 
poststrata, such that model MD holds within each stratum. To estimate the size of the 
total population we 1) estimate the size of each stratum utilizing a model MD estimator, 

-L 



and 2) aggregate over strata. -BLit~-for~d~-~-~opula~ioi\s;-7t-~m~~not~~~possibl~~6-~ 
formulate an appropriate poststratification scheme such that model MO holds within 1 
strata. I 

I 

2.6 Mtb, Mth, Mbh, Mtbh: Combination Models 

Numerous additional models may be specified by combining the features of the / 
basic models MO, M 

9 
, Mt, and Mho We shall discuss these models only briefly because j 

they are not generaly useful for the coverage error problem. In capture-recapture j 
studies of wildlife populations, however, it is often possible to employ more than two ! 
lists (or captures)in the analysis, and some of the combination models are useful in such 
applications, / 

Model Mtb combines time variation in the capture probabilities with a behavioral 
response. The multinomial distribution for this model is specified by piab = pab, for a,b = 
1,2,+, and the distribution is assumed to be homogeneous across individuals 1 = 1, . . . . N. 
The cross product ratio 0 = p p /(p p ) indicates the nature of the behavioral 
response, with 8 > 1 signifying 'I%&$ hadFy"and 8 <l signifying 'trap shy." The simple 
model Mt arisesin the special case of Type II independence,i.e.,e =l. 

Model Mth has been used implicitly in most of the previous studies of coverage 
error. We assume (i)-(viii) and 

(xiii) (Type III Independence) The marginal probabilities associated with Lists A 
and B are uncorrelated acrossindividualsin the sense that 

u(pl+,ptl 1 = N-1 ' (Pil+ - ljl+)(pi+l - E+l) = 0, 

where P,b = N-' c Piab for (a&) = (1 ,+)a (+,l)- 
I / 

Given these assumptions,the Petersen statistic i 
F* 

is a consistent esti,mator of N. In the ' 
more general case where Type III Independence alls,the estimator Ntis not consistent 
andtheleadingterm in the biasis given by 

Bias {it} = - N ~bl+~ptl )/{4P,+,P,,) + Pl$+,l l 

In applications involving human populations, u(p 
implying a downward biasinthe estimator of popula i! 

,p,l) is thought to be positive, 
i%n size. 

Model Mth was first treated in the vital events literature by Sekar and Deming 
(1949). They referred to the downward bias in N as the "correlation bias" and 
poststratification was suggested as a means of reducin\ the bias. This terminology and 
the concept of poststratification have since become standard features ofthe dual system 
model in the vital events literature. As we have seen, however, "correlation bias" is 
somewhat of a misnomer because the bias arises from heterogeniety in the capture 
probabilities acrossindividuals,not from a behavioral response between Lists A and B. 

Model Mbh combines a behavioral response with heterogeniety in the capture 
probabilities. Without imposing additional assumptions, this model is not useful for 
estimating N. 

Finally, we have the model Mtbh which allows variationinthe capture probabilities 
by time and individual, as well as a behavioral response. Thisisthe same as the general 

-m ode1 M g .introd.uced..inSe.cSectio n2.1,Aswas&ia.tW.eMgo . J 



general to be useful for estimating -N;-which-Is--unfortunate, ~ecauselt 1s.probablythe'-: 
most realistic model in the context of surveys and censuses of human populations. I 

In passing we remark that all of the models definedinthis section may be extended 1 
to include more than two lists. See Otis et al. (1978) for discussion of such possibilities. 
For the vital events application and the coverage error application, however,there are 
rarely morethantwo lists and,consequently,this article has concentrated specifically on 1 
models forthetwo-list problem. I 

3. DETAILS OF MODEL Mt 

In this section we develop fully one of the coverage error models introduced in , 
Section 2. We choose model Mt for this development because of its historical importance 
both in the vital events literature and in the previous studies of coverage error. The 
development also applies to model Mth, provided that enough prior information is 
available to poststratifythe population to the point where model Mt holds within strata. 

