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USING THE KALMAN SMOOTHER TO ADJUST 

FOR MOVING TRADING DAY 

Brian C. Monsell 
Bureau of the Census 
U.S. Department of Commerce 
Washington, D.C. 20233 

ABSTRACT: A procedure which uti lizes the Kalman filter and smoother to adjust 

monthly time series for a moving trading day effect is examined. Simulated 

time series are used to compare this procedure to one which assumes a constant 

trading day effect. The Kalman procedure is shown to adjust these simulated 

series very well, and gives substantially better adjustments than a constant 

trading day procedure when a moving trading day effect is present in the data. 

I. Introduction 

Bell and Hill mer (1983) define trading day variation as "the variation in 

a monthly time seri es that is due to the changing number of times each day of 

the week occurs in a month." This variation is of interest to analysts in the 

seasonal adjustment of economic time series, and much work has been done in the 

identification and removal of trading day variation. Young (1965) described 

how the CENSUS X-11 program removed trading day effects. Cleveland and 

Devlin (1982) discusses new methods of identifying and removing trading day ef- 

fects from monthly time seri es, using spectral analysis, power transformations 

and robust regression. Bell and Hillmer (1983) discuss the fitting of trading 

day components in ARIMA models. 

However, all of these papers assume that the trading day effect is constant 

throughout the series, i.e., the same relationship between the different days of 
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the week exists for each monthly observation. This paper will use a trading 

day procedure which utilizes the Kalman filter and Kalman smoother to track 

a changing trading day effect. Gersch and Kitagawa (1982) have already used 

these methods to model time series with trends and seasonals. The Kalman 

filter procedure will be tested on simulated monthly time series and will be 

compared to a trading day adjustment procedure which assumes a constant 

trading day effect. 

II. Description of Data Generation 

Since this is a first look at this procedure, we examined a simple 

situation: data with no trend or seasonal components, just a trading day 

component and an irregular term. We generated seven series in this manner: 

two with constant trading day effects and five with moving trading day ef- 

fects. These series were ten years long, all simulating the period between 

January 1970 and December 1979. The series were constructed as follows: 

W) = TD(t) + e(t) 

where Y(t) is the value of the series at month t, TD(t) is the trading day 

component at month t, and e(t) is an error term, normally distributed with 

mean zero and nonzero variance. 

The trading day component was generated as follows: let 



d(t) = number of days in month t 

dl(t) = number of Mondays in month t 

d2(t) = number of Tuesdays in month t 

d7(t) = number of Sundays in month t. 

Then, for i = 1,...,6, let 

Hi(t) = di(t) - d7(t) 
, for each month t. 

d(t) 

We then use as our trading day component 

where ai are our trading day coefficients which define the relationship 

between the days of the week. The reason why we define our trading day com- 

ponent in this way stems from another representation of the trading day 

component, 

TD(t) = 5 di(t)Pj, 
7 

ii1 
where 1 pi = 0. 

d(t) i=l 
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6 
NOW TD(t) = iClai(t)Hi(t) 

= 

= “c +) 
i=l 

If we let Q(t) = -i;lCZi(t), Pi(t) = ai for i = 1,...,6 , 
= 

we see that the two representations are equivalent. We use the first because 

it has better computational qualities. 

Table 1 lists all of the series along with information on the nature 

of the trading day component and the variance of the irregular. 

III. The Kalman Filter and Smoother 

The Kalman filter and smoother are instrumental in getting estimates 

for the trading day coefficients defined in section II. In this section, 

we will set up the Kalman filter equations used to extract the trading day 

coefficients and define the Kalman smoother used to obtain the final estimates. 

In general, the Kalman state equation can be defined as 

X(t)=F(t-l)X(t-1) + G(t-l)U(t-1) 

where X(t) = state vector at time t 

F(t) = state transition matrix at time t 

G(t) = input matrix at time t 

U(t) = state innovation at time t 
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In this case, X(t) = (al(t), a?(t), . . . , ol6(t) ), or our 

trading day coefficients at time t. We now need to decide the structure 

for our state equation. For the purposes of this study, we used a first 

difference model, or 

w = X(t-1) + U(t-1). 

