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PREFACE 

The ASA Fellowship presented a unique opportunity for the author to work on - 

the topic "Data Analysis of Time Series." This report is an attempt to summarize 

the author's work on the ASA Special Project for Time Series methods development 

at the Bureau of the Census. 

This report consists of four main parts. The first two deal with Seasonal 

Adjustment and Forecasting quantitative series, based mainly on nonmetric fil- 

ters. Analysis and Prediction by various types of examples, mainly economic 

data, are presented as well as a brief description of X-11 and a comparison of 

our approach to X-11. The third part deals mainly with analysis and forecasting 

qualitatives series. In the final part, we deal mainly with graphical methods 

in order to study relationships among a given set of empirical series. 

I would like to thank Louis Guttman, Ingram Olkin and Arnold Zellner for 

their outstanding comments and for encouraging me before and during my fellow- 

ship period. My gratitude is extended to Estella B. Dagum, Charles Tapiero, 

George Tiao and Joe Kruskal for their help and suggestions, Thanks must also 

go to T.W. Anderson, David Brilinger, W.P. Cleveland, W.S. Cleveland, Morris 

Hamburger, Joseph Kadene, Charles Nelson, and John Tukey for fruitful discus- 

sions and helpful comments. 

Let me take this opportunity to comment on the special atmosphere which 

allows me to work with the talented people in the Statistical Research Division 

(SRD) at the Bureau. My friends and co-workers in the Division and within the ASA 

Special Projects Group deserve special recognition for their continued interest 

and support. Special thanks go to David Findley of SRD for his kindness, for 

sharing comments and ideas, and for offering methodological help; and to Ted 

Holden for his outstanding pragramming help. I would like to thank Bill Bell, 

Will Gersch, John Irvine, Genshiro Kitagawa, Sandy MacKenzie, Nash Monsour, and 

Kirk Wolter. Finally, my deepest thanks and appreciation to Lillian Wilson for 

her efforts to improve my English, and for typing this report. It was a real 

pleasure to be helped by Mrs. Wilson during my ten months with SRD. 
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INTRODUCTION 

This report deals with data analysis of empirical series. The main concept 

in such data analysis is the concept of order among the observations. An im- 

portant special case of these series are the Time Series in which the order is 

determined by Time. Indeed, most of the examples included in this work are 

(economic) Time Series, but not exclusively. We are concerned with relation- 

ships between the values of the observations and their order, namely, the behav- 

ior of observations over time. 

Our point of view is, briefly, that Data Analysis requires a loss function 

to be minimized (or a measure for goodness-of-fit to be maximized). The loss 

function is based on definitions that are related to the research problem. 

Actually, we measure the amount of deviation of empirical data from a priori 

definitions. 

Our point of view is that analysis of empirical series is a special case 

of the general problem of dividing the space of indices of observations into in- 

tervals. For time series the division is into both equal and unequal intervals. 

Equal intervals are needed for estimating fixed seasonal patterns. Unequal in- 

tervals are needed for the trend, moving seasonality, etc. 

Three main goals achieved in analyzing economic time series are: 

(a) Decomposing into components while knowing the periods length. 

(b) Seasonal adjustment of current data, and 

(c) Forecasting. 

The question of model identification and estimation may (or may not) be in- 

volved in the above three topics, In order to do (a) and (b), the well-known 

X-11 program as well as X-ll-ARIMA were developed. The latter was developed es- 

pecially for goal (b). The X-11 procedure, see Shiskin, Young and Musgrave 

(1967) represents the culmination of a major phase of continuing research in 

the area of seasonal adjustment. Today, the X-11 program is also the most widely 
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used for economic time-series. 

Four main parts comprise this report: The first two parts deal essentially 

with seasonal ad*iustment and forecasting quantitatives series, mostly based on 

economic data. The third part deals with analysis and prediction of qualitative 

time series. In the last part, interrelationships among various components of 

Time Series are treated and used for graphical methods. 

We will only consider discrete time series with observations yt made at 

times t=l ,...,N, where N, the length of the series, is the total number of ob- 

servations made. In Figure 1, a typical Time Series study is exhibited. Our 

goals are mainly two-fold: (a) Study the structure of a given empirical series, 

and (b) Prediction for some range ahead. 

Hence, for the first N data points, our goal is to reveal their structure while 

Prediction is the main goal for the next k points of time, presuming that the 

structure remains the same. 

Figure 1: A typical Time Series Study: Structure Analysis of the first 
N data point and prediction the next k points over time. 

In order to study the structure of a Quantitative Series, a Nonmetric approach 

is suggested in part 1. Analysis by examples of various types of series are 

given as well. The proposed method is designed to compose an empirical time 

series into its main three components: trend, periodicity and irregularity. 

Filters are used in two stages: 
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(a) remove either fixed or moving seasonality in order to produce seasonally ad- 
justed data (S.A.D); 

(b) Remove irregularity from S.A.D. in order to estimate it as well as the trend. 

Both seasonality and irregularity could be either purely multiplicative or pure- 

ly additive fashion. Seasonality could also be a kind of a mixed model. The 

filters are nonmetric since the loss function has no specific formula but a very 

general shape called polytonicity (or monotonicity as a special Case). The 

method search for the smallest number of tones (monotone segments) possible for 

trend, or in other words, minimize the number of turning points. Thus it is 

called - Least Polytone Trend Analysis (LPTA). 

A computer program has been developed which enables analysis of arbitrary 

series, either by a prespecified length of period or by estimating the period's 

length if not known in advance. Robustness of the nonmetric approach enables 

analysis of very short series, series with missing values, and other series with 

limitations that cannot be easily handled otherwise. 

In Chapters 5 and 6 the LPTA method is extended to deal with complex season- 

ality as well as convex (concave) series. To conclude part 1, in chapter 8 some 

theoretical and empirical results for economic time-series obtained by this ap- 

proach are compared with those from the X-11 program. A brief description of 

X-11 and some notes are given in chapter 7. 

In order to deal with prediction, two approaches are suggested in part 2, 

chapters 10 and 11. In chapter 12 a way to improve X-11 is discussed. Examples 

are given throughout the report; specific series are presented in Chapter 3(a)- 

(e), 4(a), (b) and in chapter 9. 

For Qualitative series the main two goals of revealing the structure and do- 

ing forecast is presented in part 3. Various methods to compete with a multivar- 

iate time series in a special way is discussed in part 4. In Figure 2, charts 

of various types of series that are analyzed in this report are presented. 
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Figure 2: Charts of various types of series which are analyzed in this report. 
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The report ends in a chapter for conclusions. A family of coefficients of mono- 

tonicity and polytonicity is presented in some detail in Appendix A. A special 

case of this family is used very intensively in this report. Some of the origin- 

al series we used are given in appendix B. The estimation of trading days ef- 

fects and their appropriate adjustment would hopefully be extended in further 

research in the future. 



PART 1 
6 

DECOMPOSITION OF QUANTATIVE SERIES 

2. SEASONAL ADJUSTMENT OF QUANTITATIVE SERIES. 

This chapter presents a nonmetric technique for periodic analysis of numer- 

ical empirical series, such as seasonal time-series. Illustrations will be given 

for the decomposition of economic time series into (polytone) trend, fixed 

seasonality, and irregular components. 

Existing techniques for analyzing periodic time series tackle separately 

the problems of estimating the period-length (for example, by spectral tech- 

niques) and of decomposing the series into trend, periodicity, and irregular 

components. The decomposition is often carried out by first employing one of 

the moving averages techniques (filters) to estimate the trend, and then fitting 

a function (trigonometric, polynomial 0 r any other) to estimate periodic compo- 

nents. For a comprehensive survey of data analytic techniques for time-series, 

see Makridakis (1976). Recent development in Seasonal Adjustment is given in 

Pierce (1980). Discussions of specific methods are contained in Burman (1965), 

B,L.S. (1966), Shiskin et.al. (1967), Durbin and Murphy (1975), Cleveland, et 

al. (1978), Raveh (1981), Akaike (1981), and others. Fase et al. (1973) and 

Kuiper (1978) made an instructive comparison of several decomposition methods. 

We propose here an alternative technique which is not based on either mov- 

ing-averages nor on regression, as are most other approaches. Data knalysis 

techniques usually require a figure of merit, namely criterion of fit be maxi- 

mized (or loss function to be minimized), and a set of definitions, in order to 

measure the goodness-of-fit or the amount of deviations from 'ideal' prespeci- 

fied series. Following the above point of view, let Yt denote the value of a 

quantitative time series at time t. One way for presenting a decomposition of 

a mixed model of Yt into its components is given in eq. (2.1) below: 

(2.1) Yt = Tt l It *St + st + it t=l,...,N 
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where Tt denotes the underlying trend at time t. St and st are the multiplica- 

tive 

tive 

mode 1 

tive 

and additive seasonal components, respectively. It and it are multiplica- 

and additive irregular components, respectively. The purely multiplicative 

is obtained by using the constraints st = it = 0 for all t. A purely addi- 

model is obtained by using the constraints St = It = 1 for all t. 

In trying to decompose empirical time-series, one is faced with the problem 

of estimating at least some 2-n parameters (for the simplest model) from 'just' 

n given numerical observations. Thus, some constraints are required in order to 

reduce the arbitrariness i n the estimation process. 

Obviously, there are infinite ways to express a given series by eq. (2.1). 

First, we limit oursevles to a simpler model of eq. (2.2). 

(2.2) Yt = Tt * It l St + st t=l,...,N 

= 
Zt l St + St 

where Zt = Tt * It is the periodicity-free series which is known in literature 

as Seasonally Adjusted Data (S.A.D.). The coefficients St, st present the 

seasonality pattern. These coefficients could be constants or any systematic 

function of time depending on whether the seasonality is fixed or of a moving 

fashion, respectively. The trend Tt is a polytone series of order m. 

Most authors estimate the trend using moving-average filters. After elim- 

ination of the trend from the original data, the seasonal component is fitted by 

various approaches. B.L.S. (1966) and Shiskin et.al. (1967) computed moving- 

averages (within months for monthly series), while Durbin and Murphy (1975) fit- 

ted the seasonal component by means of a stepwise regression method applied 

to additive and multiplicative Fourier components. 

In this report, definitions for the periodicity (seasonality) and trend 

components will be given simultaneously for an 'ideal' ser ies (e.g. series with- 

out irregular components). For empirical series including irregular components, 

we estimate in the first stage the seasonal components; in the second (and final 
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stage, we estimate the trend and the irregular components simultaneously. 

SOME DEFINITIONS AND NOTATIONS 

A numerical time-series is a sequence of numerical observations [Yt] over 

some real interval a 5 t Lb. Such a sequence is called periodic if the interval 

(a,b) can be partitioned into sub-intervals of equal length, called periods, so 

that there may be a change in the general level of the Yt between periods but no 

change in the pattern of observations within periods. The term periodic pattern 

will be used loosely to designate, for a given or an assumed period length, a 

periodically recurring shape (if such exists) of the piecewise linear graph con- 

necting successive points (t, Yt). 

Let us restrict ourselves to the discrete case where t assumes a finite 

number of equally spaced values and write t=l ,...,N, instead of a < t < b. - - 

A series [Yt] is polytone of order m if there are (m-l) turning points so 

that the series [Yt] is monotone between successive turning points, the sign of 

the monotonicity on one side of a turning point being reverse of that on the 

opposite side of that point. The series [ltl], t= -N, -N+l,...,-l,O,l,...,N, 

for example, is a series of polytone order m=2 with 2N + 1 elements. The single 

turning point is located at the (N+l)th observations. 

A series [Yt] is piecewise monotone of order m if there are m segments of 

indexes within which [Yt] is monotone with the same direction (either positive 

or negative). For example, the series t - [t] , t=l/N, Z/N,...,i/N,.,.,1,...,3 

(where [t] is the greatest integer which is less or equal to the quotient) is a 

piecewise monotone of order m=3 with 3-N observations. Clearly, if m=l the 

polytone series is a monotone one. 

In Figure 2.1 below, two kinds of positive monotone series, a polytone ser- 

ies (of order m=2 > and a piece-wise monotone series are plotted. 
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Figure 2.1: (a) and (b) are two types of monotone series; (c) is a polytone ser- 
ies of order m=2. (d) is a piece-wise monotone series. 

(4 (b) (4 Id) 

To express [Yt] in periodic terms, it will be useful to replace the obser- 

vation index t by an index of the form i + pa, where p is the proposed period 

length, i is the position of the observation within a period, and a is the per- 

iod index in the sequence of periods, with the first indexed 0, the second 1, 

etc. We denote the number of complete periods by n, so that a = O,l,...,n-1. 

Given this notation, a sequence [Yt] (t=l ,...,N) can be written as [Yi+pa] 

(i=l ,...,p; a=O,l,...,n-1). 

The series [Z. i+pa] given in eq. (2.3) is said to be linear periodic trans- 

formations of [Yt]: 

(2.3) Zi+pa = (Yi+pa - S{a))/S(a) (i=l,...,p; a=O,l,...,n-1) 

where the transformation coefficients (4 s, and S{') represent multiplicative 

and additive periodic coefficients, respectively. When Si") # 1 and sia) f 0, 

Equation (2.3) represents a mixed multiplicative-additive seasonality model. 

Equation (2.3) can be written in a different way: 

(2.4) Yi+pa = Zi+pa 0 S{a) + +) 

which is similar to eq. (2.2) above and to Durbin and Murphy's model, except for 

the irregular component. 

For fixed seasonality, the linear transformations are periodic in the 

strong sense, namely they depend on the period length p and on the observation 

position i but not on the particular period a. In other words, S\") = 

Sl(a-1) and s{a) = sl(a-1) for all a=l,...,n-1. Hence, for this case let us 



sense. In other words, they depend on the observation position i and on a speci- 

fic function of (time) period a. Hence, S{") = f{a)Sl(a-l) for a=l, Z,...,n-1. 

Fixed seasonality is a special case of moving seasonality when f,'") : 1 for 

all i=l ,...,p and a=O,l,...,n-1. 

If [Yt] is not a Polytone (Monotone) series, it might be poss ible that a 

per iod length p and coefficients Sia) and sia) can be found for which the 

transformed series [Zt] is a polytone or nearly polytone. Then, sue :h [Zt] can 

be regarded as an underlying (Periodicity-free) polytone trend Tt or as seasonal- 

ly adjusted data namely "trend and error" respectively. The p pairs of coeffici- 

ents Si"), sia) d f' e lne the periodic pattern of observations i.e., the season- 

al components. 
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use the notation of Si and si, respectively. Transformations such as (3) enable 

us to remove the variation in data caused by periodic effects. If the trend is 

monotone and the variation is proportional to it, then a multiplicative model 

might be appropriate. An additive model might be adequate when variation is in- 

dependent on the trend level. For a constant level trend there is little differ- 

ence between the above two models. Mixed models of course can capture much more 

complicated variations in data caused by periodic events. Models of fixed but 

mixed seasonality can also capture variations which look like moving seasonality 

where either multiplicative or additive models are adopted. 

For moving seasonality, the linear transformations are periodic in a weak 

In empirical time series an irregular component usually exists, thus, the 

transformed series, namely, the seasonally adjusted data [Zt] is a "trend and 

error" curve which means that it is only approximately Polytone. In a second 

stage, a decomposition of [Zt] into trend and irregularity components is ob- 

tained. In order to deal with empirical deviations from ideal polytonicity a 

family of coefficients which designate to measure polytone association is used. 

(see Raveh, lg82b). Some background on a family of Monotonicity and Polytonicity 
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coefficients is given in Appendix A. Specifically, to assess the extent to which 

any series, say [Yt] is polytone (of order m), the formula below is used: 

m Ilc 

(2.5) pm = Kil i>j 
c” (Yi-Yj)wi j&k 

m IK 
c C IYi-YjlWij 
K=l i>j 

where the original series iS partitioned into m consecutive sub-series IK, K=l, 

. . ..m and 6K = (-l)K-1 within IK. The *inner summation is over all (i,j)EIK, 

such that i>j. The outer summation is over all m sub-series IK, such that K=l, 

. . . . m. The weights wij are non-negative numbers linked to each pair of observa- 

tions i and j. Obviously, -1 5 um < 1, and lpml = 1 only if the series is per- 

fectly polytone, whether of positive or negative slope interchangeably. 

The coefficient of Polytonicity for transformed series [Zt], t=l,...,N is 

given in eq. (2.6) and denoted by pip). It is a function of the 2p coefficients 

St* st as well as the original series. The lower index m indicates the order of 

Polytonicity, while the upper index p indicates the period length. For the rest 

of this report, unless otherwise indicated, wij I constant and the formula will 

be simpler. For example, 

(2.6) JmP) = 

IK 
c (zi-zj)sk 

K=l i>j 
m I 
c CK IZi-Zjl 

K=l i>j 

A series [Yt] is said to be a fixed periodically and polytone series if 

there exists a series of linear periodic transformations (2.3) in the strong 

sense which transforms [Yt] into a polytone series [Zt]. In practice, a perfect 

transformation will not be insisted upon (depending on the irregular component). 

Instead, only a "sufficiently large" value for the figure of merit I+$p)I will 

be sought. In data analysis a critical value for goodness-of-fit does not exist 

as in the case of principal component analysis, as well as for the goodness-of- 
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fit in Multidimensional Scaling methods such as Kruskal's stress or Guttman's 

coefficient of alienation. The researcher should have some feelings to the cri- 

teria of fit values as well as to the data. A similar unsolved problem is how 

to choose appropriate a level, for Statistical inference purposes. We have to 

keep it in mind whenever the expressions "close" or "close enough" are used. 

LEAST POLYTONE TREND ANALYSIS (LPTA): WHAT IT Is, WHAT DOES IT DO? 

The order of polytonicity of the unobserved trend [Yt] should be assessed. 

This is done by estimating the smallest order of polytonicity, m (m=l,Z,...) of 

the original data. We keep in mind the parsimony principle, namely minimum 

turning points* for high fitness, and thus the procedure's name, "Least Polytone 

Trend Analysis." Second, if lvml departs substantially from 1, say /pm1 < .95, 

such departure may be assumed to originate from periodic fluctuations (the sea- 

sonal components, modifying the polytonicity of the trend) or by an irregular 

component, or both. In such cases we search for a series of linear periodic 

transformations with a suitable period length p and coefficients sp, sp) 

(i=l ,...,p) and function f(a) that converting the original series [Yt] into an 

approximately polytone series [Zt] in an optimal manner. That is, bringing 

(P) I+.,, I as close to 1 (the theoretical maximum) as possible. The closer Max 

Idp)I is to 1, the closer the series [Y,] is to being periodically and Poly- 

tone. This does not imply that the deseasonalized series should have as few 

turning points as possible. The criterion of fit (2.7), which is based on (2.6), 

might be 'close enough' to 1 while there may be relatively many turning points, 

each having small deviations from an 'ideal' basic polytone series. A minimum 

number of turning points is required at the step of estimating the trend 

component. 

* Both turning points and outliers are inconsistent with previous, recent observa- 
tions. The difference between them is that turning points are consistent with 
later observations while outliers are not. 
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The maximization of 11~kp)l as a function of the 2p variables (S,...,Sp) 

= sp, (Sl,...,Sp) = Ip in the general mixed model (or only p variables in the 

simple purely multiplicative or purely additive model) for fixed seasonality, 

may be achieved by known Quasi-Newton or Powell, or Zangwill algorithms, see 

Zangwill (1967). These algorithms require an initial guess for the 2p unknown 

variables and by a successive procedure converge to optimal values. As an ini- 

tial guess, the coefficients 3 = 1, 3 = 0, have been used, presumably the 

neutral assumption of no seasonal effects. For the usual 'case where 1~~1 < 1 

(recall that IV, (1)' = IIJ,~), the measure tip) is defined as the improvement 

in terms of Polytonicity gained by the transformations, 

(2.7) Mhp) = 
Maxlu,$p)I-lui')l 

1 - h$‘l 

Clearly, 0 5 tip) 5 1. Furthermore, Mm (P) = 1 if and only if the series [Y,] 

is perfectly (without irregularities) periodically Polytone of order m where 

[Zt] is the polytone trend and &,* s are periodicity multiplicative and additive 

components, respectively. 4P) = 0 if and only if there is no periodic compo- 

nent, namely the series is of "trend and error" type. 

When $p) is 'close enough' to 1, Zt is 'only' periodicity-free series, 

i.e., S.A.D., and 3, rp are the periodicity components. In the next stage, the 

trend Tt would be estimated simultaneously with the It. When MAP) is 'close' 

to zero it means that no periodicity component (at least with period's length p) 

exists and this component is negligible in further analysis. When the period 

length of a series is not known in advance, a previous step is to estimate it. 

it. This is done by selecting the smallest period length which yields a peak 

value "sufficiently close" to 1 for the series tip); p=2,3..., (see chapter 

34 l 
The order of polytonicity is estimated as the minimal suitable parameter 

m. Assuming a polytone trend, the seasonal effects (the 2p coefficients) are 

estimated simultaneously with the periodicity-free series [Zt] and finally the 
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trend component (Tt) is estimated simultaneously with the irregularity compo- 

nent (It). 

So far we have discussed the problem of estimating both the period's length 

and the seasonal components for a decomposition model. The [Zt] series is a per- 

iodicity-free series representing the "trend and error". In order to separate 

the S.A.D. into two parts, trend and irregularities, trend Tt is estimated as the 

closest polytone (monotone) series to the S.A.D. In other words, the required Tt 

t=1 ,..,,N for multiplicative irregulars are those numbers that minimize (2.8a) 

subject to the constraint of polytonicity. For example, TfiT3<...LTN for the 

positive monotonicity case. I(T) mirrored the irregular magnitude. For purely 

additive irregular component eq.(2.8b) is used. 

N 
(2.8a) I(T) = 1 C 'Zt/Tt - l'p 

N t=1 usually p=l 

N 
(2.8b) I(T) = 1 C 'Z, - Ttlp 

N t=1 
where 

(2.9a) It = Zt/Tt 
t=l N ,***, 

(2.9b) it = zt -Tt 

are the multiplicative and additive irregularity components, respectively. The 

initial guess to the iterative process to minimize (2.8a) or (2.8b) for the trend 

is computed by ordering the S.A.D., separately in each tone of the trend compo- 

nent. The sorting is in ascending or descending order depending on the tone di- 

rection. Thus, the first guess of the trend component is just the S.A.D. ordered 

in a polytone shape. Likewise, their sum is equal by definition. Since the ini- 

tial guess is so close to the final estimation, we use it (in this report) a': a 

trend. In order that the trend as well as the irregular components would be 

unique the N numbers It are forced to be "around" 1 (or 0) by using the constraint 
N 

1 C It=1 and 
N 

N t=1 
C it=0 for multiplicative and additive models, respectively. 

t=1 
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There are three main options to proceeding with the trend estimations. 

These options are designated various degrees of smoothness. The three options 

are: 

1) Smooth the trend by symmetric moving-average of length 4 with the weights 

l/4(1,2,1). The first and last observation are forecasted based on formula (7.6). 

2) Minimized the sum of squares, below, for given X2 > 1 

(2.10) i (Zi - Ti)2 + A2 iF (A2Ti)2 
i=l i=3 

(A) (B) 

based on experience X 4 lo3 is chosen. Recall, Zi the input are the seasonally 

adjusted data. This minimization is a trade-off between (A) the sum of the re- 

siduals and (B) the amount of distance of the trend from being local linear. As 

X increase, smoother trend is obtained as well as increment in the sum of resid- 

uals (A) (smooth is in terms of local linearity). 

3) Do option 2 where zi are the estimated trend which are obtained in 

option 1. 

Briefly, the proposed approach has the following four steps: 

1. Estimate the period's length p if not known in advance. 

2. Estimate the order m of Polytonicity of the trend. 

3. Estimate the seasonal components S+, sp by maximizing ldp)l. 

4. Estimate the trend [Tt] and the irregular component It 

simultaneously by minimizing I(T), 

The four steps above are executed keeping in mind the parsimony principle 

of least order of Polytonicity (m) of the trend, 

Nonmetric approaches differ from metric in that they do not use a priori 

metric specifications. The proposed technique is nonmetric since the loss func- 

tions that are minimized are based on deviations from Polytonicity shape and not, 

for example, on a sum of squares from a specified polynom as in filters of mov- 
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ing averages. 

Classical models for an economic time-series, which typically use decompo- 

sition methods in order to produce periodicity-free (seasonally adjusted) ser- 

ies, estimate the seasonal component and "remove" it from the data. As Kenny 

(1975) said: "For one thing, it pre-supposed that we have some knowledge of the 

underlying trend in practice, the trend must be estimated from the same data 

from which we estimate the seasonal effects. Since estimating the seasonal re- 

quires knowledge of the trend, and estimating the trend involves eliminating the 

seasonal, there are clearly some logical problems." 

The present nonmetric technique requires a minimum knowledge of the trend, 

i.e., that it is Polytone. Presuming a Polytone trend, we estimate the seasonal 

effects (the 2p coefficients) simultaneously, and assess the extents to which 

the trend is indeed polytone. For moving seasonality the function f(a) should 

be estimated as well. 

The LPTA procedure could be presented by means of matrices as well. Let us 

restrict the discussion to the purely multiplicative model below; 

The above 

I 

(2.W I 

I 
I 
I I 
I ‘. 

Yt = Tt*ItSt = Zt *St t=l,...,N 

equation could be written in the following way: - 
9+p.o _I 
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. I . . I 
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Zi . 
. 
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or 1 = Zs where 

I- -1 1 sia+9 1 
/ : I 

(2.12) ’ sfl+) I = 
1 ’ . I / ++l) 1 LP -’ 

f; (4 I I I 

I 
I sp, I . . I- I I I. ‘f,(a) I ’ da) I ’ - -1 LP -’ 

or s(a+l) = F(a) where F is a diagonal matrix. F matrix is a Pattern Transi- 

- 

fl(a) 
. 

tion matrix which transforms the seasonal pattern of any period to the next one. 

Periodicity in the strong sense, or fixed seasonality, means that the Pat- 

tern Transition matrix F is identify maxtrix, i.e., F=I. In other words, the 

same seasonal pattern remains along time. In addition, constraints like 

(2.13a) Cp fi(a) = p 
i=l 

or 
n-l 

(2.13b) i C fi(a) = 1 or 
a=0 

where fi(a) = constants for all i=l ,...,p, namely, fi(a) is a function of a only 

should hold. 

Periodicity in a weak sense means moving seasonality fashion. Thus the 

fi(a) should be constants unequal to 1 or function of the period a and con- 

straint like (2.13) should ho d in order to keep the entire set of seasonal pat- 

terns on the same scale. The seasonal factors have the same pattern and only 

the amplitude is changed over time. 

If fi(a) are random numbers and their arithmetic mean equal 1, it seems to 

me that no seasonal component exists and the series could be decomposed into 

trend and irregularity only. 
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3. NONMETRIC FILTERS FOR FIXED SEASONALITY 

In this chapter we restrict the discussion and the analysis of various types 

of series to fixed seasonal patterns. In order to clarify our approach which uses 

nonmetric filters let us present some empirical series by example. In the first 

example the transformation parameters Si, Si, are compared with the seasonal fac- 

tors obtained by the Census X-11 and Burrnan's program. Some other economic 

monthly series from the Bureau of the Census data basis are demonstrated as well. 

Example 3.1: A Study of a 5 Year Series 

Consider the series "U.S. Total Retail sales in Millions of Dollars" for the 

years 1960-1964. This is a sub-series of the example analyzed by Shiskin et al. 

(1967) for examplified X-11. In figure (3.1) the graph of the original series 

[Yt] and the periodicity-free series, namely S.A.D., [Zt] are given. The ori- 

ginal series is given in Table A in Appendix B. 

Figure 3.1: "U.S. Total Retail Sales in millions of $ in the years 1960-1964. 
.a*... original series; -.-. Seasonally Adjusted Data (S.A.D.)---- 
trend component. 
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Examination of the graph of [Yt] makes clear that there is an increasing 

trend (positive monotonicity). Also, it is easy to see that the seasonal effect 

is of 12 months period. The seasonal fluctuations are neither perfect propor- 

tional nor independent to the trend level and thus indicate the possibility of 

additive model in an equal case as multiplicative model. The coefficient of 

monotonicity (polytonicity of order m=l) ~1') = 0.720 indicates a positive 

trend. By computing maximization of lP11(12) while using the purely multipli- 

cative model we obtained Max u f 
12) = 0.953. The criterion for fit Mf12) = 0.832 

reflects a good indication that [Yt] is adequate to a periodically Polytone time- 

series of period length P=12. While using the additive model a slightly better 

M&l') = 0.841. The mixed goodness-of-fit was obtained; Max ,fl') = 0.956 and 

model obtains slightly better results than the addit 

Mf I') = 0.842. In Tab le 3.1 the vectors of seasonal 

for the multiplicative ! and additive models as well 

L 

ive one, Max u f 12) = 0.956, 

pattern S12, ~1~ are given 

as the "seasonal factors" 

obtained by X-11 and Burman's methods. In Table 3.1, the arithmetic mean for 

each month of the multiplicative and additive factors obtained by X-11 are given. 

The values for the multiplicative model are given in percentage form for compar- 

ative purposes. 

Table 3.1: -m The (Seasonal) Periodicit 
--+ 

components computed & the 3 methods 
Mu tipllcative Model 

-- 

Method Jan Feb Mar Apr May Jun Jul Aug Sep Ott Nov Dee 

Burman 89.3 84.3 98.0 99.6 104.4 103.6 99.1 100.8 96.4 102.1 102.2 120.1 

x-11 89.5 84.4 97.5 99.0 103.3 103.0 99.0 100.4 97.0 102.7 103.2 120.8 

LPTA 90.1 86.1 97.6 100.9 102.4 103.1 98.7 100.0 96.3 102.3 101.5 120.9 

Additive Model 

x-11 -2030 -2922 -462 -200 648 572 -234 72 -620 514 605 4063 

Burman -2093 -2927 -420 -111 844 678 -166 159 -790 530 448 3349 

LPTA -1862 -2737 -478 -124 428 668 -225 24 -720 483 282 4012 
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The values obtained by the three different methods for the two models seem 

to be very similar to each other. 

It is necessary to keep [Zt] in the same scale of original data [Yt] by set- 

ting some constraints on seasonal patterns. A natural constraint for additive 
P 

model is: C Si = 0 that is, the arithmetic mean of Si equals zero. For multi- 
i=l 

plicative model, one of the three following constraints on Si's is suggested: 
P 
C [Si] = p that is, their arithmetic mean 1; or Cp [Si]'l = p that is, the ar- 
i=l i=l 

P 
ithmetic mean of the reciprocals equals 1; or II Si = 1; that is, their geometric 

i=l 
mean equals 1. It seems to me that the latter one is the most appropriate. 

Nevertheless classical methods have not adopted it. 

Anyhow, X-11 program uses the second constraints for each 12 months of a 

calendar year. Adopting the constraints for every 12 consecutive months means 

that the model should have a fixed seasonal pattern. Next step is to estimate 

the two other components, trend and irregularity. In Figure (3.1) the monotone 

trend is exhibited by a solid line. Coefficient of convexity of the trend UA = 

= 0.33 indicating a little bit of convexity trend. More details about convexity 

measures are given in chapter 6. In Figure (3.2) the irregular component (in 
N 

percentages) is presented for the multiplicative model. The constraint l/N C It=1 
t=1 

(or 100%) is used for N=60 observations. In other words, the arithmetic mean of 

the irregularities is 100% for multiplicative model. 

Figure (3.2): Irregular component (in percentages). The arithmetic mean of the 
irregularities equal 1 or 100%. 

% I- 

\\e- 
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In order to demonstrate the trend components for longer series, fourteen em- 

pirical examples were analyzed by multiplicative model. The various values for 

the coefficients are given in the Figures and their seasonal patterns are pre- 

sented in Table (2.5)-(2.23). In these figures the original series denoted by 

. . . . . . and the trend component by a solid line -. 

The first twelve series are taken from the collection of thirteen series 

prepared at the Bureau of the Census for the ASA-Census-NBER conference on ap- 

plied time series analysis of economic data. This conference was held October 

13-15, 1981, at Washington D.C. 

Table (2.5): Fixed Seasonal Patterns for the various series (Multiplicative Model). 

Series 1 Jan Feb Mar Apr May Jun Jul Au!2 Sep Ott Nov Dee 

I 
LSAGEMEN ( 91.6 92.5 94.2 99.2 102.5 107.2 107.1 105.6 104.4 103.6 98.4 93.7 

I 
BLSUEWlG-19 ( 90.7 89.9 90.0 83.0 85.8 150.2 127.4 105.7 103.6 95.3 95.5 82.3 I 
BLSALLFOOD ' 96.7 95.9 96.0 95.8 96.7 99.9 101.9 106.6 106.9 103.5 101.0 99.0 

Demandepositil02.7 98.1 98.3 100.5 97.4 99.2 100.0 98.9 99.7 100.4 101.1 103.5 I 
Currency MlAl 99.6 99.0 99.6 99.4 99.6 99.9 100.4 100.3 99.8 100.1 100.5 101.6 

I 
RSWomen ' 80.7 76.2 93.4 96.2 96.6 92.3 89.5 97.9 100.0 105.6 108.8 162.7 I 
WIGROCERY ' 99.6 99.2 101.9 100.1 99.3 100.1 98.3 97.9 99.8 101.8 101.4 100.7 

I 
RautoDLRS ' 88.8 92.3 108.8 106.7 111.0 110.1 103.4 103.4 93.1 103.2 93.6 85.5 

I 
INSllVS '100.0 104.7 111.4 109.1 108.3 110.0 92.2 91.9 93.7 92.1 93.8 92.7 I 
INS36UO ' 90.8 99.3 90.9 89.0 90.9 102.2 106.7 114.5 115.8 108.4 95.6 95.6 

I 
INS62VS ' 82.5 88.0 99.9 101.8 104.0 114.5 103.2 104.4 103.8 105.5 101.4 90.9 

I 
CON-HSSlF ' 75.1 84.4 112.7 112.6 113.2 111.2 106.9 109.5 101.8 107.8 89.4 75.5 I 
RVSTOR ' 70.8 73.4 87.5 90.8 99.3 96.1 92.4 99.4 91.6 97.5 108.3 192,,8 

dNEMMAN I 96.5 98.2 95.3 87.0 80.4 145.5 130.8 97.4 88.7 89.1 95.7 95.2 
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Figure (2.2): (BLSAGEKN) Agricultural employment, men, 20 years and older; l-67 
to 10-80. 166 observations, II = - 0.64, ~5 = 0.37, hx ~5 = 0.69. 
Turning points 

Goodnessof-fit = 
$e: 18,55,85,121. 

