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On Using a Different Time Series Forecasting 

Model for Each Forecast Lead 

David F. Findley 
U.S. Bureau of the Census, Washington, D.C. 20233 

It is a common practice to fit a single time series model for the 

purpose of forecasting an observed time series at several different 

leads. By examining autoregressive models, we demonstrate both theo- 

retically and empirically that there are situations in which better 

forecasts can be obtained by using a different model for each lead. 

KEYWORDS: Forecasting; Misspecified time series models. Autoregres- 

sions. 

1. INTRODUCTION 

This paper advances simple theoretical arguments in favor of 

selecting and estimating a different linear forecasting "model" for each 

prediction period (lead) m for which a forecast is desired. For these 

arguments, it is assumed that the series being forecast is covariance 

stationary and is not perfectly modeled by the one-period-ahead forecasting 

model which is fit to it. Two examples are given using well-known series . . 

which illustrate one possible implementation of a multi-model forecasting 

procedure for autoregressive forecasting. r 



2. CHOOSING AN OPTIMAL MODEL FOR M-PERIOD FORECASTING 

For ease of exposition our theoretical discussion will be confined to 

the situation in which a first order autoregression is to be used for pre- 

diction, although the results are valid more generally. To achieve further 

simplicity, we shall start with the (very large sample) situation in which 

the autocorrelation sequence pm of the observed covariance stationary 

series yt is known, and we assume that yt has mean zero. From the easily 

verified fact that yt+m - pmyt is uncorrelated with yt , it follows that, 

for any constant JI, the expected mean square of yt+m - wt satisfies 

ECYtm - wt12 = Wtm - pFRyt}2 + (JI- h)2Eyt (1). 

Thus, if 9 is to be chosen without constraint to minimize (l), we must - --- - -- 

* @Pm- 

If we assume that yt is an AR(l) process, i.e. 

Yt = wt-1 + et 

for all t, where Ee$ = ~g and et is uncorrelated with yt-I,yt-2,..., 

then m applications of this recursion formula yield 

yt+m - Ornyt = etm + *pet+,,1 + 0. l + 

m-l 
(P et+l (a, 
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from which the familiar facts follow that ~tn = $" and that $J = $m 

minimizes (1). Without this assumption, if we wish to "fit" an AR(l) proc- 

ess to yt for the purpose of m-step-ahead prediction, i.e. if we wish to 

choose 0 to minimize Ebt,,., - @myt}2, then it follows from (1) 

that I# must minimize ($m - P~)~, so that 

{PmPrn , if m is odd or +, > 0 
+ = 

0 , if m is even and pm < 0 . 
(3). 

Hence, if yt is not an AR(l) process, then different choices of 9, i.e. -- --- 

different AK(l) models, depending on the forecast period m, will be required -- -- 

to obtain optimal forecasts. - Also, if m is even and Q,, < 0, it follows 

from (3) that the optimal AR(l) model's forecast of yt+m from origin t will 

be inferior in the mean square sense to that obtained from minimizing the 

unconstrained expression Ebt+m - $yt}2. Thus it would seem to be 

advantageous not to constrain the forecast function to coincide with that of 

an AR(l) model. 

Finally, note that if an AR(l)-model is fit in the usual way, 

i.e., with + = ~1, then by setting J, = pT in (l), the loss in mean 

square accuracy which results from using this model to do m-period fore-* 

casting can be seen to be (p? - t)m)2Eyf. 



3. CHOOS ING AN OPTIMAL SINGLE MODEL FOR INCREASING HORIZON FORECASTS. 

It can be imagined that finding an optimal model is more difficult if 

the model's purpose is to provide forecasts not for a single period m but 

for an interval 1cmcM. This is easy to illustrate. To fit an AR(l) 

for this task, we could, for example, seek a value of $I minimizing 

E&t+1 - et I2 + 62E (S/t+2 - $2yt I2 + . l l + $,+ i..vt, - +�.yt I2 

(4)9 
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where 62,..., 6~ are non-negative weights chosen according to the relative 

importance of the different forecasts compared to the one-period forecast. 

It follows from (1) that (4) can be written as the sum of a term not depend- 

ing on +, plus Eyt times a non-negative polynomial F(g) of 

degree 2m in $, 

F($) = (pl - H2 + 62(~2 - $2)2 + . . . + q,.,(qt., - d4)2 . 

If Pm=+m9 lgil&l as happens when yt is an AR(l) process, the minimum of 

F($), is obtained at $= pI. Otherwise, to minimize (4), we shall need to examine 

the real zeros of f(4) = F'(4), a polynomial of degree 2M-1. When M=2, a mini- 

mizing 4 will satisfy 

$3 + {s;l - p+#z - !qPl = 0 
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and so will have an explicit formula, perhaps a not very informative one, 

except for special values of 62, such as 62 = (p2)-l, when 0 = {p2p1) li3. For 

M>2, the roots of f($) will have to be sought numerically, and the amount 

of effort required to minimize 9 is clearly greater than that involved 

in fitting models for each forecast period m=l,...,M using (3). 

