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ABSTRACT: A smoothness priors approach to the modeling of time series with trends 

and seasonalities is shown. An observed time series is decomposed into local 

polynomial trend, seasonal, globally stationary autoregressive and observation 

error components. Each component is characterized by an unknown variance-white 

noise perturbed difference equation constraint. The constraints or Bayesian 

smoothness priors are expressed in state-space model form. A Kalman predictor 

yields the likelihood for the unknown variances (hyperparameters) with a computa- 

tional complexity, O(N). Likelihoods are computed for different constraint order 

models in different subsets of constraint equation model classes. Akaike's mini- 

mum AIC procedure is used to select the best model fitted to the data within and 

between the alternative model classes. Smoothing is achieved by a smoother 

algorithm. Examples are shown. 
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1. INTRODUCTION 

This paper is addressed to the problem of modeling and smoothing of time 

series with trend and seasonal mean value functions and stationary covariances. 

A modeling approach is taken. We were motivated by the Shiller-Akaike "smooth- 

ness priors" solution to the smoothing problem originally posed by Whittaker in 

1919. (Our earlier work is in Kitagawa (1981) and Brotherton and Gersch (19811.) 

Consider the smoothing problem: Let the observations of a discrete time 

series be: 

y(n) = f(n) + E(n); n=l S.", N (1.1) 

with E(n) i.i.d. from S(O,$), a2 unknown and f(e) an unknown "smooth" func- 

tion. The problem is to estimate f(n), n=l ,...,N in a statistically satisfactory 

manner. Whittaker, suggested that the solution for f(n), n=l,...,N balance a 

tradeoff between infidelity to the data and infidelity to a k th order difference 

equation constraint on f(n). The choice of a tradeoff parameter was left to the 

investigator. For a fixed value of the tradeoff parameter, the solution to 

Whittaker's problem can be expressed in terms of constrained least squares com- 

putations, parametric in that tradeoff parameter. 

A spline smooth - generalized cross validation to determine the smoothness 

tradeoff parameter approach to the smoothing problem has been developed and ex- 

tensively exploited in applications by Wahba (1975, 1977) and her colleagues. 

That solution is of computational complexity O(N3). Wahba (1977) pointed. out 

that the two critical facets of a solution to the smoothing problem are the de- 

termination of the smoothness tradeoff parameter and the realization of a compu- 

tational procedure. In Akaike (1980), Shiller's (1973) Bayesfan smoothness 

priors idea is fully developed to yield a likelihood computation for determin- 

ing the smoothness tradeoff parameter. Akafke (1980) is an explicit solution 

to the problem posed by Whittaker. His contrained least squares computational 
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solution is also O(N3). Akaike (19801, Akafke and Ishi guro (1981) S smooth time 

series with trends and seasonalities in the BAYSEA seasonal adjustment program. 

Initially motivated by Akaike (19801, we have achieved an O(N) computational 

solution to the smoothing problem, have extended some of the ideas of BAYSEA to 

include provision for the presence of a stationary stochastic component in the 

trend and seasonal model and have achieved reliable prediction performance of 

time series with trends and seasonalities, (Gersch and Kitagawa (1982)). The 

O(N) computations were achieved by casting the computations into a recursive 

form. Our approach is also a Bayesian-smoothness prior approach that yields the 

smoothness tradeoff parameters as a likelihood computation. 

In our approach stochastically perturbed difference equation constraints on 

the trend, seasonal and stationary time series components of the observed time 

-series are expressed in a state-space model. The computation of the likelihood 

of the hyperparameters that balance the smoothness tradeoffs of the trend, sea- 

sonal ; stationary stochastic and observation error components of the data is 

facilitated by a recursive computational Kalman predictor. Akaike's minimum AIC 

procedure, Akaike (1973, 19741, f s used to determine the best of alternative 

trend and stochastic component difference equation orders and to determine the 

best model of alternative model classes. Finally, the AIC best modeled-data 

is smoothed by a smoother algorithm. 

The subject treated here is very closely related to the subject of seasonal 

adjustment of time series that is treated for example in Shiskin, Young and 

hsgrave (19671, Cleveland and Tiao (19761, Pierce (19781, Schlicht (19811, 

Hillmer Bell and Tiao (1981), and Hillmer and Tiao (1982). The smoothing prob- 

lem approach is closely related to work by Wahba (1975 and T977), and to the 

maximum penalized likelihood method by I. J. Good and Haskins (19801, (and ref- 

erences therein). Young and Jakeman (1979) is also of interest. 
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In Section 2 a version of the smoothness prior solution to the smoothing 

problem is shown. In Section 3 state-space models for time series that include 

trend, seasonality, stationary stochastic, trading day effects and observation 

error components are shown. Also included are the minimum AIC method for select- 

i ng the AIk criterion best of alternative candf date difference equation model 

order of the trend and stationary stochastic autoregressive (AR) components for 

those state space models and the Kalman predictor and smoother formulas. Ex- 

amples are shown in Section 4.0ur objective there is to illustrate the phenomen- 

ology of our smoothing problem approach to the modeling of time series with 

trends and seasonalities. In section 5, Summary and Discussion, the examples are 

discussed and we compare our smoothness priors-minimum AK procedure with the 

Box-Jenkins-Tiao procedure for the modeling of time series with trends and 

seasonalities. 

2. A BAYESIAN SOLUTION TO THE SMlOTHING PROBLEh 

A "smoothing" problem and an approach to its solution, attribtued to Whittaker 

(1923) is as follows: Let 

y(n) = f(n) + c(n) n=l,...,N (2.1) 

denote a sequence of observations. f(n) is an unknown "smooth" function, E(n), 

n=l ,...,N are f ndependent identically distributed normal random variables with 

zero mean and unknown variance q2. The problem is to estimate f(n), n=l s***s N 

from the observations, y(l) ,...,y(N), in a statistically sensible way. 

