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COVERAGE ERROR MODELS FOR CENSUS AND SURVEY DATA

Kirk M, Wolter
U.S. Bureau of the Census

1. INTRODUCTION

The problem of coverage error in surveys and censuses has become an important
statistical issue, supported by the fact that the U.S. Bureau of the Census has been sued
in Federal court more than 50 times regarding the completeness of the 1980 census. The
main purpose of this article is to discuss certain aspects of coverage error and to provide
careful exposition of some alternative statistical models for such error,

Coverage error has been studied for several decades. In the U.S., coverage error
has been estimated for each of the past four decennial censuses of population and
housing, starting with the 1950 census. In Canada, coverage error has been estimated for
each of the past five quinquennial censuses, starting with the 1961 census. Other
countries such as Australia, Austria, Finland, and Korea have also produced estimates of
the coverage error associated with their population censuses. Despite the apparent vast
amount of research on coverage error, previous authors have not, to our knowledge,
presented explicit statistical models for such error, although models have been implicit
in all of the previous work.

The models we discuss are equivalent to the capture-recapture models employed in
estimating the size and density of wildlife populations, and to the dual-system models
employed in estimating the number of human vital events. They are also related to the
log-linear models employed in the analysis of discrete multivariate data. Capture-
recapture models originated in the 17th century, and the modern development dates from
Peterson (1896), Lincoln (1930), and Schnabel (1938). Excellent recent reviews are given
by Seber (1973) and Otis et al. (1978). The application to human vital events was initiated
by the pioneering work™ of Sekar and Deming (1949). Extensive recent discussion is
presented by Marks, Seltzer, and Krotki (1974). Bishop, Fienberg, and Holland (1975)
discuss the subject of log-linear models and their relation to the capture-recapture
problem.,

In Section 2 we present the basic coverage error model and discuss several
important special cases that are useful in estimating the level of error. The model
denoted M.y is the one employed implicitly in several of the previous coverage error
studies. The basic model is extended in Section 3 to include the sampling error associated
with a postenumeration survey. Statistical adjustments to census data designed to
compensate for coverage error are discussed briefly in Section 4. We expose a clear
connection between the basic coverage error model and the method of small domain
estimation known as synthetic estimation. The paper closes with a general summary in
Section 5, where we discuss future research possibilities as well as possibilities for
relaxing some of the assumptions imposed in earlier sections.

2. COVERAGE ERROR MODELS

We consider a given human population U, and let N denote the size of U. It is
assumed that N is fixed but unknown, and the main problem to be addressed is that of
estimating N. The reader will note that this problem differs fundamentally from that
‘treated in the traditional literature on survey sampling, where N is assumed known and
the.main problem is to estimate other parameters of the finite population U, )




- We assume that a census of U™ is ¢conducted at a particular pointin time, and that
the census, more or less, attempts to enumerate each and every individualin U. Let Gp
denote the general conditions present in and during the census enumeration. For a
variety of reasons some individuals are missed by the census, however, and the difference
between the census count and N is defined as the error of coverage. The census count
may be greater than the true N (an overcount), but usually the error mechanism is such
that the census count is less than the true N (an undercount).

One of the pernicious features of coverage error is that internal measures cannot
be computed from the census data itself, In order to produce measures of coverage error !
we assume additional information in the form of a sample survey of the same population .
U. The survey either preceeds (a preenumeration survey) or follows (a postenumeration
survey) the census, but in either case employs the same reference period as the census. !
For a variety of reasons, some individuals in U are missed by the survey procedures. We |
let Gg denote the general conditions present in and during the survey enum eration. '

In the remainder of this section we describe some basic coverage error models that |
treat jointly the census and sample survey processes. We discuss estimation of the true
population size N and make explicit the assumptions used. For notational convenience,
we shall refer to the census population as List A and the survey population as List B. For
now we shall assume that the survey is in fact a complete enumeration of List B, i.e., a
conceptal enumeration of U given general conditions Gg. In Section 3 we shall consider
the case where the survey involves observation of only a part of List B.

2.1 Mg: The General Model

The general coverage error model is set forth in the fbﬂowing paragraphs.

(i) (The Closure Assumption) We assume the population U is closed and of fixed
size N. In practice, this implies that the census' reference period is well defined and that
no recruitment (birth or im migration) or losses (death or emigration) occur during that
period.

