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ABSTRACT: A time varying multivariate autoregressive modeling of econometric 

time series is shown. Deviations from trend data are modeled, Kozin's orthog- 

onal Legendre polynomial time varying representation, a Householder transfoma- 

tion method of least squares modeling and the use of Akaike's AIC for subset 

selection are the key ideas in this method. Frequency domain relative power 

contribution computations yield an interpretation of the changing with time 

econometric relationships *in the analysis of the U.S. hog, corn and farm 

wage series. 

KEY WORDS: Multiple time series, AIC, nonstationary time series, Legendre poly- 
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1, INTRODUCTION 

Economic, environmental and engineering data are often collected at equally 

spaced time intervals. In many problems such time series may be available from 

several related variables. It is of interest to model and analyze such series 

jointly to understand the dynamic relationships among them and to enhance the 

accuracy of forecasts. 

The series of concern here are of relatively short duration, 100 not 1000 

observations, and each series can exhibit slowly varying as well as relatively 

rapidly varying components. Our emphasis is on the modeling of the relatively 

rapid fluctuations. In the context of economic data, this is a concern for 

modeling the dynamic rather than the relatively static interrelationships. To 

enable that modeling, each time series is individually detrended and the remain- 

ing simultaneous multivariate time series are modeled without the constraining 

assumptions of stationarity. It may be anticipated that the relationships be- 

tyeen logically related economic components may change in time. We do allow for 

that contingency and model both time invariant and time changing relationships. 

The theory and practice of the modeling of multivariate time series has 

been developed for example in Quencrille (1957), Whittle (1963), Akaike (1968, 

1971), Hannan (1970)) Zellner and Palm (1974), Brillinger (1975)) Box and Tiao 

(1977), Dunsmuir and Hannan (1976), Hsiao (1979) and Tiao and Box (1982) with 

quite divergent points.of .view. Our approach has been strongly influenced by 

the aforementioned work of Akaike and the successful application of that work to 

the control of rotary cement kilns, ship's yaw motion and supercritical thermal 

power plants (Otomo, Nakagawa and Akaike (1972), Ohtsu, Kitagawa and Horigome 

(1979) and Nakamura and Akaike (1981)). Consequently, we adopt the autoregres- 

sive (AR) model as the basic statistical model. The Householder transformation 

algorithm is exploited in the adaption of the Kozin's (1979) orthogonal polynom- 
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ial time varying coefficient model for multivariate time series. Also, we use 

Akaike's AIC for subset selection to ameliorate the curse of the overparamete- 

rization that is implicit in multivariate time series modeling and to choose the 

best of the time invariant or time-varying models fitted to the data. 

The analysis is in Section 2. Section 3 is a worked example of the US Hog 

series. That series was modeled earlier by Quenouille (1957) and Box and Tiao 

(1977). Comments are in Section 4. 

2. THE ANALYSIS 

2.1 DETRENDING 

Assume that each of D simultaneous time series is in the form 

Y&d = td(n) + Xd(n) + e(n): d=l,...,D; n=l,...,N. (2.1) 

In (2.1) yd(n), II=1 ,,..,N is the dth component series, td(n) is a relatively 

slowly varying trend component, xd(n) is a relatively rapidly varying component 

and cd(n) is a zero-mean constant variance uncorrelated observation error. It 

is assumed that the observation errors in each time series are orthogonal to 

each other. Then, let , 

- z&-d = Y&d - td(nlN); d=l,...,D; n=l,...,N . (2.2) 

In (2.2) zd(n) denotes the detrended dth component series with d=l,...,D and 

td(nlN) is the smoothed trend component. (The estimation of the smoothed trend 

may be done by our smoothness priors-recursive computation procedure, Kitagawa 

and Gersch (1982).) 