Whittaker suggested that the solution f(n), n=l,...,N balance a tradeoff be- 

tween infidelity to the data and infidelity to a k-th order difference equation 

constraint. For fixed values of x and k, the solution satisfies 

min 
I 

f (y(n)-f(n)2 + A2 F (vkf(n112 
f n=l n=l _ 3 

(2 02) 
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The first term in the brackets in equation (2.2) is the infidelity to the data 

measure, the second is the infidelity to the contrafnt measure and x is the 

smoothness tradeoff parameter. Whittaker left the choice of A, the smoothness 

tradeoff parameter, to the investigator. 

For given x and k the solution satisfies the constrained least square prob- 

lem 

min 
f II ( i 

with 

- (a:,) (” 11 2 

f = (I + A2 Dk'Dk$y 

SSE(a,k) = y'y-fL(I + x2 Dk*Dk) f. 

(2.3al 

(2.3b) 

(2.3~) 

In (2.3~) SSE (x,k)is the sum of squares of the residuals. In (2.3a) Dk is the 

contraint matrix for the k-th difference equation constraint. For example, for 

k=2, the constrained least squares set up with Dk = D2 becomes 

min 
f 

I i(N) 

s* 
0 
. 
. 

-b 

!Nxl 

= 

- 1 
1 

. 

1 
x 

,2x x 
x-2x x 

. . . 

. . . 
x-2x x 

2NxN 

x- . . . 
f(N)- 

2x1 

(2.4a) 
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N x N matrix forms for the k=l and k=3 difference equation constraints; D1 and 

D3 are 

1=1’ 

I’ -l 
; . . 

D1 = I 

. 

I_ 

-1 1=1 

1 I l-3 3 -1 3 -1 
I 
I I1 -3 3 . 

. . IiD3�1 * l � 
I 

1 -J 

-1 

-1 

I 
i 
I (2.4b) . 
I . . 

. . . 
I 

1 -3 3 -y l 

The top row in D1, 2 top rows in D2 and 3 top rows in D3 are related to initial 

condition constraints on the Ok, k=l, 2, 3 matrices. In 02 (2.4a),a = (2f(O) - 

f(-lHA,B = -f(O)x and f(0) and f(-1) are estimated by a backcasting method. 

Akaike's (1980) smoothness priors solution explicity solves the problem 

posed by Whittaker in 1923. A version of that solution follows: Consider x 

known and exponeniate (2.2). Then, 

max a(f) = max exp( -1 f (y(n)-f(n))'1 l expC ;$ n i (vkf(n))21 . (2.5) 
f,k f,k 27 n=l = 

1 1 
Under the assumption of normality, equation (2.5) yields a Bayesian posterior 

distribution interpretation 

n(fly,a,a2,k) a p(ylu2,f)~(flX, U2vk) (2.6) 

with n(flx,a2,kl the smoothness prior distribution of f and p(yla2,f) the 

data distribution, conditional on g2 and on f. Then, the likelihood for a and 

k is given by 

Lb,u2 ,k) = 
/ 

p(yIu2,f) n(flx,u2 ,k)df . (2.7) 

In Bayesfan terminology, x is a hyperparameter. This "type II maximum likeli- 
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method" of analysis was suggested by I. J. Good (1965). (See aiso Good and 

Gaskfns (1980) and references therein.) 

Directly integrating equation (2.7) and taking minus two times the logarithm 

of the likelihood yields an explicit closed form expression for -2an L(x,k). 

FBximization of equation (2.5) is equivalent to the minimization of -2an L(x,k). 

Explicitly, the Bayesian optimal smoothness solution of -2En L(A,k) is 

-2gn L(A,k) = N %n +SSE(&k) + 0'll I + a2DkJDkl - anlA2 Dk'Dkl. (2.8) 

The solution is achieved by a two parameter search over the paramters h and k. 

In (2.8) IA1 is the determinant of the matrix A, A' denoted the transpose of A 

and SSE(x,k) is as defined in (2.3~). 

3. A KALl%N StQOTHER - AIC CRITERION SOLUTION TO THE SF'OOTHING PROBLEt4 

In this section the state-space models for the additive decomposition of the 

observations into local polynomial and stochastic trend, seasonal and observa- 

tion error components are shown. The trading day effect model is also shown. 

Then, Akaike's minimum AIC procedure for the state space model is discussed. The 

critical role of the computation of the likelihood of the tradeoff or hyperpara- 

meters is achieved through the use of the Kalman predictor. That computation, 

the prediction algorithm and the smoother algorithm are also discussed. 

3.1 THE MDDELS 

The generic state space or signal model for the observations y(n),(n=l ,... 

,N) is 

x(n) = Fx(n-1) + Gw(n) 
(3.1) 

y(n) = Hx(n) + E(n) 

where the w(n) and E(n) are, for convenience, assumed to be i.i.d. zero mean 

normally white noises. x(n) is the state vector at time n andy(n) is the obser- 
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vation at time n. For any particular model of the observations, the matrices F, 

G and H are known, and the observations are generated recursively from an initial 

state that is assumed to be normally distributed with unknown mean Y(O) and fn- 

finite covarfance V(0). The difference order constraint k and the variances of 

w(n) and E(n) in equation (3.1) are unknown. 

In particular, the general state space model for the observations y(1) ****s 

y(N) that includes the effects of local polynomial trend, stationary AR process, 

seasonal components, trading day effects and observation errors is written in 

the following schematic form: 

x(n) = Fx(n-1) + Gw(n) 

x(n) = 

I 

FlO 0 0 

0 F2 0 0 

0 0 F3 0 

0 0 0 F4 

m 

x(n-1) + 

. 