: () (The Multinomial Assumption) Let £ denote the following multinomial
distribution:

List B
in out
ListA  dn 1 P11 | P12 Pi+
out I Piz1 Pi22 P2+
TP Piez 1

We assume that the joint event that the i-th individual is in List A or not and in List B or
"not is correctly modeled by the distribution E;e

i

i (i1i) (Type I Independence) We assume that List A and List B are created as a
‘result of N mutually independent multinomial events, utilizing distributions
L&y 52, sees Epe The resulting data are

!

i
i
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ST List™8
in out ,
List A in X11 X192 X1+
out X921 X922 Xo4
X41 X 42 X4e = N (2.1)

where x b, = . I Xyaps and X, is an indicator random variable signifying whether
or not th&%i-th individual is in ce (a,b), for a,b = 1,2, +. The census count x,, is -
considered observable. The cell counts xy1, X2, and xpq are considered observable on
the basis of the survey data and subsequen%: ma%ching tozt}'\e census. The cell count xp9,
and thus the size of the target population N, is considered unknown and to be estimated
on the basis of the model.

The reader will note that the census count x, is rggarded as a random-variable
under the model, with mean s = I Piys and variance oy, = I Pi1+Pi2+° |

(iv) (The Matching Assumption) We assume that it is possible to match correctly
the sample survey results to the census results. That is, we assume that it is possible to
make a determination, without error, of which individuals recorded in the sample survey
are present in the census, and which are not,

(v) (Spurious Events Assumption) We assume that both List A and List B are void
of spurious events, or that such are eliminated prior to estimation. This means that all
errors are avoided in recording both the census and survey results. In practice, important |
spurious events that do occur include a) duplicates on the census list, b) "curbstoned"
reports in either the census or sample survey, and c) out-of-scope cases, such as an |
individual born after the reference period, that are recorded erroneously in the census.

(vi) (The Nonreponse Assumption) There will necessarily be some degree of
nonresponse., We assume that sufficient identifying information is gathered about the
nonrespondents in both the census and the sample survey to permit exact matching from
the survey to the census.

(vii) (The Poststratification Assumption) As will become clear in the sequel, it is
often desirable to employ some poststratification in the estimation of N. For example,
one may wish to poststratify on age, producing age-specific population estimates, then
aggregating to give an estimate of the total population N. We assume that any variable
employed for poststratification is correctly recorded for all individuals in both the census
and the sample survey.

Readers familiar with the capture-recapture literature or the dual-system
literature will recognize many of these assumptions. For further discussion see Otis et
~al. (1978), Settzer and Adlakha (1974), and Cowan and Bettin (1982).

Unfortunately the model M, is grossly underidentified and further assumptions are

-needed to estimate the true popuTation size N. In Sections 2.2 to 2.6 we consider various

special cases of the general model, each identified through additional restrictions on the
multinomial process. The taxonomy of models is due to Pollock (1974).

2.2 Mg: The Equal Catchability Model

) In the equal catchability model, each individual in the population U has the same
-probability of capture (or_coverage).in both List A and B, and the two lists are generated

-



independently. The additional assumptions are

(viii) (Type II Independence) The event of being included in List A is independent
of the event of being included in List B. That is, the cross-product ratio satisfies
8 = PinPiz2/(Pi12Pip) = Tsfori=l ., N

(ix) The marginal probabilities of capture satisfy pj;; = pjyp = pfori=1,. No
The likelihood associated with this model is

X 2N=-x

N
Lo(Nap) = (Xll X12 x21)p (l'p) s

where x = 2x11 12+X21 Is the total number of captures in both lists. The sufficent
statistic’ for this problem  is (x1, x)s where xq = xj37 + X1p + X1 denotes the total
number of distinct captures, and the maximum Vkelihood estimators are

NO = [['T(x_-x]')']]’
and ﬁ = 2(x - x])/x » where [[.]] denotes the greatest integer function,

2.3 Mp: The Trap Response Model

One of the criticisms of the simple model Mg is that the assumption regarding Type
II independence may not obtain in surveys and censuses of human populations. The
concern is that both Lists A and B may tend to miss or capture the same individuals. In
the capture-recapture literature, this tendency is described as a behavioral response, and
individuals are said to be "trap happy" or "trap shy." That is the odds of capture in List B
(survey population) given capture in List A (census) are either greater or less than the
odds of capture in List B given noncapture in List A. This problem is thought to be more
serious in human populations than in wildlife populations,

One possibility for modeling this situation is to impose assumption (x) in place of

assumptions (viii) and (ix):

t

(x) The probability of first capture is the same for each individual in the
population. That is,

Pr{i-th individual is captured in List A} = ps1, = p

Pr{i-th individual is captured in List B|1’-th 1nd1’vidua1 1's not captured in List A}

21/Pi2

fori=1, «e, No. The probablhty of second capture 1; a1so the same for each individual in
‘the population. That is,

Pr{i-th individual is captured in List B|1-th individual is captured in List A}

= Pi11/Pj1+ = ¢ 1 =1

fori = 1, «ee, N. The cross-product ratio for this model is 8, = c(1-p)(1-c7 p
‘and 8> 1 (positive association between lists) whenever c > p and e,< 1 (negative