This means F(t) = 16x6, or the 6x6 identity matrix. G(t) is also 

set equal to the 6x6 identity matrix. 

Now, let us do the same for the Kalman measurement equation. Let 

Y(t) = H(t)X(t) + V(t) 

where Y(t) = observation at time t 

H(t) = output matrix at time t 

w = state vector at time t 

v(t) = observation innovation at time t. 

Here, H(t) = (Hi(t), Hz(t), . . . , Yg(t)), with Hi(t) defined as in 

section II. 

Since U(t) is assumed normally distributed with mean zero and variance- 

covariance matrix Q and V(t) is assumed distributed normal with mean zero 

and variance R, we must decide on values for Q and R. We will hold Q and R 

constant over time. Here, we will introduce a hyperparameter, h. This h 
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will represent the ratio between the variance of the state equation versus 

the variance of the measurement equation. We will set Q = h16x6 and R=l. 

It can be shown through application of the Kalman filter equations that 

if PO (our initial estimate of the variance of the state vector), Q(t) and 

R(t) (remember, Q and R are time invariant) are multiplied by a scale factor, 

say ro, then Kt, the Kalman gain matrix at time t, is unchanged andat 

/\ 
and Pt(-), the updated and projected estimates of the covariance matrix of 

the state conditioned on the observations at time t, are altered by 

A A 
roPt(+) and roPt(-), respectively. If PO is large enough, say infinite, 

or close to it, r,PO will not be much different in its effect from PO. So, 

we can find r. such that r,R = 1 and r,Q = 116x6. Since our values for 

the Kalman gain matrix is unchanged, we will get the same updated estimates 

for the state matrix. 

The Kalman filter was run for different values of A, and the ad- 

justment for each of these values were compared and evaluated. More will 

be discussed on this matter later in the paper. 

In setting up PO andQ0, we have already mentioned that PO should be 

set at a very high value, or in this case PO = lo5 16x6. We do this to 

reflect our uncertainty in how our estimate of the signal will behave in the 

adjustment process. In view of the results, this seems to be an appropriate 

A 
method for choosing PO. As for X0, the initial state estimate, we used a 

A 
regression model to derive estimates for X0. We fit the model 



Y(t) = BlHl(t) + B2H2(t) + . . . + BgHg(t) + e(t) 

on the first thirty-six data points. We had another option: use the actual 

value for the trading day coefficients used in generating the first observa- 

tion. Since this information is available to us, we used both the estimated 

A 
and true values of X0 and compared the results. It was found the adjustment 

A 
using the regression estimated X0 differed negligibly from the adjustment 

using the true value ofQo. 

A program utilizing IMSL subroutines was then used to perform the 

signal extraction for the model shown earlier. After getting updated ver- 

sions of the state estimates for each time t, these estimates were then 

smoothed using the Kalman smoothing algorithm provided by Ansley and 

Kohn (1982). 

The Kalman smoothed estimate 

/\ 
X(tln) for time t, is given by 

A 
X(t(n) =?t(+) + At X(t+lln) r 

A 
where At = qtt+)Fi+l Pt+l(-)-' 

for the state vector, denoted as 

-/;it+l(-)) 

since Ft = I in this case. 



Earlier in the paper we showed if PQ, Q and R are multiplied by a 
A A 

scale factor r. the values calculated for Pt,(+) and Pt(-) are changed to 

ro?t(+) and ro?t(-). Say we have an ro such that r,R=l, r,Q= IGx6, 

and PO is large enough such that r,RQ will not be much different in its 

effect on the process from Pg. How does this affect At? Let 

Pi(+) = roqt(+) and Pi(-) = ro?,(-). The value of At for a Kalman 

filter with values PO, Q, and R is 

A A 
At = Pt (+&PttlW1. 

The value for At for a Kalman filter with values r,PO, r,Q and r,R is 

A; = P;(+)F;tlP;tl(-)-l 

= ro~t(t)F:tl(ro~ttl(-))-l 

rpt(+)-T 
Ftt1 ?t (+)Fi+l 

A 
= roPt+l C-1 

=- 
$tl t-1 

= At. 