3.1 The Sample Survey 

In Section 2 model Mt was discussed in terms of an application where List B was 
enumerated entirely. This condition is not realistic in most coverage error studies, and 
we shall now assume that a sampleis selected from List B and that only the sample cases 
are enumerated and matched to List A. We continue to assume that List A is 
observable. We also continue to impose all other assumptions about M described in 
Section 2, including (i) - (viii) and (xi). Of the population quantities in 4 2.1), only the 
census total xl+ is considered known. The survey population total x+1 is now considered 
unobservable, as are the totals x11, x12, x 1, but all are estimable based on the survey 
data. The quantities x22 and N are to be es imated on the basis of model Mt. z 

To concentrate on essentials, we consider a simple survey design. Let the survey 
population (List B) be divided into M area1 clusters and assume that a simple random 
sample of size m is selected without replacement. Let the survey populatfon be 
enumerated entirely within the selected clusters. The ensuing development easily 
extends to more complicated sampling designs,however,this simple design will serve 
well for corn municatingthe main ideas. 

The reader will note that the list of clusters is assumed to be complete. Each 
member of U is assumed to belong to one and only one cluster and there are no members 
of the population U that are not covered by one of the M clusters. In both the census and 
sample survey, however, not all true memben of the selected clusters are enumerated. i 
Only members who arein List A and B, respectively, are enumerated. 

We expand the notation utilized in Section 2 in order to accommodate the / 
clustering. Let 

Xijab = 1 ,ifthej-th individual in the i-th clusteris 

in the cell (a,b) of Table (2.1) 

= 0 ,otherwise, w 

for a,b =l, 2,+. Then define 

F 

M 

'ab = i 'iab = Cl 
1 J 

'ijab 

-I- -- 
-i 



for a,b =l, 2,+. The reader will note-that 
o xi+Iisthe size ofthei-th cluster forthe survey population 
o XiI+isthe size ofthei-th clusterforthe census population 
o xi++isthetrue size ofthei-th cluster. 

For the selected clusters,the quantities xill, xia, and xi+I are observable on the i 
basis of the survey enumeration and subsequent matching to the census population (List I 
A). xi22is clearly not observable. Also, we assumethat xiI2 and xil+are not observable. j 

A 
We shall let xl1 , ;,.+, and i+l denote the usual design-unbiased estimators of 

~11 ,x21, and x+l,respective y. For example 

A 

'11 = iii i j 'ii11 = iii i MYz M T 'ill' 

We shall employ the design-unbiased estimator i 
A 

mapped onto the selected clusters and matched to l?s~B~kkx~h alternative estimator 
of x12. If List A is ' 

of xl2is available. This situation is not assumed here, however. 

From Section 2 we recallthatthe model Mt estimator of N is i = x1 X+1X-i. 
This estimator is not available unless List B is enumerated completely &e., a = M), 
Replacing x+~ and xllbythe corr$jponding design-unbiased estimators gives the sample- 
based estimator f? = 
discuss the statistkal 

One of the main objectives of this section is to 
As we shall see,this estimator is subjecttotwo 

sources of variability: and model variability. 

To facilitate the discussion it is convenient to introduce additional notation. We 
shall use EC and VE to indicate expectation and variance operators with respect to the 
model Mt tistributlon 5; E and V to indicate expectation and variance operators with 

; 

respect to the sampling dkign p;'and E and V to denote total expectation and total 
; 
\ 

variance,respectively. 1 

Uti'li&ig this notation we are able to obtain the following properties ! 
of !$ and Nt. 