2.2 MULTIVARIATE TIME VARYING MODEL 

Denote the D component vector of deviation& from the trends by z(n) = 

(Zl(n),z2(n>,**~,zD(n))'~ The notion A' denotes the transpose of A. The data 

z(n), n=l ,...,N is modeled in the form 
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z(n) = A,(n)z(n) + AI(n)z(n-I) + . . . + AL(n)z(n-L) + c(n) 9 (2.3) 

I- 
I 0 -1 
I a,W,n) 0 

AO(n) = 1 . . . f (2.4) 
I . . . I 

i l 

. . 

f 

☺-ao(D91*n) 

a,@&Ln) 0 I 
-I ’ 

with E(S(n)S(n')') a diagonal matrix and 

The model in (2.3) and (2.4) is an instantaneous responses model. An equivalent 

non-instantaneous response time varying AR coefficient model computed from (2.3) 

and (2.4) is 

z(n) = ~~~~~-Ao~n)l-'A,(n)z(n-r) + [I-A,(n)]%) l 

= 

In component form, the model in (2.3) is 

(2.5) 

(2.6) 

with aO(i,j,n) = 0, for ilj, j=l,...,D. 

The components of the multivariate time varying AR model in (2.6) are com- 

puted using a Householder transformation algorithm and an AIC subset selection 

procedure-version of the Kozin (1977) orthogonal polynomial time varying AR mod- 

delmethod. Many details on multivariate stationary time series AR modeling are 

in Kitagawa and Akaike (1982). Householder transformation programs are in 

TIMSAC 78 (Akaike, Kitagawa, Arahata and Tada, 1978). A brief description 

follows. 

2.2.1 Householder Transformation-Scalar AR Modeling 

Consider the stationary scalar AR model 
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x(n) = alx(n-1) = .., + aLx(n-1) + E(n) . (2.7) 

In (2.7) r(n) is a zero mean uncorrelated sequence with unknown variance u2. 

The data x(n), n=l,...,N is observed. Define the matrix Z and the vectors y and 

bY 

I- -1 I- -1 I- -1 
Z = I x(L) x(L-1) ,.. x(1) I , Y = I x(L+l) I , a = 

; x(L+l) x(L) -** x(2) 1 

1: : 
. I x(L+2) I 
. I: I 

I* ’ l I 
I I 
i x(N-1) x(N-2) . . . x(N-L)I 

ID I 

-I - I x(N) -I 

The Householder transformation solves min II Za - y 112 for the unknown AR co- 

a2 where efficient vector a and the variance u , ~~.~~ 2 denotes the Euclidean 

norm. Write X = [Zly] as the (N-L)x(L+l) matrix with the vector y appended to 

the right of the matrix Z. The Householder transformation, realized with orth- 

ogonal matrix P, reduces the matrix X to an upper triangular form. 

I- 
X --+ pX = s = i Sll 

I 

I 
I 
I 
I- 

. . . 

. 
. 

. 

Sll 
. 
. 

iLL 

-1 
slL+l I 
. I 
. 

I 
SLL+l I 
SL+lL+ll 

-I ' 

(2.9) 

For the structure of P and computation of PX, see Golub (1965). From the or- 

thogonality of P, I IZa-yIl2=1 IPZa-Pyj 12. This can be rewritten as 

I- -1 I- -1 I- -1 
I I PZa-WI2 = I I I SI1 ., l SIL I I aI I - I SIL+l I II2 + Sf+lL+l . 

I l . p:; I* I 

f l * 

I ’ 
II. I 

$L I I q I 
I: I 

(2.10) 

I sLL+l I 
I- -1 I- -1 L -I 
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The minimum of this quantity is Sf+lL+l. The least squares estimate of the co- 

efficient vector a solves 

I- -1 

Y1 I� 

SlL ; 

l I 
1 ‘.:I 

I 

I_” 
SLL I 

-I 

Given the triangular matrix 

I- - 
) a1 

I : 

1 ’ 
1 "L 
I- - 

I- -1 

= I SIL+l I ’ 
I: I 

(2.11) 

X, AR models of order k<L can be obtained by solving 

I- -1 I- -1 I- -1 
l 

(2.12) 

An estimate of the innovations variance for the kth order model is obtained from 

L+l 
u2(k) = 1 1 S;L+l . 