G1 0 0 0 

0 G2 0 0 

0 0 G3 0 

0 0 0 Gd I 1 
(3 2) w(n) 

y(n) = [ HI H2 H3 H4(n)lx(n) + E(n) . 

In (3.2) the overall state space model (F, G, H) is constructed by the component 

models (Fj, Gj, Hj), (j=1,...,4). In order (j-l ,...,4) these respectively rep- 

resent the polynomial trend, the stationary AR, the seasonal and the trading day 

effects component models. The number of state components in the particular model 

( Fj , Gj , Hj) is designated by Mj, (j=1,...,4). (The Fj matrices are square). 

By the orthogonality of the representation in (3.21, (24-l) alternative models 

of trend and seasonality may be composed of combinations of Fj, Gj, Hj elements 

(j=l ,...,4). The component (Fj, Gj, Hj), (j=l ,...,4) are defined by particular 

difference equation constraints on the components. Those constraints are as 



follows: 

(1) Local Polynomial Trend lrbdel; (Fl, G1) 

The trend constraint satisfies a k-th order stochastically perturbed 

difference equation 

vkt(n) = wlh); wl(n)*S(0,r12) l (3.3) 

For k=1,2,3 those constraints and the values of MI and the corresponding 

Fl, Gl matrices are: 

k l= = h: t(n) = t(n-1) + WI(n) 

F1 = [II; G1 = cl]; 

k 2= = Fp: t(n) = 2t(n-1) - t(n-2) + wl(n) 

F1 = [; -;] ; GI =b]; 

k 3= = b: t(n)=3t(n-1) - 3t(n-2) + t(n-3) + wl(n) 

(3.4a) 

(3.4b) 

(3.4c) 

(2) Stochastic Trend bdel; (F2, G2) 

The stationary stochastic component v(n) is assumed t0 Satisfy 

an autoregressive (AR) model of order p. That is 

v(n) = alv(n-1) + . . . + apv(n-p) + w2(n); w2hN(O,r2') . 

For arbitrary p and 4 = p the F2, G2 matrices are: 

. . . ap- 

. 

‘1 0 I ; G2 = 

-- 
1 

0 
. 
. 

ci SW 

(3.5a) 

(3.5b) 
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(3) Local Polynominal Seasonal Constraint bdels; (F3, G3) 

bst often we use the stochastically perturbed seasonal constraint 

L-l 
1 s(n-i) = w3(n); W3 -S(C,r3*) 
i-o 

(3.6al 

where L is'the duration of the seasonality. (L=4, L--l2 for quarterly 

and monthly data respectively.) 

Then 

s(n) = Yf( s(n-i) + w3(n) (3.6b) 
= 

or s(n) = -Lil Bis(n) + w,(n) (3.6~) 
i=l 

where B is the backwards shift operator, defined by Bs(n) = s(n-1). Another 

seasonal constraint model that we occasionally employ is 

1 l- Lf1Bi)2 s(n) 
ii1 

= w,(n) . 

Correspondingly the !@, F3, G3 matrices are 

MJ = L-l; F3 = .1 . . , -1' 
1 

. 

. 
10 

, G3= 

(3.6d) 

(3.6e) 

(3.6f) 

The sizes of F3 with MJ = L-l and MJ = *(L-l) are respectively 

(L-l) x (L-l) and *(L-l) x *(L-l). 
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(4) Trading Day Effect &del; (F4, G4) 

The trading day effect model is an adjustment for the fact that there are 

a different number of i-th days of the week (i=l,...,?) per month for each 

successive month [9], [lo], [17]. Trading day effeects have been treated by 

W.S. Cleveland and S.3. Devlin (1979), W.P. Cleveland and U.R. Graupe (1978), and 

S.C. Hillmer (1982). State space-Kalman filter regression on fixed regressors 

was suggested by Harvey and Phillips (1979). That effect is modeled by 

7 6 6 
7' Bi(n)tdi(n) = 1 Bi(n)(tdi(n) - td7(n)) = 1 Bi(n)tdi*(n)8 l (3.7) 

ikil i=l i=l 

7 
In (3.71, we apply the constraint 1 Bi = 0 SO that ~7= - "z Bi. The non- 

i=l i=l 
perturbed difference constraint on the trading days is: 

Bit”) = Bj(n-1). (3.8) 

Then the I$, F4, G4 matrices are 

IT -1 i-0-1 
h = 6, F4 = 

I -0 ' G4=I f 
I . I 

I 
1:; 

l-1 Ii1 l (3.9) 
-- 

The observation vector is a function of time, (to allow for a different number 

of i-th days/month each month), 

H4(n) = [tdl*(n)...td6*(n)l. (3.10) 

For the general model including local polynominal and stochastic trends, 

local polynominal seasonal and trading day components, the state or noise vector 

w(n) and observation noise E(n) are assumed to be normally distributed with 
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zero mean and diagonal covariance matrix 

(3.11) 

The variances TV*, T**, TV*, a2 are unknown. The other potentially unknown 

parameters in the state space model are: al,...,ap the AR coefficients of the 

AR model for the stochastic trend component, and ~l..~, f36 the fixed trading 

days regression coefficients. 
2 2 2 Relatively small values of the fl ,T* ,T~ 

terms imply relatively strict adherence to the corresponding difference equation 

constraint. 

I%del class types fitted to data can be designated by a notation which re- 

veals the constraint orders for the components. For example K = (2, 2, ll), 

I*1 = (2, 0, 11, 6) respectively designate the model with trend constraint order 

2, AR model order 2 and (monthly) seasonal order 11 and the model with trend 

constraint order 2 , monthly seasonal order 11 and the trading effect component. 