‘association between lists) whenever ¢ < p. Thus, the lists are positively associated
“whenever the odds of second capture are greater than the odds of first capture, and the

lists are negatively associated whenever the odds of second capture are less than the

‘odds of first capture. Implicit in this assumption is the condition that List B follows List
‘Aintime,
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The likelithood associated with this modelis

N Xy X Xq, =X
_ 1 711 1+ 711
Lb(Nsp,C) = (xll Xlz X21) p ¢ (l-C) (l'p)

The sufficient statistic for this problem is (x], X1+» X]1)» and the maximum likelihood
estimators are

ZN-X] -X] +

Xq =X 2 -1
2 171+
Nooo= [0 - )y 1
b 1 x]+ {
f; = (2x;,= X )x'] and  C = Xy x)
b 1+ 71/71+2 1171+

2.4 Mt: The Petersen Model

A second extension of the simple model My occurs when we assume time variation
in the capture probabilities. We assume (i) - (viii) and

(xi) The capture probabilities satisfy Pil+ = P1+ and piy) = P4 fori=1, .., N.
The likelihood associated with model My is

N X X N=-x N-x
- 1+ +1 1+ +1
Lt(N;p]+:p+]) = (Xn x]z xz]) p 1+ p +] (1'p]+) (1-p+]) . |
The sufficient statistic is now (xl, X145 x+1), and the maximum likelihood estimators are |
- Xq.X Xy, X f
1+7 41 1+741
N, = [[;——11 = [[ 13,
t S TR Rl N
- _ -1 - _ -1
Ply = (x1++ o X])X+1’ and p, = (x]++ o by x])xH.

The estimator N, has a long history, dating back several hundred years. In the
modern era it has beeﬁ called variously the Petersen estimator, the Schnabel estimator,

the Lincoln index, the Chandrasekar-Deming method, and the dual-system estimator.
‘2.5 Mp: The Heterogeneity Model

A third extension of the simple model occurs when the capture probabilities are
allowed to vary across individuals but not across time. We assume (i) - (viii) and

(xii) The capture probabilities satisfy py, = pj fori =1, .., N.

The likelihood for model My, is N x. 2-%.

i. i,
Lp(NsPyaPos eees Py) = X Py © (1-py) ,
where x; = 2xj11 + Xj12 + Xjp1 denotes the total number of times the i-th individual was

‘captured. It 15 clear that x; =0, 1, or 2 fori = 1, ..., N. It is also clear that this
likelihood is not useful for estimating the population size N.

‘ A possible procedure for estimating N is to divide the population U into L
poststrata, such that model Mg holds within each stratum. To estimate the size of the
total population we 1) estimate the size of each stratum utilizing a model M estimator,




and 2) aggregate over strata., “But Tor Somé populations, it” mdy not be possible to
formulate an appropriate poststratification scheme such that model Mg holds within
strata.

2.6 Mtps Mins Mphs Mipn: Combination Models

Numerous additional models may be specified by combining the features of the '
basic models My, My, My, and Mp. We shall discuss these models only briefly because !
they are not generabﬂy useful for the coverage error problem. In capture-recapture |
studies of wildlife populations, however, it is often possible to employ more than two
Tists (or captures) in the analysis, and some of the combination models are useful in such
applications.

Model My, combines time variation in the capture probabilities with a behavioral
response. The multinomial distribution for this model is specified by pjap = Pabs forab = -
1,2,+, and the distribution is assumed to be homogeneous across individuals 1 =1, ..., N.

The cross product ratio 8 = py;P /(p pZ]) indicates the nature of the behavioral
response, with 6 > 1 signifying '%rgs haaay and @ < 1 signifying "trap shy." The simple
model M arises in the special case of Type Il independence, i.e., 6 =1. !

Model My, has been used implicitly in most of the previous studies of coverage
error. We assume (i) - (viii) and ‘

(xiii) (Type III Independence) The marginal probabilities associated with Lists A
and B are uncorrelated across individuals in the sense that !

. - . |
o(ProPy) = N T (pyqy - PRy - Py) = 0

where by = N1z pyy, for (a,b) = (1,4), (+,1).

Given these assumptions, the Petersen statistic N, is a consistent estimator of N. In the
more general case where Type III Independence T’aﬂs, the estimator Nt is not consistent
and the leading term in the bias is given by

Bias {ﬂt} = - N o(p1+,P+] )/{c(p]+,p+1) + 5]+ﬁ+‘|} .

In applications involving human populations, o(p +,p+]) is thought to be positive,
implying a downward bias in the estimator of populatl.ion size.