N-L i=K+l 
(2.13) 

The quantity N-L in (2.13) signifies that in Householder transformation least 

squares method, the first L data points are used for initial conditioning. Sub- 

set autoregression models of the AR model of order KLL are simply obtained. Let 

{i(l) ,...,i(k)I be a subset of {l,Z,...,LI. The corresponding subset AR 

model is 

x(n) = !f ajx(n-i(j)) + E(n) . (2.14) 
j=l 

The least squares estimates of the model coefficients are obtained by first 

transforming the matrix X to S' with S'p,i(j) = 0 (p=j+l,...,L+l; j=l,..,k) and 
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then solving the linear equation 

i S' 
j=t 

bi Waj = Si,~+l (a=l,...,k). 

The estimate of the innovation variance is given by 

L+l 
a2(i(l) ,...,i(k)) = l C s;2r+1m 

m i=k+l ' 

(2.15) 

(2.16) 

The value of Akaike's AIC statistics for a particular model is defined by 

(Akaike, 1973, 1974), 

AIC(k) = (N-L) log u2(k) + Z(k+l) . (2.18) 

The AIC is used to select the best of alternative parametric models. The model 

which attains the minimum AIC is selected as the AIC best model. Note that the 

AIC’s of the k<L order AR models and of individual subset AR models can be com- 

puted directly from the S matrix without solving the linear equations for the 

particular models. 

2.2.2 Kozin's Model, A Householder Transformation Realization. 

Consider the time varying AR coefficient model 

x(n) = al(n)x(n-1) + . . . aL(n)x(n-L) + e(n) , 

with 

aj(n) = I 
j=l 

aijfj(n), i=l,...,L 

. 

fj(n) = f (-l)S(j:s)(&+) , n= 0,l N 9".9 . 
s=o 

N(s) 

(2.19) 

(2.20) 

In (2.20) n(s) = n!/(n-s)!, N(s) = N!/(N-s)! and N is the number of data points. 
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The functions fj(n) are the orthogonal family of discrete Legendre polynomials 

(Milne (1949)). They are orthogonal on the interval [O,N). This method for 

characterizing the time varying AR coefficient model was used by Kozin (1977). 

In a notation that is more convenient for Householder transformation com- 

putation, rewrite (2.19) in the form 

x(L+K) = i at(L+k)x(L+k-2) + e(L+k) 
a=1 

(2.21) 

= ,bl a(e,j)f(j,L+k)x(L+k-a) + e(L+k) , n=L+k, k=l,...,N. 
= 

In (2.21) the subscript notation aij and fj(n) in (2.20) are changed to a(i,j) 

and f(j,n). Then, re-index n in f(k,n) by f(j,n-L) and expand to the more 

transparent representation for Householder transformation computation, 

x(n) = a(l,l)f(l,n)x(n-1) + . . . + a(l,j)f(J,n)x(n-1) (2.22) 

+ a(Z,l)f(l,n)x(n-2) + . . . + a(Z,J)f(J,n)x(n-2) 

. 

. 

w 

. 

+ a(L,l)f(l,n)x(n-L) *+ . . . + a(L,J)f(J,n)x(n-L) + c(n) . 

Now, define the LJ and N vectors a and y: a = (a(l,l) . . . a(l,J),a(Z.l) . . . 

42,J) . ..a(L.l) . . . a(L,J))‘, y=(x(L+l) ,..,, x(L+N)' and the-NxJL matrix Z 

(2.23) 
I- -1 
I f(l,l)x(L) . . . f(J,l)x(L) f(l,l)x(L-1) . . . f(J,l)x(l) I 
I f(l,Z)x(L+l) .., f(J,Z)x(L+l) f(l,Z)x(L) . . . f(J,Z)x(Z) I 

z I l 
= 

. . � 

I � 

. . l I 

I l 

. . * 

I 

1 f(l,N)x(L+N-1) . ..f(J.N)x(L+N-1) f(l,N)x(L+i-Z)... f(J,N)x(N) I . 
-I 
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As before, append the vector y to the matrix Z, use the Householder transforma- 

tion and solve for the least squares estimates of the components a(i,j), i=l, 

. . ..L j=l,,.., J of the a vector. In the new notation, the time varying coeffi- 

cients ai in the representation (2.19) are 

ai = ji14i ,j)f(Ln) . = (2.24) 

Given the maximum AR model order L and the maximum polynomial order J, time 

varying AR models of order k<L with polynomial orders J’L3 and subsets of those 

models can be readily computed by the methods in section (2.2.1). The AIC best 

of those models is then also readily selected. 