Theorem 3.1 The first- order approximate expectations and variances of 
givenby 

&are 1 

(1) Ep{ijt} = i t (iv) V,G,l = 0 
1 
1 
1 1 

Theorem 3.2 The first-order approximation expectations and variances of 9 are j 
given by 



(i) Ep$3 : Ep{+ + ((.!$d - 
cpIx+l ,Xll 3 

> 
where x11 x+1xll 

a 

Vp{x113 
= M2(l-f)Si,/m, 

cp{x+l ,ill 3 = M2(l -f)S +l,ll /b 

f = m/M, 

M 

S:l = (M-1)'1 1 (Xill'X11/M)2, 

i 

M 

S+l,ll = (M-1)-l 1 (xi+l- x+1/M) (xill- x11/M)* 

k-m 

c 'i++ 
(ii) E$$ I : E&} + ( i ) 

p2+ 

p xi++ p1 +p+l 
i 

(iii) E#+3 : EIN+3 + (y) 
p2+ 

p 
l+ +l 

p L b 

(iv) vpoit3 : vp6it 
62 vp{x+l 3 VpG, l 3 

A 

3 + Nt (,- + .2 - 2 
cpIx,l 'X113 

) 

M-m 
x+1 x11 x+1xll 

J x. 
1++ 

(v) V,$3 t V&3 + N( ' > 
p2+ 

T 

Pl+P+l 

i 
'i++ 

w vrq 3 : 43 + N('-f) 
p2+ 

t p1+p+1 l 

/I 

In the statement of Theorem 3.2 note that we have expressed the expectations and 
variances of a as equal to the analogous quantities for N plus additional terms. The 
additional ter Ai s represent the statistical effects of empbying a sample from List B, 
rather than a complete enumeration. 

It is possible to modify the estimators i and m to reduce or eliminate the bias, 
though this is usually unnecessary when the sart!ple size are large. The only occasion in s 
which an important difference may occur is when the population is poststratified deeply 
(in order to cope with assumed heterogeneity) and estimates are to be prepared within 
strata based upon.smallsampleAz~z- 

I 

c 

4 



As regards estimation of variance;-tie suggest the-following7or jt: 

iGit3 = $INt3 = 
xl+x+1x12x21 

3 
. 

x11 

This is the estimator traditionally presented in the capture-recapture literature. See, 
e.g.,Seber (1973). For $ we suggest 

(i) i,U$3 = M2 (1-f)si/m, 

where m 

6 = (m-l)-' 1 df, 

i A 

x1+ x 
di =- 

x1+x+1 
i+l 

x11 
- x:l 'ill* 

or 

A 

(ii) GE{Nt3 = 
x1+x+1 ("^+1- x^ll )(x1+- x^ll) 

3 + ($3 
;+lx:+I;+l- x^ll) 

3 
x11 ;11 ‘ 

(iii) ilf(3 = iEIf$3 
A 

hit3 = ipriit3 + 
x1+x+1(x1+- 41 )(x^+1- "11) 

A . 

x11 

See Marks, Seltzer, and Krotki (1974) for some additional discussion of variance and 
variance estimation in the context of vital events estimation. In estimating the & 
variance of Nt , we estimatetheterm 

M-m m 

( c 'I++/ 1 'i++) 
i i 

by ('i-f)/f. Thus, i,r$3 is a Ep-consistent estimator of VE{l$)in the sense that 

M-l (i&$3 - V,if$>l = Op(m-1/2) + Og(m-1'2) , 

where the probabilities are created by the design and the model, 
respectively. Obviously, usual Taylor series estimator of, the design 
variance, and replication alternatives. The estimator V{K 3 is sp- 
consistent for the total variance. The alternative estimator of the total vakance.is 
obtained by exchanging the order of expectationsin the derivation of VEN 3 . It can be 
sh 

a 
wn that the difference between the two es i 

fA 
ators of total variance, k ormalized by 

M-,differs from zero by terms of order O&m- ). 

3.2 Relationship to Measurement Error Models 

We now develop a connection between coverage error models and the measurement 
(or response) error model for survey data. The key to the connection is to regard the 
. .---_ --_ _______*___ 

I 

i 



cluster as the survey reporting unit,r;ithei'~~a~~~~d~iiid~~-brhoLiSehb?d. 