The vector F: plus the values of the hyperparameters for a particular model com- 

pletely specifies the candidate model to be fitted. 

For a specific example, the state space structure of a model with M? (2, 

2, 11) is 

x(n) = 

r I 
2 -1 I 

I 0 

I 
2 -1 I 

I 0 
1 1 0 I 0 I 

- - - - 0 0 1 -O-[-ai -a2 -O-[-ai -a2 

O O O 1-L - 0 O 1-L - 0 ---- ---- 

l 

I O 
I 
I 

I I 
I O I O 
T T 1 e--e e--e 

0 0 
I I 1 x(n-1) + x(n-1) + 

v”- v”- l 

I l . : 

I l 16 
I 

(3 .l*a) 
n) 
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with the state process noise vector w(n) and the observation noise as given by 

(3.11). The observation equation which explains, y(n), the observed data in 

terms of the contribution of the local polynomial trend, stationary AR process, 

seasonal and error components is 

y(n) = [l 0 1 0 1 O...Ol x(n) + E(n) . (3.12b) 

If only the trend, t(n), the trend plus AR, t(n) t v(n), or only the seasonal 

component, s(n), are to be considered, the observation equations Hx(n) become 

respectively 

Hx(n) = Cl 0 . ..I x(n) 

Hx(n) = 'Cl 0 10 . ..I x(n) 

Hx(n) = [O 0 0 0 1 . ..I x(n). 

(3.12~) 

3.2 THE MINI MJM AIC PROCEDURE 

Akaike's minimum AIC procedure is a statistical estimation procedure for 

determining the best of alternative parametric models fitted to the data (Akaike, 

1973, 1974). The AIC of a particular fitted model is 

AIC=-2 log(maximized likelihood) + *(the number of fitted paramters) -. (3.13) 

In fitting state space models of the kind described in Section 3.1.2 the 

total number of parameters fitted is (t$ + 2k + MJ + ?$) + [a( Ml)+ 6 (t$) + 

s(f$)] where (MI t t$ + !+J + f$) is the dimensionality of the state space and 

6(M) = 1 if M.J # 0 and s(5) = 0 if MJ=O. That is, Mj=l indicates that the 

Fj component is included in the signal model. Then the likelihood of the vector 

of unknown parameters and the initial state given the data is 

L (rl,Xb))= fi f(y(nHy(n-1) ,...,Y(1LT,XO)) f(y(lH(r,3o)L (3.14) 
n=2 
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Under the Gaussian assumption, by exploiting the innovations representation 

that is achieved with the Kalman predictor 

L(T,XO))= St(*nv*(nln-l))-112 exp t -v(n)* 1 (3.15) 

In (3.15) u ly, the 

conditional condi- 

tional mean (3.15) 

x(nln-1) and v*(nln-l), the one step ahead predictor of the state and the vari- 

ance of the innovations, are obtained from 

n=l ( 2vZ(nln-1)) - 

(n)=(y(nl - Hx(nln-1)), v*(nfn-1) and x(nln-1) are respective 

mean and variance of v(n),the innovations at time n, and the 

of the state vector x(n), given y(n-l), .-y(l). Also in 

yhln-1) = H(n) x(nln-1) 

v*(nln-1) = H(n)'V(nln-l)H(n) + ,* 

(3.16) 

where V(nln-1) is the conditional variance of the state vector x(n) given the 

observations up to time n-l. 

The likelihood for the hyperparameters is computed for the discrete 

point set of the values *(j-l) (j=1,...,5) for each of T~*,,~* (r4* = 0). When 

the stationary AR component is included in the model,r2* is also searched over 

T$ = 2(j-l) (j=l ,...,5) and the aI,...ap are computed by a quasi-Newton- 

Raphson type procedure for each of the points in the T~,T~,z$ space. The 

al ’ . . ..a P' Tf,T$,T~ P arameters for which the AIC is smallest specifies the 

AIC criterion best model of the data. 

Some connnents on computational complexity and the discrete search in hyper- 

paramter space procedure are appropriate here. The basic computation for the 

minimum AIC procedure, (3.13), is the computation of the maximized likelihood 

for particular classes of parametric models. With normally distributed corre- 

lated data, as is the modeling situation here, the likelihood computation re- 
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quires the O(N3) complexity inversion of an NxN covariance matrix. Equation 

(3.14), the formula for the likelihood as computed by the Kalman predictor re- 

veals that the joint density for the observations y(l),...,y(N) has been fac- 

tored into the product of densities for the innovations v(i), i=l ,*-*s N. The 

orthogonalfzation achieved by the recursive Kalman predictor accounts for the 

O(N) complexity. 

With regard to the discrete hyperparameter search procedure: If the signal 

model is satisfactory, the influence of the priors and the hyperparameter values 

become decreasingly significant with increasing data length N. An indication of 

the insensitivity to the prior is the relative flatness of the likelihood in the 

vicinity of the location of the maximized likelihood in hyperparameter space. 

Additional material relevant to the recursive predictor/smoother computa- 

'tions is summarized in the next section. 

3.3 RECURSIVE KAlM4N FILTERING AND SMJOTHING 

There is a very extensive Kalman methodology lfterature. Only the barest ‘L 

details and formulas required for our computations are indicated here. 

The state space model is 

x(n) = F x(n-1) + Gw(n) 

y(n) = H x(n) + E(n). 