= 0.50. Source: Bureau of Labor Statistics 

Figure (2.3): (BLSVEW16-19) Unemployment, women, 16-19, CPS data; l-67 to 10-80. 
166 observations, w = 0.70, point is 108. ~2 = 0.58, MIX ~2 = 0.87, Turning 

Goodness-of-fit = 4 2 = 0.70. Source: Bureau of Labor Statistics 

1 
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Figure (2.4): (BLSALL FOOD) All employees in food industries; l-67 to 12-79. 156 
observations. = 0.90, Turning points are: 33 and 96. 

Goodness-of-fit = Source: Bureau of of Labor Statistics. 

UJ 
Figure (2.5): (Demandeposit) Demand Deposit component of M-lA t$ney Supply; l-68 to 

11-80. 155 observations. ~1 = 0.99, kx ~1 = 0.999, llA =0.04 
(= linear trend. 12 

Goodness-of-fit = 4 ) = 0.89. Source: Federal Reserve Board. 

4 
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Figure (2.6): (Currency) Currency component of M-IA Fbney Supply. 1-68 to 11-80. 
155 observations. ~1 = 0.99, kx ~1 = 1.00, DA = O,'Sl (g convex 
trend). 

Goodness-of-fit $" 2 1.0. Sfrce: Federal Reserve Board 

I If a P u at 73 a w 101 111 ISI I49 

Figure (2.7): (RSWomen) Retail Sales of Women's apparel. 
= 0.85 

1-67 to 7-80. 163 observations. 

Goodks-of-fii !2Y5 
= 0.99, ,,A = 0.42. 

= 0.95. Source: Bureau of the Census, Business Division. 
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Figure (2.8): (WIGROCERY) Wholesale inventories Grocery Stores, (MI1 .of $1. 1-67 to 7-80. 
163 observations. ~3 = 0.996, bx I.I~ = 0.998, Turning points are: 96 and 
102. 

Goodness-of-fit = 4 
12) = 0.56. Source: Bureau of the Census, Business Division. 

Figure (2.3): Irregular component of WIGROCERY series. ( hltiplicative model.) 
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Figure (2.10): WIGROCERY series where the maximum local linearity option was adopted 
while smoothing trend. 

Figure (2.11): Irregular component of WIGROCERY series (local linear trend). 
(multiplicative model) 
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Figure (2.12): (Rautodlrs) Retail Sales of Automotive Dealers. 1-67 to 7-80. 163 ob- 
servations. ~2 
monotone of ord 

= 0.86, lcax 112'0.93, Turning point is: 84 (piecewise 

Goodness-of-fit = =0.48. Source: Bureau of the Census, Business Division. 

Figure (2.17): Irregular component (multiplicative) of Rautodlrs series. 
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Figure (2.14): (INSllVS) Industry Value of Shipments, Blast Furnaces and Steel Mills 
(Mil .of $1 l-58 to 10-80. 274 observations. ~2 = 0.83, rVax1~21 = 0.86. 
The turning 

Goodness-of-fit = 
202 (piece-wise monotone trend). 

Source: Bureau of the Census, Industry Division 

Figure (2.L 5): 

G( 

(INS36UO) Industry-unfilled orders, Radio a 

lodness of fit = 
10-80. 274.obseqj#;;;8."$ = 0.68, &x Iv 92~:O!!l.*of $) 1-58 to 

ource: Bureau o 4 the Census, Industry Division 

r 
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Figure (2.16): (INS62VS) Industry-Value of Shipments, Beve 
we 

s (Mll.of $1. 1-58 to 
10-80. 274 obsezaJo!s. P 

Goodness-of-fit = 
= 0.986, Itax Ip 1 I- 0.998, p = 0.91. 

0.81. Source: Bureau of Census, Indfistry Division. 

i 

Figure (2.17): : ( Actual No. 

b.63, l4x 

Iv5l=+) 4 f 
81. Turning points are: 72, 103, 133 and 174. - 

Goodness-of-fit = = 0.48. Source: Bureau of the Census, Construction 

(CON-HSStF) Housing Starts, South, Single family Dwellings. 
inits. 1-64 to 10-79. 192 observations. Local linear smoothness. ~5 = . 

1 

r 
Division. 

1 
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Figure (2.18): Irregular Component of CON-HSSlF series (multiplicative model) 
-I 

. n hnlr In4 - n, 

Figure (2.19): (RVSTOR) Retail Sales in Variety Stores. 1-67 to 9-73. 153 observations. 
lJ 
P 

= 0.53. wx p2 = 0.98. The turning is on 111 observation (piece- 
w se monotone nd). 

Goodness-of-fit = d 
r!ie = 0.96. Local linear trend. Source: Bureau of Census 

1 
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Figure (2:20): (RVSTOR) Series of Figure (2.19) local monotone trend 

1,200 I¶000 
800 

i 

f 
Ll Pii 

Figure (2.21): Irregularities of RVSTOR of figure (2.19) 
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Figure (2.22): Irregularities of RVSTOR of figure (2.20) 

Figure (2.23): (UNEWIMN) IQnthly Unemployed kle 
164 observations. p5 = 0.4, kBx P 

t 

lf7 
ed 16 to 19. 1-65 to 8-73. 
= 0.68. Additive or 

&wing Seasonality models seem be ter, see chapter 4. 
Goodness-of fit = 0.47. Source: Bureau of Labor Statistics 



33 

3(a) Estimating the Period's length--Nonmetric Periodogram Analysis. 

The definition of period length was given earlier as the minimal P, P=Z, 

. . ..N/2 for which the definition of periodicity-polytone time series exists. 

For the case p=l the periodicity is degenerate. p=2 describes the minimum per- 

iod's length, i.e., the fluctuations are between every two consecutive observa- 

tions. On the other hand, it is usually difficult to distinguish periodicity 

when there are less than two periods. It is clear that if [Yt] has period's 

length p, then kp k=l,...,[!$ is also a period's length. 

The graph of the criterion of goodness-of-fit dp) versus p is used to 

estimate the period's length. 4P) varies between 0 and 1. Intermediate val- 

ues indicate intermediate measures of deviation from the ideal definition of per- 

fect periodicity (with period length p). It is obvious that there always exists 

Mik*p);Mip) k=1,2,...,[!], since the range of the function is wider. In 
P 

order to estimate the period's length, it is necessary to estimate p that brings 

M!$P) close enough to 1 and p is a prime number or the minimal multiplier of a 

prime number which is the minimal between them. M,&p) is computed for p=2,..., 

[;] (by definition M,$I)= 0). In other words, M$,p) is a peak value 'suffici- 

ently close' to 1. 

In order to exemplify the method of period's length estimation, the values 

M{p) p=l ,...,24 (m=l), for the series of example 1 (using the multiplicative 

model) are presented in Figure (3.5). The values are given in Table (2.6). 

Figure (3.5): Graph of Mip) versus p (p=1,.,.,24). 
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The peak value Mf12) = 0.832 is very sharp and indicates p=12 as the 

minimal p which brings Mlp) closer to 1. Of course, the value M[24) = 0.910 

is greater, but it is not worthwhile in that case to double the number of para- 

meters. Incidentally, the peak value at p=6 is not sufficiently close to 1 and 

hence one cannot estimate it as a period's length. 

The main goal of the periodogram technique and the Spectrum Analysis is to 

estimate periodicity (simple or complex) in a given series; see Anderson (1971) 

or Kendall (1973). The estimated period's length (or its reciprocal, the fre- 

quency) is achieved at the peak value by looking at the graph of the periodogram 

(or Spectrum or Autocorrelations) for the plotted values versus the period's 

length. The main idea is to seek maximum adaptation between the original series 

[Y,] and a trigonometric function (usually cos 2 .nt) with a known period's 
-I-- 

length. For instance, one may plot the expression: 

N N 
S2(A) = [.2 C Yt cos 2nt 2 + [2 C Yt sin 2nt 2 

N t=1 x1 N t=1 ? 

as a function of the period's length. Its peak value is obtained while [Yt] has 

periods of length X. In the proposed LPTA method, the linear transformations 

(2.3) are more generalized than trigonometric function for discrete data. 

Table (2.6): Values of Mip) for p=l ,...,14 that were obtained by 
the LPTA method for the series of example ' 1. 

M(p) 

0.000 
0.032 

0.043 0.104 

0.014 0.337 
0.032 

0.110 0.057 
0.109 

Mip) 

0.108 
0.097 

0.123 0.121 

0.258 0.411 
0.304 

0.269 0.206 
0.279 

I 

ill 0.084 0.341 
I12 0.832 22: 0.910 
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3(b) Choosing the Appropriate Type of Seasonality 

In this section usage of the figure of merit t$,p) is demonstrated as a 

criterion for choosing the appropriate type of seasonality model from among the 

three following: Multiplicative, Additive, or Mixed. 

Let us denote the coefficient of goodness-of-fit tip) which has been de- 

fined in (2.7) by M&y)mx. Thus it measures the amount of adaptation of a 

given series to an ideal periodically and polytone series which its seasonality 

shape is mixed one. The length of the period p and the order of polytonicity m 

are fixed through the stages of estimating the seasonality patterns. Likewise, 

let us denote by 4rh and tipA the coefficients of goodness-of-fit for purely 3 

additive and purely multiplicative models, respectively. The multiplicative and 

additive models use simpler linear periodic transformations of [Y,] of the form: 

2. i+pa = Y i +pa/S{p) and 

z* i+pa = Y* i+pa - sip) (i=l ,...,p; a=O,...,n-1), 

respectively. Obviously, each of these simpler models involve only p parame- 

ters. When the period-length p of a series is not known in advance then, our 

first step is to estimate it. This is done by computing M,$yl for a vari- 

ous periodit lengths p=2,3,.,, and plotting these coefficients of goodness-of- 

fit versus p, as presented below in figure (3.bl) 

Figure (3.bl): The graph M#)h, versus p=2,3 ,...,30 for a typical periodic 

series that has period-length p=12. 

2 12 24 30 p 
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The length of period-p is estimated as the smallest p which generates a 

peak value of dyix sufficiently close to 1.0. Thus a typical graph for 

a periodic series that has period-length p=12 is presented in figure (3.bl). 

Seasonal adustment methods usually used a specific period-length that can not 

be changed like the X-11, Shiskin et.al. (1967) that used p=12. For the three 

seasonality models, above, the following inequalities hold: 

0 < 
4 

6 
4 $2 1 

One of the three types of models may be appropriate if the respective coef- 

ficient is close enough to 1. If 6yix is as low as zero or nearly zero 

no such model is appropriate and the series might be decomposed into trend and 

error only. 

In the case that $F)m is greater (lower) than I+#)) the purely multiplica- 

tive model is better (worse) than the purely additive one. 

In the case that f&Fix is only slightly greater than I@i (or !&yi ) 

we choose the simpler model multiplicative or additive (depending on the coeffi- 

cients) since they use only half the number of parameters for the model of sea- 

sonality. In the case that dyix is "much greater" than ~$,pm)~ (or $,!A) 
, 

the mixed model is chosen as the appropriate model. There is no strict rule for 

computing the amount of difference that $,yix has to be greater than $,ym) 

for being chosen as the suitable model as well as the impossibility of estimating 

the exact number of components in principal component analysis. 

Some Examples 

In this section we use the procedure for choosing the appropriate seasonal- 

ity models for some known empirical series used in literature in other connec- 

tions. 
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Example 3(bl): The Chatfield-Prothero Case-Study 

About ten years ago Chatfield and Prothero (1973) (C-P), investigate a case- 

study of."Sales of a Company X." The authors modeled this series of 77 observa- 

tions and forecast 6 units ahead by using Box and Jenkins (BJ) approach. The en- 

suing discussion by 15 known researchers had amplified and illuminated various 

aspects of time series modeling, estimation and forecasting. One of the main im- 

pacts of the fruitful discussion concerned the choice of an appropriate data 

transformation, see Box and Jenkins (1973) and Wilson (1973). The actual use of 

the B-J procedure in the time series forecasting is demonstrated in detail. 

One primary reason for the publication of the case-study was the unsatisfac- 

tory results obtained by C-P. As a response, Box and Jenkins have provided a 

critical appraisal of the C-P paper as well as an alternative and better fore- 

casting. An assumption that the seasonal component is of a multiplicative type 

was not a controversial one by any of the discussants. 

Here, we pointed out that a mixed (multiplicative-additive) seasonality 

might be more appropriate. 

The Chatfield-Prothero case-study is a monthly series of “sales of Company 

X" from January 1965.till May 1971. This series has 77 observations. In figure 

3.b2, a chart of the series is presented and it indicates that the trend is 

monotone (positive slope) and the fluctuations (seasonality) are in part system- 

atic and increased with time. The original series is given in Table B in Appen- 

dix B. 

Chatfield and Prothero used the mode?: ARMA(l,O)(O,1)12 on the transformed 

series Wt = Vv121oglOYt, where Yt t=1,...,77 is the original series. Box and 

Jenkins on the other hand used the same model for power transformation: 

Wt = VVl2Y 
.25* 
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Figure (3.b2): The Chatfield-Prothero case study of monthly series. Jan.1965 May 1971. 
. . . . . . original series, -.-.-. Seasonally Adjusted Data (S.A.D.)------ 
trend component. The latter two components were obtained by mixed mode. 
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By using our proposed method with p=l2 as the period's length and m=l as the 

order of polytonicity, the computed coefficients for goodness-of-fit are given 

Table (3.bl): The three types of coefficients of goodness-of-fit M&P) for the ex- 
amples. For these monthly series the period's length assumed to be p=12. 

/ I Type of Model 

j Example 1 Additive-Mitg) Multiplicative-M($) Mixed-Ml:;? 
/ 

I 
I I I I I 

.71 
/ 

.85 

I 2 I .78 I .93 
/ 

.90 

I .95 

/ i I 
3 .88 I .88 I .89 

/ 4 I .a7 1 .88 I .89 
I 

I I i 

I 
I I I I I 1 M& I I M&? I Mkk? 

I I 
.61 i .73 i .79 I I I 



39 

in Table (3.bl). Thus, in this case it seems that the appropriate model is the 

mixed one, despite the finding that the multiplicative model is substantially 

better than the additive one as assumed by Chatfield and Prothero and the other 

discussants. 

Example 3b.2: International Airline Passengers in Box & Jenkins (1970, p.304) 

The first 102 observations of this series were analyzed. The series is 

plotted in figure 3.b3 below. The trend is clearly monotone and p=12 is assumed. 

By looking at Table 3b.l it is straightforward that the multiplicative model has 

much greater coefficient of goodness-of-fit than the additive model. The coef- 

ficient of the mixed model is slightly greater than that of the multiplicative 

model and thus it is not so clear which model is more appropriate 

pr-*:ciple of parsimony. We personally prefer the multiplicative mode 

well-known series. Box-Jenkins assumed multiplicative model as well. 

using the 

for this 

Figure (3.b3): First 102 observations from the series "Monthly International Airline 
Passengers." 

Example (3.b3): Passenger Miles (Millions Flown on Domestic Services by U.K. 

This series was analyzed by Anderson (1976) assuming an additive model. 

The series includes 119 observations from July i962 until 1972. The order of 
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polytonicity of the trend is m= 1, i.e., monotonicity. Coefficient of monoton- 

icity of the original ser ies ~1 = 0.337 and the coeffic ients of goodness-of-fit 

for the three seasonality models are given in table 3bl. Thus it. seems that both 

the multiplicative and additive models are equally good and "better" than the 

mixed model that has only very slightly greater goodness-of-fit but uses double 

the number of parameters. 

Example (3b.4): U.S. Total Retail Sales in Millions of Dollars (Shiskin et al. 1967) 

This series of 144 observations was analyzed by Shiskin et al. in their ex- 

ample demonstrating the X-11 method, using the multiplicative version. The co- 

efficient of monotonicity for the original series ~1 = 0.868 indicate an in- 

creasing monotone of the trend. From the coefficients presented in Table (3b.l) 

it seems that the multiplicative and mixed models have nearly the same goodness- 

of-fit and so the preferred model is the more simple, i.e., the multiplicative, 

Example (3b.5): Unemployed Men in the U.S.A. in the years 1949-58. 

This series of 120 observations was anlyzed by B.L.S. (1966) using the mul- 

tiplicative model. A graph of this series is presented in figure 4. We estima- 

ted the order of polytonicity as m=5 and the turning points are 11, 53, 68 and 100 

observations. The coefficient of monotonicity ~1 is about zero but ~5 = 0.71. 

The coefficients of goodness-of-fit for the three models are given in Table 

(3,b.l). These coefficients indicate that the mixed model is supposed to be an 

adequate model. A multiplicative model is much better than an additive model. 

Conclusions: For purposes of demonstration five known examples were analyzed 

and the appropriate models were chosen. The results are in part similar to pre- 

vious disuccsions and in part not. The same models were estimated for short sub- 

series of only 35 observations. From the presented examples it seems that some- 

times it is difficult to choose the appropriate model in spite of using the 

principle of parsimony. 
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Figure (3.b.4). Unemployed men in U.S.A. in the Years 1949-1958. 

.l.l,l,l. 
I ’ 1 s l.l.l.1 
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(3.C) Very Short Series and Missing Data 

Classical methods for seasonal adjustment cannot handle series with missing 

data without substituting estimated values. Likewise they cannot decompose very 

short series. Thus, X-11, Burman and B.L.S. methods need, for example, at least 

36, 60, 96 observations, respectively. The present technique overcomes these 

two limitations. 

For the case of missing observations, zero weights wij = 0 are given for 

either i or j, the missed observations in eq. (2.5). These weights are combined 

according to formula (3.c.l). 

F 
Ik 

(3.~~1) JmP) = k=l i>i (zi-zj)6K' wij 
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0 either i or j are missing data 
where wij = 

1 otherwise 

To illustrate an analysis of a short series with missing data, consider the 

last two years (periods) of example (3.1), "U.S. Total Retail Sales in Mil. of 

Dollars" in the years 1963-1964. Chart of the sub-series is exhibited in Figure 

(3.C.l). Assume that some observations, say, those at time points 2, 6, 7, 8, 

9, 10, 11 are missing (or censored for some reason). In table (3.c.l) the ser- 

ies is presented. The values in the parenthesis are the missing observations. 

By using the multiplicative version of the proposed technique, the following 

values were obtained: II f 
1) = 0.639, and Mf12) = 1.0. In Table (3.C.2) the 

seasonal pattern (in percentages) is given for the three series: (i) the sub- 

series in the years 1963-1964; (ii) the sub-series with seven missing values; 

(iii) the series in the years 1960-1964. 

Table (3.C.l): The subseries of the two years 1963-1964 of example 1: The values 
in parentheses are the missing observations. 

Jan Feb Mar Apr May June Jul Au!3 Sep Ott Nov Dee 

18261 (17087) 19653 20518 21228 (20737) (20540) (21018) (19267) (21528) (21494) 25104 

19154 18758 20502 21186 22508 22242 22145 21778 21313 22605 21720 27719 

Table (3.c.2): Periodicity components for the 3 series 

Jan Feb Mar Apr May Jun Jul Au!3 Sep Ott Nov Dee 

U) 90.7 88.2 96.8 100.4 104.6 102.2 101.2 100.1 94.6 102.2 100.2 118.8 

(ii) 92.8 89.7 98.0 100.9 104.1 101.8 101.2 99.0 95.0 99.8 95.8 121.7 

(iii) 90.1 86.1 97.6 100.9 102.4 103.1 98.7 100.0 96.3 102.3 101.5 120.9 

The estimated seasonal patterns for these three series are very similar to 

each other. This example indicates that the nonmetric technique has the property 
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of stability. An adjustment procedure is said to be stable if the estimated 

seasonal pattern is not seriously disturbed by updating a series when new data 

become available. One can generalize this property (which is not defined math- 

ematically) applying it to a series and its sub-series. 

Fi ure (3.C.l): U.S. 
+A.D. 

Retail Sales 1963-1964. l a*-' Original data, -.-.-. 
trend component (multiplicative model). The circles are 

for missing data. 

l- 

3.(D): Series With Discontinuous Trend 

An invisible assumption of decomposition methods is of continuousity of the 

trend component. For example, it is usually possible to smooth series by moving 

averages filters since the trend is continuous. The recent papers by Kitagawa 

(1981), Akaike and Isiguro (1981) and Schlicht (1981), which do not use moving- 

averages, are based on the assumption that the trend is approximately locally 

linear, namely, that it is continuous with a specific shape. 

In this section we examplify that the LPTA does not need such assumptions 

on the trend and the process of estimating the seasonal pattern is not distorted 

as, for instance in X-11 , 
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As an empirical example, let us deal with a 'nice' series: "Consumption of 

Electricity for Public Lighting in the U.S. in the Years 1951-1958." The ori- 

ginal series is given in Appendix B, table C, and its graph in Figure 3.D.l. 

The S.A.D. and trend estimation is presented in Figure 3.D.l as well. 

Figure 3.D.l. Consumption of Electricity for Public Lighting in the U.S. 
in the Years 1951-1958." . . . . . . Original Data, -.-.-. S.A.D., 

trend component. 

This series has monotone trend (or, to be more specific, this monotone trend is 

approximately linear), a fixed seasonal pattern, and reasonable irregularity. 

Let us do the following two transformations: we multiply (a) the last half and 

(b) the first half of the series by constants k>l (or add constants k>O). This 

transforms series and their original are presented in Figure 3.D.2, below. 
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Figure 3.D.2: A 'nice' series that has monotone trend, a fixed seasonal pattern 
and reasonable irregularity. In (a) and (b) the last half and the 

. first half of the series have been multiplied by k>l, respectively. 

(a) (b) 

Seasonality and irregularity have not been changed while using multiplica- 

tive (additive) decomposition model with multiplication (additive) transforma- 

tions. Only the shape of the trend has been changed and thus the same estima- 

tions are exptected to the seasonal patterns of the original as well as the two 

transforms series. For the above series, the constant k=lO have been used for 

both (a) and (b) transformations. Seasonal factors extimated by X-11 for the 

series and its two transformations as well. The arithmetic mean of the seasonal 

factors, separately, for each month is given in Table 3.D.l. The fixed seasonal 

patterns obtained by our LPTA methods for the same series are given in Table 

3.0.1 as well. 
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Table (3.Dl): The estimated seasonal (in percentage form) pattern for both the, 
original and the transformed series as obtained by X-11 and the LPA 
method. (multiplicative model). . 

METHOD SERIES JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC. I 
IOriginal 119.7 106.5 103.5 93.3 87.0 81.3 83.4 89.8 96.3 106.3 112.8 119.6 

x-11 1 
ITransformation I (a> 124.6 113.6 111.8 99.6 91.1 82.0 79.2 82.1 88.4 99.2 109.2 119.2 
/Transformation 
I W 119.4 103.1 95.7 84.6 79.8 77.5 83.7 93.9 102.9 115.6 119.8 124.2 

I 
IOriginal 119.8 106.8 103.7 93.3 86.6 81.3 83.5 90.1 96.6 105.9 112.6 119.8 ) 

LPA I 
ITransformation I 
I (a) 119.5 107.6 103.3 93.2 87.4 81.9 83.9 90.4 96.5 105.4 112.1 119.0 1 

ITransformation / I (b) 119.8 106.6 103.5 92.6 85.9 80.3 82.8 89.6 96.3 106.8 112.8 119.4 1 

Very similar seasonal patterns were estimated by the LPTA method for the series 

before and after the multiplication (by K=lO) transformations. Very different 

estimation was obtained by X-11 to the original series and the two transforms 

series which have the same seasonal pattern and irregular component by defini- 

tion, The above results mirrored the fact that the LPTA method is robust against 

an abrupt change in the trend here. On the other hand, X-11 does not have this 

desirable property. An abrupt change in the trend yields 'strange' estimation 

results for the other components. X-11 adjusts or removes very differently the 

very same seasonal patterns when they are combined with different shapes of 

trends! The amount of distortion in the estimated seasonality (as well as 

irregularities) is a monotone function of the abrupt change as well. 

3.(E) Series with Zero-Value Observations 

Here analysis of a series that has zero-value observations is presented. 

For a series with zero-value observations (not missing data) and a trend other 

than constant, the additive model is inappropriate by definition. This inappro- 
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priateness is caused by the fact that the deviations of the zero-value observa- 

tions are proportional to the level of the trend. In other words, multiplica- 

tive model (or mixed one) might be adequate, but not the additive model. 

The LPTA technique estimates the periodicity component by using a multipli- 

cative model which the X-11, for example, cannot do. The example is "Export of 

citrus in millions of $" from Israel in the years 1961-1968. This series has 

only eight active months in a year. In June, July and August, there is no mar- 

keting; in September the marketing is almost zero; hence these four months are 

omitted. In Table 3.e.l the original series is given. In Figure 3.e.l the graph 

is plotted. 

Table (3.E.l): Exports of citrus fruits in millions of $ from Israel in the 
years 1961-1968 (Original data) 

YEAR Jan Feb Mar W May Ott Nov Dee 

1961 10.7 10.3 10.5 
1961 10.6 11.1 12.7 
1963 15.1 17.3 18.5 
1964 13.1 11.8 11.8 
1965 13.9 15.6 14.7 
1966 16.2 19.2 16.9 
1967 17.8 19.9 19.5 
1968 18.9 23.7 16.4 

14.4 
9.3 

0.0 . . . . .4 1.0 1.7 
0.8 :; 24 40 
1”:: .5 114 2’4 5:o 5’3 

f-9’ 

5:2 

2:; 313 28 2’6 60 

2 4 5’7 
8.1 . . . . 1:; 4:3 5:7 

Figure 3,e.l: The Plotted Series of Table 3.e.l 

61 6263?+6566676869 YFAR 
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X-11 program yields inaccurate estimation of series with zero-value observa- 

tions. This finding will be demonstrated for the "export of citrus" example, 

later on in Chapter 7. The nonmetric approach decomposes this series using an 

additive and a multiplicative model. The period's length p=8. The estimated 

seasonality patterns for both models are given in Table 3.e.2. 

Table (3.E.2): The seasonality pattern components of the two models. 

(The values for the multiplivative model are in percentages 
and for the additive model are absolute.) 

Model pfl)Max IJ~ 8, Mi8) I Jan Feb Mar Apr May . . . Ott Nov Dee IMean 
! I 

Multiplicative 0.18 0.71 0.651179.6 194.6 183.6 127.6 28.7 . . . 7.5 26.3 51.3jlOO.O I I 
Additive 0.18 0.71 0.651 6.95 8.52 7.23 2.31 -5.97 . ..-8.09 -6.47 -4.491 0.0 

Both models have the same goodness-of-fit based on our figure of merit Mg8). 
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4. FILTERS FOR MOVING SEASONALITY 

Seasonality, as a concept, means that systematic fluctuations around an 

unobservable "trend and error" exist. It is natural to think about fixed sea- 

sonality where the fluctuations are proportional or not according to the model, 

either multiplicative or additive, respectively. In order to extend the idea 

for moving seasonality, it seems that it should be done in a systematic way; 

otherwise there is no distinction between moving seasonality and white noise. 

Two ways to extend fixed seasonality are given in this chapter. 
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(a) Fixed Seasonality That Changed Over Time 

The idea of moving seasonality could be interpreted as a fixed seasonality 

that change over time. In other words, various segments of time have different 

fixed seasorality. As an example, let us analyze the series UNEMMAN which is 

presented in Figure (2.23). This series is the monthly Unemployed Males (in 

U.S.) of Age 16 to 19 in the years between January 1965 and August 1979. This 

series of 164 observations was analyzed by Hillmer and Tiao (1982), and in 

chapter 2. In Figure (2.23)the original data and the trend component (additive 

model) are presented. The time axis was divided into the following 5 segments: 

l-60, 48-84, 72-108, 97-132 and 121-164. The directions of the trend are -, +, 

-, + and -, respectively. For k=5 order of Polytonicity ~5 = 0.4 and the 

goodness-of-fit and seasonal patterns for 3 models: Additive, Multiplicative and 

Mixed, are given in Table (4,a.l). Based on goodness-of-fit, it seems that for 

fixed seasonality the more appropriate model is the additive one. Let us use 

the LPTA Procedure for every 5 whole years (60 observations) in a moving way. 

Thus, we do seasonal adjustment for the sub-series 1965-1969, 1966-1970, 1967- 

1971 and so on, up to 1974-1978. 

Table: (4.a.l): Goodness-of-fit = ,512 1 and seasona 1 Patterns for 3 models. 

Model/Mk12)1Jan Feb Mar Apr May Jun Jul Au9 Sep Ott Nov Dee 

I I 
Mult.JO.42 ( 96.5 98.2 95.3 87.0 80.4 145.5 130.8 97.4 88.7 89.1 95.7 95.2 I I 
Add. 10.54 l-32.3 -22.2 -36.2 -82,O -122.3 305.7 193.8 -17.9 -69.5 -61.0 -30.0 -26.1 I I 
Mixedl0.57 1197.3 114.7 103.2 96.4 88.6 102.8 104.3 100.0 95.0 88.2 104.5 

I 
94.9 

l-61.8 -88.2 -49.1 -57.8 -54.0 259.0 151.5 -15.2 -39.8 6.6 -50.8 -0.3 I I 
The turning points are those that estimated for the whole series. Since 

the most interesting part of analyzing is the last part, we analyzed, in addi- 

tion, the last 4, 3 and 2 whole years, respectively. As a matter of fact, we 



65-69 \ 87.46 89.30 88.73 78.95 70.77 169.64 144.40 96.67 87.29 92.71 96.87 97.23 

66-70 

67-71 

68-72 

en-73 

70-74 

71-75 

72-76 

73-77 

74-78 

75-78 

Ta;le \?.a.?): The estimated seasonal patterns and goodness-of-fit obtained by 
mu tip icatlve model for various ranges of years. 

goodness 
Years I Jan Feb Mar Apr May Jun Jul ml Sw Ott Nov Dee of-fit 

I I 

? 
I 

90.18 91.30 91.25 80.52 70.71 166.93 143.70 94.29 87.01 91.88 96.32 95.91 

94.29 94.45 91.85 80.27 71.93 160.71 141.98 94.96 87.09 91.65 95.05 95.76 I 
I 

99.92 96.20 94.27 82.01 75.94 145.39 134.85 97.30 89.42 90.80 96.14 97.77 
I 

99.80 98.13 94.13 85.77 79.60 141.12 128.21 97.42 89.37 89.54 98.00 98.91 
I 

101.70 100.84 93.61 86.47 79.48 139.88 127.45 96.92 89.55 89.13 97.96 97.81 I 
I 

102.16 100.38 95.45 87.55 80.22 138.01 127.32 96.56 89.40 87.52 96.88 98.55 

102.33 101.61 95.66 90.78 81.51 137.02 123.76 97.01 90.24 88.01 96.63 95.45 / 

102.48 102.38 96.98 91.73 84.59 137.48 124.81 99.07 88.53 85,89 93.89 92.17 I 

99.99 101.21 97.72 90.63 83.73 135.32 121.60 98.47 90.89 89.77 95.48 94.18 

101.15 101.25 97.38 90.13 82.94 133.13 121.02 98.16 90.88 90.91 97.60 95.45 I 

0.27 

0.30 

0.64 

0.50 

0.64 

0.58 

0.63 

0.70 

0.58 

0.72 

0.73 

0.74 

0.60 
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had 168 observations, namely, from 1.65 to 12.78, and we analyzed these sub- 

series accordingly. In Table (4.a.2) the estimated seasonal patterns for the 

various sub-series are given (multiplicative model used). One can verify that 

over time the seasonal pattern changed gradually and usually the goodness-of-fit 

for each segment increased. 