Model Myp was first treated in the vital events literature by Sekar and Deming
(1949). They referred to the downward bias in N, as the "correlation bias" and
poststratification was suggested as a means of reducintg the bias. This terminology and
the concept of poststratification have since become standard features of the dual system
model in the vital events literature. As we have seen, however, "correlation bias" is
'somewhat of a misnomer because the bias arises from heterogeniety in the capture
probabilities across individuals, not from a behavioral response between Lists A and B.

Model My, combines a behavioral response with heterogeniety in the capture
probabilities. ~ Without imposing additional assumptions, this model is not useful for
estimating N.

, Finally, we have the model M, which allows variation in the capture probabilities
by time and individual, as well as a behavioral response. This is the same as the general
_model Mg_introd.uced_.in_SectjorLZJ._As_uas.statﬁdin_thaLsgcﬁQn,_t_h_js model is too _




general to be useful for estimating N,”which™is unfortunate, because it 1s probablythe—

m ost realistic model in the context of surveys and censuses of human populations.

In passing we remark that all of the models defined in this section may be extended
to include more than two lists, See Otis et al. (1978) for discussion of such possibilities.
For the vital events application and the coverage error application, however, there are
rarely more than two lists and, consequently, this article has concentrated specifically on
models for the two-list problem.

3. DETAILS OF MODEL My

In this section we develop fully one of the coverage error models introduced in

Section 2. We choose model My for this development because of its historical importance
both in the vital events hterature and in the previous studies of coverage error. The

development also applies to model My, provided that enough prior information is
available to poststratify the population to the point where model M¢ holds within strata.

3.1 The Sample Survey

In Section 2 model M. was discussed in terms of an application where List B was

enumerated entirely. This condition is not realistic in most coverage error studies, and

we shall now assume that a sample is selected from List B and that only the sample cases

are enumerated and matched to List A. We continue to assume that List A is

observable., We also continue to impose all other assumptions about M; described in
Section 2, including (i) - (viii) and (xi). Of the population quantities in ?21), only the
census total xy, is considered known. The survey population total x,; is now considered

unobservable, as are the totals xyj, X2, X1, but all are estimable based on the survey |

data. The quantities x5, and N are to be estimated on the basis of model M.

To concentrate on essentials, we consider a simple survey design. Let the survey

population (List B) be divided into M areal clusters and assume that a simple random
sample of size m is selected without replacement. Let the survey population be
enumerated entirely within the selected clusters. The ensuing development easily
extends to more complicated samphng designs, however, this s1mp1e design will serve
well for com municating the main ideas.

The reader will note that the list of clusters is assumed to be complete. Each |

member of U is assumed to belong to one and only one cluster and there are no members

“of the population U that are not covered by one of the M clusters. In both the census and

sample survey, however, not all true members of the selected clusters are enumerated.
Only members who are in List A and B, respectively, are enumerated.

We expand the notation utilized in Section 2 in order to accom modate the
clustering. Let

X{jab =1 Jf the j-th individual in the i-th cluster is
in the cell (a,b) of Table (2.1)
=0 , otherwise,

for a,b =1, 2, +. Then define

=

M
X = X = Xz
ab 12 iab ?-\]2 ijab




for a,b =1, 2, +. The reader will note that
0 Xj41 s the size of the i-th cluster for the survey population
0 Xjq41 is the size of the i-th cluster for the census population
0 Xji4 Is the true size of the i-th cluster,

For the selected clusters, the quantities Xi11s Xi21» and xj,p are observable on the

basis of the survey enumeration and subsequent matching to the ‘census population (List

A). xjop is clearly not observable. Also, we assume that xj12 and xjj,are not observable.

We shall Tet x s X 1° and §+ denote the usual design-unbiased estimators of
X171 » X215 @nd x4y, respectively. For example

~

X

3=

? ) L rf
X. = — X. -
11 i3 1311 mo; ill

We shall employ the design-unbiased estimator XB = J‘h U\ of xjp. If List A is :
st B then

mapped onto the selected clusters and matched to
of x5 is available. This situation is not assumed here, however.

From Section 2 we recall that the model My estimator of N is N XX 41 ].
This estimator is not available unless List B is enumerated complete]y ("e., J\ M).

a'lternatwe estimator

Replacing x4 and X11 by the correﬁpondmg design-unbiased estimators gives the sample-
based estimator K, Xy One of the main objectives of this section is to °

discuss the statwst*ca] propert@s o]f As we shall see, this estimator is subject to two
sources of variability: sampling vamabtihty and model variability.