4. OTHER LOSS FUNCTIONS FOR FORECASTING 

We now wish to examine two more approaches for obtaining an optimal 

linear predictor for a given forecast period m. First we consider the 

method utilized by Gersch and Kitagawa (1983), who suggest choosing $~to 

minimize an estimator of -2 times the expected gaussian log likelihood 

of yt+m conditioned on yt, yt-I,... . Their estimator can be approxi- 

mated by 

N-m 
log2nd + (N-m)" 1 c Yt+m - @t!72 

t=1 4 
(5)s 

with c$ = a2Wm(q), where W,(&) is scale-invariant. (For example, 

if J, is constrained to have the form J, = $m, i.e. if an AR(l) model is being fit, 

then, by (2), a natural choice is W,(4) = 1 + $2 + . . . + $2m-2.) 

Under ergodicity, the large sample limit of (5) is 

Bm(u2, $1 = log2lTu2W(jJ) + c~w(~)l+CYtm - Wt12* 
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From the critical point equation aBm(u2,+)/a% = 0, we obtain 

a2( ‘44 = (wm($) 1-l E (Yt+m - tit j2 . 

Substituting this expression into the formula for B(u2,$), one obtains that 

the optimal choice of $ minimizes log21rE(Ytn, - Qt}2 + 1 , and so is equal 

to Pm3 as before. 

The other theoretical approach we consider is one in which the 

coefficient (p is obtained by maximizing a log likelihood function 

L($,02,N) for the m-period prediction errors which has the correct 

> P recess: quadratic form for data from a gaussian AR(l 

-2(N-m)'lL($,02,N) = 

log2mf + a-'(N-m)-' 1 (y 
s,t=l lZiin 

- @myt Ws,tWd(ysm - 8'~~)~ 

where Ms,t(N-m) is the (s,t)-entry of the inverse of the covariance matrix of 

order N-m of the MA(m-1) process defined by the right hand side of (2) when <=l. 

It can be shown, using results of Ljung (1979), Galbraith and Galbraith C1974) 

and a calculation similar to that. given for the formula (2.15) of Findley (1983), 

that the estimates of Q obtained by maximizing L($,u2,N) tend almost surely, 

as N-->m, to p 
1' 

the large-sample limit for the case m=l. Said more elabor- 

ately, the almost sure limit is the value of #I minimizing 
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limN-->,-2(N-m)'lL($,02,N), which, with f(X) denoting the spectral density of 

yt ' is given by the function 

1 og2aa2 + a-2 Jr fW1 - $PeimAl2/11 + wi X 
-IT 

+ . . . + p-lei (m-l) XI 24 x 

= log2so2 + a-2 J" f(X)]1 - $eixj2dA 
-A 

= log2rg + .-2 E&+I - #Q}~ . 

Thus -2(N-r1)-~L(4 ,02,N) would not always be an appropriate loss 

function for m-period prediction. 

5. A CRITERION FOR SELECTING THE ORDER OF AN 

AUTOREGRESSION FOR m-PERIOD FORECASTING. 

To fit a p-term autoregression for m-period forecasting, one could 

choose the coefficients il ,...,i, which minimize the expression 

= Y-n (Yt+m - $1Yt - l l l - #pYt-p+l j2 9 

t'Pmax 

where pmax is some preass igned largest order. (Alternatively, one cou 

minimize the estimator of Gersch and Kitagawa (1982).) 

Id 
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If we (i) set NC = N - pmax - m + 1, (ii) define 

m-AICb) = No~~g2~ISSQm(~l,...,~p)/No~ + ~~ + 2(p+i), 

(iii) choose pmax = pmax(N) in such a way that pmax (N)--> 0~ and that 

N-112 
pmaxiN) -->O as N--M, and (iv) select i so that 

m-AIC(i) = minl<pGpmax(N) m-AIC(p), 

then, according to Shibata (1980), an asymptotically optimally efficient 

autoregressive m-period predictor will result, provided, among other assump- 

tions, that xt is stationary and is not an autoregressive process. 

However, Findley (1983) shows that the penalty term 2(p+l) in m-AIC(p) 

cannot be considered a full bias correction when m ) 2. In fact, the analy- 

sis given in this reference shows that the asymptotic mean of m-AIC(p) 

depends in a complicated way on m and on the underlying processes, and sug- 

gests that the problem of selecting the length of an autoregression for 

m-period forecasting becomes more delicate with increasing m. 

It seems very likely that Shibata's results can be extended to the case 

of nonstationary series admitting moving average transformations (e.g., dif- . . 

ferencing) to stationarity, see Tsay and Tiao (1982). We apply the three- 

step procedure of this section to such a nonstationary series in the 

following section. 