I 
76-78 1 99.01 103.20 98.55 87.08 81.12 120.04 120.00 97.35 91.93 92.98 100.94 97.81 

I 
77-78 1 98.37 99.82 96.98 84.82 78.50 129.64 123.18 96.52 93.69 93.94 102.47 102.07 

The entire series 

65-78 i 96.5 98.2 95.3 87.0 80.4 145.5 130.8 97.4 88.7 89.1 95.7 95.2 io.47 
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Moving seasonality could be interpreted as a change of the amplitude of the 

fixed seasonal pattern over time. As an example, let us deal with the Chatfield- 

Prothero case-study exemplified in chapter 3.b. The monotonicity of the origin- 

al series is ~1 = 0.68 and the Mit2) = 0.85 (multiplicative model). The final 

seasonal factors for fixed seasonality and moving seasonality are given in Table 

(4.b.l) below: 

Final Fixed Seasonal Factors 
sum to (1200.00) 

Jan Feb Mar Apr May Jun Jul Au!3 Sep Ott Nov Dee 

140.8 94.7 71.9 65.0 54.5 49.7 45.3 84.6 122.3 167.6 173.6 129.9 

Final Moving Seasonal Coefficients 

144.0 96.9 73.5 66.6 55.7 50.9 46.3 86.6 125.1 171.5 177.6 132.9 

127.6 85.8 65.1 59.0 49.4 45.1 41.0 76.7 110.8 151.9 157.3 117.7 

142.5 95.8 72.7 65.9 55.1 50.3 45.8 85.7 123.8 169.6 175.6 131.5 

147.4 99.1 75.2 68.1 57.0 52.1 47.4 88.6 128.0 175.4 181.7 136.0 

151.5 101.8 77.3 70.0 58.6 53.5 48.7 91.0 131.5 180.2 186.7 139.7 

142.8 96.0 72.9 66.0 55.2 50.5 45.9 85.9 124.1 170.0 176.0 131.7 

131.5 88.4 67.1 60.7 50.9 46.4 42.3 79.0 114.2 156.4 162.0 121.3 

The goodness-of-fit for the moving-seasonality (multiplicative) model is M[12) = 

0.89, a slightly less than the mixed (fixed) model. The multipliers for the 

seven periods, respectively, are: 1.02, 0.91, 1.01, 1.05, 1.08, 1.01, 0.93. 

Their arithmetic mean is about 1.00 
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5. COMPLEX SEASONALITY 

. 

The numerical nonmetric approach (LPTA) to data analysis of (single) peri- 

odic series is extended here for series that have complex seasonality. Complex 

seasonality means that several periodicity components of different periods in- 

teract simultaneously. Thus, the main feature is to simultaneously make adjust- 

ments for the different periods. 

We use the notations and definition of chapter 3 as much as possible. A 

generalized formula of (2.1) for multi-seasonal components model either multi- 

plicative or additive is 

Yt 
= Tt l It l St1 ' St2 '*' StR + St1 + St2 + '** StV 

(54 =Tt* I,'mS + 1 s 
rRl tr = uyl tv = 

In (5.1) R multiplicative and V additive seasonality components are involved. 

For the sake of simplicity, let R=V for the remainder of this article, and thus 

our basic model becomes 

R R 
(5.2) Yt = $ l Ftr + ,$str t=l,.,.,N . 

= = 

Let us call the model expressed by (5.2): A complex periodicity (seasonality) 

model of order R. 

As an example, let us think about daily transportation volume over years. 

This complex periodicity series of order R=2 has two main periods: The weekly 

period of length 7 (days) and monthly period of length 12 (months). Estimating 

first the weekly seasonality and then the monthly seasonality yields different 
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final seasonal adjusted series than estimating first the monthly seasonality and 

then the weekly. Both ways are not attractive. The more accurate way is: to ad- 

just both seasonal patterns simultaneously, which is the aim of this chapter. 

Definitions and Notations 

In the complex periodicity model of order R, R different components of per- 

iodicity (each one has different period's length) are involved. Thus the t-th 

observation Yt is within the R different periods. For instance, the 8th obser- 

vation in the daily volume transportation example is simultaneously located 

first within the weekly period-- first day in the week (in the second period, 

according to weeks order), and first within the yearly period--first month in 

the year. 

To express (Ytl simultaneously in R periodic terms, it will be useful 
R 

to replace the observation index t by a complex index of the form n (ir+Prar). 
r=l 

R is the complex periodicity order of the model, Pr is the period's length in 

the r-th period (pl<p2< . . . <pr), ir is the location of the observation within 

the r-th period (of length pr), a, is the period index in the sequence of peri- 

ods, with the first indexed 0, the second 1, etc. Thus the observation t is 

presented in R ways simultaneously: 

t ir = + Prar ir =l v.**s pr, a, = l,..., [I] 
r 

for r=1,2,...,R, 

It means that the 4th observation is located in the i, observations within 

period number ar that is length is pr and it holds simultaneously for each of 

the R (r=l ,...,R) components. It is symbolized as previously said: 

R 
t= n (ir + Prar) 

r=l 

It is easy to see that when R=l (simple seasonality model) t=i+pa. 

Given this notation, a series {Ytl t=l,...,N can be written as 



IYa 1 , i=l 
n tir = Pr+) 

,,..,pr,rr=l,..*,[~rl, r=L.-.,R 

r=l 
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By-a sequence of R linear periodic transformations of {Ztl with p1,p2, 

.,.,pR as the period's length we shall mean a series {Ztl whose members are 

of the form 

ZR 
II (ir+Prar) 

=(YR - f s/,Pr))&S/!%) 
fl ir+p,a, r=l r=l 

(5.3) r=l r=l lr = 1 ,**=,Pr; ar = 1 ,...,[;r], r=l ,...,R: (~1 < p2 < . . . < PR) where the trans- 

formation coefficients S{~l),...,S~/$R) and s[pl)...,sfER) represent multipli- 

cative and additive periodic coefficients, respectively. When .Sf&) # 1, r=l, 

. . ..R and s{/?r) # 0, r=l ,...,R then equation (5.3) represents a pure additive 

or a pure multiplicative model, respectively. Equivalently, (5.3) can be writ- 

ten as 

(5*4) YR , 

n (ir+Prar) = 2 (ir pra,) + 
' ff S(b) + f sj,pr) 
r 1 lr = r=l 

r=l r=l 

which is similar to formula (2.4) 

If {Yt) is not a polytone (monotone) series, it might be possible that 

R periods of length pl$".,pR and coefficients Sf/?r), sf/?r) can be found 

for which the transformed series EZt) can be regarded as an underlying (per- 

iodicity-free) polytone trend of (Y,l known as S.A.D, and the 2'p1p2##.RR of 

coefficients Sl(rr), s.$rr) define the periodic pattern of observations, i.e., 

the complex periodicity components. To assess the extent to which any series, 

say {Ytl is polytone (or order m), we shall use the 

formula (5.5). 
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IK 

(5.5) 
! 1 (yi-yj)Gk 

pm = k=l i>j 
I 

F IklYi-Yjl 
k=l i>j 

where 6k = (-1) k-1 within IK, k=l,...,m. Ik is the k subseries (among m). The 

inner summation is over all (i,j) E: Ik, such that i>j. The outer summation is 

over all m subseries I,k, such that k=l,...,m. Obviously, -l<~il, and lvml = 1 

only if the series is perfectly polytone, 

The coefficient of polytonicity for the transformed series {Zt), 

t=1 ,...,N, will be designated 
R 

by u$!-) in (5.6) where, as noted earlier, 

t = CI (ir + Prar)s lhe lower index m indicates the order of polytonicity, 
r=l 

whiie the upper index p = (Pl,P2,***9 PR) indicates the period length. 

(5.6) 

*k 
! 1 (zi-zj) ' &K 

k=l i>j . 

The Procedure 

The procedure for achieving seasonally (complex) adjusted data from the 

original series is very similar to that described earlier in chapter 2 and only 

a sketch is given here. 

The main idea is to search for a sequence of R linear periodic transforma- 

tions of CYt1 with P = (pI,p2,..., PR) as the period's length and coefficients 

S&l) ,...,S{iR) and ~~~1) ,...,s,(pR) (ir = l,.,.,pR) converting the original 

series {Ytl into an approximately polytone series Zt in an optimal manner. 

That is, bring l~$)l as close to 1 as possible. The closer MaxI#)I is to 

1, the closer is the series CYt1 to being complex periodically polytone. 

The maximization of Iu#)[ as a function of Lne 2plp2 . . . PR variables 

(Sipl) . . . $pl) = ~[pl),s~pl),..., (SipR),...,SbpR)) = dPR); 
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(SfPl),..., ~$1)) = ifpl),...,(~fpR),...,~$R)) = ApR) in the general 

mixed model (or only pip2 . . . pR variables in the Simple pure multiplicative or 

pure additive model), may be reached by optimization algorithms such as that of 

Zangwill (1967). For an initial approximation for these coefficients we use the 

model with no complex Seasonal effects, e.g. the $pr) = 1 and dpr) = 0 for, 

l **,PR- For the multiplicative model, the constraints $pr) = 0 are set up, 

while for the additive model, the constraints $pr) = 1 are set up. 

For the usual case where 11.1~1 < 1 a measure M(P) of goodness-of-fit 

is defined: 

MaxI~,$)I - 1~~1. 
(5.7) Mt$ = 

1 - Iwd 
Clearly, 0 < P$,!.) < 1. Further M(P) = 1 if and only if the series {Y,l 

is perfectly complex periodically polytone of order m. That means that model 

(5.2) is perfectly adequate with It = 1 for all t=l,...,N (an ideal series with- 

out irregularities. M(P) = 0 if and only if there are no periodic components 

and the model Yt = Tt l It (t=l,...,N) is adequate. 

The described procedure requires knowledge in advance of the R period's 

length: pI,p2 . . . pr. Thus, wherever these values are not known in advance, the 

first step is to estimate them. This is done by selecting as the optimal peri- 

od's length the vector p = (PI .., pr) with Smallest coordinates (pI<p2,,.<pR) 

which generates a M$,P-)-th peak with the smallest p values sufficiently close 

to 1. 

An Example (artificial) 

In Figure (5.1) the graph of original series Yt t=1,...,60 is given. The 

actual series is in appendix B, Table D, 
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Figure (5.1): Chart of original series Yt, t=1,...,60 denoted by . . ..jS.A.D. a 
denoted by -.-.- and trend component by . 

As described earlier, the procedure looks for the optimal coefficients that con- 

verts the series Yt as close as possible to a polytone series Zt with the mini- 

mal order of polytonicity m. By looking at this example it is easy to see that 

the order of polytonicity of the trend is m=l, namely monotone trend, and 

Pl = 0.46. The second step is to estimate the desired period's length p = 

(p1 . ..pR) by using the multiplicative model: Thus, &pr) = 0 r=l,...,R. For 

order R=l of complexity of the periodicity the value Mipl) for p1 = 1,...,14 

were computed and their graph vs. pi is given in Figure (5.2) 



Figure (5.2): Graph of Mipl) for p1 = 1,...,14. 

The sharp peaks at pl=S,lO indicate a periodicity of length p=5, but 

Max ~1~) = 0.726 and Mf5) = 0.489 are not close enough to 1 (not adequate 

to model (5.2)), multiplicative type). It might be that a more complex 

periodicity model would be more fit to the data, Thus a second period's length 

p2 is to be estimated. Now Ml!) is computed and graphed in Figure (5.3) where 

p = (pl,p2) = (5,p2) for p2 = 1,2,...,14. 
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Figure (5.3): Graph of M$ 'vp2) versus p2 = 1,2,...,14. 

(5,P2) 

M1 

Q,sw 

The graph of Figure (5.3) indicates a sharp peak at p2 = 6,12. Max ,f5*12) 

= 0.95 and Mf5,12) = 0.91 indicated quite high goodness-of-fit. The estimated 

complex period's length are thus: pl = 5 and p2 = 12. The computed complex per- 

iodicity patterns are in Table (5.1) 

Table (5.1): The two multiplicative components of complex periodicity of order 
R=2 for the lengths 5 and 12, respectively: 

Period I 
length I 1 2 3 4 5 6 7 8 9 

I 
10 11 12 

I i=l pl=5 I s("': 93.2 89.9 95.4 94.6 130.7 
I 

i=2 p2=12! s.J12): 89,8 124.4 134.4 102.1 112.4 89.1 80.5 90.9 93.8 95.4 96.7 91.6 
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Discussion 

The complex seasonally adjusted procedure discussed here generalized the 

LPTA approach presented in chapter 2. The classical methods could not adjust 

for complex seasonality simultaneously, a property that the proposed procedure 

has. Besides this desired property the same advantages over classical methods 

given in Raveh (1981) or later in chapter 8 still exist. Some of these advan- 

tages are: Idempotency, possible choosing type of model, any lengths of the 

periods p1,p2,-4q9 and adjust series with missing observations. 
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6. PERFECTLY MONOTONE SERIES 

In the previous chapters we did not deal with series that are perfectly 

monotone, namely, their ~l=l even if seasonal as well as irregular components 

are hidden. In this chapter we point out two alternative ways to treat such 

series. In section (a) usages of series of differences will be discussed to 

) trend component. In (B) the idea of treat series that have convex (concave 

rotating the time axis is suggested. 

(a) Convex (Concave) Series 

Up till now, the shape of the trend has been estimated through monotone 

concepts. The very same concepts could be related to the series of differences 

(of the original series) of order D. Let the difference between two consecutive 

observations Ytml, t Y be Ail’ = Yt - Yt-l. Hence, the difference of order 

d=O is the original observation A(‘) = Yt. 

A series of differences of order 1 is Ah’) t=2,...,N. A series of dif- 

ferences of order d is Aid) t=d+l,,..,N where Aid) = Ahdwl) - Aid-‘). 

Later on we will consider only series of differences of order d=l and call them, 

in short, series of differences. 

A series Yt t=l,..., N is convex (concave) if and only if A{‘) is posi- 

tive (negative) monotone. If Ai') is constant then Yt is a linear series. 

In all the definitions and notations that have been used in earlier chapters 

Ail) could replace yt and convex (concave) should replace the concept mono- 

tone. Hence, convexity and concavity of order m can replace polytonicity of the 

same order, and so on. 

The concept convex relates to a specific form of a monotone shape. In or- 

der to assess the amount of convexity in an empirical series let us define coef- 

ficient of convexity in (6.1), below. 
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(6.1) 

C (Ai - Aj) 

Pl,l = i>j 
C IAi - Ajl 

i>j 

where Ai = A{‘) . 

05 1.11,fi 1. Thus, if ~1 = P~J = 1.0 the original series is convex has pos- 

itive monotone shape. When ~1 = 1 and 1.11,1 = -1 the monotone series has a con- 

cave shape. ~1 = 1 and IJI,~ = O'pointed out that the series is approximately 

a linear one. 

As an example, in Figure (6.1) an artificial series is presented. This 

series has a convex (and monotone) trend and multiplicative seasonality factor. 

For example, series currency component of M-1A money supply presented in Figure 

(2.6) has nearly convex trend measured by PA = 0.84. 

Figure (6.1): An artificial series that has convex trend. 
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(b) Rotating Time Axis 

It is very rare in empirical economic series, yet it may very well be that 

the trends dominate the other components and the original series is perfectly 

monotone while seasonality and irregularity still exist. An example is pre- 

sented in Figure (6.2), below. 

Figure (6.2): 

For example, the series Yt = a + bt + sin t = b(t + sin t) + (1-b)sin t. The 

series is purely additive model of linear trend and seasonal components only. 

For b>l the series is perfectly monotone. By reduction of artificial linear 

trend, t'= a'+ b't (where a - a'>0 and 1 > b-b'>O) from the original series. Y{ 

is obtained 

v =a+bt - a' + b't + sin t = (a-a') + (b - b')t + sin t 

and Yt is not perfect monotone any more for appropriate choice of b', so that 

b'<b and (b-b') is much smaller than 1 and positive. 
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7. x-11: SHORT DESCRIPTION AND SOME NOTES 

Auerbach and Rutner (1978) presented a case of the U.S. Consumer Price In- 

dex (CPI) in which the X-11 Variant program of the Census "seasonally adjusted" 

out of existence a nonseasonal cycle and apparently mistook this nonseasonal 

cycle for a seasonal cycle. Similarly, the above property of X-11 is not a quirk 

peculiar only to the U.S. CPI, but of the procedure itself. To support their 

conclusion, Auerbach and Rutner demonstrated (an artificial series) a distortion 

in seasonal adjustment procedure by X=- 11 where the resulting series contains 

a seasonal! 

The goal of this note is to support Auerbach and Rutner findings and to shed 

light on some other properties and assumptions of the Census X-11 program. The 

properties mentioned here are mainly from the application point of view. In 

Pierce (1980, p.125) we found that, "The Census Bureau's X-11 seasonal adustment 

procedure (Shiskin, Young and Musgrave 1967) represented the culmination of a 

major phase of continuing research in the area of seasonal adjustment." Today, 

the X-11 program is widely used on economic time-series. Thousands of series 

are adjusted by it each year and most of them are decomposed by the multiplica- 

tive version. Many basic and important properties of X-11 have already been dis- 

cussed in the literature, see Pierce (1980) and Auerbach and Rutner and their re- 

ferences and Zellner (1978) and Zellner (1982). Studies of the X-11 filters, in 

the abstract have been done by Wallis (1974, 1981) and Young (1968). 

In the next section, a list of some seven properties are given. In the 

second section, a formula which is based on linear shapes of a series is sug- 

gested for prediction purposes. It has been clarified that the built-in-formula 

used by X-11 for predicting the seasonal factors one year ahead is a special case 

of the formula we derived. In addition to Auerbach and Rutner (1978) some case 

studies are demonstrated here as well as abstract properties. 
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In order to give a common basis for discussion of the X-11, let me cite 

Plewes (1978, p. 178) on his quick review of the main steps in the program, using 

as an example the standard multiplicative option. The program: . . . " 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

Computes the ratios between the original series and a centered 12 term 
moving average. 

Estimates seasonal factors by applying a weighted S-term moving average 
to the SI ratios. 

Adjusts to sum 12. 

Estimates the irregular component by dividing the factors into the SI 
ratios. 

Identifies and removes "extreme" irregulars. 

Obtains preliminary seasonal factors by applying a weighted S-term mov- 
ing average to the SI ratios with extremes replaced. 

Adjusts to sum 12. 

Obtains preliminary seasonally adjusted series by dividing these values 
into the original observations. 

Obtains estimates of the trend-cycle by applying a 13-term Henderson 
moving average to the preliminary adjusted series. 

Estimates new SI ratios, dividing the trend-cycle into the original ob- 
servations. 

Estimates seasonal factors by applying a weighted 7-term moving average 
to the SI ratios. 

Adjusts to sum 12. 

Divides seasonal factors into the original series to obtain a seasonal 
adjusted series. 

The X-11 is an iterative procedure. It repeats some of these steps more than 

once, and in the process, obtains a smoother result. The method gains a good 

deal of flexibility from the foresighted inclusion of various options which serve 

to enable the user to more closely approximate the generating mechanisms of the 

series to be adjusted. Among these that should be singled out for mention are 

options which: 
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1. Provide for either multiplicative of additive adjustment. 

2. Allow selective (or wholesale) prior adjustments to the input data 
series. 

3. Provide for trading day regressions, to test for the influence of chang- 
ing days-of-the-week, which are most important in trade series. 

4. Enable establishment of various sigma limits for identifying extreme 
irregular fluctuations. 

5. Allow selection of various lengths of terms for the moving averages." 

A List of Properties and Assumptions. 

1. Non-Idempotency 

A procedure has the desirable property of idempotency when applying it to 

the seasonally adjusted data (S.A.D.), the estimated seasonal factors are all 

equal to 100% or 0 for multiplicative and additive models, respectively, Fase 

et al. (1973) have showed that X-11 as well as other classical methods based 

on moving average filters that were in use at that time, do not have this prop- 

erty. In contrast, other methods like regression, BAYSEA, see Akaike (1981) 

or LPTA see Raveh (1981), are idempotent procedures. Non-idempotency means that 

overestimation or underestimation of the seasonal pattern may very well occur. 

This is one reason as well as the Slutzky-Yule effect, that significant autocor- 

relations at seasonal lags (e.g., lag 12) are sometimes revealed. The findings 

of Auerbach and Rutner (1978) of existence of seasonality in the seasonally ad- 

justed result of X-11 are in part due to the non-Idempotency property of X-11. 

It might be worthwhile to study the amount of non-idempotency of various proce- 

dures. This can be done by applying procedure on S.A.D. and measuring the 

amount of discrepancy, namely, the amount of deviations of the seasonal factors 

from 100% or 0 for the appropriate model. 

2, Non-Robustness Against an Abrupt Change in the Trend 

No moving average method can be expected to produce sensible answers when 
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abrupt change occurs in the trend. An assumption of continuous trend underlies 

the X-11 program which used moving-average filters. Thus, an abrupt change in 

the trend yields 'strange' estimation results for the other components. As an 

example, let us deal with a 'nice' series that has monotone trend (to be more 

specific, this monotone trend is approximately linear), a fixed seasonal pattern 

and resaonable irregularity. Let us do the following experiment: Multiply the 

last half of the series by a constant k>l (or add a constant k>O). This series 

and the original one are presented in Figure (7.1), below. 

Figure 1: A 'nice' series that has monotone trend, a fixed seasonal pattern and 
reasonable irregularity.--original series,-.-The last half of the 
series multiplied by K>l. 

Applying the Multiplicative (Additive) model of X-11 yields different estimation 

results for the seasonal and the irregular components than is obtained for the 

original series. This means that although seasonality and irregularities have 

not been changed and only the shape of the trend has been changed, different 

estimations are obtained! In other words, X-11 adjusts or removes differently 

the very same seasonal patterns when they are combined with different shapes of 

trends! The amount of distortion in the estimated seasonality (as well as ir- 

regularities) is a monotone function of the abrupt change and/or discontinuity 

of the trend and the location of the abrupt change as well, An empirical ex- 

ample was given in Raveh (1978). This series is the consumption of electricity 

in U.S.A. in the years 1951-1958. The original series is given in table A.1 and 

its graph in Figure A.l, The S.A.D. and trend estimation is presented in Figure 
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A.1 as well. The last half of the original series was multiplied by K=lO. Season- 

al factors estimated by X-11 for both series and the arithmetic mean of the sea- 

sonal factors, separately, for each month is given in Table (7.1). The LPA meth- 

od, see Raveh (1981) which is based on nonmetric filters, was applied to these 

two series. 

Table (7.1): 

Their fixed seasonal patterns are given in Table (7.1) as well. 

The estimated seasonal (in percentage form) patterns for both the 
original and the transformed series as obtained by X-11 and the 
LPA method. (multiplicative model). 

METHOD SERIES JAN. FEB. MAR. APR. MAY JUN. JUL. AUG. SEP. OCT. NOV. DEC. 
I I 
IOriginal 119.7 106.5 103.5 93.3 87.0 81.3 83.4 89.8 96.3 106.3 112.8 119.6 1 

x-11 I I 
ITransform 124.6 113.6 111.8 99.6 91.1 82.0 79.2 82.1 88.4 99.2 109.2 119.2 I 

I IOriginal 119.8 106.8 103.7 93.3 86.6 81.3 83.5 90.1 96.6 105.9 112.6 119.8 1 
LPA I I 

/Transform 119.5 107.6 103.3 93.2 87.4 81.9 83.9 90.4 96.5 105.4 112.1 119.0 1 

The seasonal patterns estimated by the LPA method for the series before and after 

the multiplication by K=lO are very similar. In contrast, the seasonal patterns 

estimated by X-11 to these two series are very dissimilar although the series 

have the same seasonal pattern and irregular component 'by definition. 

3. Variant under shifts. 

An underlying but not plausible assumption of X-11 is the constraint that 

seasonal factors for a calendar year add up to 12 (or 1200%) when applying the 

multiplicative model. The motivation for these constraints is that the annual 

total for calendar year for the original and the seasonally adjusted data series 

would be as close as possible. Thus, different shifts of the series backward or 

forward yield different estimation results for the main components: trend, sea- 

sonal and irregular. For example, let a given series cover m whole years from 

January through December. Then, shift the series six months ahead, or in other 
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words, January is called July, February is called August, etc. Now the series 

includes (m-l) whole years plus 2 half years: Let us apply X-11 to the shifted 

series as well as to the original one. It yields different results, namely the 

original seasonal factors for Januarys are not the same as those for Julys of 

the shifted series. 

The traditional multiplicative model is given in (7.1): 

(7.1) Yt = Tt l St l It t=l,...,N 

where Tt, St, It are the trend, seasonal and irregular of the tth observation, 

respectively. Yt denotes the observation at time t. To keep the S.A.D. in the 

scale of original series, Yt, for a series that covers only whole years, the 

following constraints are set by X-11: 

11 
(7.2) c [si+k]-’ = 12 

K=O 

that is, the arithmetic mean of the reciprocals equals 1, where the index i is 

only for Januarys, e.g. i=l, 13, 25,.... . These constraints are adjusted 

for incomplete years. Other constraints that might be used are: 

11 
(7.3) KzO si+K = 12 

= 

that is, their arithmetic mean equals 1; or much more natural constraints are: 

11 
(7.4) f si+K = 1 

K=O 

that is, their geometric mean equals 1, The natural constraint (7.5) which means 

that every 12 consecutive seasonal values would add up to the same constant, say 

12, implies an assumption of fixed seasonal. This is not the case in X-11. 

11 
(7.5) c [Si+K]-1 = 12 i=l,...,N-12+1 

K=O 

It seems that any constraint other than (7.5) is somewhat arbitrary and relates 

to the vague concept of moving-seasonality which seems a plausible assumption, 



71 

but is not yet defined clearly in literature. Satisfying the constraints approx- 

imately only makes sense if they can be placed in the context of a model. 

Schlicht (1981), Akaike (1981) and Kitagawa (1981) proposed decomposition meth- 

ods using additive models so that constraints like (7.6) would be satisfied 

approximately. Those methods tradeoff between the smoothness of the trend and 

the vary ing seasonal patterns with sati sfying constraints like (7.6). 

(7.6) 
11 
c Si+k ~0 it1 ,...,N-12+1 
k=O 

4, Inaccurate estimation of series with zero-value observations. 

The multiplicative model of X-11 cannot be used for data which includes 

zero or negative value observations. For this case the only available option is 

the additive model. However, applying the additive version of X-11 yields dif- 

ferent seasonal factors for the same zero-value observations within the same 

calendar year ! For a series with zero-value observations (not missing data) ob- 

servations, and a trend other than constant, the additive model is inappropriate 

by definition. This inappropriateness is caused by the fact that the deviations 

of the zero-value observations are proportional to the level of the trend, and 

multiplicative (or mixed) model might be adequate. 

The series "Export of citrus in mil. of $I' from Israel in the years 1961-68 

would be an example. This series has only eight active months each year. In 

June, July, and August there is no marketing; in September the marketing is 

almost zero; hence these four months are omitted. 

Table (3.E.l) and Figure (3.E.l) present the original data and the graph of 

this series, respectively. The seasonal factors for each month in each year are 

given in Table (7.2). 
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Table (7.2): Seasonal Factors Obtained by the Additive Version of X-11 

Year/ Jan. I Feb. IMar. IApr. ( May IJun, I Jul.1 Aug.lSep. /Oct. INov. JDec.1 
I I 

1961 I 7.58 10.00 8.77 5.14 -2.97 -4.32 -4.81 -4.99 -5.07 -4.69 -3.15 -1.611 

I I 
1962 I 7.65 10.14 8.71 5.26 -2.92 -4.35 -4.89 -5.09 -5.19 -4.79 -3.27 -1.561 

I I 
1963 I 7.76 10.50 8.70 5.54 -2.88 -4.50 -5.10 -5.30 -5.43 -4.93 -3.45 -1.481 

I I 
1964 I 7.99 11.10 8.70 6.04 -2.81 -4.84 -5.45 -5.60 5.74 -5.12 -3.62 -1.361 

I I 
1965 I 8.37 11.80 8.73 6.49 -2.73 -5.18 -5.83 -5.95 -6.09 -5.27 -3.77 -1.31) I I 
1966 I 8.80 12,43 8.81 6.93 -2.65 -5.56 -6.19 -6.25 -6.38 -5.39 -3.81 -1.321 I I 
1967 I 9.13 12.84 8.95 7.17 -2.60 -5.80 -6.41 -6.44 -6.57 -5.41 -3.97 -1.421 

I I 
1968 I 9.27 13.09 9.07 7.35 -2.59 -5.98 -6.54 -5.63 -6.64 -5.40 -3.72 -1.471 I I 

Arithmetic1 8.29 11.46 8.77 6.21 -2.74 -5.03 -5.62 -5.74 -5.86 -5.09 -3.54 -1.411 
Mean I I 

These results are incorrect because all four months have no marketing activity. 

Within the months of June, July, August, and September there is a gradual de- 

crease of the seasonal values caused by the monotone trend of the series. 

Series with particular observations that always have zero values should be 

modeled differently from other series. The nonmetric approach, LPA in Raveh 

(1981) can decompose any series that has periods of length p:2<P<N/4 by choosing -- 

the appropriate model: additive, multiplicative or mixed. Thus, series which are 

not monthly, quarterly or weekly, e.g., their length of periods is different 

12, 4 or 7, respectively may be decomposed by this procedure. 

le, period's length of eight P=8 and multiplicative model is 

from the usual 

For this examp 

required. 

5. Uver sensit ,ivity to outliers. 

The sensitivity to outliers of a procedure in estimating the seasonal pat- 

tern can be studied from an infinite number of aspects and ways. For more de- 

tails see Hillmer, Bell and Tiao (1982). The number and amount of the outliers 
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as well as their location can be varied. Here, only one aspect is discussed, 

that of one outlier located in the middle of an intermediate size of a 'nice' 

series. Let us deal with a 'nice' series, such as that given in Table A (in 

Appendix) and plotted in Figure (3.1) and multiply one of its observations, say 

July, by (or add to) a constant k>l (or k>O). By using the multiplicative (addi- 

tive) model on such a series a 'good' procedure is expected to yield slightly 

higher seasonal values for July’s and lower values for the rest of the 11 months 

in order to agree with the constraints given in (7.2), (7.3) or (7.4). If this 

is not the case the procedure is defined to be over sensitive to outliers. 

As an example the series "U.S. Retail Sales in Millions of Dollars" in the 

years 1960-1964 has been studied. This is a sub-series of the example given in 

Shiskin et.al. (1967) and chapter 3, earlier. This sub-series of N=60 observa- 

tions has nearly fixed seasonality and the monotone trend is nearly linear, The 

observation in July 1962 was multiplied by K=2.0. As a result, the seasonal val- 

ues for June, July, August and September were increased, which indicates the un- 

desirable property of over sensitivity to outlier. In Table (7.3) the arithme- 

tic mean of seasonal factors that were computed by X-11 (multiplicative version) 

are given for the original series and the series with the outlier in July 1962. 

Table 3: Arithmetic Mean of Seasonal Factors (Presented in Percent) for the 
Series "U.S. Retail Sales in Mil. $, in the Years 1960-64" and the 
Series with July 1962 as an Outlier, 

SERIES Jan. Feb. Mar. Apr. May I Jun. Jul. Aug. Sep.1 Oct. Nov. Dec.1 
I I 

Originali 89.5 84.4 97.5 99.0 io3.3iio3.0 99.0 100.4 97.Oi102.7 103.2 120.8i 
I I I 

With one1 
I I I I 

Outlier I 87.1 82.9 95.3 97.6 101.6~104.6 112.0 102.3 97.41100.6 99.9 118.31 

Two alternative methods suggested by Burman (1965) and Raveh (1981) do not have 

this drawback of over-sensitivity to outliers, at least for the aspect discussed 

here. The SABL technique suggested by Cleveland, Dunn and Terpenning (1978) is 



74 

also insensitive to outliers. The reason is that the smoothers in SABL are 

based on moving medians as well as moving median-regressions, moving robust- 

regressions and weighted moving averages. 

6. Distinction Between Fixed and Moving Seasonality 

Since X-11 has no precise definitions for the various components, there is 

no distinction between the case of fixed and moving seasonality, For N=36 obser- 

vations, X-11 automatically produces estimates for fixed seasonality. For other 

cases, moving seasonality is assumed. There is no clear criterion to decide whe- 

ther the seasonality is fixed or moving. The F-test is invalid and not usually 

used. 

7. Choosing the Appropriate Type of Models 

The lack of definitions and clear critera does not enable the user of X-11 

to choose the appropriate mode? of seasonality: Additive or Multiplicative. 

Thus, in order to do so, the user needs to use some other techniques such as 

Durbin & Kenny (1978) or Raveh (1981a). For the case where Mixed (Additive- 

Multiplicative) model is appropriate, the user is advised to use either Durbin 

and Murply (1975), or Raveh (1981). In Raveh (1981) the appropriate type of 

model is chosen based on goodness-of-fit measure and parsimony principle. 

8. Absence of Constraints on the Irregular Component - -- 

It is desirable that the arithmetic mean of the irregular components should 

be 1 and 0 for the multiplicative and additive models, respectively. X-11 does 

not have such above constraints. 

Forecasting Seasonal Factors 1 Unit Ahead 

Let Si 
, 
j denote the,estimated seasonal factor for the jth month (j=Jan,.,., 

Dec.) in the ith year. In order to forecast the 1 year ahead factors ?n+Isj 

based on the previous n year, X-11 apply eq.(7.7) below. 
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(7.7) 
A 

sn+l,j = Sri,,, + 1/2[Sn,j - Sn-l,jl = 
(j=l ,...,12) 

. = 1.5 Sri,,, - 0.5 Sn,l,j l 

We will show, in chapter 12, that the formula (7.7) is a special case of our Per- 

sistent Structure Principle for prediction with assumption of linear trend. 

It is interesting to verify that the classical version of X-11 uses formula 

(7.7) in order to estimate seasonal factors one year ahead where a=1.5 is chosen 

as a compromise and not as a function of all the previous seasonal factors. 

Hence, formula (7.7) is a special case of formula (10.10) with a=l.S. Equation 

(10.10) is the formula used for prediction purposes when the identified model 

is an ARIMA(l,l,O) as in eq.(7.8), below: 

(7.8) (1 - eB)ASt = at 

B is the backshift operator such that BSt = St-I and at is a white noise process. 