2.2.3 Time Varying Multivariate AR Models 

The extension of the use of the Householder transformation to the computa- 

tion of multivariate time varying AR coefficient models is straight forward. 

Each coefficient in the multivariate AR representation is computed independently 

of the other coefficients. The role of the AIC is critical in subset selection 

to reduce the potential JxD2xL time varying AR coefficients in the model (2.5) 

to a more reasonable number. To fit the model described in (2.3),(2.6), set up 

the (N-L)xJxDx( L+l) matrix X, 

(2.25) 

I- -1 
X= I w-ww’ (f(L)z'(L-1))' ..* (f(L)'z(l))' z(L+l)‘ I 

I I ’ 
1 (f(L+l)‘z(L+l))’ (f(L+l)‘z(L))’ .*. (f(L+l)‘z(Z))’ z(L+Z)’ I 

; : I 

I ’ t 
I (f(N-l)‘z(N-1))’ (f(N-l)'z(N-Z))'... (f(N-l)'z(N-L))' z(N)' 
I 
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The JD column vectors f(n)'z(s) in (2.25) signify the lexicographic ordering of 

the product of the jth polynomial at time s, j=l,...,J, for each of the compo- 

nents zd(s). d=l,...,D at time 5. The matrix X is reduced to an upper triangle 

matrix S. The model (2.6) is obtained by applying a subset regression algorithm 

to the submatrix of S, 

I- 
1 si,l l . . sJLD+Ji,l -1 

. . I 
. ‘ 

i . l I 

t 
I 

I- 
SJLD+Ji, JLD+Ji I 

-I . 

(2.26) 

More details and a worked example of the time invariant version of the multivar- 

iate model fitting computation are in the program MULMAR in TIMSAC- (Akaike, 

Kitagawa, Arahata and Tada, 1978). 
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3. AN EXAMPLE 

3.1. U.S. HOG, CORN AND WAGE SERIES. 

We modeled the 5 variate U.S, hog, corn and labor wage series that was 

studied earlier by Quenouille (1957) and Box and Tiao (1979). The data are an- 

nual. There are 82 observations in each time series in the interval 1867 to 

1948. Quenouille logarithmically transformed and scaled the data to produce 

numbers of comparable magnitude in each series. The original data with superim- 

posed trend and deviations from the trend are shown in Figure 1. The trends 

were computed by the smoothness priors-recursive computational method (Kitagawa 

and Gersch, 1982). Visual examination of the deviations data suggests that the 

hog supply is negatively correlated with the hog price and corn price, and lead- 

ing the corn price. It is positively correlated with and leading corn supply 

with increasing time more positively correlated and with increasing lead with 

farm wage rate. Hog price is positively correlated and with increasing time 

with increasing lead with corn price. Hog price and farm wages appear to be 

positively correlated to slow movements early in the time series and to more 

rapid changes later in the series. These observations were made by examining 

plots of the deviations data pairwise, sliding them in time in relation to each 

other, inverting them etc. 

3.2, TIME INVARIANT AND TIME VARYING MODELS, 

A time invariant analysis was conducted first. A lag L=5 and Lag L=2 were 

fitted to the data n=6,...,82, The corresponding AIC’s and number of parameters 

fitted were AIC(5,5)=2812.2, AIC(5,2)=2814.7; params(5,5)=62, params(5,2)=47. 

The AIC of-the Lag L=2 model fitted to the data n=3,...,82 was AIC(2,2)=2936 

with params(2,2)=31. The notation, AIC(n-1, Lag L), signifies that the lag L 

model was fitted to the data n, n+l,...,N. L data'points are required for ini- 

tial conditions in fitting a lag L model by the Householder transformation 

method that implies that (n-l) 5 L. We fitted lag models L and L1 with L'<L 



and computed AIC(L,L) and AIC(L,L') in order that the alternative contender AIC 

best models be computed on the same data span, (L+l,L+Z,...,N). params( , ) de- 

notes the number of parameters fitted in the model. 

To check the stability of fitted models, compare the L=2 models fitted to 

the n=6,...', 8 data and n=3 ,...,82 data by multiplying AIC(5,Z) by the ratio 

80/77 to obtain an approximate data length corrected AIC of 2924.4. The compu- 

tational results suggest that the lag L=2 model be tentatively adopted as a 

satisfactory time invariant model. 