We shall describe the connection in terms of the observations xnl, where similar 
developments can be given for Xi21 and Xi+T. We may write 

'ill = xi++pll + eill (3.1) 

for i = 1, . . . . M, where eiTT is an error with &expectation 0 and S-variance Xi++pll(l-pll). 

Equation (3.1) is in the form of the response error model for survey data. See Hansen, 
Hurwitz, and Bershad (1961) for a clear exposition of the model. In the coverage error 
application, the cluster is treated as the reporting unit and the error arises from the 
multinomial or (distribution. This differs from the usual survey situation where the 
individual is the reporting unit and the error is the result of an erroneous response. In 
both the usual survey situation and the coverage error application,the observations and 
their error distribution are assumed to be conditional on the general conditionsin which 
the survey or census is conducted. To signify this fact we might have explicitly 
subscripted our 
notation. 

variables by GA and GB, but this was not done in order to simplify 

The expectation of the response xi11 forthei-th cluster, may be written as 

xi++pll = 'i++ + R N (P ll- 1) + b i++-i)(PTT- ')* (3.2) 

Each term on the right side of (3.2) has a specific interpretation in the response error 
lwerature. The first term, xi++, is the true value of the i-th unik the second term, 
R (pll-l),isthefixed bias component;ant?ethiterm, (Xi++- R)(pll- l),isthe 

variable bias component associated withthei-th unit. 

Thetotal variance of the estimator ill may be expressed by 

m 
M2 

m 

UX113 = VP+ 1 'i*P11) + Ep{T C ‘i++Pll (1-PTl)3 l (3.3) 

i 
m 

i 

The first term on the right side of (3.3)is called the sampling variance in the response 
error literature, and the second term is called the simple response variance . The 
response. error literature speaks of two additional variance components, the correlated 
component of response variance and the interaction between response and-sampling 
error, neither of which appear in (3.3). If we allow for a S-covariance between the 
coverage erronin different clusters (e.g.,in the case where an interviewer worksintwo 
or more clusters),then the total variance V{xll 3 would contain a term analogoustothe 
correlated component for the response error model. This would obviously require a 
modification to assumption (iii) regarding Type I independence. The interaction term 
would arise if the selected clusters somehow affect the multinomial capture distribution, 
so that alternative samples are associated with different distributions. This situation, 
however, would seem incompatible with the coverage error problem. 

3.3 Asymptotic Considerations 

In this section we discuss briefly some of the asymptotic issues concerning the 
estimator N First, we define the concept of a sequence of populations. Let {Ui) 
denote a se&nce of units, and let xi ++ denotethetrue value (unobservable) associated 
with the i-th unit. Let {U 3 denote a sequence of finite populations, with corresponding 
size {M 3, created fromathe sequence (u.3, where 0 < Ml < M 
That is, %lis composed of the first Ml element!! of (Ui 3 ,and so on. 

< M < . . . . 
#ate tiIat 



-. ~-I-. -;---Seelsakl?md.Put?ere982)for-some discussion-of-this-typeuf- 
l ** 

Let N, = c xi++ denote the true size of the a-th population, which is assumed 
unknown and to be estimated on the basis of model Mt. Letis,) denote a sequence of 
samples of corresponding size 
sampling design "sim ple 

{ma) created from the sequence of populations by the 
random sampling without replacement," 

where 0 < m < m < m < . . . and m < M for all a. Note that while the sequence 
of populatioXs is Zested, 
sampling fraction. 

the sequence8f sa#ples is not. Let f = mdMa denote the 
a 

? 

For each population Uain the sequence, we assume that two lists, A, and B,, of 
theindividualsin the population are createdin accordance with the model Mt. The same 
multinomial capture distribution is assumed for all populations in the sequence. By 
analogy with earlier notation, we have 

List B, 

forthe a-th population. 