The parameter 8 in (7.8) is equivalent to (a-l) in eq.(lO.lO). In other words, 

in order to predict seasonal factors one unit ahead, X-11 uses an ARIMA(l,l,O) 

model with 8 = 0.5 (or a=l,S) as a constant and not as an optimal parameter 

estimation process. Recently, we found that many economic series from the 

Bureau of the Census data base have an optimal coefficient very close to 1.5. 

The optimality is in terms of the above Persistent Structure Principle. The 

formula (10) might be too dependent on the last two observations. Other condi- 

tions for linearity could be used in order to overcome this dependence. Thus, 

conditions for every four values as in (7.9) could be used instead of (10.6). 

(7.9) 
sk - Sl s, - s, 

= for all k>l and u>v 

k-l u-v 

The product-moment coefficient of correlation (Pearson's p) could be used as a 

figure of merit as well. 



76 

Conclusion 

In addition to Auerbach and Rutner (1978) conclusions, we point out here a 

list of eight properties and assumptions of X-11. These properties are sometimes 

drawbacks of the Census X-11 program, and users (usually agencies) should be 

aware of them. Properties 2 and 3 are, as a matter of fact, invisible assump- 

tions of X-11. Some of these properties, like 1,2,3 and 5 are due to the mov- 

ing-average filters. As Kendall (1973, p.38) pointed out, there is no optimal 

way to choose the weights as well as the number of elements for the moving- 

average filters. This makes unclear the trade-off between over and under 

smoothness of a given empirical series. It was shown that in order to predict 

Seasonal Factors one unit ahead, X-11 uses a built-in formula based on ARIMA 

(l,l,O) model with a constant (not function of the data) parameter. It seems 

that there is not a best seasonal adjustment method which is always the best for 

any sort of data. The user should be aware of the drawbacks as well as the ad- 

vantages of the various methods and use the appropriate one according to the 

data. 
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8. SOME COMPARISONS BETWEEN LPTA AND X-11 

In this chapter a list of some 15 issues are discussed briefly in order to 

compare the suggested LPTA method with X-11 and Burman's method which is in use 

in the Bank of England. The discussion as well as some assumptions are summar- 

ized in a concise way in Table (8.1). some of the issues were presented in more 

detail in Chapter 7. 

1. Idempotency 

LPTA technique has the property of idempotency by definition. This means 

that applying it to the series from which periodic effects have been removed 

( i.e., to the seasonally adjusted series) results in the same (adjusted) series 

again. It is obvious that repeated application of the technique to a series 

would produce the same result as a single application. Fase et al. (1973) have 

shown that the two methods, X-11 and Burman (1975) as well as other classical 

methods based on moving average filters in use at that time do not have the 

idempotency property. 

2. Robustness Against Abrupt Change in the Trend 

LPTA technique has the property of robustness against abrupt change in the 

trend. Some examples are given in chapter 3(D) and the Census series "U.S. Re- 

tail Sales in Variety of Stores" exhibits in figure 8. X-11 is lacking this 

property, see chapter 3(D) and chapter 7.2. 

3, Variant Under Shifts 

X-11 is variant under shifts. In other words, shifting the series several 

units (months) backward or forward yields different estimations from the main 

components. More details are found in chapter 7.3. The LPTA is by definition 

invariant under shift. 

4. Estimation of Series with Zero-Value Observations 

The multiplicative model of X-11 cannot be used for data which includes 

zero or negative value observations. Incorrect estimation is obtained using the 
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itive vers ion, see chapter 7.4. LPTA method dea 1s with zero-value observa- 

tions the same way as with non-zero observations, see chapter 3(e). 

5. Sensitivity to Outliers 

A very limited study of sensitivity has been done in this report. In 7.5 

it is indicted that X-11 is over-sensitive to outliers, compared to LPTA. 

6. Distinction Between Fixed and Moving Seasonality 

Since X-11 has no precise definitions for the various components there is 

no distinction between the case of fixed and moving seasonality. LPTA is based 

on prespecified definitions, The coefficients of goodness-of-fit enables us to 

decide the appropriate version between fixed and moving seasonality. See 

chapter 4, 

7. Possible Types of Model 

X-11 and Burman methods can use only multiplicative or additive models. 

The nonmetric approach can use the mixed model too. 

8. Choosing the Appropriate Type of Models 

No clear criterion is supplied by X-11 to choose between multiplicative and 

additive models. Some suggestions with examples for choosing the appropriate 

model are given in chapter 3(b). 

9. Constraints on the Irregular Component 

X-11 in contrast to LPTA has no constraint on the irregularities. Thus 

their arithmetic mean may be different from 100% or 0 to multiplicative and 

additive models, respectively. 

10. Minimum Number of Whole Periods Required 

TWO (possibly less) whole periods are required for either the multiplica- 

tive or the additive model, see chapter 3(c). Four periods are required for 

the mixed model. X-11 and Burman methods require 3 and 5 whole periods, respec- 

tively. The B.L.S. (1965) require a minimum of 8 whole periods. 



11. Length of the Period - p 

Any period length p, a<p<[$] can be used by LPTA. a- There is a possibility 

of estimating the period's length if not known in advance, like the periodogram, 

see 2.(a). The two classical methods X-11 and Burman can analyze only series of 

periods length p=12. There is a version of X-11, called X-11-Q which is con- 

structed for p=4 as the length of the period. There is no option to choose any 

desired period's length. 

12, Data With Missing Observations 
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By giving zero weights within the coefficient (2.5), the LPTA approach ac- 

cepts series with missing observations and there is also a possibility to cen- 

sor outliers, see chapter 2(c). X-11 and Burman methods lack this property 

and for missing data the user should substitute appropriate value. 

13. Complex Seasonality 

LPTA can very easily handle series that have complex seasonality, namely, 

some seasonal pattern of different period's length are involved simultaneously, 

X-11 as well as other moving-average methods lack this property. More details 

are given in chapter 5. 

14. Perfect Monotone Series 

Series that have dominant trend such that their u = 1, namely, they are per- 

fect monotone series, can not be directly handled by LPTA. Some transformation 

of the axis as in chapter 6(b), or using series of differences are needed as in 

chapter 6(a). X-11 can analyze such series directly. 

15, Taking Turning Points into Consideration 

While using LPTA, turning points should be checked in advance and the pro- 

cedure takes into consideration the coefficient of goodness-of-fit. The defini- 

tion of piece-wise monotone as well as polytonicity is based on this valuable 

information, see for example the series in Figure (2.4). X-11 as well as Baysea 
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procedure will smooth turning points and their over and under estimation will be 

obtained near the turning points. On the other hand, X-11 and Baysea do not 

need any assumption about turning points in advance. 

In Table (8.1) these issues and some other distinction between X-11 and 

LPTA are given. 

Table (8.1): Some Comparisons Between the Nonmetric Approach, Least Polytone 
Trend Analysis (LPTA), and the Known Techniques X-11 and Burman, 
Respectively. 

Issue LPTA approach X-11 and Burman, 
respectively 

Types of filters 

Idempotency 

Minimum number of 
periods required 

Possible types Multiplicative or Additive 
of model or Mixed 

Period's length Any period length p 
2 L p [$I. The "best 

period length may b 
ef 

ound 
from the graph of Mmp . 
In chapter 3(e) the example 
was analyzed with p=8. 

Data with missing 
observations 

Robustness against 
an abrupt change 
in the trend. 

Nonmetric 

Yes 

2 (possibly less) for similar 
model, either pure multlpli- 
cative or pure additive, see 
chapter 3(c). 4 periods are 
needed for the mixed model. 

Could be handled, see 
chapter 3(c). 

Yes, see chapter 3(D). 

Linear (for additive model X-11) 

No (Fase et al. (1973)). 

3 and 5 respectively. 

Multiplicative or Additive only 

12 only, must be assumed in ad- 
vance. There is a version of 
X-11, called X-1lQ which is con- 
structed for p=4 as the length 
of the period. Anyhow, there 
is no option to choose desired 
period's length. 

Cannot be handled, 

No, see chapter 3(D). Continu- 
ity of the trend is invisible 
assumption of X-11 as well as 
other moving average methods. 
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Table (8.1) continued) 

Issue LPTA approach X-11 and Burman, 

Choice of 
appropriate 
model of 
seasonality 

Possibility of 
estimating the 
period's length 
if not known 
in advance 

Observations sign 

Use of data 

Prior assumptions' 
and arbitrary 
specifications 

Shift series back- 
ward or forward 

Constraint on 
the irregular 
component 

Defintion of 
Seasonality 

Analyzing Per- 
fect Monotone 
Series 

Choice among models can be 
made on the basis of the best 
f't i.e., 
7 7 

maximum value for 

Mmp l 

See chapter 3(b). 

Yes, see chapter 3(a) 

Observations may assume In multiplicative model only 
any value in all three positive observations can be 
models. considered. 

Use is made of all observa- 
tions in an equal manner. 

By moving-averages technique 
filters only partial use of in- 
formation contained by observa- 
tions near the ends. 

Polytonicity of the trend. 
Initial values of the coef- 
ficients (Sp = 1; %=O) in 
the numerical aTgoritFm. 
(However, extensive experi- 
ence shows that results are 
not sensitive to these). 

invariant - by definition 

exist 

Yes, chapter 5. 

Not possible directly, see 
chapter 6(a,b). Turning points 
should be checked in advance, 
then taken into consideration. 

There is no clear criterion for 
choosing between the multiplica- 
tive and the additive model. 

No. 

Period length. Span and weights 
in the computation of the moving- 
averages (Kendall (1973), p.38). 
There are arbitrary limits used 
to eliminate extreme values. 

Variant - see chapter 7.3 

Does not exist 

No. 

No need to assume turning points 
in advance and thus do not take 
them into consideration. 
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9. DEMOGRAPHIC EXAMPLE: MEASUREMENT AND CORRECTION OF THE TENDENCY 
TO ROUND-OFF AGt RETURNS. 

This chapter presents a usage of the LPTA Procedure for a demographic ex- 

ample. The series are returned age of men and women in various countries ob- 

tained in censuses. The purpose of our approach is to measure and correct the 

tendency to round-off age returns when the 'true' age distribution is unknown. 

Our technique has been applied to selected populations and compared to two 

alternative classical methods, those of Myers and Bachi. The indices of prefer- 

ence or dislike for each of the ten digit units obtained by the proposed tech- 

nique and the other two classical methods are very similar in results, despite 

the fact that they involve different methodological strategies. 

In addition, our proposed method enables the estimation of the "true" num- 

ber of persons of age t, Tt, that is, the trend component, Thus, indices for the 

preference or dislike of each age can be computed, an attractive property that 

the classical methods do not address. 

It is well known that age measurements are often affected by the tendency 

to rounding: measures with unit digit 0 and 5 and, to a certain extent, those 

with unit digits 2 and 8 appear with a high frequency, while the number of those 

ending with other unit digits is understandable. Two main problems arise where 

data are subject to the tendency to age rounding: how to measure this tendency 

and how to correct for it. Several decades ago this problem was treated by sev- 

eral researchers. Myers (1940) and Bachi (1951, 1953) developed techniques for 

measuring such net misstatements only for all age groups ending in the same unit 

digit i, i = 0,l ,...,9 when "true" age is unknown. These two authors suggested 

a general index for age-accuracy, based on the above measures. Another index 

was offered earlier by Marten (1924) called Whipple's Index and by U.S. (1951). 

Its main drawback, apart from measuring digit-preference only, is that it meas- 

ures the preferences for only two digits, 0 and 5. Carrier & Farrag (1959) 
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attacked the problem by adapting an optimal polynomial for the Case in..which 

only five year age groups are given. 

The purpose of this chapter is to deal with the problem of measuring and 

correcting for the tendency to round-off age returns at single age t=O,I,2..., 

120. In order to solve this problem, the LPTA technique is applied. The method 

estimates the "true" age distribution by means of trend estimation and provides 

indices of preference for each Single age or age group. 

We shall consider the set Yt, the number of persons enumerated at age t as 

time-series with a periodicity of length 10 (the ten digits). The trend compo- 

nent Tt is an estimate of the "true" number of persons at age t. It is further 

assumed that Tt decreases as t increases (e.g., a monotone decreasing) which is 

the case for many populations. While the other two methods cannot be applied 

from age 0 (in the examples cited above --Myers (1940) and Bachi (1951, 1953)-- 

which are restricted to the age range 23-72), no such restriction is needed in 

the method proposed here. 

As we pointed out earlier, our data are the number of persons, Yt, enumer- 

ated as of age t. A series Yt is monotone decreasing if Yi < Yj for every i>j. 

To express Yt in periodic terms, it will be useful to replace the observation 

index t by an index of the form lOa+i, where 10 is the proposed period length 

(of the ten various digits), i is the position (digit) in the sequence of per- 

iods, with the first indices 0, the second 1, etc. We denote the number of com- 

plete periods by n, so that a=O, l,...,n-1, Given this notation, a sequence ‘ft 

t=o ,...,N can be written as YIOa+i (i=O,...,9; a=O,...,n-1). 

By a series of periodic transformations of Yt (with period length 10) we 

shall generate a series Zt whose members are of the form 

(9.1) ZlO+a+i = Yl()a+i/Si (i=O,1,...,9; a=O,l,...,n-1) 

where the 10 transformation coefficients Si represent multiplicative periodic 



84 

factors. The series Zt can be regarded as the preference digits adjusted data 

. in analogous to the known seasonally adjusted data. 

It is convenient to keep Zt in the scale of Yt by setting the constraints 

(9.2) 
Z [Si]-' = 10 
i=O 

That is, their arithmetic mean of the reciprocals equals 1. Let US denote by 

u(y) the coefficient of Monotonicity of a given series YI,***,YN. 

c (Yi-Yj) ' wij 
(9.3) u(Y) = i>j l< <j ci <N where wij ) 0 

"IYi-Yjl ' wij 
i>j 

For simplicity, p(Y) will be denoted by v only. The coefficient of monoton- 

icity when computed for the transformed series Zt, t=O,...,N will be designated 

by u(Z), where, as noted above, t=lOa+i. 

THE LPTA TECHNIQUE FOR ASSESSING PREFERENCE (DISLIKE) AT EACH UNIT DIGITS EFFECTS 

(when the "true" age distribution is unknown). 

We first assess the monotonicity of the original series Yt (of the number 

of persons returned as of age t) by computing D. The preference and dislike 

for the ten digits are the periodic fluctuations. In such cases estimation of 

the ten Si,i=O,l,..., 9 of eq. (9.1) are required. This is done by minimizing 

p(Z) toward -1. 

The closer Min p(Z) is to -1, the closer is the series Yt to being peri- 

odically-monotone. The ten coefficients Si describe the pattern of variations 

within periods and will be considered as representing "seasonal" effects -- pre- 

ference/dislike -- for each digit. We have used as an initial guess the values 

Si=l, i=O,1,...,9. That is, we start with the assumption of no preference/dis- 

like effects. 

For the usual case were I.I > -1, the measure M of goodness-of-fit is: 

(9.4) M = Min p(z)- lo 
1 u 
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THE LPTA TECHNIQUE FOR ASSESSING PREFERENCE (DISLIKE) AT EACH AGE: 

The LPTA technique, in contrast to those of Myers and Bachi, enables the 

assessment of ratios of net misstatement at each age. To do so we have esti- 

mated the trend Tt, of the "true" number of persons of age t. This series has 

to be "smoother", that is, it is more negative monotone than the series zt which 

takes into account only fixed effects for each digit unit (an effect which is 

proportional to the trend). 

Our starting point is the series Zt, which is preference (dislike) adjusted 

data. We shall search for a perfect monotone series Tt which is as close as 

possible to Zt. Thus the loss function to be minimized multiplicative model is 

: I T&-l I N 
= C (Ri-1) subject to the constraint TI<T2<...<TN. 

t=1 t=1 

The Ri are N residuals fit to each age. An additional constraint is that the 

arithmetic mean of the reciprocals of Ri equals 1 is adopted. 

EXAMPLE 

Let us consider some results that are obtained by the LPTA and by that of 

Myers and Bachi, For purposes of demonstration, consider the series of "Males 

in Madras (1911) in the -23-72 age range." The original series is given in 

Table (9.1) and graphed in Figure (9.1). The preference adjusted data as the 

trend component are presented in Figure (9.1) as well. 

Coefficient of monotonicity of the original series Yt is D = - 0.546, and 

Min p(Z) = -0.982 and coefficient of goodness-of-fit is very high, M = 0.959. 

The ten values of Si obtained at the minimum of p(Z) are given in table (9.2). 

Thus the series Zi which is preference (dislike)-free is approximately 

monotone. The measure of preference or dislike of each digit is defined such 

that its mean is equal to zero (see for example, Bachi (1953)), and thus is 

achieved by subtracting 1 from each coefficient. In Table (9.3) the ten measures 
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Table (9.1): Returned Age of Men in Madras, India 1911. (Age Range 20-79). 

Unit Uigits 
Ten 

Digits 0 1 2 3 4 5 6 7 8 9 

20 3,912 586 1,735 713 1,228 4,118 1,272 675 1,394 468 

30 4,964 408 1,176 314 592 3,197 990 446 856 401 

40 4,525 395 749 362 395 2,382 549 275 588 302 

50 3,302 302 417 235 282 1,186 411 153 306 119 

60 2,276 148 237 127 160 518 127 87 129 78 

70 496 23 64 20 61 146 72 17 67 120 

(indices) of each digit are given for the four populations (menj, taken from 

Bachi (1953, p.6) under the heading Rl. The net percentages of each population 

returning ages with inaccurate unit digits may be defined as the sum of the 

positive (or negative) preference indices. 

Let us now use our procedure for assessing preference (or dislike) at each 

age 5, that is, the estimate of the series Ti of the "true" age. This trend com- 

ponent is computed for the same age range 23-71 for men at Madras, 1911. 

Now, having on the one hand Yi and on the other hand Tt, we can compute an 

index for preference of each age by: 

by: 
(i) = (Yt-Tt)/Tt and an index for preference of each digit i, i=O,,..,9, 

(ii) = CYIOa+i - CTIOa+i/CTIOa+i 
a a a 

Let us compute the preference (dislike) of each age by ratio (i) and, in 

addition, other indices for the preference of each digit by ratio (ii). These 

indices are presented in Table (9.3) under the heading R2. In Table (9.4), 

these values are presented for the previous example;--that is, Men in Madras 

1911 at age range 23-72, 



87 

Table (9.2): The Ten Coefficients Si, i=O,...,9 for the Ten Digits 

Digit 0 12 3 4 5 6 7 8 9 Average 

Value 3.86 .33 .71 .29 .45 2.25 .69 .35 .72 .33 1.0 

Some patterns which were unknown just by looking at the data in Table (9.3) 

now emerge in Table (9.5). Among the ages ending with digit 0 the most preferred 

age is that of 60 with index of +4.653 which is also the most preferred of all 

ages. The age with the least index at this range of 23-72 is 30 with index of 

only 2,237. Among the ages terminating in 5 the index is above 1, except 25 with 

index of only + 0.946. The most preferred age is 45 (index = 1.784) among the 

ages terminating with 5. The most disliked age of this population is the age 33 

with index of -0.765. Demographers can generate other substantive conclusions 

by analyzing the results presented in Table (9.4). 

Let us now apply our technique to other data that are based on 

age groups: O-4,5-9,... For purposes of comparisons the Madras exampl 

lyzed at about the same range as the actual series in Table (9.5). 

five years 

e was ana- 

Figure 9.1: Returned Age of Men in Madras, India 1911. **a** Oriqinal Data. 
-a-*-* Preference (dislike) adjusted data, "truel'age assumed 
to be the trend component. 

.-, 
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Table (9.3): A) ;;a;.s;e;E;nr;: ',iz Preference (+) or Dislike (-) for each unit digit 

B) An Index for measuring the inaccurate unit digit in each population. 

These indices are computed for four populations by the three methods of Bachi (B), 
Myers (M), and LPTA in two ways (Rl,R2). An explanation for R2 is given later. 

A) 
Indices of Madras, 1911 Egypt, 1927 Spain, 1930 Australia, 1933 
Each Unit 
digit B M Rl R2 B M Rl R2 B M Rl R2 B M Rl R2 

0 2,80 2.72 2.86 2.90 3.29 3.14 3.76 3.35 .43 .42 .44 .43 .04 .04 .06 .05 

1 -.67 -.65 -.67 -.67 -.88 -.85 -,85 -.87 -.22 -,21 -.20 -.20 -.12 -.ll -.ll -.ll 

2 -.30 -.26 -.29 -.26 -.58 -.51 -.48 -.50 .Ol .Ol .04 l 03 .07 .06 .08 .08 

3 -.69 -.69 -.71 -.71 -,71 -.73 -.81 -.83 -.08 -.08 -.08 -.08 .05 .06 .04 .04 

4 -.53 -.52 -.55 -,55 -.79 -.78 -.83 -.86 -.04 -.03 -.04 -.04 -.02 -,02 -.02 -.03 

5 1.27 1.30 1.25 1.24 2.40 2.38 2.06 1.66 .06 .06 .04 .03 .oo .Ol .oo .oo 

6 -.29 -.30 -.31 -.31 -,74 -.73 -.78 -.75 .Ol l Ol -.Ol -.Ol -.03 -.03 -.04 -.02 

7 -.65 -.65 -.65 -.65 -.67 -.64 -.71 -.64 -.Ol -.09 -.lO -.lO -.04 -.04 -.05 -.05 

8 -.27 -.26 -,28 -.26 -.41 -.42 -.49 -.35 .05 .05 .04 .06 .03 .03 .02 .02 

9 -.69 -.68 -.67 -.67 -.86 -.86 -.85 -.85 -.12 -.12 -.12 -.13 -.OO -.OO .02 .Ol 

B) 
Inaccurate 
rate 
unit 

digit 40.8 40.2 41.4 41.4 56.6 55.2 58.1 50.0 5.6 5.4 5.6 5.5 2.0 2.0 2.3 2.0 
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Table (9.4): Ratio (i) and (ii) for measuring the preference (+) or the dislike (-)for 
each age and unit digit, respectively, and an index for inaccurate unit 
digit (which is the sum of positive preference indices in percentages) in 
age return for the Madras Example. 

Tens 
digits 0 1 2 3 4 5 6 7 8 9 
Ratios (i) 

0 

10 

20 -.734 -.535 .946 -.356 -.642 -.198 -.702 

30 2,237 -.728 -,127 -.765 -.550 1.439 -.245 -.645 -.272 -.653 

40 3.038 -.645 -.320 -.656 -.608 1.784 -.360 -.676 -.310 -.631 

50 3.099 -.624 -.378 -.653 -.536 1.040 -.228 -.675 -.317 -.713 

60 4,653 -.635 -.399 -.658 -.519 1.221 -.332 -.616 -.292 -.645 

70 2.866 -.676 -.259 

80 

90 

Ratios (ii) 2.900 -.672 -.258 -.714 -.550 1.237 -.312 -.651 -.256 -.673 

Index of inaccurate unit digit = 41.37 % 

Table (9.5): Group ages: (five years each) 20-24, 25-29 ,...,70-74 for Men in Madras, 1911 

me 
Group 20-24 25-59 34-34 35-39 40-44 45-49 50-54 55-59 60-64 65-60 70-74 

Actual 
series 8174 7927 7454 5890 6426 4096 4538 2175 2948 939 664 

"True" 
series 9044 7263 7241 6239 6212 4640 4046 2534 2464 989 640 

Index of 
Preference(+) 

disyike(-) -.lO .09 .03 -.06 .03 -.12 .12 -.14 .20 -.05 .04 
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In the first step we use formula (9.1) with only two coefficients Si, i=1,2 

for the two different groups, that is, . 

1. The group of digits ending with 0,1,2,3 or 4 and 

2. The group of digits ending with 5,6,7,8 or 9. 

We obtain the follwing results: P = -0,981, Min u(Z) = -0.988 and coeffi- 

cient of goodness-fit M = 0.377. The two measures of preference (+) or dislike 

(-) for the two groups terminating in O-4 or 5-9 are: 0.05, -0.05, respectively. 

The estimated "true" series Ti for the appropriate groups and the indices 

of preference (or dislike) for each group is given in Table (9.5) 

CONCLUSIONS 

The use of the proposed nonmetric technique (using concepts that were taken 

from the fields of Time Series Analysis) enables the development of a simple and 

understandable technique for both measuring the tendency to round-off each age, 

and estimating the "true" distribution of ages, Some substantive information 

emerges fom the application of this technique, and others may be discovered by 

the application of the proposed method to other empirical data. The proposed 

method requires weaker assumptions than the classical methods. It has the advan- 

tage of not being limited to a specific age range, thus allowing for the estima- 

tion of a very short series (even of 2 whole periods, e.g., 20 observations) of 

series with missing data (by giving a zero weight). A computer program has been 

developed and is available to anyone who is interested. 
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FORECASTING QUANTITATIVE SERIES 

In the first part of this report we discuss approaches, mainly the LPTA, in 

order to reveal the structure of a given empirical series by means of decomposi- 

tions methods. In this part we present two different approaches for prediction 

of quantitative series which are based, in part, on the nonmetric methods dis- 

cussed in the previous part. Likewise, both approaches are based on the (known) 

idea of combining seasonal adjustment procedure with a method for prediction of 

the trend component. In Figure 10 a flowchart of the approaches is presented. 

In chapter 10 the Persistent Structure Principle is presented. This prin- 

ciple means that forecast values are estimated in such a way that the values of 

appropriate coefficients of goodness-of-fit are equal for both the augmented 

series and the original series. The basic assumption is that the 'structure' of 

the series remains the same in the forecasting domain as in the past and thus 

the same goodness-of-fit is obtained. Missing data are treated in a very simi- 

lar way. Our point of view is that future observations are in some way missing 

data out of the range of the series. 

In chapter 11 The Box-Jenkins approach is combined with our LPTA method 

for prediction purposes. For both chapters 10 and 11 some well-known examples 

from the literature and some other examples are demonstrated, 

In chapter 12 the Persistent Structure Principle (P.S.P.) is combined with 

X-11 for forecasting seasonal factors one year ahead. These forecasted factors 

used for seasonally adjusting current data as is done in the Bureau of the 

Census Washington D.C., and other agencies as well. 
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Figure 10: A flowchart for combining a seasonal adjustment procedure with a 
method for forecast the trend component. . 

1 Yt;t=l,...,N I 
I Actual data I 

1 A Seasonally Adjusted Procedure: 
I 
1 Deseasonalizing the original series by means1 
I of the appropriate type of seasonality model1 
1 I 

/ \ 

I 
/ Estimation of Seasonally I [g 

I I 
I Estimation of 

I Adjusted Data (S.A.D.) 1 I Seasonal pattern 
I cg 
I 

I I I 

1 I 
I I I I 
I Forecast the trend or] [g I Forecasting the seasonal 
1 S.A.D.wunits ahead I I pattern, separetely, for 

I cg 
1 

I based on S.A.D. I I each month j, k units ahead I 
I A I 
1 Tn+R 3 a = l,...,k I 
I I 

\ 
* For monthly series p=12 

1 Predicting the actual series by combining/ 
I the forecasts obtained in C and D 
I For example, I 
I 
I G 
I 

N+2 =?N+e l s^i +�si 

I 
i For a mixed and fixed seasonality model. i 

IConfidence Interval is computed from the irregularities.1 
IThe l-a level is obtained by the (l-a) central empirical1 
Iirregularities (either multiplicative or additive); 1 

! usually it is asymmetric interval. ! 



93 

10: PERSISTENT STRUCTURE PRINCIPLE (P.S.P.) FOR PREDICTION OF QUANTITATIVE SERIES 

"jhe thing that hath been, it is that which shall be; and that which is done 
is that which shall be done, and there is no new thing under the sun." 

(Ecclesiastes, 1:9) 

The Persistent Structure Principle is suggested for the purposes of fore- 

casting quantitative time series and exemplified by means of economic series. 

As we already mentioned, the basic assumption is that the 'structure' of the 

series remains the same in the forecasting domain as in the past, and thus the 

same goodness-of-fit is obtained. 

1: Persistent Structure Principle 

Denote by C(Y) a coefficient of goodness-of-fit for a given series Yt; t=l, 

N . . . . . . This coefficient is supposed to reflect the structure of the series with 

relation to some specific definitions for trend and seasonal pattern. Let 

C(l, GN+l) be the same coefficient for the augmented series Yl,...YN,GN+l where 

v^ N+l is the estimated forecast value one unit ahead. If we believe or assume 

that the 'structure' of the given series in the past is consistent, namely that 

it remains the same in the very near future, say 1 unit ahead, then their coef- 

ficients for goodness-of-fit would be the same, namely 

(lO.a.1) C(I) = c(&+l) 

? N+l is the only unknown in equation (10.1). Hence, by solving the equa- 

tion, the estimated forecast value ?N+l is obtained. The reseacher has to choose 

the coefficient with relation to its prior loss function. 

Forecasting the rth unit ahead could be obtained by using the same princi- 

ple based on data and (r-l) values already have been obtained. Hence, in a re- 

cursive way, prediction is achieved for the short-term. Some examples will be 

given later on. 

For a series with missing data, say the i observation, letii(Y,i)=C(Yl,..., 
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Yi-1, Yi+l ,,..,Y,) be the coefficient of goodness-of-fit. The Persistent Struc- 

ture Principle (P.S.P.) suggests that the estimated value Yi could be obtained 

by solving equation (10.1) below: 

(10‘1) C(Y,i) = C(Yi,...,Yi-l,Yi+l,*,,Yn) = C(Yl*-*,Ci***,Yn) = C(l) . 

Let's assume that Yt t=l ,...,N is a time series which can be decomposed into 

its main three components. Hence Yt = f(Tt,St,It) where Tt is the trend, St the 

seasonal component, and It is the irregular component. The first two components 

are systematic, namely, they could be predicted in principle. The latter part 

is the unsystematic part, called irregularity. Three main models are usually 

used for decomposition purposes: Purely Additive, Purely Multiplicative, and 

Mixed model. These models are given below in eq. (10.2), (10.3), and (10.3), 

respectively, 

(10.2) yt = Tt + It + st 

(10.3) Yt = Tt ' It l St 

(10.4) Yt = Tt l It l St + st 

= Zt ' St + St 

where Zt is the seasonally adjusted data. For a periodic series whose period's 

length equals p (e.g., p=l2 for monthly time series), convert the index t into 

i+pa where i is the position of the t *observation within the period. p is the 

period's length and a is the period's index. Thus, for monthly series a=0 for 

the first year, a=1 for the second year, etc. For the sake of simplicity, let 

Yt t=1 ,...,N be a monthly time series, thus N=12L + K, K=O where the series has 

precisely L whole years, 

By using the multiplicative model (10.3) for a given series Yl...YN the 

forecast value 1 unit ahead would be: 

(10.5) G 12L+K+l =f 12L+K+l 4 12L+K+l 

with the assumption that E It = 1 (multiplicative model). If we believe that 

the series is consistent in the sense that the same model (multiplicative in the 
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discussed case) is appropriate, ; 12L+K+l and ?12L+K+l are required. 

Here, the persistent structure principle is used to predict the trend com- 

ponent. Presumably since the seasonality is fixed, it is combined with the pre- 

dicted trend in order to obtain prediction for the series. A prior assumption 

is needed for the 'structure' of trend and seasonality. Even for the linear 

case, an infinite number of coefficients of goodness-of-fit could be defined. 

In the next section the simplest family of coefficients based on the linear 

assumption will be discussed briefly. In the third section, a monotone shape 

for a trend of the series will be presented. Three economic examples will be 

given in the fourth section. 

2. The Simplest Linear Case 

Let L = Zl... Zn be a series. 1. is linear series if and only if 

(10.6) Zi - Zi-1 = Zi-1 - Zi-2 for all i=3,...,N. 

or AZi = AZi-1 for all i=3,...,N where AZi = Zi - Zi-1 

N 
(10.7) or A2Zi = 0 for all i=3,...,V. or C A2 2Zi=0 or !/b2ZiIv = 0 v=1,2 

i=3 i=3 

or any even v. In other words, f is perfectly linear series when its slope is 

constant over time. The series I is the most dissimilar to a linear curve when 

AZi = -AZi-1 or A2Zi = 2AZi. In other words, 1 is the most dissimilar to a lin- 

ear one when its slope changes its sign every two consecutive observations. The 

quantity (10.8) could be used as a basis for a coefficient of goodness-of-fit 

for linearity. 

(10.8) 
i I(A2Zi)lv 

K = ,+-- 

C 12AZil' 
i=2 

Let us deal with v=2 
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(10.9) LIN(Z) 
~ (A2Zi)2 

= C(I) = 1 - K = 1 - i=3 

4’ ~~AZi )2 
i=2 

This coefficient of linearity varies between 0 and 1. 

LIN(L) = C(L) = 1 (k=O) if and only if L is a perfectly linear series. 

LINtI) = c(g = 0 (k=l) if and only if I is of [a,b,a,b,...,b] type series. 

Thus the series [a,b,a,b,..., b] where a#b is the most dissimilar to a linear 

series in our definition. LIN(ZJil (K&O) if the series L is locally linear, 

namely, there are few turning points and in between the series is linear. Since 

both of these extremes are cases where C=O or C=l, the series can be predicted 

without any error. 