So our value for At is unchanged by multiplying PQ, Q and R by a scale 

factor; therefore, our smoothed values are going to be the same. 

A A 
So, for this example, we first set X(120(120) = X120(+), then work back- 

wards, using the equations above recursively. 

After the state estimates are smoothed, they are used to calculate an 

estimate of the trading day component. We set 
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n 
TD(t) = H(t)?(t[n). 

We then get our trading day adjusted series, Y(t), by 

A 
Y(t) = Y(t) - G(t). 

IV. Constant Trading Day Adjustment 

A constant trading day adjustment method was used on these series as 

well. The regression equation 

Y(t) = BlHl(t) + BzHz(t) + . . . + B&j(t) + e(t) (t = 1,...,120) 

was used to get trading day coefficients Bl,...,Bg. These coefficients were 

used to get an estimate for the trading day component 

A 
TD(t) = iPIBiHi (t) 3 

and the trading day adjusted series is 

A 
w = Y(t) - 

A 
TD(t), as above. 

While this is a crude procedure, it is analogous to the trading day 

procedure found in CENSUS X-11 and other seasonal adjustment packages. This 
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method will be referred to as the constant adjustment method for the re- 

mainder of this paper. 

V. Methods of Analysis 

For each of the seven data sets listed on Table 1, the Kalman 

adjustment method described in section III was run for 11 different values 

of h, based on powers of four (i.e., h = 4i, i = -5,...,5). It was hoped 

that a procedure utilizing the maximum likelihood function would help in 

finding an appropriate h; however, for all the series examined the estimate 

of the log likelihood function increased monotonically as h increased. In 

a variable trading day situation, h > 1 means the trading day coefficients 

are likely to be noisier than the irregular, so we would like h c 1. Since 

the log likelihood procedure prefers values significantly greater than 1, 

it is clear we need to look at another method for finding an appropriate h. 

Since these series are simulated, we know the true value of the trading 

day adjusted series. This is e(t), the irregular generated in section II. 

We can then compare this value with Y(t), the adjusted value of Y(t) obtained 

by the Kalman filter for some h. By doing this, not only can we compare the 

performance of the Kalman adjustment method for different values of h, but 

for different values of?0 and other adjustment methods as well. 

We will define two statistics to measure this property. Let 
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120 
i&Mi) - %H2 

120 
and 

120 
EMAD = 1 (e(i) -/s(i)) 

i=l 120 * 

The standard deviation from the true value (EMSQ) and the absolute deviation 

from the true value (EMAD) will be used to compare different trading day 

adjustment methods for each series. A method or setting with the smallest 

EMSQ or EMAD will be judged to be the best. 

Another way of examining the adequacy of these methods is graphs. We 

provide four graphs for each of the seven series. One plots the Kalman ad- 
A 

justed value of Y(t) and the true irregular e(t) over time. Here, we get a 

visual picture of how good the Kalman adjustment method is adjusting the 

series. The constant adjusted value of?(t) was plotted against the Kalman 

A 
Y(t) and e(t), both over time. These graphs give dramatic evidence for the 

use of the Kalman filter. Also, a plot of Y(t) and the Kalman?(t) is done 

versus time. 

VI. Analysis and Conclusions 

Table 2 contains a summary of the EMSQ and EMAD statistics for both the 

constant adjustment method and for the Kalman adjustment method performed for 

an optimal value of X, meaning the value of h which gives the lowest EMSQ 

statistic. We can see from this table that the difference between the Kalman 
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adjustment method performed with the true value of X0 and the adjustment per- 

formed with a regression estimate of X0 is negligible for all seven series. 

This is very encouraging, for it shows that the adjustment will not be affect- 

A 
ed by the value of X0 as long as it is reasonable. Therefore, graphs of the 

adjustment performed with the estimated X0 are omitted from this paper as 

they are, for all intents and purposes, precisely the same as those using the 

true value of?O. Table 3 contains the true and estimated X0 for all seven 

series. 