To facilitate the discussion it is convenient to introduce additional notation. We
shall use Er and V; to ind1cate expectation and variance operators with respect to the

model My mstnbut1€on g E
respect to the sampling dgs1gn p, and E and V to denote total expectation and total
variance, respectively.

of Nt and N, . |
Theorem 3.1 The first- order approximate expectations and variances of ﬂtare |
given by
(i) Ep{Nt} = N, (iv) Vp{Nt} = 0
" » P2+P 42 " P2+P42
ii E N N 2 —_—
(1) B¢l * PraPay (V) Ve N PP
cas | "y P2+P+2 5 . P2+P+2
(iii)  E{N} = N+ =25 (vi) VIN} = No——e— . //
t P1+P41 t P14P iy

Theorem 3.2 The first-order approximation expectations and variances of N are
given by

and v to indicate expectation and variance operators with

i

Utilizing this notation we are able to obtain the following properties :

!




~ VDXl ColX,qaxqq)
(1) gl = E D + R (D B B
prt p 2 X X
where =} +1711
Vp{x1]]’ = ('f)s /m)

S Y -
Cp{x+],x]]} = M°(1-f)S +]’”/m,

f = m/M,
M
S$] = (M'1)-] Z (xi]]-x]1/M)2,
i

M
- =1
S+]’]] = (M-1) Z (xi+1- X+]/M) (Xi]]' X]]/M)’
Mm
R ; Xi+ Pos
(ii) EE{Nt} = Eg{Nt} + ( - -
2 T+ 41
Xi++
ess ~ . ~ ]_f p2+
E{N = E{N_} +
() { t} { t} ( f ) P1+P 4

o Vpad VUil Cplgaxg)

(iv) Vp{Nt} = v {N PN ( 7 + 7 -2 —
: +] 1 +1711
M-m
. . R 12 Xi++ Pos
V.{N} = V_IN N
(v) e, (N + N . ) b1
Z Xi++
(vi) vy = V{N } o+ N( fy 2+, /!
t Pl+P+1

In the statem ent of Theorem 3.2 note that we have expressed the expectations and
variances of N_ as equal to the analogous quantities for N, plus additional terms. The
additional terﬁis represent the statistical effects of employing a sample from List B,
rather than a complete enumeration.

It is possible to modify the estimators N and N to reduce or eliminate the bias,
though this is usually unnecessary when the sample s1zets are large. The only occasion in
“which an important difference may occur is when the population is poststratified deeply
(in order to cope with assumed heterogeneity) and estimates are to be prepared within

.Strata based upon_small sample sizes.



As regards estimation of variance, we suggest the following for ﬂt:

- A~ Xy, X, 1XqoX%
VIN} = Vg{Nt}= 1+7+1712721

3
ok
This is the estimator traditionally presented in the capture-recapture literature. See, :
e.g., Seber (1973). For Nt we suggest :

(1) VoiR} M2 (1-f)s2/m,

where m
sg = (m-])‘] ) d1.2,
.i A
p _ X1+ X14%4
T T Xi¢1 © - Xi1»
n 1
-~ ~ ~ ~ A 2 ~ ~
o o X% (K= X)) (pm x9) e XXX %)
. N S B
(ii1) VIN} = vg{fk}
or . " - -
A . Xy X1 (Xq.= Xq7) (X9 Xq7)
& _ ~ T+741Y 7147 2117V 741 7
ViR = vy + — » .

N

See Marks, Seltzer, and Krotki (1974) for some additional discussion of variance and
variance estimation in the context of vital events estimation. In estimating the &-
variance of Nt , we estimate the term

M-m m g
(1 xi++/ L X1‘++) l
i i \
by (1-f)/f. Thus, Qg{Nt} is a gp-consistent estimator of VE{Nt} in the sense that ’
-1y _ - -1/2 -1/2 i
M |vE{Nt} vE{Ni}l 0, (m ‘) * 0 (m™7%)

where the probabilities O, and 0, are created by the design and the model, |
respectively. Obviously, ﬁ{ﬁ }is éhe usual Taylor series estimator of the design
variance, and replication techn?ques offer alternatives, The estimator V{N_} is &p-
consistent for the total variance. The alternative estimator of the total variance is
obtained by exchanging the order of expectations in the derivation of VIR.} . It can be
}sh%wn that the difference between the two es?i/%ators of total variance, Yﬁorm alized by
M=!, differs from zero by terms of order Og(m" ).

3.2 Relationship to Measurement Error Models

We now develop a connection between coverage error models and the measurement
(or response) error model for survey data. The key to the connection is to regard the !