By using the coefficient (10.9) and the persistent structure principle, T N+l 

can be computed. Let’s eqUate c(l) = c(&?N+l). By a simple manipulation the 

required TN+1 is obtained: 

(10.10) z* N+l = a ' ZN + (1 - a) IN-1 

where a can be either a(l) = (2JK-2)/(2JK-1) or a(2) = (2JK+2)/(24 K+l) which 

are functions of the data values Zl ,***, ZN l 
For the perfect extreme cases the 

following results are obtained: 

when C(L) = 1 then a=2 and ?N+l = 2ZN - zN-l = ZN + (ZN - $1)~ 

when C(t) = 0 then a=0 and ;N+l = $1 

It is interesting to verify that the classical version of X-11 uses the 

formula (10.10) in order to estimate seasonal facors 1 year ahead, and chooses 

a=1.5 as a compromise and not as a function of the previous seasonal factors. 

The formula (10.10) might be very sensitive to variations of the last two obser- 

vations. Other conditions for linearity could be used in order to overcome this 

sensitivity. Hence, conditions for every four values as in (10.11) could be used. 
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(10.11) 
zi - zj zk - Zl 

(i-j) = (k-l) 
for all i>j and k>l 

or (10.11) for pairs of observations (Zi, Vi) i=l,...,N. 

(10.12) zi - 'i = constant for all iL j<iLN. 
u 

Yi - Yj 

The product-moment coefficent of correlation could be used as a coefficient of 

goodness-of-fit as well. Thus, for example, we can choose the covariance or a 

proportional measure to covariance as a coefficient C(Xl,...,Xn) = cov(x,i) = 

1 C (Xi-Xj)(i-j). In 
n 
. . . . n. Let us equate 

bra the required Xn+l 

A 

other words, covariance of series Xl,..,,Xn and time t=l, 

Wl ,d**,Xn) = C(Xl9*.*9Xn,~n+1)~ After some simple alge- 

is obtained in formula (10.13). 

n 
(10.13) Xn+l = 1 C 1 C (Zi-Xj)(i-j) + C Xi(n+l-i) 1 

n i>j i=l . 

Equation (10.13) is of course a special case of the formula (10.14) below for 

(Xi,Yj) i=l ,...,n pairs of observations. 

A 

(10.14) X,+1 = 1 
n n+ 
7 

) 
= 1 2 C (Xi-Xj)(Yi-Yj) + 

Yi i>j 
i Xi( Yn+l-Yj) 1 . 
i=l 

3. The Monotone Case 

A series Zl ,...,ZN is (positive) monotone if and only if 

Zi > Zj for all i>j. 

Thus, one coefficient for goodness-of fit to assess monotone association of 

series and its order is the following: 

(10.15) 
1 (Zi 

MON(Z) = P = ;'j 
-Zj)Wij 

Izi - Z 
i>j 

jlwij 

where weights Wij >O. For sake of simplicity let Wij z 1. By using the Persist- 

ent Structure Principle (P.S.P.), presuming that the trend for the given series 
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is monotone, we equate MON(L) to MON(&?N+l). After some algebra the required 

forecast value is obtained. 

(l- ll)CZi + (l+ ll)CZi 

(10.16) &+l = 

Nl N2 

U- dN1 + (l+ u)N2 

where u is the Monotonicity coefficient for the series Zl 7 39.*.-n, namely a func- 

tion of the data. C Zi, C Zi are the summation over N1 and N2 values Zi such 

Nl N 
that they are less than ?Nfl (yet, 

c 
unknown) or greater than ZN+l, respectively. 

The unique solution of (10.16) is obtained by a finite iterative algorithm when 
N 

-l<p<l. When P = 0, ?N+l = N-l CZi, the arithmetic mean. 
i=C ,-..I 

namely, When F! = 1 

the solution is not unique any more, and any TN+1 _ > Max {Zi) could be obtained, 
i 

For such a case of perfect monotone shape of the series, additional constraints 

should be used. Thus, the same formula could be used for the series of first 

differences, etc. Hence, the condition for a monotone convex (concave) series 

isthat ~=l (u= -1) for the first differences of the original series. 

The coefficient u could be generalized to any polytone series with m turn- 

ing points and to a coefficient of local monotonicity as well. 

4. The Quadratic Case 

A series Zl,..., Zn is quadratic if and only if the series of first differ- 

ences is linear. In other words, A?,..., An is a linear series where A i = 

Z-j-Z-i-1 i=2,...,n. Based on the solution obtained in section 2 for the monotone 

case the prediction formula based on the assumption of a quadratic shape is 

given in (10.17): 

(10.17) ;in+l = (l+a)X, + (l-2a)Xn,1 + (a-1)X,-2 

where the coefficient a is a function of the data and is computed the same way 

as for eq,(lO.lO). A good compromise as is done in X-11 could be for a=1.5. 

For a=1.5, eq.(10.17) is reduced to the following formula: 



99 

(10.18) in+1 = 2.5 X,., - 2x, + 0.5 ' x,-2 

Similar formulas could be derived to higher order of polynoms, For example, the 

prediction equation for the Qubic case is given in (10.19) and the reader can 

very easily derive formula to higher order of polynom. 

( 1q.19) zn+l = (2+a)Xn - 3a Xn,1 + (3a-2)X,-2 + (1-a)Xn,3 . 

The author suggests plugging eq. (19.17) or (10.18) into X-11 program for more 

complicated case. 

5. Prediction by Examples 

The persistent structure principle could be used for purposes of prediction 

of trend and seasonal components. For the examples below, fixed seasonality was 

assumed, or in other words, Sr+T2L = Sr+l2(L-M) for r=l,..., 12 and M=l ,***, L. 

The prediction for the trend was obtained by using the Persistant Structure 

Principle (P.S.P.) for the seasonally adjusted series Zt t=l ,**-,, N. These ex- 

amples have been decomposed by the nonmetric method LPTA discussed earlier. 

a. Consumption of Electricity in the U.S.A. in the years 1951-58 

This series of 96 observations is given in the chapter 3.D. From the plot- 

ted graph in Figure (3.Dl) below it is easy to verify that the series has approx- 

imately a fixed seasonal pattern combined with a monotone trend. As a matter 

of fact, the trend is very close to being linear. 

The estimated seasonal pattern for the first 84 observations is given in 

Table (10.1) for multiplicative and additive models. 

Table (10.1): The estimated seasonal patterns for electricity in the U.S.A. using 
the multiplicative model (presented in percentages) and Additive 
Model (presented in their absolute values), 

Models Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov, Dec. 
I I I 
' Mul. I 119.8 107.6 103.6 92.9 86.3 80.9 83.2 90.0 96.8 106.2 113.0 120.11 

I I 
1 Add. I 67.1 25.1 12.1 -23.9 -45.9 -63.9 -56.9 -34.9 -10.9 22.1 43.1 67.11 
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Forecasts for 12 units ahead were computed for the year 1958 with the 

assumptions of linear and monotone trend for both Multiplicative and additive 

models. The prediction is based on the previous 7 whole years and are given in 

Table 2. The coefficient of goodness-of-fit C=O.996, This coefficient is the 

coefficient of monotonicity (10.15) for the seasonally adjusted series, namely 

seasonality has been removed. The arithmetic mean of the absolute percent error 

is lower for the additive model than the multiplicative one. With the monotone 

and linear assumptions for trend, almost the same results were obtained. Equa- 

tions (10.16)and (10.10) have been applied recursively for the seasonally ad- 

justed data Zl ,*a*, Z84~;84+1 v-&4+12* The predicted values are produced by 

multiplying (adding) the forecasted value for the Trend ;84+1 ,ooo,&4+123 with 

their appropriate fixed seasonal coefficients: Sl,S2...,Sl2 (Si,..,,s12) 

respectively. 
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Table (10.2): Actual data, forecasted values and percent error for the year 1958 ob- 
tained by the Persistent Structure Principle (P.S.P.) method. Prediction in 
(a) and (b) is obtained by monotone and linear assumption, respectively, 
using multiplicative model. In (c) and (d) an additive model was adopted. 

Jan. Feb. Mar. Apr. May Jun Jul. Auq. Sep. Oct. Nov. Dec. 
I 

i Actual i i 
I Data 1529 477 463 423 398 380 389 419 448 493 526 560 1 

I 
IMultiplicative I 
I Model I 
I I 
1 (a) Mon 1518 

I 
I 

I % r2*l 

/ (b) LIN 1512 I 
I % I-3.2 
I I 
IAdditive I 
I Model I 
I I 

I (c) Man 1512 I 

I % 1-3a2 
I (d) LIN 1517 
I I 
! * % l-2.3 

463 448 402 373 350 360 390 419 460 489 520 

-2.9 -3.2 -5.0 -6.3 -7.9 -7.5 -6.9 -6.5 -6.7 -7.0 -7.1 

456 441 396 367 344 354 383 412 452 481 511 

-4.4 -4.8 -6.4 -7.8 -9.5 -9.0 -8.6 -8.0 -8.3 -8.6 -8.7 

470 457 421 399 381 388 410 434 467 488 512 

-1.5 -1.3 -0.5 0.2 .3 -.3 -2.1 -3.1 -5.3 -7.2 -8.6 

475 462 426 404 386 393 415 439 472 493 517 

.4 -.2 .7 1.5 1.6 1.0 -1.0 -2.0 -4.3 -6.3 -7.7 

The arithmetic means for the 12 absolute percent errors for the 4 variants are: 

(a) 5.8 (b) 7.3 (c) 2.8 (d) 2.4 

(b) The Chatfield-Prothero Case-Study: Sales of Company X 

This example of 77 observations was discussed earlier in chapter (3.b.l). 

As we have already mentioned, this series, was analyzed as a case-study by 

Chatfield and Prothero (1973) and some other 10 discussants in the Journal of 

the Royal Statistical Society (1973) part A. The criginal series is given in 

Table B in Appendix B and its graph is plotted earlier in Figure 3.b.2. 

The estimated seasonal pattern based on the 77 observations is given in 

Table (10.3). The coefficient of goodness-of-fit (10.16) equal to C=,954 is ob- 

tained by using multiplicative model. The actual data and forecasts for 6.units 
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ahead obtained by our P.S.P. method are present in Table (10.4). The predicted 

values obtained by Chatfield 81 Prothero and Box-Jenkins (1973) are presented as 

well for comparison purposes. Chatfield & Prothero identified an ARMA(1,O) 

x(0,1)12 model on Wt = 77121ogTOYt where Yt is the original series. On the 

other hand, Box and and Jenkins suggested a different transformation on data 

and hence they identify the same ARMA model on Wt = VV12Ye25. 

Table (10.3): Estimated Seasonal Patterns Using Multiplicative and Mixed Models 
for the 'Sales of Company X'. 

1 Model ) Jan Feb Mar Apr May Jun Jul Aug Sep Ott Nov Dee ) 

I I I 
I Mult. 1130.0 82.8 64.7 56.5 43.2 51.0 68.0 86.4 134.5 171.4 178.9 132.61 
I I I 

Mixed zt 1131.7 108.3 75.4 77.1 43.4 55.4 63.0 75.6 117.6 150.4 152.2 142.71 
I I I 
! St I -5.1 -71.3 -39.8 -71.3 -19.7 -17.5 31.9 52.0 52.3 48.5 56.3 -16.31 

I I 

Table (10.4): Actual data and forecasts value for 6 units ahead starts from June 1971 
for the various methods. The values in parentheses are perpercent errors. 
50% confidence interval for the mixed model is (92.5, 106.2) percent and 

I 
for the multiplicative model (93,6, 107.4) percent approximate1 

/The Method I Jun. Jul. Aug. Sep. Oct. Nov. M.A.P.E. t 
I I 
IActual Data 1 260 304 390 614 783 872 
I 

I 
I 

IChatfield-Prothero 
I 

1 305 482 673 990 1297 1387 

I 
1 (17.3) (58.5) (72.6) 

I 

I 
(61.2) (65.6) (59.1) 55.7 I 

IBox-Jenkins (Using 
I Y-25 Transformation) 

1 286 409 511 761 966 1091 
1 (10.0) (34.5) (31.0) 

/ 
(23.9) (23.4) (25.1) 24.6 

I 
1 

JP.S.P. 1 247 329 417 
50% confidence interval** 

649 828 864 I 

I 
~231,265)(308,353)(391,448)(608,698)(775,889)(809,928) I 

IMultiplicative Model 
I (monotone trend) 

I (-5.0) (8.2) (6.9) (5.7) 
I 

I I 

(5.7) (0.9) 5.4 1 

(P.S.P. 253 319 I 398 
50% confidence interval* 

1 619 786 823 
I 

(Mixed Model,Monotone Trend!(-2 7) . 
(223,269)(2~~,~39)(36~i4~~)(572,658)(727,835)(761,875) I 

, (0.8) (0.4) (-5.6) 2.7 I 
I 

* Mean of absolute percent error. 
** The confidence interval is based on multiplicative irregularities. 
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(c) International Airline Passenger: Monthly Totals 

This very well known series was analyzed by Box and Jenkins (1970, p.305) 

and has been discussed in chapter 3 as in example 3.b.2. The trend is clearly 

monotone and for a periods of length p=12 a quite fixed seasonal pattern seems 

to be a good approximation. Box and Jenkins assumed that the underlying model 

of seasonality is a multiplicative one and thus they transformed the raw data by 

natural logarithms. For the transformed series an ARIMA (0,1,1)x(0,1,1)12 model 

was identified (known as the Airline Model). Forecasts for 12 months ahead were 

made from an arbitrarily selected origin, July 1957, That means that the para- 

meters for the model VV121nYt = (l-es) (l-$B12)at were computed on the first 102 

observations. By using the TYMPAC* program the following values were estimated: 

8 = 0.3897, I$ = 0.6257 and R2 % 0.983. The predicted values are given in Table 

(10.6). Forecasts obtained by the P.S.P. method with the assumption of monotone 

trend were computed as well as for a short subseries of 30 observations, starts 

from Jan. 1955. The estimated seasonal patterns are given in Table (10.5). 

Table (10.5): Estimated Seasonal Pattern that were computed using Multiplica- 
tive Model (a) for the first 102 observations, (b) for the 30 obser- 
vations prior to July 1957, and (c) as in (b), using additive model. 

I I 
1 Series/ Jan Feb Mar Apr May Jun Jul 

I 
Ml Sep Ott Nov Dee I 

I 
I 

I 
; (a) 1 91.1 89.0 104.0 100.6 98.7 110.0 121.3 119.7 104.7 91.5 79.5 89.8 

I 

1 (b) I 90.8 87.8 99.3 98.9 98.2 115.5 126.8 120.5 104.3 90.2 78.3 89.4 
I I 
i (c) i-26.1 -39.4 -1.9 -7.2 -6.2 38.8 85.6 68.5 18.5 -30.5 -67.5 -32.5 

* TYMPAX Program (Estimation of parameters in Linear Time Series Models) are owned 
by the Queen's Statistics Council of Canada and approved by Donald G. Watts. 
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The estimated Seasonal Patterns given in table 5 for (a) and (b) seem very 

similar. It indicates that the multiplicative seasonal component is nearly 

fixed and that the nonmetric approach can estimate seasonal component with as 

low as 30 observations. The prediction obtained by the P.S.P. method based on 

the first 102 observations is about the same accuracy as that obtained by Box- 

Jenkins, However, using P.S.P. on the most recent past (only 30 observation) 

yields much better forecasts with monotone trend assumption with both multipli- 

cative and additive models. 

Table (10.6): The Airlines data: Forecasts for 12 months ahead (starting from July 1957 
obtained by (a) Box-Jenkins Approach, (b) P.S.P. method using multiplicative mod- 
els. In (b.1) and (b.2) monotone and linear assumptions have been assumed. For 
the same forecasting range the P.S.P. method has been used based on the 30 obser- 
vations starting from January 1955. In (c.1) and (c.2) the forecasts values are 
given presumably monotone and linear trend, respectively, using multiplicative 
model. D.l and D.2 are similar to (c.1) and (c.2) except that additive model has 
been used. (lh e values in parentheses are the percent errors). 

The Method1 Jul Au!3 Sw Ott Nov Dee Jan Feb Mar Apr May Jun M.A.P.L 
I 

( Actual I I 
I Data1 1 465 467 404 347 305 336 340 318 362 348 363 435 I I 
I I 
I 
iBox- i 

i 1 

465 457 405 354 307 355 365 353 413 405 410 477 i i 
IJenkins( (1.0) (-2.1)(0.2) (2.0) (.7) (5.7) (7.4)(11.0)(14.1)(16.4)(12.9) (9.7)1 6.8 ) 

I I I I 
)P.S.P. i 
I (b.l)Monl 432 426 373 326 283 320 324 317 371 358 352 392 

I 

I 
I(-7.0)(-8.7)(-7.7)(-6.0)(-7.1) (4.8)(-4.5) (-.3) (2.4) (3.0)(-3.1)(-9.9)1 5.4 j 
I 

; (b.2)Linl 477 476 418 366 318 359 365 356 417 403 395 440 i 7.1 i 
) (2.7) (1.9) (3.5) (5.5) (4.4) (7.0) (7.3)(12.1)(15.1)-(15.7) (8.9) (1.3)1 I 

i (c,l)Moni 460 437 378 327 284 324 329 319 360 359 356 419 i i 
I 
I 

I(-l.O)(-6.4)(-6.4)(5.8) (-6.9)(-3.6)(-3.2) (0.3)(-0.5) (3.2)(-1.9)(-3.7)l 3.6 I 

I (c.2)Linl 465 443 383 332 288 329 334 32.3 365 364 361 425 

I 

I I I 
I (0) (-5.1)(-5.2)(-4.3)(-5.6)(-2.1)(-1.8) (1.6) (0.8) (4.6)(-0.5)(-2.3)l 2.8 I 
I I I 

1 D.l Mon i 467 450 400 351 314 349 355 342 379 374 375 420 1 
; (0.4)(-3.6)(-1.0) (1.1) (2.9) (3.9) (4.4) (7.5) (4.7) (7.5) 3.0 

I D.2 Lin I 478 466 418 

(3.3)(-3.4)l I 

369 

I ; 

333 368 374 361 399 393 394 439 

I 

I 1 
1 (2.8)(-0.2) (3.5) (6,3)(-4.0) (9.5)(10.0)(13.5)(10.2)(12.9) (8.5) (0.9)\ 6.9 ] 
I I I 
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The following are two out of 13 series prepared at the Bureau of the Census 

the ASA-Census-NBER (October 1981). These are Bureau of Labor Statistics 

ies. Their original observations are given in Tables E and F in Appendix B. 

Agricultural Employment, Men, 20 years and older 
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This monthly series from Jan. 1967 till October 1980 has 166 observations. 

It seems that the trend has mainly three turning points: The first 5 years and 

the next 5 years have dk:ine trend each. In other words, this part of the ser- 

ies is a piece-wise monotone of order 2. The last part of the series has a posi- 

tive slope trend. By applying multiplicative model the folliwng coefficients of 

Polytonicity were obtained for monotone assumption: u 12) = -0.64,MaxJ ~11 = f 

0.86,M{12) = 0.63. When Polytonicity of order k=3 was assumed P3 = 0.38 

MaxJu3j(12) = 0.90 M$12) = 0.84. The estimated seasonal pattern is: 

Jan Feb Mar Apr May Jun Jul Aug Sep Ott Nov Dee em- --- 

91.6 92.5 94.2 99.2 102.5 107.2 107.1 105.6 104.4 103.6 98.4 93.7 

In Figure (2.2), the original series and trend estimation is given. 

A long range prediction has been done to the last 24 observations based on 

only 24 observations prior to'the forecasting range. Each predicted value was 

based on the previous forecasted value in a recursive way. Assumption of fixed 

seasonality has been used. In table 10.7 the original observations and fore- 

casted values are presented. We tried our P.S.P. approach, multiplicative model 

with both linear and montone assumptions. For purposes of comparison and for 

the same range, prediction results obtained by Gersch and Kitagawa (1982) are 

presented as well. the innovative step in Gersch and Kitagawa report is the 

maximization of the expected entropy of the predictive distribution interpreta- 

tion of the minimum AIC procedure. The Modeling and smoothing of series is 

done using a Kalman prediction/smoother Akaike AIC criterion methodology. 
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Table 10.7: Original data and forecasts values obtained by Gersch and Kitagawa and 
the P.S.P. method (multiplicative model) with assumotions of linear - -. 
and montone trend. 95% confidence interval (multiplicative irregular- 
ities are 95.6 and 106.1 percent of each point estimation. 

Year 

1978 

19';9 

1980 

Month Original 

2277 
2250 
2084 
2117 
2176 
2237 
2342 
2509 
2520 
2554 
2498 
2472 
2403 
2292 
2160 
2213 
2217 
2255 
2422 
2470 
2475 
2455 
2525 
2459 

Gersch & Kitagawa 
Prediction %Error 

2333 
2201 
2148 
2167 
2222 
2363 
2444 
2569 
2561 
2511 
2465 
2465 
2348 
2230 
2186 
2208 
2262 
2401 
2479 
2602 
2592 
2540 
2495 
2494 

(2.5) 

Average of absolute percent error: 2.6 

(e) All Employees in Food Industries 

P.S.P. 
Multiplicative 

MON %Error LIN 

2344 (2.9) 
2248 -(O.O) 

2294 
2189 
2166 
2095 
2133 
2263 
2409 
2552 
2478 
2484 
2396 
2415 
2276 
2182 
2164 
2094 
2132 
2263 
2409 
2552 
2479 
2484 
2396 
2415 

2229 (6.9) 
2157 (1.9) 
2197 (0.9) 
2331 (4.2j 

Ei [:*:I 
2553 (1:3) 
2559 (0.2) 
2469 -(1.2) 
2488 (0.6) 
2344 -(2.5) 
2248 -(1.9) 
2229 (3.2) 
2157 -(2.5) 
2197 -(0.9) 
2331 (3.4) 
2481 (2.4) 
2629 (6.4) 
2553 (3.1) 
2559 (4.2) 
2469 -(2.2) 
2488 (1.2) 

2.7 

%Error 

(0.7) 

2.4 

This series from January 1967 till December 1979 includes 156 observations. 

The series has 3 main turning points, More specifically, the trend for the first 

3 years, the next 5 years, and the last 5 years has increase, decrease and in- 

crease tone, respectively. Some of the computed values are: u3 = 0.38, 

Max/r! 12)l 
s 

= 0.90 and M 12) = 0.84. 
s 

The estimated seasonal pattern is; 

Jan Feb Mar Apr May Jun Jul Ott Nov Dee - --- -- Aug Sep m - -- 

96.7 95.9 96.0 95.8 96.7 99.9 101.9 106.6 106.9 103.5 101.0 99.0 
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In Figure (2.4), the original series the trend estimation is exhibited. 

A long range prediction has been done to the last 24 observations namely 

for the years 1978 and 1979 based on only 24 observations prior to the predic- 

tion range, namely, the years 1976 and 1977. In table 10.8 the actual data and 

the forecasts results obtained by our P.S.P. approach (multiplicative model and 

Gersch-Kitagawa approach are presented. 

Table (10.8): Original data and forecast values obtained by Gersch-Kitagawa approach 
and P.S.P. methods (multiplicative model) with assumption of monotone 
and linear trend. 95% confidence interval (based on multiplicative ir- 
regularities) are approximately 98% and 101.4%, respectively. 

Year Month / Original 

1978 1 
2 

i 
5 
6 

I, 7 
8 
9 

:: 
12 

1979 1 

: 
4 

II 5 

i 

ii 

:: 
17 

I data 

1665 
I 1668 1656 

1664 
I 1669 
I 1749 1722 

I 1830 1823 

1774 
I 1746 
I 1685 1724 

I 1676 1666 

1666 
I 1679 
1 1750 1728 

1829 
I 1835 
I 1782 
I 1736 

-- I 1706 

Average of absolute 
percent error= 

I 

Gersch-Kitagawa I Raveh (P,S.P.)(Multiplicative)l 
% Error I MON % Error LIN % Error I 

1650 
1641 
1645 
1645 
1663 
1722 
1760 
1849 
1855 
1799 
1753 
1717 
1671 
1660 
1663 
1663 
1682 
1741 
1779 
1869 
1875 
1819 
1773 

I 
I 1660 -(0.3) 1669 

1665 
1658 
1665 
1678 
1738 
1768 
1852 
1859 
1787 
1744 
1705 
1672 
1666 
1658 
1665 
1678 
1738 
1768 
1852 
1859 
1787 
1744 

i 1654 -(O.lj 
I 1647 -(1.2) 
I 1653 -(0.7) 
I 1666 -(0.2) 
I 1726 (0.2) 
I 1755 (0.3) 
I 1838 (0.8) 
I 1845 (0.8) 
I 1774 (0.0) 
I 1731 -(0.9) 
I' 1693 -(1.8) 
I 1659 -(1.5) 
1 1654 -(0.7) 
1 1646 -(1.8) 
I 1653 -(0.8) 
I 1666 -(0.8) 
I 1726 -(O.l) 
i 1755 (0.3j 
I 1838 (0.5) 
I 1845 (0.5) 
I 1774 -(0.4j 
I 1732 -(0.2) 

(i.3j 
(1.3) 

Ii*:; . 
1737 (1.8) I 1693 -(0.7) 1705 (O-0) I 

1.1 0.6 0.6 
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11: APPLY BOX-JENKINS APPROACH ON SEASONALLY ADJUSTED DATA. 

In this chapter the Box-Jenkins .(BJ) approach is combined with our LPTA 

method for prediction purposes. As mentioned in Flowchart 10, in the first stage 

LPTA procedure decomposes the original data for the appropriate type of season- 

ality model. In the second stage, using the Box-Jenkins approach to the S.A.D. 

gives us forecasts for the trend. Prediction for the series are obtained by 

combining the trend forecasts with the estimated adequate seasonal pattern. In 

the following three examples, we limit ourselves to fixed seasonal patterns only. 

Forecasts for the same prediction range have been done for the first 2 examples 

by P.S.P. approach in the previous chapter. 

Chatfield-Prothero Case Study: 

Predictions for 6 units ahead, starting on June 1971, were obtained by 

Chatfield and Prothero (1973), Box and Jenkins (1975), and others. Some of these 

results are given in Table (11.1) below. As a different tactic, the series has 

been decomposed by LPTA to the Box-Jenkins method. Based on the findings of ex- 

ample 3.6.1, the mixed model was chosen as an appropriate one. We identify* an 

ARIMA (l,l,O) model of the form 

(11.1) (l- gB)V zt = at & -0.585, R2 = 0.91 

where at is a white noise and R2 a coefficient of goodness of fit for BJ approach. 

The ARIMA (l,l,O) model is found by observing in table (11.1) at the 24 first 

autocorrelations of the original data, the first differences, and the partial 

autocorrelations of the first differences and the residual autocorrelations of 

the first differences. The residual autocorrelations are given further in 

Table (11.2). 

* tor identlflcatlon process APCOR program (Auto- 
used. 

and partial correlations) was 
The program is owned by the Queen's Statistics Council of Canada and 

approved by Donald G. Watts. 
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Table (11.1): Actual data and forecasts for six months ahead based on 77 obser- 
vations prior to June 1971. 

(The values in parentheses are percent errors.) 

1971 

The Method 
Average 

June July Aug Sept Ott Nov of 6 absolute 
percent errors) 

Actual data 260 304 390 614 783 872 

CP (Model A) (17.3) (58.5) (72.6) (61.2) (65.6) (59.1) 55.7 

Akaike's (Simple- 328 401 465 890 1036 1079 
minded forecast) 

(26.2) (31.9) (19.2) (45.0) (32.3) (23.7) 29.7 

Box & Jenkins 286 409 511 761 966 1091 
using y-25 
transformation) (10.0) (34.5) (31.0) (23.9) (23.4) (25.1) 24.6 

Harrison 
Muldo Analysis 322 327 484 681 943 932 

(23.8) (7.6) (24.1) (10.9) (20.4) (6.9) 15.6 

Medium & Long-term 255 373 504 749 970 1020 
forecasting 

(2.0) (22.7) (29.2) 27.0) (23.9) (17.0) 19.5 

Manning 
(using Holt- 
Winter) 

299 336 458 696 910 968 

(12.0) (10.5) (17.4) (13,4) (16.2) (11.0) 13.4 
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Table (11.2): Sample autocorrelation and partial autocorrelation of {zt ) 
(Periodicity-free series). 

Series lags Autocorrelations 

zt l-6 ,899 .899 ,838 .829 .796 ,769 

7-12 .720 .689 .647 ,597 .582 .524 

13-18 .516 ,453 ,430 .397 ,374 ,329 

19-24 .311 .270 .243 .200 .163 .128 

Vzt l-6 -.526 .322 -.178 -.007 -.054 .087 

7-12 -.095 -.053 -.127 -.265 .401 -.305 

13-18 .205 -.096 .062 -.097 .188 .lll 

19-24 .123 .OlO .017 .036 -.041 -.120 

Partial Autocorrelation 

% l-6 -.526 .063 .018 -.152 -.148 -.067 

7-12 -.023 -.082 ,209 -.171 .216 .075 

13-18 ,001 .048 .079 -.019 ,112 ,145 

19-24 .094 .060 .275 .051 .056 -.145 

Table (11.4): Residual autocorrelations up to 24 lags* 

lags 

1-12 -.Ol -.03 -.15 -.19 -.05 .02 -.12 .08 -.OO -.14 .24 -.12 

13-14 .06 -.09 -.06 -.Ol .13 -.oo .lO .09 .06 -.Ol -.17 -.25 

* 95 percent limits for correlations are plus and minus .232. 
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In addition, we include 3 additional sets of forecasts; (A) using ARIMA (l,l,O) 

with multiplicative seasonality, (B) using ARIMA (l,l,l) with mixed seasonality 

and (C) using ARIMA (O,l,l) with mixed seasonality. Model 0, that of ARIMA 

(l,l,O) with mixed seasonality is slightly better than Model C which is ARIMA 

WJ). The R2 is greater and the sum of squares after the regression is 

smaller (see Table (11.5)). The cumulative periodogram is smoother (and close 

to the 45 line) and the chi square of the 24 first residual auto-correlations 

(if the model is the right one) is also smaller. Still, the forecasts obtained 

by using the ARIMA (O,l,l) model for the trend look better. 

In order to choose the suitable model when several models fit the data 

equally well we used the MAICE (minimum AIC estimation) procedure which selects 

a model by using Akaike's Information criterion (AIC). The normalized AIC for 

the ARIMA model (p,d,q) is given specifically (see Ozaki 1977, p.293) by the 

equation below 

AIC (p,d,q) = N * log g; + [N/(N-d)] 2(P + q + 1 + 6dO) 

where 

lifd=O 

&dO = 
Oifd#O 

N is the number of data points. $ z = S(+, 8)/N where S(+, 8) is the minimum 

sum of squares of the residuals directly from the series [Zt] t=l,...,N uses a 

backward forecasting technique as described by Box-Jenkins (1970). The $g 

and AIC computed values are given in Table (11.5). By adopting this MAICE 

Procedure we select Model D. 
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Table (11.5): Prediction obtained by combining Box-Jenkins approach and Seasonal 
Adjustment procedure. Three different ARIMA models were combined 
with Mixed Seasonality model. The percent errors are in parentheses. 

Nonmetric 
Method Combined 

with B-J 

Average 

R2 of 
of 

AIC* June July Aug. Sept. Oct. Nov. absolute 
percent 
errors) 

Estimated parameters 

A. Multiplicative model 
combined with ARIMA 278 395 

UAO) (6.9) (29.9 

$= -.55 0.89 27.37 258.9 

482 
1 (23.6) 

772 967 1024 
(25.7) (23.5 ) (17.4) 21.2 

B. Mixed Model 
Combined with ARIMA 266 368 . ~. 419 687 851 896 

LW (2.3) (21.1) (7.4) (11.9) (8.6) (2.8) 9.0 

$= -.65 6 = -*lo 0.91 14.54 212.2 

C. Mixed Model 
Combined with ARIMA 271 342 413 652 827 860 
W,l) (4.1) (12.6) (5.6) (6.2) (5.6) (-1.4) 5.9 

$= -.52 0.90 15.51 215.2 

D. Mixed Model 
Combined with ARIMA 265 365 419 681 849 889 
LLQ (1.8) (20.0) (7.3) (10.9) (8.5) (2.0) 8.4 

;= -.59 0.91 14.38 209.3 

*AIC: Akaike's Information Criterion 

In this example, in contradiction to the previous analysis in J.R.S.S. 

(1973), part A, it seems to us that the mixed model is an approppriate one in 

order to remove the systematc (seasonal) fluctuations. In both methods: P.S.P. 

in the previous chapter and in this chapter, prediction for 6 months ahead, 
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seem much more accurate while using mixed model than mutiplicative, for the same 

range of prediction; 6 months ahead starting from Jun 1971. 

We believe that the main reasons for better result for this case study are: 

1) the mixed (fixed) type model for Seasonality is more appropriate than the 

multiplicative; 

2) No transformation like log or power have been used in order to reduce the 

fluctuations. 

While we avoided transforming the data twice (log and antiolog, etc.), the series 

have not been distorted. 

International Airline Passenger: Monthly Totals 

For the first 102 observations, the following coefficients were obtained 

for multiplicative model: ~1 = 0.94, Max uf12) = 0.996, Mf12) = 0.93 and con- 

vexity measure of the trend UA = 0.76 indicate almost convex curve. The esti- 

mated seasonal pattern is given below (in percentages): 

I Month i I 1 2 3 4 5 6 7 8 9 10 11 12 
I I 
I I 

/ S(12) / 91.2 88.8 103.8 100.4 99.4 110.1 121.6 119.5 104.5 91.3 79.5 89.7 

An ARIMA (O,l,l) model was identified for the S.A.D. with $ = 0.12 and R2 

= 0.986. The forecasts for 12 units ahead are given in Table (11.6) indicating 

slightly better results than those obtained by using only Box-Jenkins procedure. 
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Table (11.6): Forecasts computed by our approach and by BJ for the airlines data 
and the Women Unemployed. 