For our first two series, SIMAlAl and SIM2AlA1, we have trading day 

coefficients which remain constant throughout the length of the series. The 

optimal value of h in both of these series is 0.000977. This is reassuring, 

for since there is no variation in the trading day coefficients, Q must equal 

zero. We would expect the constant adjustment method would work well here, 

and it does. It is also encouraging to note that the Kalman adjustment 

method does just as well as the constant adjustment method for h very small. 

Note, too, how the variance of the irregular effects the value of our EMSQ 

and EMAD statistics; the series with the smaller variance has lower EMSQ and 

EMAD values. 

Series SIMAlOl is a series in which the trading day components change 

radically over the course of the series. We can see a wide disparity in the 

two methods, with the constant adjustment method doing considerably worse than 

the Kalman adjustment method. It does particularly poorly at the beginning and 

the end of the series, a pattern we will see in other series. 
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Series SIMA202 and SIMA303 are similar in that the same general pattern 

is maintained throughout, but the amplitude of the trading day component 

changes, increasing for SIMA202, decreasing for SIMA303. This is readily 

apparent from examining the graphs of the two series. The same pattern emerges 

here as in SIMAlOl: the constant adjustment method is much less accurate than 

the Kalman adjustment method, and the graphs for the constant method for both 

series shows the constant adjustment method does poorly at the beginning and 

end of the two series. 

In series SIMA404 and SIMA505, an attempt was made to simulate more 

complicated situations. In SIMA404, the trading day coefficients maintain 

the same basic pattern, but the amplitude of the trading day effect changes, 

at first decreasing, then increasing, as shown by the graph of the series. 

Here, Kalman adjustment again outperforms constant adjustment, but the constant 

adjustment method is now performing poorly over the whole series, not in 

specific sections of it as before. 

Finally, SIMA505 contains a level shift in the trading day component, 

i.e., the coefficients are constant for a period of time, then change 

gradually until reaching a certain point in time, then remaining constant 

from this point on to the end of the series. By examining the graphs for 

this series, we can see the Kalman adjustment method does not perform as well 

here as it did in the past. However, it convincingly outperforms constant 

adjustment. Again, as in SIMA404, the constant adjustment performs poorly 

over the entire series. 
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VII. Areas for Further Studv 

I have shown in this paper that Kalman filtering and smoothing are 

effective in removing trading day variation generated by moving trading day, 

and shown there is a severe penalty paid by the analyst for assuming such 

series have constant coefficients. Much more work is needed. Some possible 

areas for further study are listed below: 

1) Work must be done to see how these methods perform on series where 

trend and seasonality are present. This would include working with simulated 

and real data. 

2) A criterion must be established for selecting h that is reliable, 

for we will not be able to rely on EMSQ and EMAD statistics when working 

with real series. 

3) This routine should be expanded to include holiday effects, not 

discussed in this paper. 

4) Some work must be done on identifying moving trading day variation. 

This is a minor consideration as long as the Kalman adjustment method con- 

tinues to do well on constant trading day effects. 

5) Different models can be used in the state equation. This study 

concentrated on the first difference model, or 

X(t) = X(t-1) + e(t). 
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Some experimentation should be tried to see if there are some other types of 

models for this situation; for example, a second difference model of 

X(t) = 2X(t-l)-X(t-2) + e(t) 

could be tried for some series. 

FOOTNOTE: The author has written preliminary software to perform the Kalman 

filter and smoother routines described in this paper. They involve the use 

of IMSL matrix multiplication and inversion subroutines. Interested parties 

are urged to contact the author for further information. 
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TABLE 1: DESCRIPTION OF SERIES 

SIMAlAl : Constant TD coefficient (l,l,l,l,l,-2.5) 
V(et) = 0.02 

SIM2AlAl: Constant TD coefficient (l,l,l,l,l,-2.5) 
V(et) = 0.005 

SIMAlOl : TD coefficients change gradually from (l,l,l,l,l,-2.5) 
to (-2,-2,-2,1,2,2) 
V(et) = 0.02 