List Aais the census list, and so ~l+~ is assumed to be observable. List l3.i~ the 
survey population, and so x+lais assumed unobservable but estimable on the basis of the 
observed sample scr 

Define the means 

A 
-1 

‘lla = ma 

ma 
M 

-1 
= ma 

lx. 
l+l a’ 

il+a=Ma-l Ia 'il+a' 
i i i 

and the model Mtestimator 

%a 
= M 

a 

i - 
l+a ‘+la 

A . 

‘11 a 
The estimatorhasthe following important properties: 

Theorem 3.3 We let model Mt hold and assume all of the other sequence conditions 
imposed in this section. In addition, we assume 

a 
(xiv) lim - M'J ; X3++ 

a+- i 

exists and is finite for g =l, 2, 2+6,for some 6>0; 

(xv) lim fa = f < 1; 
a- 
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and (xvi) (HaJeK-S (1960) COnClltlOn) 

C 
~EU,~ 

(‘I++ - R++a)2 

lim 

a* C (xi++-"++a)2 

= 0, 

~EU, 

where U,, is the subset of U, on which theinequality 

Ix. - l++- ‘++a 
1 > s{(1-fa)maS~31'2 

holds, T > 0. 

Then we have Jm 

+ (9, - Na) i N(0, E'&G $ 

where 
a -a 

P = (Pi19 Pii9 Pi1 Pi!)'9 

z 
++a = No(Ma , 

M 
a 

S2 
++a = tMaol I” C (‘i++ - ‘++,I 3 

and i 

0 

/ 
f aP1 +P2+z++a fapl+P+lP2+X++a 

\ 

P:l(' Of a)Sl+t p+l P+2i(++a 
2 2 

P1+P+l(l-fa)S++$ pl+p+lp+2x++a %= 
-a 

\ symmetric Pt+Ptl ('-fa)sLa+ pl+p+l (l-Pl+P+l)x++a - I 

/I 

Theorem 3.3 shows that,m is a consistent estimator of the true population size 
N and that the error (m 
di%ibuted. 

- f?g, normalized by Jm /M is asymptotically normally 
This result ts8gges& that normal-theory c%)nfidence intervals might be 

constructed for N, An open question in this context is whetherthelowerlimit of the 
the conadence interval should be forced to be larger than the observed sum 

X 

no &"thatWfi not a design It 
+x ? Although, R is a consistent estimator of N, under the model Mt, we 

co k &&tent estimator. 

3.4 Discussion 

In this section we raise some general issues about design-based versus model-based 
inference,and show how these issues pertain to the problem of coverage error. 

In classical survey sampling theory and practice,the sampling design generates the 
distribution of the statistics of interest. The prediction theory approach to finite 
population inference, however, treats the design as unimportant and the inference 
derives almost entirely from an assumed model. Regarding measures of uncertainty ,the 
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classical design approach -relies upon-the?%-mpllng va~an-eeafthe~tlm‘at~~er 
probability is created by the design. For the prediction theory approach,the design is of 
presampling interest only, and the measure of uncertainty is the model variance (or 5- 
variance) given the sample. 

7 
From Sections 3.1to 3.3itis clear that there are many possibilities for describing 

the uncertainty in the estimator $ . In what way do the aboveissues affect inferences 
about N? 

In sharp contrast to most problems of finite population inference, the design is 
uninformative regarding the estimation of N. The survey estimator N is neither design 
consistent nor unbiased. We regard the lack of consistency as mash damaging to the 
design-based alproach. Conversely, the estimator m is &consistent for N and its bias 
is of order m- . We are forced to conclude, therefbre, that the design variance is an 
inappropriate measure of the uncertainty in N as a predictor of N. This conclusion is 
entirely analogous to the conclusion reached b$ sampling statisticians regarding survey 
data that is contaminated by errors of measurement (or response). For the present 
problem, just as for the response error problem,the appropriate measure of uncertainty 
isthetotal variance,including both the sampling variance and the S-variance. 