Series Methods Jan Feb Mar Apr May Jun Jul Aug Sep Ott hov Dee MAPE* 

Actual 465 467 404 347 305 336 
Airlines 
Data 340 318 362 348 363 435 

LPA+ 461 455 398 347 301 339 
ARIMA (O,l,l) 

346 338 394 382 377 419 3.5 

465 457 405 354 307 355 
ARMA (0,1,1)(0,1,1)12 

for logarithm 
transformation 

365 353 413 405 410 477 6.8 

Actual 127.5 128.4 129.5 131.9 120.1 109.1 118.3 
Women 
Unemployed 

Mult.LPA+ 
ARIMA (l,l,O) 126.4 129.0 126.1 122.7 117.2 107.4 111.5 2.8 

Add.LPA+ 
ARIMA (l,l,O) 125.2 127.0 125.0 122.5 118.8 112.0 114.6 2.9 

ARIMA(1,1,0)(0,1,0)12 128.7 135.6 141.7 141.6 136.0 128.5 137.4 10,o 

* Mean absolute percent error. 

Women Unemployed (1,000's) in U.K. l-67 to 7-72. 

This series was analyzed by Anderson (1976, p.132, series E). Anderson 

assumed an additive seasonality model and fitted the following model: 

(l- 0.349B)VVl2Yt = at, namely an ARIMA (1,1,0)x(0,1,0)12 model. Using this 

model for the first 60 observations the value 8 = 0.3376 was estimated 3rd the 

forecasts for seven months ahead are given in Table (11.6). The same series was 

analyzed by our procedure. p2= 0.84 Max I.I$~~)= 0.98, the trend is esti- 

mated as a polytone series of order m=2 with turning point at the 36th observa- 
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vation. Both the multiplicative and additive seasonality models are equally 

suitable with M$12)= 0.90. The seasonality components for each model is 

presented below: 

Month i 1 2 3 4 5 6 7 8 9 10 11 12 

St12) 104.7 106.4 103.8 101.0 96.4 88.4 91.7 95.3 96.5 104.6 107.6 103.6 

,p 4.08 5.48 3.30 .73 -2.95 -9.79 -7.20 -4.39 -2.80 3.98 6.28 3.28 

For both models ARIMA (l,l,O) models were estimated for the S.A.D. The esti- 

mated parameters for these models were 0 = 0.339 and 8 = 0.372, respectively. 

The forecasts for seven months ahead are given for both models in Table (11.6). 

The Box Jenkins approach to time series analysis is a significant step in 

this direction because it provides a general class of ARIMA models which could 

be fitted to a large number of time series. Our mixed (additive-multiplicative) 

seasonality model in this line is an extension of the analysis that can be con- 

ducted using the BJ approach. If "the proof of the pudding is in the eating" 

then our results, both in terms of fit and forecasts using the Chatfield Prothero 

data and two other examples, indicate the possibility of improving forecasting 

by using deseasonalized procedure (for fixed seasonal monthly series). 
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12. PERSISTENT STRUCTURE PRINCIPLE COMBINED WITH X-11 

The Pertsistent Structure Principle is suggested to be replaced by the 

built-in formula of X-11 in order to forecast seasonal factors one year ahead. 

It will be shown that the formula used in X-11 is a special case of the pro- 

posed P.S.P. method, see Raveh (1982). Some of the details have already been 

discussed in chapter 10.2 

Let Si j denote the estimated seasonal factor for the jth month (j=Jan,..., 
, 

Dec.) in the ith year. In order to forecast the 1 year ahead factors S,+I j 
, 

based on the previous n year, X-11 apply eq. (12.1) below. 

(12.1) Cn+l,j = Sri,,, + 1/2CSn,j - Sn-l,jl = 

= 1.5 Sri,,, - 0.5 Sn,l,j l 
(j-1 ,...,12) 

Let s=SI,..., Sn be a series. 2 is linear if and only if SK - SK-I = SK-~ - SK-2 

for all K=3,...,n. or ASK = ASK-~ where ASK = SK - SK-I or A2SK = 0 for 

all K or 2” A2SK = 0 or, 
K=3 

(12.2) 2” 
K=3 

[A~S~]~ = 0 

The above conditions mean that the slope remains constant over time. The series 

S is most dissimilar to a linear curve when A SK = -ASK-l or A2S~ = .?A$. In 

other words, this means that the slope changes its sign every two consecutive 

data points while its absolute value remains the same over time. Thus, the quan- 

tity (12.3) could be used as a measure for linearity. 

(12.3) CQ> 
g [A~S~]~ 

= 1 - K=3 = 1 -R 

:[~ASK]~ 
K=2 
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C(s) might be a coefficient of linearity which varies between 0 and I. 

C(.y = 1 (R=O) if and only if 2 is a perfect'liner series. C(s)=0 (R=l) if and 

only if 2 is perfectly negatively correlate with its order. Thus, the series 

[a,b,a, +. . , b] where afb is the most dissimilar to a linear series in the sense 

of the above definitions for linearity. For both cases when C(s) = 1 or 

CQ) = 0, perfect prediction is obtained. 

A coefficient of association is a numerical value summarizing the strength 

or degree of relationship for two variables, The numerical value of most meas- 

ures lies between -1 and +l (or 0 and 1). If the variables are perfectly asso- 

ciated, according to some criterion of "perfect" the measure achieves its maxi- 

mum absolute value, As a matter of fact, the various coefficients of associa- 

tion are different versions of loss function. As the amount of deviation of em- 

pirical data from a given pefect defined relationsihip (structure) is increased, 

the loss function increased. 

Pearson product-moment coefficient p gets its two extreme values f. 1 for 

perfect linear association either positive or negative slope, respectively, 

p=O means very little about the shape of the curve. 

The Persistent Structure Principle (P.S.P.) means that forecasted values 

are estimated in such a way that the values of appropriate coefficients of good- 

ness-of-fit would be the same for both the augmented and the original series. 

Briefly, the predicted value Zn+I one unit ahead is estimated by solving the 

equation (12.4), below. 

(12.4) C(s) = (S19*--3 Sn> = C(S19-.-9Sn,$+l) = CQ,$+l) 

By using as a figure of merit the coefficient (12.3) and the Persistent 

Structure Principle, Sn+l,j could be computed. Let's equate 

C(Sl,j9***9 Sn,j) = C(Sl,j,-**9Sn,j ,G+l,j)* 

By a simple maniuplation the required $+I,j is obtained: 
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(12.5) $+l,j = a Sri,,, + (I-a)Sn-1,j j=l,...,l2 

where a can be either a(1) = (2JR-2)/(2JR-1) or a(2) = (2JR+2/(2JR+l) is a func- 

tion of the estimated values sl,j,...,Sn,j. For the perfect extreme cases the 

following results are obtained. 

when C(s) = 1 then a = 2 and ;n+l,j = 2Sn,j - sn-l,j 9 

when C(s) = 0 then a = 0 and ?n+l,j = sn-l,j l 

It is interesting to verify that the classical version of X-11 uses formula 

(12.5) in order to estimate seasonal factors one year ahead where a=1.5 is chosen 

as a compromise and not as a function of all the previous seasonal factors. 

Hence, formula (12.1) is a special case of formula (12.5) with a=1.5. Formula 

(12.5) might be too dependent on the last two observations. Other conditions 

for linearity could be used in order to overcome this dependence. thus, condi- 

tions for every four values as in (12.6) could be used instead of (12.1) for 

(Si,Yi) i=l ,...,N pairs of observations. 

(12.6) 
Sk - SE = s, - s,, 

for all k>a and u>v 

YK-v!Z %.I-yv 

The product-moment coefficient of correlation could be used as a figure of merit 

as well. 

With assumption of Quadratic trend the formula (12.7) could be used instead 

of (12.5) 

(12.7) G+l,j = (l+a)S n,j + (1-2a)Sn-l,j + (a-llSn-2,j j=1,2,...,12 

or a built-in formula (12.8) where a=1.5 chose as a compromise. 

(12.8) jn+l,j = 2.5 Sri,,, - Sn,l,j + 0.5 Sn,2,j j=L..,lL 
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Part 3 

QUALITATIVE SERIES 

Concepts of Markov Chains process are suggested to describe the relations 

between consecutive observations of a Qualitative Time Series. For purposes 

of describing a given series, some measures are defined based on the "average- 

mode". A graphic presentation to assist analyzation of a given set of series 

is also suggested later in chapter 17. The technique proposed in chapter 13 

enables analysis and forecast of both qualitative (categorical) and quantitative 

(continuous) series over a given period of time. For the quantitative cases a 

process for finding an “optimal" division into categories is discussed in 

chapter 14. Some examples are given for purposes of demonstration. 
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13. ESTIMATE SEASONAL PATTERN AND PREDICTION 

Time-series are characterized by data which is not independent but serially 

correlated, and the relations between consecutive observations are of interest. 

The dependence among observations of a qualitative time series will be introduced 

using both concepts of Markov Chains and data analytic technique. For purposes 

of description of a given series, some measures are adopted, see Colwell (1974) 

and Raveh and Tapieo (1980): Periodicity (P(s)) for period length s, Constancy 

(C), and Heterogeneity (H(s)). The periodic component is further decomposed in- 

to the two others, a constant part and a heterogeneous part such that P(s) = 

c + H(s)* The three measures defined above rely upon combinations of different 

modes. 

A qualitative time series is often used in fields of research such as 

biology, meteorology, economics, and business administration. Our starting 

point is a collection of ordered cbservations, each one fitting one of R given 

categories; that is, a qualitative time series. Of course a quantitive time 

series that may appropriately be categorized can be analyzed the same way. The 

basic contributions of the chapter are two-fold: (a) Estimating the period's 

length and the pattern of periodicity (seasonal pattern). (b) Estimating Inter- 

val Forecasting of quantitative series that might be preferred, compared to 

usual point estimation. 

Definitions and Notations 

A qualitative time series is a collection of ordered observations, each of 

which falls precisely into one category, among R possibilities, at each point 

in time. Let N be the number of observations in the series. 

A periodic qualitative time series with s as the length of the period, is 

a series CYt1 t=l,..., N in which every one of the j (j=l,...,s) sub-series 

fYj+sk) k=O,l,..., I(t)-11 is a constant series, that is, all the observations 
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fall into the same category. 

An example might be the series Y; = {A,D,C,A,B,A,D,C,A,B,A,D,C,A,B,A,D,C,A,Bl : 

This series of N=20 observations has R=4 different categories. The period's 

length s=5 and the pattern of periodicity is: <14312>. The five constant sub- 

series are: {AAAA), {DDDD), { CCCC), (AAAAl, (BBBB). A qualita- 

tive time series is constant if R which is the number of different non-empty 

categories equal 1, or equivalently the period's length s=l. That is, a con- 

stant series is a generate periodic series. In other words, the series is with- 

in single category with probability 1. A qualitative series is in the least con- 

stant condition where the observations are within every one of the R categories 

with probability l/R. 

A qualitative time series is Heterogeneous when all the observations at each 

point of time j within the period -- (call it position j) -- fall into the same 

category, which is different for each j, j=l,...,s. A necessary condition for 

a series to be Heterogeneous is that R=s. The series Y; = CA,C,B,A,C,B,A,C,B,A, 

C,Bl is an example of a qualitative and heterogeneous time series with R=s=3. 

All observations of the first position j=l fall into category A. At position 

j=2 the category is C, and at position j=3 the category is B. 

Consider a qualitative time series with R categories and let s (positions) 

be the length of the periods, In such a situation the data can be presented in 

a matrix (contingency table) of R x s. In each cell (i,j), Nij is the number of 

observations that fall into category i at the jth position - within each period. 

The matrix denoted by N = (Nij) has R rows for the categories and s columns for 

the s positions in the period. 

For the sake of simplicity assume that we are dealing with a series con- 
R 

strutted from L whole period; i.e., N = L's, L integer and thus 1 N.. = L for 
1J i=l 

all j = 1 ,*-•, S. Let Pij be the relative frequency to be the i category 
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(i=l ,...,R) at the j position (j=l,...,s). Thus, Pij = Nij/L is the empirical 

probability to be at the cell (i,j). Let us denote 5 = (Pij) the R x s matrix 

Of Pij. Let sign by Pj = Max {PijI, e.g., the value of the mode of column j in 
l<i<R 

the matrix. The appropriate category is signed by i(j). Pj is the empirical 

probability of predicting the category of the j position. The arithmetic mean 
S 

of the modes in columns is P = C Pj/S, which measures the mean probability of 
j=l 

the "true" category prediction at any randomly chosen point in the series. Let 

us denote qi the empirical probability of category i, that is, 
S S 

qi = C Nij/N = Z Pij/S. Let q = Max IqiI denote the maximum value of the 
j=l j=l l<i<R 

raw totals, or the model value. 

A perfect qualitative time series of period length s can be expressed by 

matrix P that has only one value of 1 and (R-l) zeroes for each column j, 

j=l s. ,-**, For example, the matrices N = (Nij) and P=(Pij) for the series Y; 

are presented in Table (13.1). 

Table (13.1): Matrices (a) N=(Nij) and (b) p = (Pij) for the series Y;, R=4, 
s=5. P=l, q=o.4. 

R = 4 different 
B[ i i i i4i 4 1 

categories 
cI I I41 ! I 4 ' I 
DI I41 I I i 4 i 

III 
Total I 41 41 41 41 41 20 I 

S = 5 Points with the period 
(a> 

Ill I I I I 
2 3 4 5lqi 

I 
AIlI I Ill I.41 

III 
B I I I I I 11.2 I 

I I I I I I I 

cI I PI I k21 

D I I II I I I2 ’ 
Pj I ll ll li li ii 

S = 5 points with the period 
b) 
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3. Artificial Examples 

The series Y; can be presented as a Markov Chain that has transition ma- 

trix M of order f=5 which is the number of nonempty cells in the N=(Nij) matrix. 

This matrix is given in Table (13.2). There are f=5 different "states": lA, 2D, 

3C, 4A, 58. The state lA, for instance, means that the first observation at 

each period is A. 

Table (13.2): Transition matrix M for the qualitaitve time series Y; which is a 
Markov Chain process. 

1A 20 3C 4A 5B 

M= 
III 

4AI I I 
ill-W-1 

5BllI I I I I 

Notice that although there are four (R=4) different categories: A,B,C, and D, 

there are five (f=S) different states, in the sense of Markov Chains processes. 

State 1A is different from state 4A since the transition process is to go from 

5B to 1A and from 3C to 4A. Series Y; is deterministic in that the dependence 

of every two consecutive observations is perfect. This series is an irreducible 

finite Markov Chain. The states lA, 20, 3C, 4A, and 5B are all persistent, non- 

null states with period f=5 and mean recurrence time 5. By computing its station- 

ary distribution 3 = (~1, 7r27r37r47r5) for the different states, the 

eigenvector 3 = 1, 1, 1, 1, 1 reflects uniform distribution. This solution is 
337;35 

obtained by solving the equation (1). The vector for stationary distribution is 

the eigenvector connected to the eigenvalue X = 1 for the transition matrix M. 

f 
(13.1) Zf M = 3f where C Rj = 1 

j=l 
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The stationary distribution for the 4 different categories: A B C and C is 

the vector gR = (91, 42, 93, 44) = (0.4, 0.2, 0.2, 0.2). The deterministic ser- 

ies Y; can be presented by a flowchart as in Figure (13.1). 

Figure (13.1): Flowchart for the 5 different states of series Y;. 

The f=5 different states: A--+D--+C--+A--+B 
f t 

The s=5 positions 1 2 3 4 5 

Let series Y: be defined so that every one of the 3 categories A, B, or C 

happens at probability l/3 every point of time. Transform this series into 3x3 

matrix, i.e., R=s=3. The P' (Pij) t ma rix is given in Table (13.3) 

This series has 9 different states -- the number of nonempty cells at matrix 

p = (Pij). The f=9 (nine) states are: lA, 2A, 3A, lB, 26, 38, lC, 2C, 3C. For 

example, 1A means to be at category A at position 1, in each period. The appro- 

priate transition matrix M is given below at Table (13.4). For example, 28 means 

that at position 2 the category is B. The probability of the transition from 

each category to each one is l/3. 

Table (13.3): The matrix p = (Pij) for the artificial series Y;. 

12 3 oi 
I I I I I 

A I l/3 I l/3 ' l/3 ' l/3 ' 
III 

B I l/3 I l/3 I l/3 ' l/3 ' 
P = (Pij) = III 

c I l/3 I l/3 ' l/3 ' l/3 ' 
I I I 

Fj I l/3 1 l/3 1 l/3 1 
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Table (13.4): Transition matrix M of the artificial series Y;. 

1A 2A 3A 1B 2B 3B 1C 2C 3C 
I I I I I I I I I 

1A I ‘l/3 I I ‘l/3 I I IV3 I I 
I I I I 

2AI I ‘l/3 I I ,113 I I 
I I Y3 I 

3A 'l/3 I I ‘l/3 I I 
I Y3 i 1 I 

1B I lU3 I I ,113 I I ‘l/3 I I 
I 

2Bl I IV3 I I IV3 I I 
Y3 1 

36 11/3 I I ,113 I I w3 I I I 
I I I I I I 

1c I ,113 I I ,113 I I w3 I I 
I 

2CI I ‘l/3 I I ‘l/3 I I IV3 I 
I I 

3c 'l/3 I I IV3 I I IV3 I I I 

The transition matrix M of this completely random series means that the 

probability to transit from each category to each category is fixed and equal 

l/3. Thus, the stationary distribution for the f=9 states is VJ = (1/9,,..,1/9) 

and for the R=3 original categories is 43 = (l/3,1/3,1/3). 

This completely random series might be presented in the flowchart given in 

Figure (13.2). Every arrow is an event with probability l/3. 

Figure (13.2): Flowchart of the completely random series Y:. 

4. Descriptive measures for qualitative time series 

From the definitionof Periodic Qualitative Time series above, a qualitative 

time series is periodic if the conditional distribution at each point in time 



126 

(within the period) is degenerate and includes only one catyegory. In this 

situation Pj =lfor everyj or f Fj =S. 
- j=l 

Because 1: 5 Pj 5 1 and s 5.; Pj 
‘R J=l 

5 s 

a natural measure of Periodicity is F(,) 

(13.2) P(s) = (R P-l)/(R-1) for (RL2) 

It is clear that 0 5 P(s) i 1. 

%> 
= 1 if and only if the qualitative time series has precisely s as the 

length of period (the s positions). For example, P(5) = 1 for series Y; and 

p(3) 
= 1 for the series Y;. P(s) = 0 if and only if the conditional distribu- 

tion at every point of time j is uniform. For example P(3) = 0 for the series 

Y;. 
pw 

= 1 and P(s) = 0 are the best and worst situations respectively for 

forecasting observations. All intermediate values 0 < P(,)<l describe different 

situations closer to or further from periodicity. A necessary conditon for a 

qualitative time series to be periodic is that s>R. 

A qualitative time series is constant if R=l or s=l. These two possibili- 

ties are equivalent. In mathematical form it means that q=l. We can use the in- 

dicator C = (q-l/R)/(l-l/R) because l/R 5 q 1.1 or 

(13.3) C = (R . q-l)/(R-1) for (R 2 2) 

C=l if and only if the series is constant. C=O if and only if the series is 

in the least constant condition. C=O is equivalent to qi = R for all i=l,...,R 

which means that the stationary distribution for the R original categories is 

uniform as in series Y'; and Y;. 

A qualitative time series is a heterogeneous series with 

thus a natural indicator for such series can be based on the d 

Since O(P-q(l-l/R, the coefficient for Heterogeneity is H(s) = 

(i3.4) Hb) = R(P - q)/(R - 1) . for (R 12) 

7 = 1 and q=l/R; 

ifference P-q. 

(F-q)/(l-l/R) or 

In order to see that P-qi0 or PLq, write the two expressions for p and q: 
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P = 1 c" Max Pij ; 
Ij=l i 

S S 
Of course C Max (Pij 1 1 Max 1 c 

j=l i i j=l 
Pij 1 . 

H(s) = 1 if and only if the series is heterogeneous, which means two things: 

(1) All the distributions within the s points of any period are degenerate, name- 

ly, there is a different nonzero category for each j; i.e., each column of the 

matrix N=(Nij) has only one non-empty cell. 

(2) The non-empty cells are of different categories for each position j (j-l,..,,~. 

Hb> = 0 if and only if p=q, which means that the mode values of each pos- 

ition j are all within the same category i. A necessary condition for a series 

to be heterogeneous is that s=R. 

It is easy to verify that 

(13.5) pb> = C + H(s) 

As P(s) approaches 1, this means that the qualitative time series is more 

periodic. The size of P(s) is affected by the additivity of constancy (C) and 

heterogeneity (H(S)). 

Let us assume that we have a Qualitative Time Series and we want to estimate 

the length of the period in order to know if the series is really periodic. To 

do so, we shall try to transform a given empirical series into matrix of Rxs for 

s=2 ,*.a, R ,...,[$.I. In each step we compute P(s). The value s that brings P(s) 

to a peak (local maximum) which is close enough to 1, (the theoretical maximum) 

is probably the length of the period. 

It is obvious that we are interested in the maximum R which fulfills all 

the above mentioned conditions, because R=l is a trivial solution. As R in- 

creases, the divison of categories becomes finer, and the width of each interval 

(not necessarily equal) of the original qualitative variables becomes smaller 
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A prediction of a Qualitative Time series of N observations depends as 

usual on a loss function. For qualitative data, it might be reasonable to choose 

a method which, if applied to each possibility of states j, will yield the 

least amount of errors in prediction. Thus in predicting the N + k, k=1,2,... 

observation (i.e., k units ahead), the amount of error is the proportion of 

wrong predicted according to the categories of the proposed series, since any 

method of prediction that we adopt must select a particular category in which to 

place the N + k obvservation. Hence, if the supposed observation is in posi- 

tion j within the period, and the category with the highest frequency i is sel- 

ected as the predicted category, then the empirical proportion of error l-Pj will 

be minimized. Therefore the mode category i(j) is the best predictor for obser- 

vation N+k that fall into column j using the minimum number of errors as a loss 

function. Guttman (1941) called this "the principle of maximum probability". 

If the maximum Pj is found in more than one category, there is no unique method 

for minimizing the amount of error. The minimum proportion of errors can be 

seen to still be l-Pj. Goodman and Kruskal (1954) adopted this idea for meas- 

ures of association based on optimal predication and labeled Guttman's coeffici- 

ents as "Xa" and 'Xb'. See also Bishop, Fienberg and Holland (1975). 

Thus for a given point of time N + k we have to compute the appropriate 

position j within the period. The index j as obtained by the formula 

i 

k - [k/s]s when k > [k/s]s 
j = 

S when k = [k/s]s 

where brackets denote the integer part. 

The characterized pattern in a given qualitative time series is thus the 

vector (i(l), i(p),...,i(,)) of length s. The s coordinates are the appropriate 

categories, that is, the caterogies of the modal value in each position. This 
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characterized pattern is the qualitative analogy to the "Seasonal Pattern" used 

in decompositon method of quantitative time series. The goodness-of-fit of this 

characterized pattern for a qualitative time series is measured by P(s). 7 is a 

measure of the mean probability of "true" category prediction at any randomly 

chosen point in the series. 1-P is the appropriate amount of error. 

To demonstrate our approach we analyze the two following examples: 

Example 1. Here we present the first example given by Colwell (1974), deal- 

ing with the seasonal pattern of flowering and fruiting in a hypothetical tropi- 

cal trees species. Say that there are 9yr. L=9 whole cycles of qualitative 

flowering and fruiting records available for seven individual trees growing in 

a variety of habitats or regions. Details of scoring and the hypothetical rec- 

ords are given in Table (13.5). The pattern is maximally predictable if the very 

same seasonal pattern of flowering and fruiting is repeated in all 9 years, as 

in tree a, b and c in table (13.5). For each of these trees, knowing the season 

(I, II or III in Table (13.5) tells us with complete reliability the state of the 

tree. The pattern is designated minimally predictable (tree g) if all phenologi- 

cal states are equally likely in all seasons, so that nothing can be predicted 

about the state of a tree based on the season. 

Colwell discussed the results that were obtained for the various trees in 

Table (13.5) and computed the corresponding measures. These measures were based 

on information theory notions and in his article, predictability (P), constancy 

(C), and contingency (M) are defined. In Table (13.5) we present our measures 

for the same data. 
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The predictability (P), constancy (C), and contingency (M) as defined by 
Colwell are the same as our periodicity (P), constancy (C), and heterogen- 
eity (M). Values are computed for the seven individual trees. In each ma- 
trix, columns represent seasons (I=January-April; II=May-August; III= 
September-December), and rows represent phenological state (ff-flowering 
and fruiting; fi=flowering only; nf=no flowering or fruiting). 

Our method with 
Colwell our R=2 (only two 
method method categories 

ff 
fi 
nf 

9 
0 0' 0' 
0 0 0 

Tree b 

ff 
fi 
nf 

0' 
0 

0" 9 
0 9 0 

Tree c 

ff 
fi 
nf 

0' 
0 0 

9 
0 i 0 

Tree d 

ff 11 
fi 2 2 : 
nf 6 6 6 

Tree e 

ff 
fi 
nf 

3" 00 6" 
0 9 0 

Tree f 

ff 
fi 
nf 

0 
1 : i 

= 
;= 

8 5 2 M= 

ff 
fi 
nf 

g Tree 

3" 3" 3" 
3 3 3 

I II III 

Tree a 

= 
;. 

M= 

= 
;= 
M= 

= 
;= 
M= 

= 
;= 
M= 

= 
;= 
M= 

1.0 
1.0 
0.0 

1.0 
0.0 
1.0 

;*:2 
0158 

0.23 0.50 
0.23 0.50 
0.00 0.00 

0.61 0.67 
0.00 0.00 
0.61 0.67 

0.29 
0.10 
0.19 

0.00 
0.00 
0.00 

1.0 

b:"o 

1.0 
0.0 
1.0 

1.0 1.0 
0.50 0.33 
0.50 0.67 

0.44 
0.33 
0.11 

0.00 
0.00 
0.00 
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Example 2. Here we present the second example given by Colwell (1974), with 

the climatic patterns, 10 Yr. of monthly precipitations totals for four repre- 

sentative weather stations. The months of the year are thus the time categories 

(s=12) or, in other words, the period's length. The amount of precipitation was 

measured on a continuous scale but was transformed to appropriate categories -- 

the R=12 states. The data are given in Colwell (1974, Table 2: 1151). In Table 

(13.6) of the present paper, the measures obtained by the two methods are given. 

Table (13.6): The measures obtained by Colwell's method and ours for climatic 
patterns. (The four stations are: Uaupes, Acapulco, Bella Coola, 
and Miami.) 

=====5================================================== 

Colwell's Our 
Station method method P 

Uaupes P = 0.75 
c = 0.66 
M= 0.09 

Acapulco 

Bella Coola P = 0.58 = 0.47 0.52 
c = 0.34 = 0.29 
M = 0.24 = 0.18 

Miami 

= 0.64 0.67 
= 0.48 
= 0.16 

= 0.48 0.53 
= 0.12 
= 0.36 

= 0.35 0.40 
= 0.21 
= 0.14 
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14: OPTIMAL PARTITION OF THE QUANTITATIVE VARIABLE INTO CATEGORIES 

It might sometimes be worthwhile to divide the range of quantitative vari- 

ables into intervals (not necessarily equal), in order to predict an interval 

"cover" for k-th units ahead instead of a point estimating (e.g., arithmetic 

mean or median) plus a confidence interval. One good reason is that the inter- 

val might be much narrower than the usual confidence interval based on normal 

assumption or other non-plausible assumptions. Let us now suggest an optimal 

division of a continuous variable (Time-Series) into categories. "Optimal" 

describes a sense of trade-off in both the amount of predictability and the width 

of the interval. 

We pointed out that as P(s) approaches 1, the goodness-of-fit improved. Say 

that P(s) indicates our ability to predict the suitable category of observation 

in the future. The expression for P(s) is constructed from the addition of the 

two components, H(s) and C. P(s) is also a decreasing function of F (the number 

of different categories), and thus we can always find an R>R so that P(s)< Pis,. 

It is straightforward that we prefer a divison with R as great as possible since 

it may help us to detect small differences. But while R increases we may also 

wish to cover the whole range of observations properly, (i.e., q should be as 

small as possible). Therefore, in this situation we would like to achieve both 

cases: 1) R and P(s) are as large as possible; 2) q is as small as possible. 

By this we hope to divide the data into categories such that the Maximum R will 

give us Maximum P(s) = C + H(s) with minimum C, namely, Maximum H(s) and Minimum 

C. This situation is similar to finding a division that brings minimum variance 

"within" and maximum variance "between" groups. To do so, an iterative process 

is used. In the first step R=2 is chosen with classes defined to produce maximum 

Hb) and minimum C. In the next step R is increased by 1 to get R=3 and sub- 

divide the data. The process stops at the Maximum R that gives us a sufficiently 
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large P(S) with C as small as possible. This is the desired "optimal" division. 

The 'optimum" means that R cannot be continued to increase without drastically 

decreasing the value of P(s). 

For example, let us look at Table (14.1) below. 

Table (14.1): Average of monthly rates of evaporation from class A pan in Eilat 
mm/day in the years 1960/1067. Source: Gilad (1972). 

Year Jan Feb t-4r Apr ~BY Jun Jul WI Sep Ott Nov Dee 

1960 5.0 7.2 7.8 10 .o 13.4 15 .o 15.8 14.8 

1961 4.4 5.8 7.4 10.8 12.7 16.3 15.6 14.5 

1962 4.3 6.0 8.7 9.9 13.7 15.4 14.7 15 .o 

1963 5.2 6.9 8.0 9.1 11.4 15.2 15.5 16.5 

1964 4.3 5.6 8.9 10.2 12.9 14.3 14.7 14 .o 

1965 3.6 6.2 8.8 9.8 13.8 15.5 15.5 14.6 

1966 4.2 4.7 7.5 10.2 13.1 15.6 14.7 13.3 

1967 4.4 5.1 6.9 9.5 11.3 14.3 14.2 13 .l 

12.9 10.8 6.7 5.2 

12 .o 9.3 6.6 4.5 

13.2 8.7 8.2 5.2 

13.5 10.8 7.8 5.0 

12 .o 10.3 6.6 4.4 

12 .l 9.0 6.2 4.6 

11.4 8.8 6.2 4.5 

10.8 7.3 5.5 4.3 

For R=2; by division of the amount of average evaporation into two categor- 

ies: O-10.8 and 10.81 + the Periodicity measure Pts) = 0.979 is obtained. The 

division to R=3 by the following categories: O-5.2, 5.21-10.8, 10.81 + . P(12) 

= 0.953 is obtained. In the next step, sub-division of the data into R--4 cate- 

gories P( 12) = 0.931 is obtained. 

An "optimal" division is given by the division below in Table (14.2) with 

R=5 categories and P(12) = 0.90. 
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Table (14.2): The matrix N = (Nij) of R=5 categories and ~~12 positions (as per- 
iod's length). The categories are "optimal" division of the amount 
of average evaporation. 

the "optimal" 
division of categories 1 2 3 4 5 6 7 8 9 10 11 12 i 

i=l 
Nij/N=ql 

O-5.20 8 2 - - - - - _ _ _ 
amount of 5.21-7.20 - 6 1 - - - - - 

i ii 
i 

8 18/96 
- 13/96 

average 7.21-10.8 - - 7 8 - - - 2 - ?b/96 

evaporation 10.81-13.9 - - - - 8 - - ; 7 - - - 17/96 
26/96 13.91+ - - - - - 8 8 6 - - - - 22/96 

Total 8 8 8 8 8 8 8 8 8 8 8 8 96196 

There are N=96 observations. The number of whole cycles (years) is L=8. 

The period's length s = 12. The values of the various descriptive measures are 

T; = 0.92, q=O.27, H(12) = 0.81, C = 0.09, P(12) = 0.90. 

The division of amount of average evaporation into R=6 categories: O-5.2, 

5.21-7.2, 7.21-9.0, 9.01-11.0, 11.01-14.2, 14.21 +, yields a periodicity meas- 

ure P( 12) = 0.837. Thus the “optimum" division is into R=5 categories as pre- 

sented in Table (14.1). The finer division obtained by R=6 categories decreases 

the value of P(l2), from 0.90 down to 0.84. 

The P = (Pij) ma rix obtained for this series is given in Table (14.3) and t 

it has f=17 nonempty cells. 

Table (14.3): The p= (Pij) matrix of the averages of monthly rates of evaporation 

R=5 
categories 1 2 3 4 5 6 7 8 9 10 11 12 

1 1.0 .25 _ - - _ _ _ _ _ 1.0 
: .75 ,875 .125 1.0 - - - - - 

110 : : 125 

1125 
1:O 

175 
.25 

- - 

4 .875 - - - 
5 
pj 110 175 1875 110 110 

::; ::"o .75 - 
.75 .875 110 715 1.0 

This series is assumed as a finite ergodic Markov Chain and the transition 

matrix of order 17 is given in Table (14.4). 
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Table (14.4): The transition of order f=17 for the Meteorological example. The 17 
states are characterized by 2 numbers. The left number is Roman and 
indicates the different (R=5) categories. The right Arabic number 
indicates the month, (e.g., the position with the year. 