(3.17) 

The Kalman methodology yields recursive compuations for the predicted, filtered 

and smoothed estimates of the state vector x(n) and the signal Hx(n) for n=l, 

. . . . N. The predicted, filtered and smoothed state vector and signal are denoted 

by: 
predicted x(nln-1) 

ybln-1) 
(3.18) 

filtered x(nln) 
yhln) 

smoothed x(nlN) 
y(nlN) . 
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In the notation above, x(nln-1) and y(nln-1) denote the estimates of the 

state vector and the observation at time n given the past observations y(n-1), 

. . ..y(l). x(nln) and y(nln) are estimates of the state and observations at time 

n given the current and past data y(n), y(n-1) ,...,y(l) and x(nlN) and y(nlN) 

are estimates of the state and observation at time n given all the data y(l), 

. . ..y(N) l kditch (1969) and Anderson and bore (1979) show very satisfactory 

derivations for the quantities in (3.18). A first paper in the statistical 

literature on the Kalman predictor is Duncan and Horn (1972). 

Given the initial vector y(O) the conditional means required in (3.15), 

(3.16) are obtained recursively: 

x(nln-1) = F x(n-lln-I) (3.19) 

x(nln) = x(nln-1) t K(n)[y(n) - H(n)x(nln-I)], 

where K(n) is the time varying Kalman gain vector 

K(n) = V(nln-1) H'(n) v2(nln-I)-1 l (3.20) 

The update equations for the variance of the state vector are 

V(nln-1) = F V(n-lln-1)F' t GQG' (3.21) 

V(nln) = (I-K(njH(n))Vblln). 

The likelihood for each of the particular values of T~,T$,T$ is computed 

and the parameter set for which the AIC is smallest specifies the AIC criterion 

best model of the data. For that model, the filtered data is smoothed over the 

interval n=N-1 ,...,l by the formulas 

x(nlN) = x(nln) t A(n)(x(n+llN) - x(n+lln)) (3.22a) 

V(nlN) = V(nln) + A(n)(V(n+llN) - V(n+lln))A(n)' (3.22b) 

where 
Ah) = V(nln) F' V(n+lln)-I . (3.24~) 



17 

4. EXARLES 

In this section some of the phenomenology of the modeling of time series with 

the additive local polynomial, AR, seasonal, and observation noise components 

is shown. 

EXAWLE 1. BLSAGEKN, N=162 

This is Bureau of Labor Statistics, male agricultural workers 20 years and 

older, data. Computational results are shown in Figure 1 for the models indi- 

cated in Table 1. 

TABLE 1 - Trend and Seasonal bdels Fitted to the BLSAGEMN data 

mDEL M T 
A2 
a AIC 

A (2 0 11) (32 0 1) 2014. 1997. 

B (2 0 11) (1 0 32) 656. 1830. 

C (2 2 11) (16 1 16) 587. 1789. 

Figures lAI, 1Bl and CI, shcw the original data and the fitted trends of 

-the corresponding models. The seasonal components of the A and B models are in 

Figures lA2 and lB2 respectively. Ffgure lC2 shows the local polynominal plus 

global autoregressive trend. Prediction results are shown in Figures lA3,-lB3, 

lC3, lAq, lB4 and lC4. The model is fitted to the data y(l),...,y(N), N=138. 

Prediction is done to estimate the data y(N+l),...,y(N+M), N=138, M24. Two 

kinds of predictions are considered. In one-step-ahead prediction, the quantity 

y(n+lin), (n=N,N+l ,...,N+Ml) is computed. In increasing horizon prediction, 

the quantity y(N=ilN), (i=l,...,M) is computed. In these and all subsequent il- 

lustrations showing predictions, the true value, the predicted value and the com- 

puted plus and minus one sigma confidence fntervals are shown. Figures lA3, lB3 

and lC3 are the one-step-ahead predictions for the A, B and C models, respec- 

tively. Figures 14, lA4, lB4 and lC4 are the increasing horizon predictions 

for the A, B and C models, respectively. 
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Figure lA1 and 181 reveal that the local polynomial trend is smoother for 

larger values of ~1~. Figures lA2 and lB2 reveal that the seasonal component 

is smoother for larger values of r2*. The AIC values of the A, B and C models 

are respectively AIC(A)=1997, Arc(B)=1830 and AIC(C)=1783. The width of the 

one-step-ahead one sigma intervals are ranked in order with the AIC, model C 

having the narrowest one sigma interval. The AIC ordering of the one-step-ahead 

prediction performance models does not have any necessary implications on the 

ordering of increasing horizon prediction performance. In this example though, 

the AIC best model, C, does achieve the best increasing horizon prediction 

performance and does exhibit the narrowest one sigma prediction interval. 

EXAWLE 2. BLSUEM 16-19 

This is Bureau of Labor Statistics, unemployed males ages 16-19, data. 

Computational results are shown in Figure 2 for the models indicated in Table 2. 

TABLE 2. bbdels Fitted to the BLSUEM 16-19 Data. 

M)DEL M N T $2 AIC 

A (2 0 11) 180 (1 0 4) 628.7 2014.2 

B (2 2 11) 180 (64 1 16) 763.9 1952.5 

C (2 0 11) 48 (16 0 16) -- -- 

This data was also analyzed by a different method in Hillmer and Tiao 

(1981). The trend and seasonal components of model A shown in Figures *AI,4 are 

very similar in appearance to those shown in the Hillmer-Tiao analysis. This is 

not the AIC best Jyr(2 0 11) model. The overall AIC best of model types W 

(2 0 111, W(2 2 11) considered in Table 2 is kbdel B, the M(2 2 11) model. 

(bdel C was fitted to a different data span than models A and B, so their 

AIC's can not be compared.) The original data, trend seasonal and autoregressive 

components are shown respectively in Figures 281, 282 and 283. The one 



step ahead and increasing horizon prediction performance of Pbdels A and B are 

shown in Figures 2A3,2Aq and 284,285 respectively. The one-step ahead one- 

sigma interval width of kbdel B is slightly narrower than that of Fidel A. The 

increasing horizon prediction one-sigma interval of Fidel B is very much narrower 

than that of kt>del A. The models were computed on N=180 data points and predic- 

ted for M24 data points. Some of the computational results for !+bdel C are 

shown in Figures 2CI-2C4. This model was computed on N=48 data points and 

predicted for k24 data points. 