Fortunately, the difference between adopting the model variance or the total 
variance as a measure of uncertainty is not important from a practical point of view. 
Either way, the estimator of variance and corresponding confidence intervals are 
identical. 

4. THE ADJUSTMENTPROBLEM I 

We now consider briefly the problem of estimating the true population size of a 
small geographic area (or other small domain) within the population U. Such an area is 
generally characterized by one of two problems: 1) eitherthereis no sample from List B 
in the area or 2) there is a sample but it is of small size. Either way there are 
difficulties in applying the estimation methodologies discussed in Sections 2 and 3 within 
the small area. In the first case the estimators are undefined, and in the second case 
there are problems with both high variance and bias due to the ratio form of the 
estimators. The general issue of estimating the true population size of small geographic 
areas is often called census adjustment. In this section we expose a clear connection 
between the methodology known as synthetic estimation and census adjustment under 
model Mth. 

Let D denote a particular area or domain of interest. We wish to estimate xp , 
the true population size of D . The only data available to usisthe census information, 
the surveyinformation,andthe results of matching the survey to the census. 

The natural estimator Of xD iS 

ii =I 
D /P 

LED 
'il+ il+ .e 

: where 'il+ = 1, if the i-th individual is in the census 

= 0, otherwise, 
, 

pil+ 
= probability that the i-th individual is 

listed in the census, 
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and the sum mation is over all-individualjin~.Thise~t;ti'matoi;is-S-unblased-fd~i~- 

variance 
pi2+ 

VE{iD} = 1 - . 
isD pil+ 

Unfortunately, the estimator is not workable in practice because the individual 
probabilities pil+ are unknown. 

A workable estimator is obtained by replacing the unknown capture probabilities by 
sample-based estimators, e.g., 

K =I 
D ieD 

'iI+' p"il+ ' (4.1) 

w-here p. 
4 

is an estimator of pil+ based upon the auailable data. Different estimators 

Pa&+ ard tailable depending upon which coverage error model is applicable ,and even 
WI in a given model there are alternatives. 

To illustrate these ideas we consider model Mt once again. For this model the 
reader will recall that pil+ = pl+ for all i = 1, . . . . 
estimator given complete enumeration of List B is 

N, and that the maximum likelihood i 

Pl+ Replacing xl1 

and x+1 by their p-unbiased estimators gives F = i /ii 

= X11/X+1’ 

in (4.1). The first-order Taylor series variancetzthen gib&n b;s' which may be employed 

where 

Q = (pit 9 XD N-‘pi: , -XD N”p’:+ P;:)@ 

and E denotes the covariance matrix of (iED Xi+l, -,, ill). All three components 
* 

of this vector are subject to model variability, and x 
sampling variability. A consistent estimator of the+bariance may be obtained by 

and xl1 are also subject to 

replacing both Q and g by sample based estimators. 

Alternatively, one may define the estimator p"1+ only in terms of survey data 
collected within area D,i.e., 

where XDlland XD+T 

p"l+ = "^Dll &)+I 

are design-unbiased estimators of c Xi11 and c Xi+19 . 
respectively. The disadvantage of this estimator is that i$%ay be based'u%n extremely 
,small sample sizes, thus leading to problems of large variance and ratio bias.The 
advantage is that when model Mt fails to some degree,this estimator may be subject to 
less specification bias than the estimator based upon the full sample from List B. _ 

A third version of the estimator rl+is 

A 
p”l+ = w ill/i+1 + (l-~)xDll/~D+ls 

where WC (OJ). One can attempt to deal with the tradeoff between variance and bias 



by varying the parameter 'W ;-'See--Dempster -and-lo mberlln -(1980)7or--discussion-af-! 
relatedissuesin a Bayesian framework. I 

! 
In U.S. applications of census adjustment, a version of model Mth is often thought 

to be appropriate, where model Mt holds within strata, such as by age, race, and sex. In 
this case a model Mt estimator is prepared within each stratum, and then aggregaLed 
across strata to estimate the total population size N. The adjusted census COUnt 

for this problem is of the form (4.1), where p. 
xD 

is a m ode1 Mt estimator (possibly one 
of the three discussed above) constructed forth7kitratum of which the i-th individual is a 
member. The reader will recognize the result as a synthetic estimator. 