-

20



!

cluster as the survey reporting unit, rather than the individual or household.
We shall describe the connection in terms of the observations X{11s where similar

developments can be given for x;o1 and xj,1. We may write
311 T Xi+PT t & (3.1)

fori =1, ..., M, where e;; is an error with g-expectation 0 and g-variance xj,.,.p13(1-py1)-
Equation (3.1) is in the form of the response error model for survey data, See Hansen,
Hurwitz, and Bershad (1961) for a clear exposition of the model. In the coverage error
application, the cluster is treated as the reporting unit and the error arises from the
multinomial or &-distribution. This differs from the usual survey situation where the
individual is the reporting unit and the error is the result of an erroneous response., In
both the usual survey situation and the coverage error application, the observations and
their error distribution are assumed to be conditional on the general conditions in which
the survey or census is conducted. To signify this fact we might have explicitly
subscripted our variables by Gp and Gp, but this was not done in order to simplify
notation. ‘

The expectation of the response x;;; for the i-th cluster, may be written as
- N N
XipP11 = X g (P 1)+ Xy - ) (pyy- 1), (3.2)
Each term on the right side of (3.2) has a specific interpretation in the response error

m‘:erature. The first term, x4, is the true value of the i-th unif; the second term,

7 (P71-1), is the fixed bias component; and the third term, (x;, .- ) (P17~ 1), is the
variable bias component associated with the i-th unit,

The total variance of the estimator ;H may be expressed by

m m
2
~ _ M M ‘
Vixjpd = Vi ) x1.++p”}+Ep{..2.m I Xy P (0-p)3 - (3.3)
i i

The first term on the right side of (3.3) is called the sampling variance in the response
error literature, and the second term is called the simple response variance . The
response error literature speaks of two additional vamance components, the correlated
component of response variance and the interaction between response and sampling
error, neither of which appear in (3.3). If we allow for a g-covariance between the
coverage errors in different clusters (e.g., in the case where an interviewer works in two
or more clusters), then the total variance V{x;,1 would contain a term analogous to the
correlated component for the response error model. This would obviously require a
modification to assumption (iii) regarding Type I independence. The interaction term
would arise if the selected clusters somehow affect the multinomial capture distribution,
so that alternative samples are associated with different distributions, This situation,
however, would seem incompatible with the coverage error problem,

3.3 Asymptotic Considerations

. In this section we discuss briefly some of the asymptotic issues concerning the
“estimator N, . First, we define the concept of a sequence of populations. Let {uj}
denote a sequence of units, and let x;,, denote the true value (unobservable) associated
with the i-th unit, Let {U_} denote a sequence of finite populations, with corresponding
-size {M_ }, created from *the sequence {“1'}’ where 0 < M] <M, ¢M, < v
That is, UU] is composed of the first My elements of {u;} , and so on. Kote tRat

7/



U; U% C U3” Joe e See Isaki and Futler (1982) for-some discussion of thistype of
sequenc

Let N, = I xj44 denote the true size of the o-th population, which is assumed
unknown and to be estimated on the basis of model M{. Let{s,} denote a sequence of
samples of correspondmg size {m_} created from the sequence of populations by the
sampling des1gn simple  ® random sampling without replacement,"
where 0 < m < oo and m_< M_ for all a. Note that while the sequence
of popu]atwAs is esteo3 the sequence bf saffiples is not. Let f_ = mQ/M denote the
sampling fraction. @ * i

For each population U, in the sequence, we assume that two lists, A, and B, of
the individuals in the population are created in accordance with the model M{. The same
multinomial capture distribution is assumed for all populations in the sequence. By :
analogy with earlier notation, we have :

List B,

in out

List A, in Ma X12a N+a
out X2 X224 X2+q

*#la X+2a Xepq = Ng |

for the a-th population.

List A, is the census list, and so xj,, is assumed to be observable. List B, is the |
survey p0pu1at1on, and so X414 is assumed unobservable but estimable on the basis of the
observed sample s,

Define the means

- : ma - : m, : Ma
e = M L X100 Xie T L %4 Mea = Mo 1 X14q
: i i

and the model My estimator

~

N’t = M .ﬁ.fﬁ:.ﬂﬂ_ .
a a -

*Ma
“The estimator has the following important properties:

, Theorem 3.3 We let model My hold and assume all of the other sequence conditions
“imposed in this section. In addition, we assume

;e
(xiv) 112 ML x?_H
i

“exists and is finite for g =1, 2, 2+6, for some §>0;
(xv) 1lim \"‘m = f <1

Qrxe

=



and  (xvi) (Hajek'sT1960) condition)

= 2
iEU (x1'++ - x++a)
lim - =0,
are iZU (X§ 447X
a

where UaTis the subset of U, on which the inequality
2}1/2

|x1.++- x++a| > H{(1-f Jm S_

holds, t > 0.