‘1’21 3’ 4’ 5’ 6’ 7' 8' 9' 10' 11' 12 ' 13' 14 ' 15 ' 16 ' 17 
‘11 II2 ,112 ,113 '1113'1114' IV5' V6' V7' V9' V8'1119' 1V9'11110'11111'11111'V12 

11 1 l/4,3/4 I 
21 2 I l/2 l/2 
3 II 2 1 
4 II 3 1 
5 1113 1 
6 1114 1 
I IV 5 1 
8V 6 1 
9v / I l/4 314 

10 IV 8 l/2 l/2 
1lV 8 I 1 
12 IV19 II 9 1 
13 1 
14 11110 3/4 l/4 
15 1111 1 
1611111 1 
l/ I 12 1 

The probabilities in this matrix were computed from the original series, 

(given in Table (14.1) and using the division into R=5 categories presented in 

Table (14.2). For instance, the probability to transit from state 2 (category 1 

in February) into state 4 (category 2 in March) is l/2. The stationary distribu- 

tion of the 17 states is II = l/96(8,2,6,1,7,8,8,8,8,2,6,1 7,8 6,2,8) which are 

the probabilities of P = (Pij) (Table 14.3) divided by L=12 whole periods. 

The original categories are unions of these states in the expressions given 

in Table (14.6) 

Each one of the original observations of Table (14.1) was transformed into 

one of the f=17 different states and the whole series is presented in Table 

(14.5) below. By computing the Chapman-Kolmogorov equations it seems that the 

assumption of a.finite Markov Chain is quite good. 
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The original observations after transformation into one of the f=17 
different states. 

Year Jan Feb Mar Apr May Jun Jul Au!3 Sep Ott Nov Dee 

1960 
1961 
1962 
1963 
1964 
1965 
1966 
1967 

3 
: 3 

3 
: 3 

: : 

: 2’ 

5 7 

5 6” 5 6 : 
5 6 7 
5” : 7 7 

5 
4 6” : 

8 9 
:: :5” 

17 
8 9 17 
8 9 

:3” 
14 

:6” 
17 

8 9 14 17 

s” 9 9 11 11 :3” :4” :56 :: 
8 9 
8 9 

Table (14.6): The decomposition of original categories into states. The station- 
ary distribution of the 5 categories is% = (ql,q2,q3,q4,q5) = l/96 
(18,13,26,17,22). The process may be presented in the flow-chart 
given in Figure 1 below. 

Original category Union of the Below States Sum of 
Probabilities 

1 (1) 1 + 2 + 17 18196 
11 (2) 3 + 4 + 15 13/96 
III (3) 5 + 6 + 12 + 14 + 16 26196 
IV (4) 7 + 10 + 13 17/96 
v (5) 8+9+11 22/96 

Figure 1: Flowchart of the Meteorological series, the numbers are the 17n states 
which are given in Table (14.4) 
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Conclusions 

In many kinds of research, data are often of a qualitative (categorical) 

nature. Even continuous data can be put into categorical form. The Markov Chain 

process is adopted here to describe a qualitative time series and form a computa- 

tion of the mean-time of every state -- the stationary distribution. For purposes 

of description, given time series measures based on modes are defined. These meas- 

ures are very transparent and are based on easy computations. In this article, 

Guttman's concepts (Guttman 1941) of the Principle of Maximum Probability is 

adopted. Indices for goodness-of-fit are measures of the deviations of a given set 

of empirical data, here, time series from the prespecified definitions. Tools of 

data analysis are adopted here for finding both the appropriate period's length 

and to assess three related predefined properties for a given qualitative series: 

periodicity, constancy, and heterogeneity. A graphic presentation is suggested 

later in chapter I7 to enable the simultaneous examination of the interrelation- 

ships among a given set of series. This might assist a researcher to analyze a 

set of many series shared by the same life science (precipitation, evaporation, 

etc.). The process for finding an "optimal" division might be used whenever one 

wishes to analyze quantitative series by transforming them into categories. 

Our approach does not take into account the order of the (whole) periods 

themselves. This means that the same weight is given to the more distant past as 

to the recent past. If desired, more weight can be given to the more recent by 

using only a few last periods, at the expense of decreasing the stability of our 

measures and predictors. A good tactic may be to use our approach for some sub- 

series (consecutive or not), and to try to study the behavior of the proposed 

measures. Such an analysis may reveal varying patterns which reflect trends in 

some or all of the possible states within the period. The method presented here 

is both very intuitive and based on easy computations. Here concepts of data 

analysis are adopted, and no classic statistical inference is discussed. 
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Part 4 

SIMILARITY AND DISSIMILARITY OF THE VARIOUS COMPONENTS 

The methods discussed in this part are designated to study interrelation- 

ships among the various components of series that are obtained usually by one of 

the many decomposition methods that are in use. In chapter 15, a method of 

graphic displaying is provided. This method will be exemplified to find common 

seasonal patterns among series. Chapter 16 deals with a simultaneous analysis of 

multiple series which are parallel, namely, their slope changes simultaneously 

over time. Death Rates series will be demonstrated. In Chapter 17, a graphical 

method is provided to find common patterns of qualitative series like those in 

part 3. 
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15. FINDING COMMON SEASONAL PATTERNS AMONG TIME SERIES. 

A method for graphically displaying relative distances among a group of 

seasonal‘ patterns of time series is provided. This chapter is concerned with 

two aspects: 

1. To provide distance measures of different series, or between various 
periods within the same series. 

2. To provide a graphic display technique. 

Both goals are not new; nevertheless, the specific application of finding common 

seasonal patterns among time series is a new one. One particular Multidimen- 

sional Scaling (MDS) algorithm was adopted, that is, the nonmetric SSA-1 (Small- 

est Space Analysis) technique. The group of seasonal patterns is transformed 

into a symmetric matrix by defining indices of similarity. The symmetric matrix 

is the input for the graphic display techniques. As a result, a set of objects, 

either the n various time series or the n periods of a single time series is 

presented in a map, demonstrating the pairwise interrelationships of the set. 

1. Introduction 

In the empirical study of time series we usually try to learn about pairwise 

interrelationships of a given set. Often these series are decomposed into their 

respective trend, seasonal and irregular, components. This chapter presents a 

method for comparing time series based on the aspect of seasonality of the pro- 

posed series, A series can be decomposed into three components: a trend, a 

seasonal and an irregular (or random) component where each of these components 

is empirically identified. For example, a multiplicative monthly time series 

with constant seasonal pattern of length 12 units of time can be described as 

follows: 

(15.1) Yaj = Taj * Sj * Iaj a=l,... ,r; j=1,...,12. 

where Yaj is the original observation, Taj is the trend component, Iaj the ir- 
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regular component in the jth month of the ath year, and Sj the seasonal component 

in the jth month. It is convenient to keep the trend component in the scale of 

original.observations by setting the following constraint: 

(15.2) F Sj = P, 
j=l 

where p is the period's length and the model is multiplicative. The vector 2 = 

(Sl ,...,Sp) is known in the literature under various names such as "Seasonal Pat- 

tern", "Seasonality Index", etc., and is usually expressed in percentages. Ex- 

tension of the decomposition analysis is made by considering the "seasonal simi- 

larity" between time series. That is, the similarity of time series seasonal 

patterns is investigated once these are decomposed into their respective compon- 

ents. In this chapter given seasonal patterns are treated as vectors for the 

application of a scaling technique. To do so, the nonmetric SSA-I technique of 

Guttman (1968) is applied to study the "mutual relationships" of multiplicative 

seasonal components of time series. The "mutual relationships" are defined more 

specifically by indices of "distance" or "dissimilarity" between every couple of 

patterns, i.e., between every constant seasonal pattern of two different time 

series, or between every two seasonal patterns of a single series which has 

varying seasonalty. 

Given the three seasonal patterns of Figure (15.1), it is seen that the 

patterns of series 1 and 2 are very similar, whereas that of series 3 is quite 

different. The proposed method demonstrates this situation by using a graphic 

display in which the series 1 and 2 are located close to each other and series 

3 is far away. 
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Figure (15.1): Three Seasonal Patterns of Time Series. 

To motivate the approach developed here, three examples will be considered. 

The first two examples present economic monthly time series of "Government in- 

come and tax collections" and "Tourist Arrivals in Israel"; the third example 

demonstrates gradual change in seasonal patterns of the single series "Jewish 

Marriages" in Israel for the period 1956-1968. 

2. Dissimilarity Between Seasonal Patterns 

Let us assume n seasonal patterns (vectors of p values) associated with n 

time series, each with period of length p months, i.e., p=12. Each of these 

patterns is estimated by one of the available decomposition methods, e.g., X-11 

program or LPTA. Let Si = (Si,..., Sp) be a vector of seasonality patterns of 

the ith series, i=l,...,n. Each one of the p coordinates corresponds to a jth 

unit of time within the entire period. For the multiplicative model, we have 

by definition (expressed in percentages): 

P 
(15.3) ' 'ik = 100-p (i=l,...,n). 

k=l 

Denote by Dij a dissimilarity coefficient between any two patterns, si and 2. 

This dissimilarity may be defined in several ways. For example, say dissimilar- 

ity is defined as the average absolute distance difference between the two 

seasonal vectors, i.e., 

(15.4) Dij = F \sik 
k=l 

- Sjkl)/p (i,j=1,2,...,n). 
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Clearly, (15.4) defined a symmetric matrix (Dij = Dji), and therefore the mutual 

relationship of seasonal patterns is represented by an nxn symmetric matrix with 

zero elements in the diagonal. Other measures having the symmetric property and 

expressing dissimilarity may be used as well, 

Another suggestion for a dissimilarity coefficient between any two patterns 

3 and SJ is the area Bij between them, e.g., BI2 is measured by the shaded area 

in the following Figure (15.2). 

Figure (15.2): Two seasonal patterns SJ, SJ of t units and the measure 
of dissimilarity between.them, BI2 based on area. 

A further approach, that of "Minimum Possible Dissimilarity" is defined by 

(15.5) Dlj = Min 1 ! Isik 
O<R<p-1 k=l i=l 

- SjklI)/~ 1 3 

where k' = (k+E) mod p. For example, for 11 for which the function obtains 

its minimum is the desired lag. 

In other words, Dij is the minimum absolute mean differences between the 

two seasonal indices of series i and j where these differences are computed for 

the 12 (0 ,.,.,ll) various lags. This approach can be adapted to B;j which 

minimized the area between the graphs obtained by two seasonal patterns Si and 

sj. The use of this approach discriminates between the following two cases that 

are graphed in Figured (15. 3). In both graphs (a) and (b) the coefficients of 

dissimilarity 812 (i=l, j=2) are equal. BI2 = 0 for graph (b) with the desired 

lag fi =l. According to the approach of "minimum Possible Dissimilarity". Simi- 

larly, Bi2 > 0 for graph (a) for R =O,.,,,ll. 
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Figure (15.3): Seasonal Patterns: SJ is denoted by - S -es- 

The shaded area is the coefficient gf-2dissimilarity 812. 

These measures were used as examples of possible indices for characterizing the 

dissimilarity between the seasonal patterns. In order to represent the n(n-1)/2 

dissimilarity coefficients D ij (or Bij) simultaneously in a graphic display, the 

SSA-I technique is used. 

3. The SSA-I Technique: A Brief Review 

The family of methods "Smallest Space Analysis" or briefly, SSA techniques, 

were developed and constructed by Guttman (1968), see also Lingoes (1973). 

Here the use of the first member of the family SSA-I is demonstrated, since it 

is particularly suitable for data analysis of symmetric matrices. 

SSA-I provides a graphic presentation of pairwise interrelationships of a 

set of objects, here, n times series, Each series i (here, a seasonal pattern of 

the i series) i=l ,...,n is represented as a point in a space and the SSA-I tech- 

nique seeks the Euclidean space with minimum dimensions that can monotonely re- 

produce the original dissimilarities Dij. That is, the dimensionality m is 

sought to be as small as possible for which the Euclidean metric will satisfy 

the monotonicity condition below: 

(15.6) dij < dkfi if Dij < Dkg for every i,j,k,a 

Dij: The dissimilarity coefficient (input) between series i and j. 

dij: The Euclidean distance (output) in the graphic map between the points i 
and j. 
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The matrix of dissimilarities expresses interrelationships between items, 

while the computer program enables the analysis of these interrelationships in a 

simple yet comprehensive manner. The main part of the SSA-I output is in the 

diagram, space in which each variable is represented by a point. If the dissim- 

ilarity coefficient between i and j is larger than the dissimilarity coefficient 

between k and R, then the Euclidean distance bweween i and j is larger than 

between i and II . 

The goodness-of-fit of an output space to the input dissimilarities is 

assesssed by a coefficient of alienation. This coefficient is defined by 

, 
El = Jl - $- and varies between 0 and 1 where lo is a coefficient of monotonicity 

of (Dij, dij) and (i,j=l,...,n), and is defined by 

n * 
(15.7) P = i,:=lDij 

l dij 

/ 
i "15 l 

i,j,=l 
2" d2ij 

i,j=l 

The D;j are the rank images of the dij, that is the dij rearranged in the 

rank order of Dij, allowing the untying of ties. Thus, the graphic presentation, 

namely, the Euclidean space that obtained as an output by SSA-I technique is in- 

variant under monotone transformation of the elements in the input matrix. A 

perfect fit is represented by 8 =0, and the worst possible fit is given by 8 = 1. 

Intermediate values of the coefficient represent intermediate degrees of good- 

ness-of-fit. How small should the coefficient of alienation be for the fit to 

be satisfactory? This is a question to which there is no absolute answer, see 

Guttman (1977, p.89). As a rule-of-thumb, a coefficient of alienation of less 

than 0.15 is considered a good candidate for being "satisfactory"; a more com- 

plete answer requires fit to theory. A value of f~ = 0.15 is equivalent of P = 

0.99 which often seems quite high. It is obvious that for a given matrix the 

coefficient decreases as m, the dimensionality of the space, increases. It is 
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always possible to represent n points in (n-l) dimensionality space keeping con- 

ditions (15.6) and thus 8 = 0.0. A configuration of N points in m dimensional 

space when m<<n may prove to be a useful tool in data analysis. In the real ex- 

amples below, two (m=Z) and one (m=l) dimensions for the space diagram were suf- 

ficient to represent the data while giving small enough values of 8. 

4. An Arificial Example 

Let us take the two time series below: 

(t-1,2,...) 

These two series might be decomposed into the three components. The trend and 

the irregular components equal Tt = It = 1. This means that the trend has no 

slope and there is no randomness. sl = (sin i- ,...,sin 2~ for given p. For 

instance, when p=4 

21 = (sin t , sin 'R , sin p , sin 27~) = (l,O,-1,0) 

> = (cos ; ) cos A , cos 311 , cos 27l) = (O,-l,O,l) 
2 

4 

D12 = c lslk 
k=l 

- s2k1)/4 = 1.0 

The coefficient of "Minimum Possible Dissimilarity" vanishes, i.e., Dl2 = 0, 

when 11 = 3 is the desired lag. 

5. The Method 

Given a set of n time series points, the proposed method is described 

sequence of steps: 

step 1: Decompose each series into its components using one of the decompos 

methods mentioned above in section 1. Thus from each series [Yaj] a=l, 

j=l ,...,p, S = (Sl,...,Sp) is obtained. 

by a 

ition 

. ..) r 
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step 2: For each pair of series a coefficient of dissimilarity as mentioned in 

section 2 is computed. Thus from n seasonal patterns si i=l,...,n 

n(n-1)/2 coefficients are obtained. 

step 3: The nxn symmetric matrix of coefficients is used as the input to the 

nonmetrics tehcnique SSA-I. As a result a graphic display is obtained. 

Th 

4: step 

iz 

s presentation is demonstrated in m-dimension space diagram. 

To analyze the output of the SSA-I, it might be possible that character- 

tion of the various seasonal patterns would be revealed within a low m 

dimensionality and quite low 0 also. Thus common seasonal patterns among 

time series might be found. 

These steps are presented in a flowchart in figure (15.4). 

Figure (15.4): Flowchart of the various steps of the proposed method. 

DATA I 
1 set of n time series 1 + 
I I 

Decomposition 1 IDissimilarity Coeffi 
set of N seasonality I + /cients, a matrix of 1 
patterns si (k=l,...,n I n x n distance I 

’ I 
coefficients 

1 

I 
I I 

I I I SSA-I I I 
I Analyzing the map I + I Graphic display I + --------m--- 
I obtained by SSA-I I I(dimension m << n)] 
I I I I 

6. Applications 

Below, three examples are considered which demonstrate both the usefulness 

and app icability of the method. For convenience, the first two are primarily 

an economic example for which data are available and where the relationship be- 

tween the seasonality of time series is important. The second, a demographic 

example, demonstrates a very specific structure of matrix called simplex. These 

three real examples are described by reference to the steps in the previous 

section. 
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purchase tax on imports; (13) foreign travel tax. 

These are monthly time series for the period 1962-1969, 

in Bar On (1973). In table (15.1) we represent the 13 seasona 

and are available 

lity indices esti- 

Example 1. Seasonality of government income tax collections 

We consider n=13 time series of (Israeli) government income from taxes and 

compulsory payments. As pointed out earlier, the series are monthly time series, 

each with period's length p=12. The series are labelled and defined below: 

(1) taxes and compulsory payments-total; (2) income tax-total; (3) income tax 

from employees; (4) income tax from self-employed; (5) advance income tax pay- 

ments from self-employed; (6) income tax from companies; (7) income tax advance 

payments from companies; (8) income from customs and excise; (9) income from 

customs; (10) purchase tax-total; (11) purchase tax on local production; (12) 

mated for 1968. The analysis was performed by the X-11 method, multiplicative 

model [see Shiskin et al. (1967)], and it provides moving seasonality factors. 

Next we apply the SSA-I in three steps: 

(1) The 78 distances are computed using eq.(15.4) with n=13 series, p=12 peri- 

od's length. The n(n-1)/2 distances are the inputs to the symmetric matrix of 

SSA-I. We apply the technique for m=2 dimensions (which is found to be satisfac- 

tory) and obtain the space diagram presented in fig. (15.5). Here we note a clear 

discrimination for 3 regions of similar patterns of seasonality. The first re- 

gion A, consists of foreign travel tax. This series has a specific pattern of 

seasonality and is very different than the other 12 series, There is a high peak 

in summer months July and August, concurring with Israelis traveling abroad. In 

the winter months, there is a sharp trough, expressed in low seasonality indices. 

The second region 3, contains two series 6 and 7. The seasonality indices 

of these series have 4 peaks in March, June, September, December. This occurs 

since payments are made quarterly. 
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Finally, the region C contains the other 10 series. This region is char- 

acterized by a peak in March and a trough in April, except for series 5 that has 

a very sharp trough in April. Series 5 is in some ways similar to the other 9 

series but is slightly different. In the next step this difference will be 

amplified. 

The members in the map indicate the geometric location of the series re- 

spectively. The center (arithmetic average) is represented by the cross. 

(2) After accepting a clear discrimination for 3 regions, we amplify the study 

of region C by running 10 corrresponding series agiin in SSA-I. The resultant, 

more detailed map is given in fig. (15.7). We note that series 5 is separated 

from the other 9 because of her different characteristic 2 peaks in January 

and November. 

3) We pursue the SSA-I analysis of region C-5 of fig. (15.6). The resulting map 

is given in fig. (15.7) where we distinguish between 3 regions of 3 strips. In 

the middle strip (B) the series are: taxes and compulsory payments - total and 

purchase tax on local production. The first series (1) is an 'average' season- 

ality of the other series seasonalities. 

Series of the same kind belong to the same strip. The customs series, for 

example, are on the left strip (C), where payments arise on taxes from foreign 

products. Series 10 is on the 'border' of strips B and C because it has payments 

from both local production and foreign imports. 

'Income' series are on the right side of the map in fig. (15.7) (strip A) 

and series 2 is between her 2 sub-series, 3 and 4. The location of series 10 is 

also between her 2 sub-series, 11 and 12. 

The coefficients of alienation in these three maps (figs. (15.5), (15.6) 

and (15.7)) were small enough to warrant our stating that there is a high good- 

ness-of-fit, meaning that reproduction of the original matrix by SSA-I has not 

distorted the data. 
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Table 15.1: Seasonal indices of the 13 times series on government income and 
taxes (multiplicative model). 

Series Jan Feb E&May Jun JulAug Sep Ott Nov Dee -- --m- 

1 103.0 94.0 121.3 84.9 89.9 103.6 99.6 96.9 102.3 96.0 102.0 106.7 
2 101.8 94.1 136.6 72.4 86.2 107.6 96.2 93.4 108.1 95.4 97.7 110.7 
3 98.9 95.2 133.9 85.1 94.3 101.2 98.8 98.9 97.0 99.9 100.7 96.1 
4 114.0 107.0 120.6 51.3 85.4 97.8 100.9 100.7 97.0 99.7 111.2 114.7 
i 121.0 80.8 112.6 67.3 94.4 173.4 2.9 54.0 61.3 76.3 157.9 106.4 114.4 81.8 110.5 70.8 150.8 106.6 115.4 83.8 121.8 75.9 142.7 116.2 

7 77.3 60.6 222.5 16.9 33.9 152.0 81.1 54.2 169.5 79.8 74.8 176.5 
8 103.3 92.4 108.1 96.7 95.9 98.5 102.2 101.3 96.8 97.7 104.7 102.4 
1: 110.1 109.3 93.1 98.0 108.4 118.0 99.0 91.4 101.2 92.3 89.3 92.0 91.9 94.9 95.8 92.8 97.6 94.8 103.3 97.3 107.0 111.4 107.5 105.4 

:: 108.5 107.8 98.1 99.5 109.9 131.9 105.2 80.4 96.4 85.7 95.1 95.0 91.9 96.5 101.7 87.2 87.2 97.6 107.5 100.8 111.4 100.2 103.2 103.8 
13 47.6 50.7 79.0 66.6 99.9 158.8 213.7 181.5 115.8 72.6 61.9 52.5 

Figure (15.5): The space diagram in m=2 dimensions for matrix of distance, f3 = 0.01. 

Figure (15.6): The space diagram of 
region C with coefficient 
of alienation, 8 = 0.04 

Figure (15.7): Space diagram C-5, 
e = 0.08 

r C 
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Example 2: Tourist Arrivals in Israel 

In this example sixteen series of "Tourist Arrivals in Israel" from 1974 to 

1976 are presented. The series 1 through 12 are tourist arrivals by air from 12 

countries or groups of countries. Series 13 is a Tourist arrivals total. Ser- 

ies 14 and 15 are tourists arriving by land and by air, respectively. Series 16 

is Tourists arriving from countries other than those included in series l-12. 

In step 1, sixteen constant seasonality patterns were computed by LPTA tech- 

nique using a multiplicative model. The seasonal patterns are given in Table 

(15.3). 

In step 2 the distance between each pair of seasonal patterns is measured 

by the coefficient of dissimilarity defined in equation (15.5). The period's 

length is p=12, Thus (16 x 15)/2 = 120 coefficients obtained and given in Table 

(15.3). The desired lag, that is, those lags where the D+j obtains its mini- 

mum are given within parentheses, just above the D;j. 

In step 3, the 16 x 16 matrix of distances is used as the input to SSA-I. 

Applying the SSA-I technique for m=2 dimensions, the resultant graphic display is 

presented in Figure (15.8). The points in the map indicate the geometric loca- 

tion of the series. Each point presents a time series, or more accurately, its 

seasonal pattern. Two pairs of points are closer on the map-than other pairs of 

points as their similarity is greater, The coefficient of alienation 8 = 0.16 is 

small enough to indicate that there is a high goodness-of-fit, meaning that re- 

production of the original matrix by SSA-I has not distorted the data. 
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Table (15.2): Seasonal Indices of the 16 Time Series on Tourist Arrivals 
to Israel (Multiplicative Model). 

Tourists' 
Arrivals 
From Jan Feb Mar Apr May Jun Jul Aug Sep Ott Nov Dee 

1. U.S.A. 98 130 139 110 101 112 145P 73 63 106 63 58 

2. England 57 60 121 177p 114 84 149 124 101 90 48 73 

3. France 42 78 133 85 77 86 226 252 63 53 40 65 

4. Scandinavia 67 98 175 176p 95 100 82 59 65 103 76 104 

5. Canada 52t 108 126 127 141 102 142 78 82 109 55 78 

6. Germany and 
Austria 3% 69 183 214p 77 64 97 89 91 137 57 82 

7. Switzerland 47t 84 131 208p 100 54 i33 57 99 150 56 80 

8. Holland 43t 71 117 164P 111 97 175 81 110 115 55 62 

9. Italy 49t 75 120 144 86 72 100 146 167 79 57 105 

10. S. America 10lt 46P 52 127 93 76 109 94 145 136 74 146P 

11. Oceania 116 71 100 126 110 92 94 89 81 83 68 168 

12. S. Africa 171p 84 85 135 105 93 74 95 89 79 54 134 

13. Total 56t 73 116 134 93 97 153 122 90 109 69 87 

14. By Land 54t 58 117' 112 89 118 174 128 87 123 68 71 

15. By Air 57t 79 121 137 95 94 151 118 87 106 67 88 

16. Other 
Countries 50t 64 118 174 87 89 160 135 96 78 61 89 

P indicates the peak of the seasonality. 

t indicates the trough of the seasonality 
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Table (15.3): The distance Matrix Among 16 Seasonal Patterns of the Time Series 
as Computed from Table (15.2) using formula (15.5) with p=12. The 

1. 

2. 

3. 

4. 

6. 

8. 

16. 
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Figure (15.8): The space Diagram in m=2, 8 = 0.16 
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In the map we note the following results: The series 13 and 15, "Tourists 

Arriving" totals and "By Air" totals have very similar patterns of seasonality. 

The series 15 contains 88% of the total tourists. The location of these series 

is approximately in the center, and in fact represents the "average" weighted 

seasonality of the other series. "Tourists Arriving From France" (3) has quite 

a different seasonality than that of the other series and is located further 

from other countries. It is easy to distinguish similar series in the same sec- 

tors. The series of "Tourists Arriving From the Southern Hemispheres" are lo- 

cated in sector A. "Tourists Arriving from North America" are located in sector 

8. In sector c we find "Tourists Arriving fom Europe and other countries." 
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Example 3: Jewish Marriages -- A Demographic Example 

In Table (15.4) below, moving seasonal patterns of “Jewish Marriages" in 

Israel in 1956-1968 obtained by X-11 are presented for each year. The matrix of 

distance D{j is given in Table (15.5). All the suitable lags are equal to 0. 

Table (15.4): Seasonal Indices of the 13 Years of the Series "Marriages of Jews” 
in Israel (1956-1968) 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Ott Nov Dee . 

1956 90.4 86.4 134.1 

1957 90.2 85.8 134.1 

1958 90.0 84.4 134.6 

1959 88.9 83.0 135.6 

1960 88.5 81.8 135.6 

1961 88.0 81.1 136.7 

1962 88.0 80.5 136.9 

1963 87.1 80.3 136.1 

1964 86.1 79.8 133.3 

1965 85.1 79.1 130.0 

1966 84.1 78.2 126.7 

1967 83.3 77.8 123.3 

1968 83.1 77.7 121.1 

88.4 

88.0 

86.7 

85.1 

83.0 

81.1 

79.0 

77.7 

76.8 

77.5 

78.4 

79.9 

80.5 

80.3 111.9 81.2 142.6 

80.0 122.6 80.1 144.9 

79.8 114.2 77.8 148.8 

78.9 115.7 74.8 154.4 

77.8 117.5 71.8 -160.5 

74.5 118.9 70.4 165.9 

71.5 120.0 71.3 167.8 

68.4 121.8 73.7 167.3 

67.5 123.6 76.2 164.4 

67.0 124.7 78.0 162.1 

68.4 124.7 79.0 159.6 

69.9 124.6 78.8 159 .o 

71.0 125.2 78.2 158.8 

109,l 

110.1 

111.5 

112.4 

114.2 

115.2 

117.7 

119.3 

123.2 

125.4 

130.6 

132.4 

132.8 

92.0 86.1 97.8 

90.8 86.6 97.5 

88.7 88.2 96.9 

87.1 89.8 95.4 

85.9 90.4 94.0 

86.5 90.4 92.5 

86.5 90.6 92.1 

86.9 91.0 93.1 

86.1 91.3 94.2 

85.5 91.8 94.9 

84.1 92.8 95.1 

83.7 93.0 95.0 

83.7 93.0 94.0 

In this series, there is a gradual change from year to year in the varying 

patterns of seasonality. This implies that the distance betweeen any two pat- 

terns is smallest with neighboring yearly patterns. Thus, the distances near 

the diagonal are the smallest and the distance in the upper right and lower left 

corners are greatest. Therefore, a one dimensional structure called a simplex 
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is accepted as a representation of the space diagram, see Guttman (1950, 1954) 

and Anderson (1959). 

Table (15.5): The Distance Matrix of the 13 Years as Computed From Table (15.4) 

COEFFICIENTS MATRIX 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1. 0.00 

2. 0.72 0.00 

3. 2.14 1.43 

4. 3.95 3.23 

5. 5.67 4.96 

6. 7.14 8.42 

7. 8.07 7.35 

8. 8.42 7.70 

9. 8.62 7.90 

10. 9.07 8.35 

11. 9.55 8.83 

12. 9.85 9.13 

13. 10.08 9.36 

0.00 

1.81 

3.53 

5.00 

5.92 

6.28 

6.56 

7.04 

7.69 

7.96 

8.08 

0.00 

1.72 

3.19 

4.12 

4.47 

5.15 

5.90 

6.55 

6.82 

6.94 

0.00 

1.57 

2.48 

3.23 

3.99 

4.83 

5.66 

6.01 

6-.08 

0.00 

1.08 0.00 - 

2.09 1.20 0.00 

3.41 2.75 1.62 0.00 

4.66 4.00 2.87 1.37 0.00 

5.76 5.10 4.08 2.77 1.48 0.00 

6.11 5.60 4.93 3.62 2.35 0.92 0.00 

6.18 5.77 5.29 3.97 2.76 1.44 0.54 0.00 

A simplex structure matrix of distances has the property that its elements in- 

cline away from the diagonal; often changes of rows or columns are needed. By trans- 

forming such a matrix into a map, applying the SSA-I technique and using one dimen- 

sion (M=l), a (nearly) perfect order structure is obtained as in figure (15.9). The 

coefficient of goodness-of-fit is 8 = 0.09, indicating a very good fit, i.e., there 

are only small deviations of the original matrix from a perfect simplex. The center 

(Arithmetic-average) is presented by the cross. 
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Figure (15.9): The Space Diagram in m*l dimension, e = 0.09. 

1966 1959 1958 1956 

4 3 21 
* w * 

The matrix of distances given in Table (15.5) presents another interesting 

property of a simplex structure which was revealed by Guttman (1950, p.323) or 

Guttman (1954, pp.319-324) and is presented in Figure (15.10) using m=2 dimen- 

sions. This property means that the second component is a U-shaped function of 

rank order, i.e., the first component. The bending point is located on the 

arithmetic-average of the first component denoted by the cross. rle coeffici- 

ent of goodness-of-fit is e = 0.01, indicating a very good fit. 

Figure (15.9): The Space Diagram in m=2 dimensions, e = 0.01 

09 
1 4e 

E 
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In this example, the internal order of the points is determined in terms of time. 

The most different seasonal patterns are those for the years 1956 and 1968. The 

most similar years in that sense of seasonality are those of 1967 and 1968. 

7. Discussion 

A method of graphical display of the pairwise interrelationships of a set 

of seasonal patterns of time series is provided. There are many possibilities 

of an empirical study of a given set of time series. The proposed method con- 

centrates on the simultaneous comparison of one aspect of each series, that of 

the seasonality. The method suggested here is based on a sequence of four steps: 

decomposing each time series; computing a coefficient of dissimilarity between 

every pair of seasonal patterns; using a graphic technique for the matrix of 

distances; analyzing and interpreting the map obtained in the previous step. 

None of the four above steps is new; however, the application specifically 

to time series is new. The method makes it possible to find common seasonal 

patterns among time series. Either n various time series as in example 1 and 2 

or the n periods of a single time series as in example 3 could be used for raw 

material. Other coefficients for dissimilarity among other components, such as 

trend and irregularity with suitable modification, might be defined as in the 

second step as well. Thus the method can be generalized to other aspects of 

comparison in given sets of time series. 

The SSA-I technique is invariant under monotone transformations of the ele- 

ments of the input matrix that are computed in step 2. Thus the same graphic 

display would be obtained for any monotone transformation of Dij or Dij, etc. 
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16. COMMON TREND OF MULTIPLE SERIES 

This chapter deals with a simultaneous analysis of multiple series by means 

of univariate Seasonal Adjustment and Prediction Approaches. These series are 

approximately 'parallel', namely, their slope changes simultaneously over time. 

Series such as these can be unified into a single series and treated as it has 

trend and seasonal components. Our proposal is one way of reducing the number 

of parameters needed to describe the trend and fluctuations of deaths. The ana- 

lysis is similar to Factor Analysis in the sense that the main and common factor 

is the trend component which has negative and monotone slope. The series under- 

lying this study is Death Rates for Non-White Females. In our point of view, 

the series is "trend and error" component. 

INTRODUCTION 

In this chapter there is an attempt to analyze a set of time series which 

have some properties in common as a single unified series. In order to study 

sets of time series, tools for analyzing unidimensional time series are adopted. 

For similar purposes, Ledermann and Breas (1959) used factor analysis technique. 

The main idea is to reduce the number of parameters needed to describe the trend 

and fluctuations of deaths. A definition for parallel series is given as well 

as a data analysis tool designated to measure deviations of empirical series 

from being parallel. 