INSERT TABLE 1 HERE 

Table 1 is a listing of the fitted instantaneous model parameters, the in- 

novations matrix, the innovations correlation matrix and the equivalent AR mod- 

el. The model coefficients are of no particular interest. Note, however that 

in the instantaneous and AR models there are 31 and 39 parameters respectively, 

(out of 60 possible parameters). The large negative correlation between the 

corn price and corn supply series suggests that one of those variables might be 

eliminated. We did some additional computing and used the AIC to make the deci- 

sion. The AIC computed for the model with deleted variables is the sum of the 

AIC's computed for the model purged of the deleted variables and the AIC of the 

model fitted with the deleted variables. This computation reflects the assump- 

tion that the two sets of variables are statistically independent. This total 

AIC must be compared with the AIC computed with all the variables present. The 

AIC preferred model is the one with the smallest AIC value. 

Carrying out this procedure with the corn price and corn supply time series 

deleted (one of those series was deleted at a time) indicated that the full 

model be retained. Very likely the high correlation between those series and 

their relationship to the remaining series is influenced by other unobserved 

time series. The weather is such a candidate time series. 
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INSERT TABLE 2 HERE 

Table 2 shows the results of the fitting of the time varying model, para- 

metric in the Legendre polynomial order for the L=2 model. IPOL=O corresponds 

to the time invariant model. The AIC preferred model is taken to be the L=2, 

IPOL=l model. We do not accept the L=Z,IPOL=3 model with the slightly smaller 

AIC value because of the very large number of parameters included in that model 

and because the 4th and 5th regressands are fitted with 40 and 50 variables re- 

spectively. This is an excessive parameterization when only 80 data points are 

available for the modeling. 

The graphical results of frequency domain computations are revealing. 

Figure 2A is the power spectral density shown on a logarithmic scale of the de- 

viation from the trend series. The computations are performed on the series in- 

dividually using an AR model spectral density computation method. These graphs 

are compatible with our visual appraisal of the individual series. The high and 

low frequency bumpiness in the appearance of first three series are in agreement 

with the bumpiness of the power spectral densities for those series. The 4th 

series, corn price does appear to be quite random and indeed the AR modeled 

spectral density reveals a white noise series. The farm wage series is domin- 

ated by relatively slow behavior. Correspondingly the spectral density of that 

series is dominated by the energy at low frequencies. The frequency scale is 

linear over the interval O<f< l/2 years. -- 

Frequency domain relative power contributions, RPC, were also done. An AR 

modeled spectral density power matrix was computed both for the stationary and 

nonstationary time series model cases. Only the diagonal terms of the residual 

covariance matrix were used in the computation. In that way, the total power 

spectral density at frequency f in each time series can be decomposed into the 

RPC's from each of the D time series. This idea was used in an exploratory 
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control problem setting to determine which of the variables fitted in a multi- 

variate AR model might be most useful for control purposes, Akaike 1968. 

In Oritani, 1979, the RPC was used in an economic time series analysis problem. 

In the context of this paper the RPC is decomposition of the total power of 

the time series Zd(n) at frequency f, O<f< l/2 to the contribution from each of -- 

the individual time series {zd(n) d=l ,...,Dl. Figure 2B shows the RPCcontribu- 

tions for the stationary model. The successive contributions of the time series 

zd(n) d=l,..., D are plotted so that the contribution of the dth time series at 

frequency f is the difference between the dth and the (d-1)st time series. The 

RPC are plotted for' each variable. Thus for {z2(n)1 the hog price series, the 

principal contributions are the corn price series at the low frequency and the 

price of hog-series at the high frequencies. The RPC contributions to the price 

of corn and the supply are dominated respectively by the price of corn and the 

supply of corn. The farm wage series has relatively little power at the high 

frzquencies. The most significant contributions to the farm wage series at low 

frequencies are the corn price and corn supply series. 