SIMA202 : TD coefficients change gradually from (0.5,0.5,0.5,0.5,0.5, 
-1.25) to (l,l,l,l,l,-2.5) 
V(et) = 0.005 

SIMA303 : TD coefficients change gradually from (-2,-2,-2,1,2,2) 
to (-l,-l,-1,0.5,1,1) 
V(et) = 0.0075 

SIMA404 : TD coefficients change gradually from (-2,-2,-2,1,2,2) 
to (-l,-l,-1,0.5,1,1) between observation 1 and 60; 
TD coefficients change gradually from (-l,-l,-1,0.5,1,1) 
to (-2,-2,-2,1,2,2) between observations 61 and 120 
V(et) = 0.0075 

SIMA505 : TD coefficient constant (l,l,l,l,l,-2.5) for 
observations 1 to 36; TD coefficients gradually change 
from (l,l,l,l,l,-2.5) to (1.5,1.5,1.5,1.5,-2,-2)for 
observations 37 to 84; TD coefficients constant 
(1.5,1.5,1.5,1.5,-2,-2) for observations 85 to 120. 
V(et) = 0.0075 



TABLE 2 : SUMWRY OF EMSQ AND EM4D 

Series 

SIMAlAl 
II 
II 

SIM2AlAl 
II 
II 

SIMAlOl 
II 
II 

SIMA202 
II 
II 

SIMA303 
II 
II 

SIMA404 
II 
II 

SIMA505 
II 
1, 

TD Adjustment EMSQ EMAD 

Constant 0.023454 0.017907 
TX, h = 0.000977 0.023474 0.017895 
EX, h = 0.000977 0.023476 0.017897 

Constant 0.011727 0.008954 
TX, h = 0.000977 0.011737 0.008948 
EX, h = 0.000977 0.011738 0.008949 

Constant 0.176282 0.133321 
TX, h = 1.0 0.054572 0.041833 
EX, h = 1.0 0.054575 0.041835 

Constant 0.048305 0.038974 
TX, A = 0.25 0.026314 0.020281 
EX, h = 0.25 0.026315 0.020282 

Constant 0.057447 0.043426 
TX, h = 1.0 0.023662 0.018423 
EX, h = 1.0 0.023664 0.018425 

Constant 0.057823 0.043932 
TX, h = 1.0 0.026595 0.020426 
EX, h = 1.0 0.026597 0.020428 

Constant 0.079120 0.067264 
TX, h = 1.0 0.030006 0.023369 
EX, h = 1.0 0.030007 0.023370 

Note: TX = true value of Q 0 used to initialize Kalman filter 

A 
EX = regression estimate of X0 used to initialize Kalman filter 

h = optimal value of A for each series 



A 
TABLE 3 : TRUE AND ESTIM4TED X4 

SIMAlAl True+0 - (l,l,l,l,l,-2.5) 

Est.+0 - (0.851155, 0.697567, 1.442001, 0.595883, 
0.156201,-1.405065) 

SIM2AlAl True90 - (l,l,l,l,l,-2.5) 

Est.+0 - (0.925577, 0.848782, 1.220999, 0.797943, 
0.578101,-1.952532) 

SIMAlOl True90 - (l,l,l,l,l,-2.5) 

Est.40 - (0.343387, 0.244778, 1.122321, 0.374926, 
0.349021,-0.705228) 

SIMA202 True '?O - (0.5,0.5,0.5,0.5,0.5,-1.25) 

Est.90 - (0.666052, 0.472127, 0.544350, 0.783871, 
0.413662,-1.804310) 

SIMA303 True90 - (-2,-2,-2,1,2,2) 

Est.?0 - (-1.767749, -2.370435, -1.378529, 0.887023, 
1.696764, 1.747226) 

SIMA404 True90 - (-2,-2,-2,1,2,2) 

Est.qO - (-1.609216, -2.209012, -1.278722, 0.894362, 
1.500150, 1.632996) 

SIMA505 True90 - (l,l,l,l,l,-2.5) 

Est.?0 - (1.076364, 0.470828, 1.523333, 0.879800, 
0.890105, -2.640447) 
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