Then we have /m

a ~ d
_ﬁ; (Nta- Na) >

N(O, P°lim 2z P),

a+o ~
where e
R TS B B P
E B (p“_, Pae Prs p+]) ?
Xeta = Nc/Ma ? M
a
2 - -1 = 2
Sera = (Mg-1) DO = RS
and i
fap]+p2+iHa 0 fcxp]+p+1p2+)-(++a
_ 2 2 - 2 2 -
Ea' P (1-F S0 PaPio¥ira PrePi (1=F )S04E PriP P ipXsug
symmetric P]2+PE] (1 -fa)sf—ﬂ;‘. P1+P1 (1 “P1+P 4 )§++a ;
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Theorem 3.3 shows that, N
N, and that the error (Nt - l‘f“}, normalized by vym _/M_, is asymptotically normally
diStributed. This result ‘Sigges¥s that normal-theor§ cBnfidence intervals might be
constructed for N, An open question in this context is whether the lower limit of the
the confidence interval should be forced to be larger than the observed sum
X1,.q.F X017 Although, N, = is a consistent estimator of N, under the model Mg, we
notE%hat ft & not a design cofiéistent estim ator.

3.4 Discussion

In this section we raise some general issues about design-based versus model-based
inference, and show how these issues pertain to the problem of coverage error,

In classical survey sampling theory and practice, the sampling design generates the
distribution of the statistics of interest. The prediction theory approach to finite
population inference, however, treats the design as unimportant and the inference
derives almost entirely from an assumed model. Regarding measures of uncertainty , the

is a consistent estimator of the true population size




classical design approach relies upon the sampling variance of the estimator, Where the |

probability is created by the design. For the prediction theory approach, the design is of
presamphng interest only, and the measure of uncertamty is the model variance (or &-
variance) given the sample,

From Sections 3.1 to 3.3 it is clear that there are many possibilities for describing
the uncertainty in the estimator Nt . In what way do the above issues affect inferences
about N?

In sharp contrast to most problems of finite population 1nference, the design is
uninform ative regarding the estimation of N. The survey estimator is neither design
consistent nor unbiased. We regard the lack of consistency as mos% damaging to the
design-based a;iproach. Conversely, the estimator N, is f-consistent for N and its bias
is of order m We are forced to conclude, therefdre, that the design variance is an
inappropriate measure of the uncertainty in N, as a pred1ctor of N. This conclusion is
entirely analogous to the conclusion reached bgl sampling statisticians regarding survey
data that is contaminated by errors of measurement (or response). For the present
problem, just as for the response error problem, the appropriate measure of uncertainty
is the total variance, including both the sampling variance and the g-variance.

Fortunately, the difference between adopting the model variance or the total
variance as a measure of uncertainty is not important from a practical point of view.
Either way, the estimator of variance and corresponding confidence intervals are
identical.

4, THE ADJUSTMENT PROBLEM

We now consider briefly the problem of estimating the true population size of a
-small geographic area (or other small domain) within the population U. Such an area is
generally characterized by one of two problems: 1) either there is no sample from List B
in the area or 2) there is a sample but it is of small size. Either way there are
difficulties in applying the estimation methodologies discussed in Sections 2 and 3 within
‘the small area. In the first case the estimators are undefined, and in the second case
there are problems with both high variance and bias due to the ratio form of the
estimators. The general issue of estimating the true population size of small geographic
areas is often called census adjustment. In this section we expose a clear connection
between the methodology known as synthetic estimation and census adjustment under
model Mth’

Let D denote a particular area or domain of interest. We wish to estimate xp ,
the true population size of D . The only data available to us is the census information,
the survey information, and the results of matching the survey to the census.

The natural estimator of xp is

Xn = ) X .
D ieD 1]+ 11+
" where Xi14 = 1, if the i-th individual is in the census

= 0, otherwise,

= probability that the i-th individual is
listed in the census,

e



and the sum mation is over all individuals in D, This éstimatoris g-unbiased Tor“)TD'Wifh“.
variance

~ P;
2+
Vel = 1 5=
€0 yep Pins

Unfortunately, the estimator is not workable in practice because the individual !
probabilities pjq4 are unknown. ?

A workable estimator is obtained by replacing the unknown capture probabilities by
sample-based estimators, e.q.,

Xo = L %o/ Biq, o (4.1)
D ieD il+ il+

where 51. , s an estimator of p;j;, based upon the available data. Different estimators
are ]avaﬂame depending upon which coverage error model is applicable , and even

Pii+ . .
wﬁ}nn a given model there are alternatives.

To llustrate these ideas we consider model M, once again. For this model the
reader will recall that py, = pj4 for all i = 1, ..., N, and that the maximum likelihood '
estimator given complete enumeration of List B is Pis = x11/x+1. Replacing xq1

~

and x, by their p-unbiased estimators gives P, = X;1/X ¢»
in (4.1). The first-order Taylor series variance }s then g1’Hén b

X D} = Q‘SZ Q ,

which may be employed

V{X

where

Q = (1} » xp Mgy -xp N, 0]y 5

and Q denotes the covariance matrix of (iED Xj41° £+1, ;11). All three components |

of this vector are subject to model variability, and x_, and X,q are also subject to
sampling variability, A consistent estimator of the bariance may be obtained by

replacing both Q and @ by sample based estimators.