EXAM'LE 3. CONHSN, N=156, Alternative Seasonal kdels. 

This is Census Bureau construction series, housing starts, data. Computa- 

tional results are shown in Figure 3. They correspond to the models for the 

CONHSN data indicated in Table 3. 

TABLE 3 - Trend and Seasonal bdels Fitted to the CONHSN Data 

MOEL M T 2 AIC 

A (2, 0, 11) (16, 0, 16) .301 76.85 

B (2, 0, 22) (16, 0, 8192) .287 68.25 

Figures 2AI and 281 show the trends of the two models to be very similar. 

The seasonal component shown in Figures 2A2 and 282 indicate that the 4 = *(L-l) 

L=12, model captures the appearance of the increasing seasonal component that is 

suggested by the data better than the /$ = (L-l) model. bdel B is the AIC pre- 

ferred model. 

EXAMPLE 4. Wholesale Hardware l/67-11/79 N=156: Trading Day Effect kdel 

PDDEL M T ';;2 AIC 

A (2, 0, 11, 0) T--(8, 0, 16, 0) 0.245 -429.32 

B (2, 0, 11, 6) T=(8, 0, 16, 01 0.241 -439.40 
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Figure 3AI and 381 show the trend of the A and B models, fitted with and without 

the trading effect, to be very similar. Similarly 9 the seasonal components shown 

in Figures 3A2 and 3B2 for the two different models are very similar. The trad- 

ing day effect and trading day plus seasonal components for the trading day model 

are in Figures 3B3 and 3B4. The trading day effect appears to be miniscule. The 

superposition of the trading day effect on the seasonal component does reveal the 

itregularizing effect of the number of trading days on the seasonality. The 

trading day effect model is the AIC criterion best model. 

5. SUKFdRY AND DISCUSSION 

A smoothness priors-Kalman filter-Akaike AIC criterion approach to the 

modeling of time series with trends and seaonalities was shown. In that ap- 

proach, an observed time series is decomposed into additive local polynomial 

trend, globally stationary autoregressive, seasonal and observation error com- 

ponents. Those components are each characterized by stochastically perturbed 

difference equations. The perturbations are uncorrelated with zero means and 

unknown variances and are independent of each other. The difference equations 

take the role of Bayesfan priors whose relative uncertainty is characterized by 

the unknown variances. Alternative time series model classes are characterized 

by alternative subsets of the constraint equations. Each model class is charac- 

terized by models with different order constraint equations and unknown uncorre- 

lated sequence forcing term variances. The constraint equations are expressed 

in state-space model form. The Kalman predictor is employed as an economical 

computational device to compute the likelihood for the unknown variances for each 

of the alternative difference equation model orders in each of the alternative 

model cl asses. Akaike's AIC criterion is used to determine the best of the al- 

ternative models fitted to the data. The filtered data of this AIC criterion 

best model is then smoothed using the smoother algorithms. 
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The examples illustrate some of the phenomenology of this smoothness priors 

approach to the modeling and smoothing of time series with trends and seasonali- 

ties. Example #l BLSAGEMN data illustrates the influence of the relative mag- 

nitudes of trend and seasonality driving input noise variances on the smoothness 

of the trend and seasonal components. The modeling performance of two local 

polynomial trend plus seasonal, and local polynomial plus globally stationary 

autoregressive plus seasonal, model classes are shown. The latter is the over- 

all AIC criterion best model. The one-step ahead prediction performances of the 

AIC best of both model classes are similar. On the basis of the one-sigma con- 

ficence interval width for the increasing horizon prediction and the actual pre- 

diction performance, the AIC best model, model C, is strongly preferred to l%del 

B. The evidence is additionally suggestive. A relatively smooth trend yields 

relatively narrow increasing horizon one-sigma prediction intervals. A wiggly 

trend yields good one-step ahead prediction performance at the expense of the 

fncreasfng horizon prediction performance. The local polynomial, plus global 

stationary plus seasonal signal model combines the best predictor properties 

of the smooth and wiggly trend models. 

Schlicht (19811, suggested that the value of the smoothness tradeoff para- 

meters could be determined in an ad-hoc manner. That is only true locally. The 

effect of a sufficiently large amount of data, N, is to wash out local effects of 

the prior uncertainties.. In that case, the particular local value of the hyper- 

parameter is not critical. The prediction performance evidence shows that 

Schlicht's observation is not true globally. (An additional study of the pre- 

diction of time series with trends and seasonalities is in Gersch and Kitagawa 

(1982) .) 

The BLSUEM 16-19 data was analyzed by Hillmer and Tiao (19821, using a dif- 

ferent signal model analysis. As shown in that example, the trends obtained 

by that "Wisconsin School" approach are known to be more wiggly than those ob- 
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tained by the Census X-11 procedure. From the vantage point of our own analysis, 

the Wisconsin trends appear to be equivalent to some combination of what we refer 

to as local polynomial and global stochastic components, with the accompanying 

relatively, poor increasing horizon prediction performance. 

Examples (3) and (4) exhibit special attributes of our alternative model 

class characterizations. Example 3, Housing starts construction data illus- 

trates two variations in the modeling of the seasonal component of time series. 

The data is characterized by an increasing seasonality. The AIC criterion best 

model clearly captures this pattern. The other seasonality constraint model 

does not. Example 4, WHARDWARE data illustrates the modeling of the trading day 

effect. The AIC criterion best model reveals the impact on the regularity of 

the seasonal component of the calendar irregularity of the distribution of the 

number of weekends each month. The trading day effects model achieves regres- 

sion on fixed regressors within the state-space modeling-Kalman filter method- 

ology. 