6. EXAMPLES: FORECASTS OF SERIES C AND E. 

The minimum m-AIC procedure decribed above was used to select models 

for forecasting Series C (226 chemical process temperature readings) and 

Series E (annual Wolfer sunspot numbers, 1770-1869) from Box and Jenkins 

(1976) at prediction periods 1, 2, 5 and 10 for an interval of con- 

secutive forecast origins Norigin, Nmin G Norigin G Nmax. Using 

pmax(Norigin) = lNi:Bgin 1, where [ ] indicates integer part, 

different autoregressions were fit for each value of Norigin using the data 

segment lSyt<Norigin, for each forecasting period m. The m-period 

forecasts from the m-period-forecasting autoregressions were compared with 

the m-period forecasts obtained in the usual way by assuming that the one- 

period forecasting autoregression correctly models the series, see 

Box and Jenkins (1976). The forecast origins were chosen in such a way 

that actual observations yt were available to compare with the forecasts. 

A forecast error statistic was calculated for each forecast period 

m=2,5,10, 

N 
RMSQ = { Imax 

N origin =N 
(YN 

min 
origin+n - ! ~j(N,rigin)YN,rigin-j+1)2}1'2 

j=l l 

. . 

for each m-period-forecasting autoregression, along with an analogous statis- 

tics for the forecasts obtained from the one-period-forecasting models. 

For each forecast period m = 2, 5, 10 the ratios of the values of RMSQ for 

the two different forecasting procedures are tabulated below, using the 
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value obtained for the usual forecasts from the one-period-forecasting auto- 

regressive model as the numerator and the value from the m-period forecasting 

autoregression as ,the denominator. 

The results indicate that a modest average improvement is often 

obtained by using the m-period-forecasting autoregressions. Also, depend- 

on the series, individual forecasts can differ markedly from those obtained 

from the one-period forecast autoregressive model, see Tables 2 and 4. 

This suggests that it can be worthwhile to calculate forecasts from both pro- 

cedures in order to obtain two somewhat independently conceived forecasts. The 

fitting of these m-period forecasting autoregressions can also yield addi- 

tional information about forecast error variances: It is shown in 

Findley (1983) that SSQ($l,*e.,$)/(Norigin - pmax) is a downwardly 

biased estimate of the forecast error variance. (The bias is of order 

(N-p,,,)-'.) When this quantity is observed to be larger than 4, as 

happens 10 of 11 times with Series E for m = 5,10, see Table 5, it can be 

taken as an indication that 0: might be underestimating the actual forecast 

error variance, which would be a sign of model inadequacy. 

Table 1. RMSQ Ratios for Series C, 150 < Norigin G 200. 

m= 2 5 10 . 

RMSQ 1.001 1.036 1.043 
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Table 2. Average Absolute Difference (AAD) between Forecasts from the Two 

Methods, and Average Absolute Percent Difference (AAPD) as a 

Percentage of the Observed Value (the Correct Forecast), for 

Series C, 150 < Norigin G 200. 

m= 2 5 10 

AAD .009 .036 .090 

AAPD 0.0% 0.0% 0.0% 

Table 3. RMSQ Ratios for Series E, 80 G Norigin < 90. 

m = 2 5 10 

RMSQ .994 1.026 1.106 

Table 4. Average Absolute Difference (AAD) between Forecasts from the 

Two Methods, and Average Absolute Percent Difference (AAPD) 

as a Percentage of the Observed Value (the Correct Forecast), 

for Series E, 80 G Norigin < 90. 

m= 2 5 10 

AAD 

AAPD 

1.19 2.42 3.89 l 

6.8% _. 12.4% 10.0% 
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Table 5. Average Values of um and (SSQm)li2 for Series E 

over the Interval 80 < Norigin < 90. 

m= 2 5 10 

Avg. am 23.3 31.6 32.0 

Avg. (SSQ)lj2 22.9 32.5 33.1 

The Series C and E represent two different extremes in the sense that 

Series C seems well-modeled as an AR(2) (t was always 2), whereas the 

sunspot number series is known to be difficult to model (p" ranged from 

2 to 8 depending mainly on the value of m). Over the course of years, more 

elaborate models have been proposed for the sunspot series, see 

Woodward and Gray (1978). However, our example serves to illustrate the 

situation when a series is modeled for the first time. 

7. CONCLUDING REMARKS 

We have demonstrated theoretically that the widespread practice of using 

a single model for the purpose of forecasting several different future values 

of a series is not an optimal procedure when the data do not perfectly 

conform to the type of model being fit. A simple procedure for selecting 

m-period forecasting autoregressions was introduced and applied to two 

series which have traditionally been modeled as autoregressive processes. 

Compared with a naive model for Series E, this produced a modest forecast 

improvement at the longer leads. Another reason, described above, for 
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augmenting the usual forecasting procedure with this new procedure is the 

gain in information obtained about the forecast variability and the fit of 

the model. 

For series which seem well-modeled by ARMA(p,q) models with q+D it 

would be appropriate to seek rational predicting functions Q(B)/e(B) 

rather than simple autoregressions. Another issue of potential importance is 

deciding when certain coefficients in the predicting formulas should be set 

equal to zero. Ploberger (1982) describes an estimator of the variance- 

covariance matrix of ;I ,...,z, which is consistent even in cases in 

which the series is not an autoregressive or ARMA process, but this estimator 

does not appear to have been implemented yet. 
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