A]ternétively, one may define the estimator [3'1+ only in terms of survey data |
collected within area D, i.e.,

A ) Pre = Xp11 /Xpa1
where xD”and Xp4p are design-unbiased estimators of & Xi11 and I Xie12

respectively. The disadvantage of this estimator is that it erPay bebased‘ue;Pon extremely

'small sample sizes, thus leading to problems of large variance and ratio bias.The
advantage is that when model M, fails to some degree, this estimator may be subject to
less specification bias than the estimator based upon the full sample from List B,

A third version of the estimator 51+ is -

Pre = @ Xqp/xyy + (T=0)xpyy /X,

where we (0,1). One can attempt to deal with the tradeoff between variance and bias
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by varying the parameter "w . "See Dempster “and Tomberlin (1980) for discussion ‘of"

related issues in a Bayesian framework.

In U.S. applications of census adjustment, a version of model Mth is often thought
to be appropriate, where model My holds within strata, such as by age, race, and sex. In
this case a model Mt estimator is prepared within each stratum, and then aggregated
across strata to estimate the total population size N. The acijusted census count X
for this problem is of the form (4.1), where ﬁ' is @ model M, estimator (possibly one
of the three discussed above) constructed for 1:he1 stratum of wh1ch the i-th individual is a
member., The reader will recognize the result as a synthetic estimator.

5. DISCUSSION

In this article we have presented alternative models for coverage error in censuses
or sample surveys. For one of the models, My, we developed in some detail a theory of
inference for the unknown population size N. We showed that the estimators of N are
subject to two sources of variability: 1) sampling variability and 2) model variability.
The estimators were shown to be asymptotically normally distributed. Finally, we
developed clear connections between the coverage error model and the usual survey
response error model and between the ideas of synthetic estimation and census
adjustment given the coverage error model.

One of the models presented, Mt specifies both a time effect and heterogem‘ety
in the capture probabilities, This is the model that has typically been applied in the
historical studies of coverage error. The model M. theory may be applied to this problem
provided the population can be poststratified to eliminate the heterogeniety.

Throughout the article we have necessarily imposed some rather restrictive
assumptions in order to facilitate the mathematical developments., The most important
challenges for future research involve relaxing the assumptions to the point where the
methods are useful in applied settings. Three of the main difficulties involve the
matching assumption (iv), the spurious events assumption (v), and the nonresponse
assumption (vi). None of these assumptions will obtain entirely in practice, Some
progress has been made on (v) and the new methods implemented in a recent study in the
‘U.S. See Cowan and Bettin (1982). Also, we have recently expanded the coverage error
models to accommodate a nonresponse mechanism and will report preliminary
‘developments in a future paper. Matching error, however, remains a difficult, unresolved
practical problem that can have significant effect on inferences about N.

Finally, we are unaware of any previous work in the coverage error literature that

introduces the equivalent of a correlated component into the model. This would also
seem an important area for further development.

l
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SUMMARY

Alternative models are presented for representing coverage error in surveys and
censuses of human populations. The models are related to the capture-recapture models
used in wildlife applications and to the dual-system models employed in the vital events

literature. Estimation methodologies are discussed for one of the coverage error .

models. The theoretical foundations of the methodology are developed and distinctions
are made between two kinds of error: 1) sampling error and 2) error associated with the

model. Clear connections are made between the coverage error model and models for

measurement or response error,

Finally, the problem of adjusting census and survey data for coverage error is 3

discussed. A direct connection is exposed between the synthetic estimation methodology

and the appropriate methodology given the coverage error model. Properties of the

adjustments are discussed.

Résumé

On présente des mod&les alternatifs pour représenter les erreurs de
couverture dans les enquétes par sondage et dans le recensement des
populations. Ces modéles ont rapport aux modéles de prise - reprise qui
sont employés dans leur application aux animaux sauvages et aussi aux
modéles du systéme double collecte qui sont employés dans les enregistre-
ments de 1'€tat civil. On y discute les méthodologies d'estimation pour
un des modéles d'erreur de couverture. On développe les fondements
théoriques de la méthodologie et on étabilit des distinctions entre deux
types d'erreurs: l'erreur d'echantlllonnage et l'erreur qui s'associe
avec le mod&le. Des rapports &vidents s'établissent entre le moddle
d'erreur de couverture et les moddles d'erreur empirique.

Enfin on discute le probléme d'ajuster les données & partir des
recensements et des enquétes par sondage pour l'erreur de couverture.
Un rapport direct est établi entre la methodologle d'estimation synthétique
et la méthodologie appropriée d'ajustement etant donné le modéle 4d'erreur
de couverture. On y discute les caractéristiques des ajustements.
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