5. DISCUSSION I 

In this article we have presented alternative models for coverage errorin censuses 
or sample surveys. For one of the mod.els, Mt, we developed in some detail a theory of 
inference for the unknown population size N. We showed that the estimators of N are 
subject to two sources of variability: 1) sampling variability and 2) model variability. 
The estimators were shown to be asymptotically normally distributed. Finally, we 
developed clear connections between the coverage error model and the usual survey 
response error model and between the ideas of synthetic estimation and census 
adjustment given the coverage error model. 

One of the models presented, Mt , 
?l 

specifies both a time effect and heterogeniety 
in the capture probabilities. This is t e model that has typically been applied in the 
historical studies of coverage error. The model Mttheory may be appliedtothis problem 
provided the population can be poststratifiedto eliminate the heterogeniety. I 

Throughout the article we have necessarily imposed some rather restrictive 
assumptions in order to facilitate the mathematical developments. The most important 
challenges for future research involve relaxing the assumptions to the point where the 
methods are useful in applied settings. Three of the main difficulties involve the 
matching assumption (iv), the spurious events assumption (v), and the nonresponse 
assumption (vi). None of these assumptions will obtain entirely in practice. Some 
progress has been made on (v) and the new methodsimplementedin a recentstudyinthe 
U.S. See Cowan and Bettin (1982). Also, we have recently expanded the coverage error 
models to accommodate a nonresponse mechanism and will report preliminary 
developmentsin a future paper. Matching error, however,remains a difficult,unresolved 
practical problem that can have significant effect on inferences about N. 

Finally, we are unaware of any previous work in the coverage error literature.that 
introduces the equivalent of a correlated component into the model. This would also 
seem an important area for further development. 
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SUMMARY 1 

I 
Alternative models are presented for representing coverage error in surveys and 

censuses of human populations. The models are related to the capture-recapture models 
used in wildlife applications and to the dual-system models employed in the vital events 
literature. Estimation methodologies are discussed for one of the coverage error 
models. The theoretical foundations of the methodology are developed and distinctions 
are made between two kinds of error: 1) sampling error and 2) error associated with the 
model. Clear connections are made between the coverage error model and models for 
measurement or response error. 

Finally, the problem of adjusting census and survey data for coverage error is 
discussed. A direct connection is exposed between the synthetic estimation methodology 
and the appropriate methodology given the coverage error model. Properties of the 
adjustments are discussed. 

On pr&ente des mod&es alternatifs pour reprgsenter les erreurs de 
couverture dans les enqugtes par sondage et dans le recensement des 
populations. Ces mod&es ont rapport aux mod&es de prise - reprise 
sont employ6s dans leur application aux animaux sauvages et aussi aux 

qui 

mod&es du systgme double collecte qui sont employ& dans les enregistre- 
ments de 1'6tat civil. On y discute les m6thodologies d'estimation pour 
un des modsles d'erreur de couverture. On d&eloppe les fondements 
thgoriques de la m6thodologie et on 6tabilit des distinctions entre deux 
types d'erreurs: 
avec le modble. 

l'erreur d'khantillonnage et l'erreur qui s'associe 
Des rapports 6vidents s'gtablissent entre le modzle 

d'erreur de couverture et les mod&es d'erreur empirique. 
- 

Enfin on discute le problzme d'ajuster les don&es 2 partir des 
recensements et des enquttes par sondage pour l'erreur de couverture. 
Un rapport direct est dtabli entre la m&hodologie d'estimation synth6tique 
et la m6thodologie approprige d'ajustement etant don.& le mod?le d'erreur 
de couverture. On y discute les caractkistiques des ajustements. 