The models and examples shown relate to the estimation of trend and seasonal 

components in the seasonal adjustment of time series. Treatment of that subject 

has been dominated by the Census X-11 and Box-Jenkins-Tiao ARIM type modeling 

procedures. See for example Shiskfn et al. (1967,1978) and Cleveland and Tiao 

(1976) for treatments of the X-11 procedure and Box and Jenkins (1970) and 

Hillmer et al. (1981, 1982) for treatment of the ARIM procedures. An emphasis 

in the employment of the Census X-11 method is in achieving an appraisal of the 

current status or trend of an econometric time series. The X-11 procedures are 

subject to certain practical public data reporting constraints which influence 

the trend estimate. There are an extremely large number of variations of 

smoothing procedures within X-11. P4ny of the choices of smoothing filters 

are done subjectively and there is not an effective way of evaluating the 

statistical properties of those procedure. 



23 

A critically dffferent technical step between the Box-Jenkins-Tiao (B-J-T) 

and our methodology is our use of the AIC statistic and the B-J-T use of the 

Pierce-Box-Ljung Q statistic. The AIC is used to select the best of alternative 

parametric.models within and between model classes. The Q statistic is used to 

verify the adequacy of a particular candidate model. The distinguishing practi- 

cal property of our procedure in comparison with the B-J-T procedure is that 

ours is essentially a semi-automatic extensive model alternative procedure. The 

B-J-T procedure seems to require extensive expert human intervention to achieve 

satisfactory modeling. Some evidence in support of this appraisal can be seen 

in the history of the modeling of the Wisconsin telehpone data in Thompson and 

Tiao (1971), and Hillmer (1982). The Tiao-Thompson model is sophisticated and 

considerable expertise was required to arrive at that model. Expert experience 

in the modeling of time series justified Hillmer's use of the trading day effect 

model. The Q statistic does not. 

In addition, the successful AIC criterion modeling of the BLSUEM16-19, N=48 

-data point series seems to support the interpretation of our procedure as a semi- 

automatic procedure even on short duration series. The small sample-large vari- 

ability properties of the Q statistic does not lend itself to reliable diagnostic 

appraisals of such short duration series. Finally, we suggest that the appro- 

priate testing ground for any time series modeling procedure is in the evaluation 

of the predictive properties of models fitted by that procedure. A maximization 

of the expected entropy of the predictive distribution interpretation of the min- 

imum AIC procedure was exhibited in Gersch and Kitagawa (1982) for AIC minimum 

one step-ahead and twelve-step-ahead modeling and prediction of time series with 

trends and seasonalities. That prediction performance analysis appears to tran- 

scend what has been considered for the Box-Jenkins-Tiao ARIM model approach. 

ACKNOWLEDGEENT: The enthusiastic encouragement and stimulating conversations 
with Dr. David Findley are gratefully acknowledged. 



24 

6. References 

Akaike, H; (1973). Information theory and an extension of the maximum likeli- 
hood principle, in 2nd international symposium on information theory, B.N. 
Petrov and F. Csaki, eds., (Akademiai Kiado, Budapest),267-281. 

Akaike, H. (1974). A new look at the statistical model identification, IEEE 
Transactions on Automatic Control, AC-19, 716-723. 

Akaike, H. (1980). Likelihood and the Bayes procedure in Bayesian Statistics, 
3. M. Bernado, M. H. DeGroot, D. V. Lindley, and A. F. M. Smith, eds., 
University Press, Valencia, Spain, 141-166. 

Akaike, H. (1980). Seasonal adjustment by a Bayesian modeling, Journal of Time 
Series Analysis, 1, l-13. 

Akaike, H., and Ishi guro, M. (1981). Comparative study of the X-11 and BAYSEA 
procedures of seasonal adjustment, Applied Time Series Analysis of Economic 
Data, ASA-CENSUS-NBER Conference Proceedings. 

Anderson, B.D.O., and bore, J .B. (1979). Optimal Filtering, Prentice Hall, 
New Jersey. 

Box, G.E.P., and Jenkins, G.M. (1970). Time Series Analysis, Forecasting and 
Control, Holden-Day, San Francisco. 

Brotherton, T., and Gersch, W. (1981). A data analytic approach to the smooth- 
ing problem and some of its variations, in Proceedings of the 20th IEEE 
Conference on Decision and Control, 1061-1069. 

Cleveland, W.S., and Devlin, S.J. (1980). Calendar effects in monthly time ser- 
ies; Detection by spectrum analysis and graphical methods, Journal of the 
American Statistical Association, 75, 487-496. 

Cleveland, W.P., and Grupe, M.R. (1981). f%deling time series when calendar ef- 
fects are present, presented at ASA-Census-NBER Conference on Applied-Time 
Series Analysis. 

Cleveland, W.P. and Tiao, G.C. (1976). Decomposition of seasonal time series: 
A model for the Census X-11 program. Journal of the American Statistical 
Association, 71, 581-587. 

Duncan, D. and Horn, S. (1972). Linear dynamic recursive estimation from the 
viewpoint of regression analysis, JASA 67, 815-821. 

Gersch, W., and Kitagawa, G. (1982). The prediction of time series with trends 
and seasonalities. Submitted to 21st IEEE, Conf. on Decision and Control. 

Good, I.J. (1965). The Estimation of Probabilities. MIT Press, Cambridge, t%ss. 

Good, 1.3. and Gaskins, R.A. (1980). Density estimation and bump hunting by the 
penalized likelihood method exemplified by scattering and meteorite data, 
Journal of the American Statistical Association, 75, 42-73. 