Perhaps the most interesting use of the RPC is in exposing the changing re- 

lationships betwen the different time series with time. In figures ZC,D,E the 

RPC's of the 5 deviations from trend time series are shown for times n=12,42, and 

72. The general impression from those graphs is that the interrelationships be- 

tween those series change with time. The farm wage series have -little relative 

influence on the other series. At n=12, the hog supply series is most influenced 

by regression upon itself. This influence diminishes with time. At n=72, the 

corn supply series becomes the most influential series on hog supply. At n=12, 

the hog price series is most influenced at low frequencies by corn'price. It is 

dominated at frequency z l/6 years by hog supply. The-hog supply influence di- 

minishes with time. The low frequency influence of corn price on hog price in- 
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creases with time and the hog price series is increasingly sensitive to itself 

at high frequency. Corn price is dominated by a peak influence of hog supply at 

frequency 21 l/7 years. Otherwise, corn price is most sensitive to previous corn 

price with that influence diminishing with increasing time, particularly at 

higher frequencies. At n=72, the corn supply series is a high frequency influ- 

ence on the corn price series. The corn supply series is primarily influenced by 

itself. At n=12 hog supply has a peak influence at frequency 2 l/7 years, at 

n=72 corn price has a peak influence at frequency z l/7 years. The farm wage 

series is primarily a low frequency series. At n=12 it is dominated by itself. 

At n=42 and n=72 the corn price and corn supply series are the dominant influ- 

ences on farm wage rate. 

4. COMMENTS 

A phenomenological approach to the understanding of the dynamic relation- 

ships between simultaneously related short span time series was taken. The sim- 

ultaneous deviations from the relatively slowly changing trends of the series are 

modeled. The relationships between the trend components of economic time series 

may be interpreted as "static" relationships. The key model fitting ideas in our 

approach are the modeling of the deviations from trend data, the employment of 

the AR model, the use of the Householder transformation for least squares compu- 

tations for time invariant and time varying models, the use of Akaike's AIC to 

select subset AR models and an engineering-like frequency domain view with the 

RPC to visually expose the sensitivity of one time series to the influence of 

other time series. 

The AIC yields several checks on the stability of the computations with 

respect to model order, eliminated variables, polynomial order in the time vary- 

ing AR model and finally on choosing between time invariant and time varying AR 

models. The availability of such verification is essential with the inevitably 
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large number of coefficients present in the fitting of multivariate models. 

Our analysis does seem reasonable. The interpretation of our computational 

analysis is compatible with our interpretation of a visual examination of the 

data and of the computed results. Also, the plots of the RPC's can be related 

to the appearances of time series pairwise. 

As suggested in Tiao and Box (1972) the modeling of multivariate time ser- 

ies is still a challenging problem. We have achieved a new and highly desired 

modeling of time changing relationships between econometric variables. Only the 

conventional orthogonal polynomial and subset selection tools of regression ana- 

lysis have been used. If we assume that the system which generated the data were 

infinitely complex and reasonably regular and that our model were only an approx- 

imation to that system, strong consistency of the parameter estimates and mini- 

mum expected one-step-ahead prediction error properties could be proved. At 

this point, those analyses are not as compelling as is examination of the phe- 

nomenological properties of the methods. It does appear that several simultan- 

eous short duration time series can be reasonably modeled by our method. 
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LEGENDS 

Figure 1 US HOG CORN AND WAGE SERIES 

A Original data and superimposed trend. 

B Deviations from the trend for each of the Hog supply, hog price, 
cbrn price, corn supply and farm wage rate series. 

Figure 2 RELATIVE POWER CONTRIBUTIONS 

A Power spectral density 

B RPC, stationary model 

C RPC, nonstationary model n=12 

D RPC, nonstationary model n=42 

E RPC, nonstationary model n=72 

TABLES 

TABLE 1. TIME INVARIANT INSTANTANEOUS AND AR MODELS 

TABLE 2. TIME VARYING AR COEFFICIENT MODEL, L=2 
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TABLE 2: TIME VARYING AR COEFFICIENT MODEL, L=2 

IPOL-ORDER NUMBER OF PARAMETERS AIC 

0 31 (LL%W) 2936.84 

1 66 (14,16,10,6,20) 2880.52 

2 111 (18,27,15,24,27) 2888.01 

3 188 (28,36,32,40,52) 2819.07 
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