The series presented in this paper are Death Rates for Non-White Females 

in the years 1933-1978 for 6 age groups. The numerical values are deaths per 

10000. The age groups are: 2%24, 25-29, 30-34, 35-39, 40-44, and 45-49. The 

original data is given in Figure (16.1), below. 
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Figure (16.1): Death Rates for Non-White Females 1933-1978 for 6 age groups 

The six Death Rates series are unified in a special way in order to get one 

series as is obtained in Figure (16.2). The unified series is decomposed into 

its three main components: Trend, Seasonality and Irregularity. The period's 

length p=6, the Seasonal Pattern seems nearly fixed using a purely multiplica- 

tive model. The trend seems to be monotone with negative slope. In the next 

section, the formal definition for parallel series is presented, as well as 

analysis of a specific example,-- Death Rates of Non-white Females. 

Parallel Series - a definition and an example, 

Let Ytj t=l,...,n j=l,..., p be a set of p numerical (quantitative) time- 

series each having n observation. Series k and 1 are said to be Additively 

parallel if Ytk = Ytl + Akl for all t=l,.,.,n. Where the unknown parameter Akl 

is not a function of the t index. Let us denote these two series by Y-k 11 Y.1. 
a 

Series k and 1 are said to be multiplicatively parallel if Ytk = A K1*Ttl 

where Akl>O is independent of t. Let us denote these two series by Y-k 11 Y.1. 

Of course a log transformation of multiplicatively parallel se?ies yieldsmaddi- 

tively parallel series. 

If a set of series is parallel it indicates at least common shapes of a 
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trend. In other words, they have the same slope which is usually changing over 

time. The various series have a fixed relation to an unobservable common trend 

component. Their quotient or difference is fixed depending on whether the model 

is purely multiplicative or purely additive. If seasonal components exist they 

should have the same pattern either in the multiplicative or additive sense, 

depending on the type of parallelism. 

Let us unify a group of p series which looks like a parallel set into a one 

series in the following way: pick up the first observation in each series one 

after another such that p ordered observations are obtained. Then repeat it to 

the second observations, and third observations, and so forth. At last, a ser- 

ies of np observations is obtained. In Figure (16.2) the unified series of the 

six series of Figure (16.1) is presented. If the initial p series are parallel 

then the unified series has a fixed Seasonal component pattern combined with an 

&average)' trend. The average trend is the unobservable common trend. 

Figure (16.2): The Death Rates of six age groups unified into one serfes.j...Serfes 
----Seasonally Adjusted data of the unified series .-Trend Compo- 
nent. This unified series is based on data from 1950 through 1978. 
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Death Rates of Non-White Females: 

The unified series has 276 observations. By applying our LPTA approach 

that uses nonmetric filters (Raveh 1981), fixed seasonal factors were obtained 

and presented in Table (16.1), below. We adopt purely multiplicative version, 

taking into consideration the declining fluctuations along with the negative 

monotone trend. The period's length is p=6 in the proposed data. 

In order to test the null hypothesis: Y.lljY.211...1 IY.p that the p series 

are perfectly parallel and have common trend, Max ll~(P)l could be used as a 

descriptive statistic. If the null hypothesis is true then Max Ip( should 

be equal to 1, otherwise it declines toward 0. 

The unified series of Data Rates has a coefficient = -.15 indicating that 

the trend is apparently negative. The fluctuations reduce the absolute value of 

v drastically. Thus, Min ~(6) = -.95 for S.A.D. pointed out the very closeness 

of the series to being parallel. The fixed seasonal factors reflects the rela- 

tive ratios of the various age groups to the overall average -- their trend. In 

order to predict the various Death Rates of the age groups one year ahead we pre- 

dict 6 units ahead (one whole period) of the unified series. We used the Per- 

sistent Structure Principle method was used in order to predict the Death Rates 

for the (last) year 1978 based on the 54 observations prior to this year, namely 

the years 1969, 1970, up to 1977. In table (16.2) the predicted values as well 

as the actual data and percent error is given. 

Table (16.1): Fixed Seasonal Patterns presented in percentages using multiplicative 
model. 

I Group Age 
I 

I Average I 
I I 

I 20-24 25-29 30-34 35-39 40-44 45-59 1 I 
I 

Fixed Seasonality I 32.2 
I 

44.2 70.8 100.2 146.9 205.6 100 % 
(in percentages) 

I I 
I I I 
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Table (16.2): Actual data for the six age groups in the year 1978, the predicted 
values based on 54 observations prior to 1978 as well as the absolute 
percent error. Multiplicative models have been used. 

Group Age 
I I 
1 20-24 25-29 30-34 35-39 40-44 45-59 1 
I I 

Actual data I 972 1285 
I 

Predicted 
Values 

Percent Error I 

964 1275 
I 

6.8) (-8) 
I 

1597 

1816 

(-12.0 

2448 

2828 

) (13.4 

3809 5701 

4172 5941 

4 (9.5) (4.2 

/ 

I 
I 

‘1 I 

Other decomposition methods or prediction approaches than those used here 

could be applied for the unified data, see for example Kitagawa (1981) and 

Akaike and Ishiguro (1981). The basic idea is that the concepts of parallel ser- 

ies and seasonality are related to each other intimately, Thus, series which 

are nearly parallel could be treated simultaneously by using conventional time- 

series methods after unifying them appropriately. Other examples of collections 

of series that could be treated the same way are: In biology, growth rates of 

various animals; in economics, a collection of yearly taxes series of collec- 

tion of trend components of series that have something in common. 

For a set of p series in which only (p-k) of them are parallel, e.g., 

k=1,2 ,...,p-2, then the above treatment could be done to this sub-set only, In 

some sense, the analysis is similar to Factor Analysis of series, Here, the main 

and common factor is the trend component which has negative and monotone slope. 

A classic tool to deal with p 'parallel' series is Analysis of Covariance 

approach. Let Ytk = fk(t) + Ck + etk where fk(t) is a known function of t, usu- 

ally a line, Ck a constant and etk m i.i.d. N(O,a'). One would test for paral- 

lelism by testing f = fl = .., = fp. An advantage of the proposed approach is 

is that fk(t) is replaced with a very general trend Ttk and the data suggests 

the trend. 
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For the case of parallelism, its relation to a unified series with fixed 

seasonality is discussed. Lack of parallelism that is showing up in given ser- 

ies may relate to a unified series with moving seasonality. 
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17. GRAPHIC PRESENTATION OF QUALITATIVE SERIES 

In this chapter, a graphical presentation is suggested for finding common 

behaviors of qualitative series based on definition given in part 3. The idea 

is to locate a given series with P(s) as its periodic measure in a right angle 

triangle as in Figure (17.1) below. P(s) can be decomposed into constancy (c) 

and Heterogeneousity H(s) which are used as the two axis in the graphic dis- 

pl ah 

. . Figure (17.1) Fls{ = C + H(s). Two different periodic phenomena with the same 
which decomposes into different C and H(s). 

In Figure (17.1) the horizontal axis is the measure C and the vertical 

axis is for the measure H(s). Within this triangle each line parallel to the 

hypotenuse presents the series with the same predictability value - P(s). 

Each series located on a line parallel to the hypotenuse has two different 

components C and H(s). A graphic presentation of a given set of series en- 

ables the simultaneous examination of the interrelationships between each 

couple of series. 

To demonstrate our data analysis approach the computed measures: P(s), C, 

Hb) 
and P for the three artificial series Y;, Y;, and Y: of chapter 13 

are given in Table (17.1). These series are presented in Figure (17.1) as well. 
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Table (17.1): The descriptive measures P($),C,H($) 
aQd P,for the,three artificial series 
Yl, Y2, and Y3. 

I I I I I I I 
I Number of I Period's I P(s) / C /H(s) / 7 1 

I The Series I categories-R I length=s I 

y; 
I I I I I I I 
I 4 I5 11 I 025 1.75 1 1 I 

I 

y; 
I 

I I 3 I3 11 I 01111 I 
I I 

I y: I 3 I3 OIOI 11 
I I I 

Real Example: Let us locate the indices obtained for the example in chapter 

14 in the right angle triangle in Figure (17.2) below. Each point represents 

one of the divisions obtained in the process. 

Figure (17.2): Graphic presentation of the 5 different divisions (R=2,3,..,,6). 

Series which fall closer in the triangle have similar behavior in the 

sense of our definitions. 
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18. CONCLUSIONS 

In this short chapter I would like to indicate the main differences of 

the LPTA and P.S.P. procedures from classic methods for seasonal adjustment and 

prediction, respectively, Likewise, I would like to indicate some general 

conclusions based on my own opinion and experience for the above topics. 

About Seasonal Adjustment: 

1: In contrast with X-11 and most of the other classic methods, the LPTA esti- 

mates the Seasonal Pattern first and there is no need for prior estimation 

of trend, The LPTA is idempotent procedure or, in other word, one stage 

procedure. Thus, there are no didfferent estimations of the various com- 

ponents over the estimation process. 

2: The three model options for seasonality: Additive, Multiplicative and 

Mixed are acting on the actual data and there is no need to transform the 

data as is often done for multiplicative model. 

3: A minimal assumptions needed for the trend: either of a monotone shape or 

polytone curve of order k. For the latter case (K-l) turning points have 

to be guessed. 

4: Estimating the trend is done basically by reordering the Seasonally Ad- 

justed data. First the turning points are selected and then a monotone 

trend is produced between the turning potis by ordering the data - small- 

est to largest for montone increasing segments and largest to smallest for 

monotone decreasing segments. This trend is a first guess and a very good 

approximate solution to the problem (for a montone increasing segment) 
II 

Min C (zt-Tt)2 subject to TK<TK+l< ,.. , < TI1 where zt is the season- 
k 

ally adjusted data and Tt the trend at time t. There is an option to fur- 

ther smooth this trend. 

5: It seems that any method uses any kind of transformation or smoothing 
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process in order to estimate the trend, Such transformation could be dif- 

ferencing the data or using power transformation on actual data, or esti- 

mating an 'optimal' polynom of fixed degree in a global or local (moving- 

average) way, The re-ordering transformation we use in LPTA is the sim- 

plest in the sense of mathematical point of view. We just remove the loca- 

tion of the various observations taking into account their quantative 

value. 

When the practitioner has information about turning points 

Procedure allows him to take it into consideration in advance. 

LPTA procedure enables the user to choose the appropriate type 

for the 3 main components: 

the LPTA 

of model 

Component I Various Options I Criterion to choose 
I I 
I 

Seasonality I Fixed or Movin 
Model I either fixe or moving 73 

‘Goodness-of-fit = $,p) 

I could be: Additive, 
i t44lEi;A;;;;ive, Mixed 

I 

i 

I 
Irregularities i Additive or MultiplicativeI- Coefficient of Monotonicity 

Model I I Graphic display of irregu- 

I 
1 larities, their autocorrela- 
I tions, etc. 

I I 
Trend I maximum local of monotoni- I Graphic display of 

Smoothness I city or linearity or quad- I irregularities. 
I ratic shape, etc. I 
I I 

8: It seems that the main problem in decomposing any given time series is 

that at least n+p-1 parameters are needed to be estimated based on at most 

n data points. In order to solve that problem in as objective a manner 

as possible some constraints should be adopted and they should relate to 

pre-defined components. 

9: Most of the methods that are in use try to estimate the various components 

without a given proper definition for them. Thus, usually we can not find 
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a coefficient of goodness-of-fit for various models for seasonality and 

irregularities. The moving seasonality is a very vague conception and 

I could not find any definition for it except as to define moving season- 

ality as fixed seasonality (for a given fixed range of data) that changed 

over time. 

IO. For qualitative series, the mode category plays the same role of Seasonal 

Pattern as in quantitative series. 

11: The LPTA is used keeping in mind the parsimony principle. This means that 

we have to trade-off between the number of parameters and the goodness-of- 

fit, In order to select turning points and appropriate models and degrees 

of smoothness of trend, one has to take into consideration simultaneously 

the magnitude of ~1, Maxlu(p)I, MAP), p=period's length, k=order of poly- 

tonicity, PA9 the coefficient of monotonicity of irregularies, the percent 

change from unit to unit of original data, seasonally adjusted data and 

trend component. Likewise it is suggested that one look on the charts 

of original data, S.A.D. and iregularities. 

Prediction Purposes 

Persistent Structure Principle is (in some way) the other way around the 

classical methods for prediction purposes. Usually, one fits a model to data 

in an optimal way and projects it ahead. In contrast, the Persistent Structure 

Principle fits forecasted data in order to agree with previous behavior meas- 

ures by goodness-of-fit criteria. The P.S.P enables the using of various 

shapes for the data: Linear, Monotone, Convex, Quadratic and Exponential are 

some examples. Persistent Structure Principle can be used for estimating 

missing data as well. In a sense, Prediction is an estimation process for 

missing data in future, 

Our recommendations for predicition purposes are the following: 
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1) Decompose the series into S.A.D. and seasonal patterns. Try to choose the 

most appropriate model of seasonality and irregularities with appropriate 

smoothness of the trend. 

2) Project the S.A.D. or trend and Seasonal Pattern (in case that moving sea- - 

sonality is assumed) a units ahead. Use P.S.P. or Box-Jenkins approach or 

any other reasonal prediction method, 

3) Combine the forecasted value obtained in step 2 in order to get point esti- 

mation for actual data. 

4) Use the empirical (l-a)% central estimated irregularities in order to get 

(l-a)% confidence interval to the forecasted value in step 3. Use either 

multiplicative or additive model. This confidence interval is usually 

asymmetric. 

The four steps above enable one to do forecasting without the need for 

transforming the data (like power or logarithm transformation). My experience 

shows that it is usually better to use S.A.D. rather than trend estimation in 

step 2. 

If there are no outliers in the very recent past, use a small number of 

observations for the projection in step 2, but use the irregularities and 

seasonality (for fixed model) that was obtained from the entire series. For 

a polytone trend, the recommendation is to use only the last monotone segment 

(tone). 
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Appendix A 

ABOUT THE COEFFICIENTS OF MONOTONICIN & POLYTONICITY 

The family of coefficients presented here are designed to measure mono- 

tone association between two (at least) ordered variables. Q of Yule, y of 

Goodman & Kruskal, Kendall's T and Spearman's rs are special cases of the 

family as well as other coefficients, The coefficients are based on the 

Absolute Value Principle which will be discussed in the next section. More 

details are given in Raveh (1982b). One special case of this family is used 

in this report to measure the monotone association between quantitative vari- 

able and ordered variable, usually time. The family is extended to be able to 

assess polytone association where the turning points are or are not given in 

advance. 
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Absolute Value Principle for 6notonicity Coefficients 

In order to measure the amount of monotone association two main aspects 

have to be taken into consideration: 

(i) The shape of the monotone relationship 

(ii) The weight given to each deviation from perfect relatioships. 

The Absolute Value Principle means that U sgn(U) = \Ul or -lUl 2 U 2 IUl, where 

sgn(U) is the sgn of the real number U. That is, 

1 if U>O 

sgn(u) = 0 if U=O 

-1 if NO 

Below, a formal definition for a wide family of coefficients is given 

based on the above principle. 

Let x and y be any two ordered sets (numerical or not), and let (Xi, yi) 

(i=1,2 ,...,n) be pairs of observations, where Xi x and yi y ( i=1,2,...,n). 

Let 

1 if Xi > Xj 1 ifyi >Yj 

Oij = 0 if Xi = Xj Sij = 

I 

0 if yi = Yj (i,j=1,2,...,n) 

-1 if Xi < Xj -1 if yi < Yj 

or in other words: gij = sgn(xi-xj), Bij = sgn(yi-yj). In order to consider 

the shape of the monotone curve, let 

laij8ijl 9 

e{JZ' = laijl 9 

efJ3' = l8ijl 1 

i.#!) 
1J = lclijl + ISijl - ICtijBijl l 

Then always efl) = 0 or 1 for m=1,2,3,4. 

Furthermore, for all i and j 
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m=1,2,3,4 
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(1) 

The upper index m designates for the four types (shapes ) of monotonicity. 

They are called: weak, semi-weak, semi-strong and strong monotonicity, respec- 

tively. To have an equality in (2) holds for all (i,j) for fixed m is to have 

perfect 

weak 1 

semi-weak (semi-strong) monotonicity acccording as m = 2(3) 

strong I I 4 . 

The sign being + or -, according as to equality is on the right or left of (2). 

The second aspect, namely, weighting any pair of observations that deviate 

from conditions (2) is done by a weight function Wfy) i,j=l ****t n. 

Let W{y) be any non-negative numbers not vanishing if e{j"' does not 

vanish: 

sgn(W1(5)) 2 17) , 

then, the family of toe Tcients is defined by quantity (3) 

n 

$1 = *c,- 
E Wfy'ai jSi j 

1-J j--l . (m=1,2,3,4) (3) 
n 
c c" wb!) It?) 

i=l j=l ‘J ‘J 

It is easy to verify that always 

-ls@)jl, (4) 

and an equality will hold in (4) if and only if perfect monotonicity of type m 

holds. 

(a) Four Types of l%notonicity --- 

AS mentioned earlier, four types of monotonicity are recognized: weak (m=l), 

semi-weak (m=2), semi-strong (m=3) and strong (m=4). These four types have dif- 
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ferent definitions for monotonicity. In Figure 1 four curves for 2 ordered quan- 

titative sets of points are plotted. These four curves have perfect fitness to the 

four types of monotonicity, respectively. Four types of Perfect monotonicity for 

qualitative variables are presented below in Figure 2. The data grouped in two- 

dimensional cross classification table. 

Figure 1: Four curves that have perfect adequation for the 4 types of monotonicity: 
(a) weak, (b) semi-weak, (cl semi-strong, (d) strong. Below the graphs, the 
conditions for these types of monotonicity are given for all i, j=l 9*--j n. 

0 . . 0 
I ’ 
I l + I ’ > 

X X 

(a) weak (b) semi-weak 

CXfjflij’laij6~jl=8{~) aijBij=laij l=e15) 

p(l)=1 J2L1 

X 

(c) semi-strong 

Ctij~ij'l~ij l=e{j) 

J31=1 

X 

(d) strong 

aijBij=laijl+l8i’l 
-IQfjBij l=efj J 

J41=1 

Figure 2: Four 4x4 tables that present perfect fitness for the various definitions 
of monotonicity. 

High I I I I x I 

I I I I I I 
Y I 

I IX1 1 
I I I 

IxIXIXl ) 
I I I 

Low I I I I I 

Low x High 

(a) (b) 

x is not a unique 
function of y and 
vice versa. 

NO 

1 I I I 
IX I 

I 
1 I 

I I 
IX1 

I 
1 

I 
Y I I I 

IxIXI 

I 1 
I 

I I 
I 1 
I 

I I I I I 

X 

x is a function of 
y but not vice 
versa.- 

I I : Ix/ 
I I I I 

I I I I I Y I x I x 
ix1 

I 
I I [ 
I I 

I I I I I 

X 

(cl 

y is a function 
of x but not vice 
versa. - 

Necessary Conditions 

y has not less x has not less 
categories than x. categories than y. 

I I I I x I 

I I I 1 I I 
I I IX1 1 

Y I I I I 
/xIxI I 1 

I I I 

X 

(d) 

x is a one-to-one 
function of y. 

x and y have the 
same number of 
categories. 
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(b) Three Types of Weighting 

For each m, different choices of WI:) lead to different families of co- 

efficients. We distinguish among three major families: LIP) w=O,1,2 where 

w indicates the number of numerical variables that are involved. As mentioned 

earlier, the upper index indicates the type of monotonicity and the lower index 

indicates the form of weighting each pair of observations. The three types of 

weights, w=O,1,2, are loosely to designate for nominal (qualitatives), ordered 

and interval (quantitatives) variables, respectively. 

Below, the condition for weights for the three major families are given: 

1. Coefficients designate for qualitative data and thus based on order only: 

Here, the first family is demonstrated, namely w=O. 

Q' = pp wpy' C where C is any positive constant. 

This case is appropriate for two qualitatives variables (often two-dimen- 

sional cross-classification table) where the weights are equal. Every pair of ob- 

servations deviates from the monotonicity condition and obtains the same weight. 

In other words, this means that the number of deviations from monotonicity con- 

dition is the loss function. The existance of a deviation is important and not 

the amount of'deviation. By substituting Wlj I C into eq.(3) ~6~) (m) is obtained. 

m=1,2,3,4 

A special case of ~6~) is when m=l, namely ~6~). This coefficient is the very 

well-known Gamma (y) of Goodman & Kruskal (1954, p.749), which is designated for 

Rxc cross-classification table. For 2x2 contingency table Q of of Yule is a 

special case of I z y. 

Another special case of !Jim) where m=4 and there are no ties is 

Kendalls T . 
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2. Coefficients Designated to Ordinal or Numerical Data. 

In this section the lower index w=l is adopted. This family is desig- 

nated either for two ordinal variables or for one ordinal and one numerical 

(quantitative) variable. For this family the weights are given to only one of 

the variables. 

Three possible kinds of weights are discussed. 

(i) Wij = Ii-j1 

(ii) Wij = IYi-YjI 

(ii) Wij = IYi-Yj12 

(i) Using the first kind of weights as a special case of u m, is the very f 

well-known coefficient-r, of Spearman. The weights wij = Ii-j1 is the dif- 

ference in ranks of the sorted observations, Xi and xj respectively. 

~1 for Time Series 

A special case of v f m, for m=l or 3 and weight Wij = IYi-Yjl is used ex- 

tensively in this report, where x is the time axis, namely Xi = i, i=l ,***, n. 

Recall that BijlYi-Ujl = (Yj-Yj) after some manipulation it can be shown that 

n 
c" Ca 
i=l j=llJ 

' "8ijWij 

n 
where ai. = L'aij 

j=l 

and in a similar way 

l 
n n n 
zlaij* BijlWij = 2 C Yi(cfiijlaijl) 

i31 j=l i=l jtl 

By substituting the above expressions into (3) one finds that 

n 

lp 
C Yiai, 

= i=l 
n n 
C Yi(~flijlaijl) 

i-1 j-1 

(6) 
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For the case where variable x has no ties as is usually the case in quantitative 

time series, then laijl = 1 for i+j and (14) has a simpler formula: 

n 

vi' 1 
C Yiai. CO'W,R(X>) 

= i=l = (7) 

c" Yipi. WY,R(Y)) 
i=l 

and the coefficients of monotonicity is proportional to the quotient of two co- 

variances. These covariances are of the Y variable with the time ranks and its 

ively. 

icient p f 
1) in eq. (7) can be expessed in a different way: 

C (Yi-Yj) 
= i>j (8) 

ranks, respect 

The coeff 

up 

E IYi-Yjl 
i>j 

Formula (8) is used for the purpose of decomposition of economic time ser- 

ies in our LPTA procedure and are used for prediction purposes as well. 

(iii) By substituting the weight Wij = (yi-yj)2 the coefficient pf') has been 

used by Johnson (1975) for Nonmetric Analysis of Variance. 

3. Coefficient for two numerical' variables 

This section deals with w=2, or in other words, both variables are numer- 

ical. The weights Wiy) should be such that W\y)<W1[7) if xi<xj<xk and YiLYj(yk 

or vice versa. The weight should take into account both variables. Two various 

kinds of weights are: 

(i) Wij = JXi-Xjl'lYi-Yjl 

(ii) Wij = (Xi-XjJ2 + (Yi-Yj)2 = dfj 

~5~) Versus rxy Of Pearson 

The first weight wij = Ixi -xjl IYi-Yjl means that the "area" between every 

pair of observations is taken into account. Substituting this type of weighting 
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into (3) with m=l yields the equation below (9) 

n n 

up = 
c C(Xi-Xj)(Yi-Yj) 
i=l j=l 

E(Xi-Xj)(Yf-Yj) 

= i>j (9) 
n n 
c C [Xi-Xj I IYi-Yj I 

f=l j=l 
ElXi-Xjl IYi-Yj 
i>j 

It is easy to verify that always l~,~~~)l~l rxy I where 

product-moment coefficient. The equality holds only if lrxy 

rxY is Pearson% 

isOor1. The 

same inequality was found for Pearson's coefficient and Q of Yule for the case 

of qualitative variables. If Ir,I=l then l~~')l=l but not vice versa as in 

figure 3. 

Figure 3: A perfect weak monotonicity association exists, c!lp '=l 1, while linear 
relationship does not imply (r,y<l). 

I 
X 

Both coefficients have proportional denominator and thus, sgn (~h'))=sgn(r,). 

IJ l) h Using Wij = d$j 

A special version a p h l) is achieved by using as a weight the square 

euclidean distance between every pair of observations. This weight Wij = dij 

= (Xi-Xj)2 + (Yi-Yj)2 d oes not vanish for each one of the observations in Figure 

3. Substituting these weights into eq. (3) yields eq. (10) below: 

n n 

,p c 
1 CxijBij C (Xf-Xj)2 + (Yf-Yj I2 1 

= i=l j=l 
n n 
c ’ lafjl18ijl 1 (xi-xj)2 + (Yi'Yj)2 1 
i=l j=l 

(10) 
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The various coefficients of association like the y of Goodman and Kruskal, 

Kendall's T and Spearmans's r as well as other coefficients, are various coeffi- 

cients of monotonicity based on the Absolute Value Principle. Each coefficient 

uses its own particular combination of the weight given to each pair of observa- 

tions and the desired.shape of the monotone relationship. In Figure 4 below, a 

schematic graph is presented for the various special cases. The family of coef- 

ficients is used as a definitional basis for a variety of data analysis tech- 

niques. Some of the applications are given in the figure. 

Figure 4: A schematic graph of the various special cases of Coefficients of Mono- 
tonicity. Some suggested applications are given as well. 

(Pearson) (R;ieh) (Spearman) \(Goodman- 
Kruskal) 

(Kendall) 

up 
(Johnson) 

\ 
Irxyl(lQI (Yule) 

(1) (m3) (4) (5) 

Some Possible Applications: 

l- Multidimensional Scaling (MDS): Mapping an nxn matrix of 'things' (say, 

correlations) into Space (say, Euclidean) with as small dimensionality 

as possible in order to keep the following conditions: If rij>rkl 

then dij<dkl to as many indices i,j,k,l as much as possible. The pro- 

(4 cedure maximizes u,. d or in other words, 
, maximizes the coefficient of 

-(*) with the assumption of no ties. 
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monotonicity between, say, correlations (input) and the Euclidean dis- 

distances (dij -output) on the Space diagram. 

2- Analysis of Variance (ANOVA) in a Nonmetric Approach. 

3- Analysis of quantitative time-series: Seasonal Adjustment and 

Forecasting. 

4- Coefficient of correlation of ranks (two ordinal variables). 

5- Measuring Association of Contingency tables 

6- Coefficient of association between 2 ordered variables. 
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Coefficients of local Monotonicity (Polytonicity) 

Polytone curve of order K is a collection of K monotone curves (tones) 

unified together. The (k-l) points in between the monotone tones are defined 

as turning points. In this sense, monotone association is a special case of 

polytonicity of order K, namely, there are no turning points. In order to 

assess the polytone association quantitatively, we will define coefficients 

of polytonicity in two ways. 

1) When the turning points are known in advance: The time axis would be 

divided accordingly. The coefficient of Polytonicity (I I) is extension 

of eq.(3) 

K IK 
(m) C C Wfy’ aijfiij 6Ij) 

pw,K 
= I<=1 i>j . (m=1,2,3,4) (11) 

where 6 ij = (q(k-1) is the sign of the direction of the related segment 

of time-axis, where both i and j belong to, either positive or negative. Us- 

ages of (11) are presented earlier in (2.5) and (2.6). 

2) When the turning points are not known in advance: The conditions for weak 

monotonicity are: 

(Yi-Yi-I)(Yi-I-Yi-2) 10 for all i=3,...,N, where AYi = Yi-Yi-I or AYiAYi-I = 

IAYiAYi-11 for all i=3,,..,N. 

Thus, series can be measured by coefficient of local monotonicity given in 

equation (12) below. 

Man(Y) = 1 if and only if the series is perfectly weak monotone with either 
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positive or negative slope. If very few turning points exist (relative to the 

length of the series) and between them the series is monotone then Mon(Y)i 1, 

and we call it local monotonicity. The least monotone series would be obtained 

for the following series: a,b,a,b ,...,b where afb. For such a series Man(Y)= -1 

and local linear series yields Man(Y)= 1. More details are given in Raveh 

(1982~). 
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APPENDIX B 

. Some of the actual Series Analyzed in the Report 

Table A: "U.S. RETAIL SALES IN MILLIONS OF $" IN THE YEARS 1960-1964. 

Year Jan Feb Mar W May Jun Jul Au!3 Sep Ott Nov Dee 

1960 16312 15829 17632 18973 18548 18918 18066 18153 17848 18648 18385 22153 
1961 15803 15071 17714 17618 18532 18907 17992 18325 18158 18761 19224 22881 
1962 17007 16042 19193 19097 20226 20254 19138 19920 18863 20576 20911 24127 
1963 18261 17087 19653 20518 21228 20737 20540 21018 19267 21528 21494 25104 
1964 19154 18758 20502 21186 22508 22242 22145 21778 21313 22605 21720 27719 

Table B: Chatfield-Prothero Case-Study. l-65 to 5-71. 

Jan Feb Mar Apr May Jun Jul Aug Sep Ott Nov Dee 

154 
1;: 

73 49 36 59 95 169 210 278 298 245 
200 1:; l5' 78 91 i67 169 289 347 375 203 
223 104 

1;: 1:; 
135 211 335 460 488 326 

346 261 224 141 223 272 4454 560 612 467 
518 404 300 210 196 186 247 343 464 680 711 610 
613 392 273 322 189 257 324 404 677 858 895 664 
628 308 324 348 272 

Table C: Public Consumption of Electricity in the U.S. in the Years 1951-1958 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Ott Nov Dee 

1951 318 281 278 250 231 216 223 245 269 302 
1952 

325 347 
342 309 299 268 249 236 242 262 288 

1953 
321 

367 
342 364 

328 320 287 269 251 259 284 309 
1954 

345 367 
392 

394 
349 342 311 290 273 282 305 328 364 

1955 
389 

420 
417 

378 370 334 314 296 305 330 356 
1956 

396 422 
453 

452 
412 392 362 341 322 335 359 392 427 

1957 
454 

487 
483 

440 429 393 370 347 357 388 415 457 
1958 

491 516 
529 477 463 423 398 380 389 419 448 493 526 560 

Table D: Original Data of the Artificial Series (Has complex seasonality). 

13050 17412 21158 17076 18548 15134 19873 21784 16063 18641 14708 24368 
18964 13564 17714 14094 20385 22688 16130 18325 14526 20637 23069 20593 
17007 12834 21112 22916 18203 20254 15310 21912 22636 18518 20911 19302 
20087 20504 17688 20518 16982 22811 24648 18916 19267 17222 23643 30125 
17239 18758 16402 23305 27010 20018 22145 17442 23444 27126 27719 27719 
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Table E: Agricultural Employment, Men, 20 years and older 

Jan Feb Mar W May Jun Jul A4 Sep 

2638 2648 2672 2844 2836 2955 2970 2909 2924 2922 
2702 2739 2750 2891 2915 3064 3030 2859 2809 2757 
2479 2557 2579 2713 2786 2879 2815 2766 2663 2627 
2283 2330 2423 2636 2696 2801 2759 2614 2578 2500 
2233 2194 2324 2518 2546 2627 2633 2556 2484 2531 
2230 2243 2287 2417 2500 2642 2660 2647 2682 2703 
2319 2289 2388 2488 2524 2694 2664 2596 2528 2558 
2448 2483 2503 2508 2571 2609 2655 2634 2574 2570 
2226 2282 2310 2401 2499 2569 2591 2579 2557 2514 
2163 2174 2202 2379 2468 2588 2596 2531 2405 2424 
2030 2081 2106 2259 2423 2536 2464 2492 2406 2427 
2171 2105 2145 2274 2393 2617 2599 2525 2512 2462 
2084 2117 2176 2237 2342 2509 2520 2554 2498 2472 
2160 2213 2217 2255 2422 2470 2475 2455 2525 2459 

Table F: All Employees in Food Industries 

Jan Feb Mar Apr May Jun Jul 

1720 1702 1707 17081 1727 1789 1829 1880 1920 1872 1811 1771 
1706 1685 1690 1700 1711 1788 1819 1919 1914 1867 1804 1776 
1719 1710 1707 1711 1724 1784 1827 1936 1921 1853 1820 1778 
1731 1727 1723 1711 1727 1787 1817 1916 1900 1844 1795 1758 
1708 1693 1689 1685 1705 1761 1811 1898 1895 1816 1783 1744 
1697 1675 1682 1675 1690 1761 1785 1862 1860 1803 1747 1707 
1661 1654 1651 1641 1651 1705 1738 1811 1821 1786 1749 1711 
1666 1649 1661 1643 1659 1696 1722 1822 1828 1867 1707 1660 
1594 1571 1575 1572 1593 1643 1681 1780 1791 1742 1692 1655 
1619 1615 1605 1612 1637 1685 1728 1813 1817 1754 1710 1672 
1638 1632 1638 1645 1658 1717 1747 1829 1840 1765 1725 1698 
1665 1655 1668 1664 1669 1722 1749 1823 1830 1774 1746 1724 
1685 1666 1676 1666 1679 1728 1750 1829 1835 1782 1736 1706 

Aug Sep Ott Nov Dee 

Ott Nov Dee 

2814 2718 
2717 2559 
2447 2324 
2418 2286 
2440 2266 
2532 2464 
2536 2420 
2415 2311 
2362 2177 
2248 2125 
2283 2192 
2277 2250 
2403 2292 
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