25 

Harvey, A.C. and Phillips, G.P.A. (1979). hximum likelihood estimation of re- 
gression models with autoregressive-moving average disturbances, Biometrfka, 
66, 49-58. 

Hillmer, S.C. (1982). Wdelfng and forecasting time series with trading day 
variation, in preparation. 

Hillmer, S.C. and Tiao, G.C. (1982). An AR1 I# based approach to seasonal adjust- 
merit,-Journal of the American Statistical Association, 77, 63-70. 

Hillmer, S.C., Bell, W.R., and Tiao, G.C. (1981). f%deling considerations in the 
seasonal adjustment of economic time series, in Applied Time Series Analy- 
sis of Economic Data, ASA-Census-NBER Conference Proceedings. 

Kitagawa, G. (1981). A nonstatfonary time series model and its fitting by a re- 
cursive technique, Journal of Time Series Analysis, 2, 103-116. 

Feditch, J.S. (1969). Stochastic Optimal Linear Estimation and Control, RGraw 
Hill, New York. 

Pierce, D.A. (1978). Seasonal adjustment when both deterministic and stochastic 
seasonality are present in Seasonal Analysis of Economic Time Series, ed. 
Arnold Zellner, U. S. Department of Commerce, Bureau of the Census, 242-269.' 

Shiller, R. (1973). A distributed lag estimator derived from smoothness priors, 
Econometrica, 41, 775-778. 

Schlicht, E.A. (1981).A seasonal adjustment principle and a seasonal adjustment 
method derived from this principle, Journal of the American Statistical 
Association, 76, 374-378. 

Shiskin, 3. and Plewes, T.J. (1978). Seasonal Adjustment of the U. S. employment 
rate, The Statistician, 27, 181-202. 

Shiskin, J., Young, A.H., and Mlsgrave, J.C. (1967). The X-11 variant of Census 
method II seasonal adjustment program, Technical Paper 15, Bureau of the 
Census, U. S. Department of Commerce. 

Thompson, H.E., and Tiao, G.C. (1971). Analysis of telephone data: A case of 
forecasting seasonal time .series, The Bell System Journal of Economics 
and Management Science, 2, 515. 

Wahba, G. (1977). A survey of some smoothing problems and the method of general- 
ized cross-validation for solving them, in Application of Statistics, ed. 
P.R. Krishnaiah, North Holland, 507-524. 

Wahba, G. and Wold, S. (1975). A completely automatic French curve: Fitting 
spline functions by cross validation, Comn. in Statistics, 4, 1-17. 

Whittaker, E.T. (1923). On a new method of graduation. Proceedings Edinborough 
FBth. Society, 41, 63-75. 

Young, P.C. and Jakeman, A.J. (1979). The estimation of input variables in sto- 
chastic dynamic systems, Centre for Resource and Environmental Studies; 
Australian National University, Report No.AS/R28. 



26 

Legends 

Figure 1: BLSAGEFEN data, 1967 - October 1980, N-162 

Trend and seasonal components, predictions, true values, and plus and minus 

one sigma confidence intervals. 

A: bdel M = (2, 0, 11) , T = (32, 0, 11, s2 = 2014, AIC = 1997 

AI Original data and trend, 4 Seasonal component, A3 One step ahead 

predictions, A4 Increasing horizon predictions. 

B: bdel M = (2, 0, 11)) T = (1, 0, 32). G2 = 656, AIC = 1830 

BI Original data and trend, B;! Seasonal component, B3 One step ahead 

predictions, 64 Increasing horizon predictions. 

c: t&de1 M= (2, 2, 11). T = (16, 1, 16), G2 = 587, AIC = 1789 

CI Original data and trend, C2 Original data and trend plus AR component, 

C3 One step ahead predictions, C4 Increasing horizon predictions. 

Figure 2: BLSUEM 16-19 Trend and seasonal components, predictions, true values 

and plus and minus one sigma confidence intervals. 

A: f4del M= (l,O,ll), T=(l,0,4), G2= 628.7,AIC=2014.2, N=180, M24, AI: Orig fnal 

data and trend, A2 seasonal component, A3 One step-ahead predictions, A4 In- 

creasing horizon predictions. 

B: bdel &(2,2,11), T=(64,1,16),G2 =763.9,AIC=1952.5,N=l80, b24, BI: Ori- 

ginal data and trend plus AR component, B2: Seasonal component, B3 AR com- 

ponent, B4 One step ahead prediction, B5: Increasing horizon prediction. 

c: Fidel l+(2,0,11), T=(16,0,16), N=47, &24, CI Original data and trend, 

C2 Seasonal component, C3 One step-ahead prediction, C4 Increasing hori- 

zon prediction. 

Figure 3: Construction Housing Starts North data, trend and seasonal components 

A: t%del M= (2, 0, ll), T = (16, 0, 16),G2 = 0.301, AIC = 76.85 

AI Original data and trend, A2 Seasonal component. 
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B: Fbdel M= (2, 0, 22), T = (16, 0, 8192), G2 = 287, AIC = 68.25 

BI Original data and trend, B2 Seasonal component 

Figure 4: Wholesale Hardware 1967 - November 1979 data, N=156 with and without 

'trading day adjustment. 

A: Fidel M= (2,0,11,0), T = (8,0,16), z2 = 0.245, AIC = -429.32 

AI Original data and trend, A2 Seasonal component, A3 Innovations 

B: Fbdel N = (2,0,11,6), T = (8, 1, 16)) G2 = 0.241, AIC = -439.40 

Bl Original data and trend, B;! Seasonal component, B3 Trading Day 

effect, B4 Trading day effect plus seasonal, B5 Innovations. 
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