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ABSTRACT: Amaximization of the expected entropy of the predictive distribution 

interpretation of Akaike's minimum AIC procedure is exploited for the modeling 

and prediction of time series with trend and seasonal mean value functions and 

stationary covariances. The AIC criterion best one-step-ahead and best twelve- 

step-ahead prediction models are different. They exhibit the relative optimal- 

ity properties for which they were designed. The results are related to open 

questions on optimal trend estimation and optimal seasonal adjustment of time 

series. 

*This paper was written when both authors were American Statistical Association 

Fellows in Time Series at the U.S. Bureau of the Census, 1981-1982. 



1. INTRODUCTION 

In this paper we consider the optimal smoothing and forecasting of nonsta- 

tionary time series with trend and seasonal mean value components with station- 

ary covariance. Two classes of smoothness priors trend models are considered. 

In one the trend is modeled as a stochastically perturbed local polynomial func- 

tion of time. In the other, the trend is assumed to consist of both the stoc- 

chastically perturbed local polynomial component plus a "global" stationary time 

series component. A predictive likelihood interpretation of Akaike's AIC is ex- 

ploited to determine the best of the models from the alternative trend model 

classes, for best one-step-ahead and best-twelve-step-ahead prediction criteria. 

The smoothness priors approach to time series modeling was developed earlier in 

papers by Akaike and by us. The innovative step in this paper is the maximiza- 

tion of the expected entropy of the predictive distribution interpretation of 

the minimum AIC procedure. The modeling and smoothing of time series is done 

using a Kalman predictor/smoother-Akaike AIC criterion methodology. The model- 

ing is applied to econometric time series data that typically are seasonally 

adjusted by Census X-11 and by ARIM type models. The treatment in the paper 

is largely phenomenological. 

In detail, we consider two alternative decompositions of the observed 

time series data, 

t$: y(n) = t(n) + s(n) + e(n); n = l,...,N (la) 

4: y(n) = t(n) + s(n) + v(n) + E(n); n = l,...,N . (lb) 

In (la) and (lb), t(n) is a local polynomial component, s(n) is a seasonal com- 7 

ponent, v(n) is a globally stationary autoregressive time series component and 

E(n) is an i.i.d. N(0, ~2) observation noise component of the observed time 

series y(n), n = 1 ,...,N. The term t(n) + s(n), n = 1 ,...,N is thus the unknown 
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mean value function of a nonstationary in the mean time series with the station- 

ary covariance sequence c(n) in model 4 and v(n) + t(n) in model b. 

Following our earlier work, Brotherton and Gersch (1981), Kitagawa (1981), 

and Kitagawa and Gerscsh (1982), the trend t(n), the seasonal s(n) and the sta- 

tionary time series v(n), are expressed in stochastically perturbed contending 

model order - dynamic state-space constraint models with unknown process noise 

variance. The Kalman filter facilitates computation of the likelihood for the 

unknown. (In a Bayesian framework, the process noise variances are hyperpara- 

meters.) Then, the Akaike? minimum AIC procedure is used to determine the best 

of the alternative trend models fitted to the observed data. A smoothing algo- 

rithm is subsequently applied to the AIC criterion best modeled data. The final 

results thus obtained are a "smoothness prior" or Bayesian smooth decomposition 

of the t(n), s(n) and possibly v(n) components of the observed time series y(n), 

n l,...,N. = Particular time series that are of interest in the Census Bureau 

and Bureau of Labor Statistics for seasonal adjustment are analyzed. The one- 

step-ahead, increasing horizon and twelve-step-ahead forecasts are computed 

and shown for both the best fitted 4 and t$ models separately under optimal 

one-step-ahead and optimal twelve-step-ahead prediction error performance 

criteria. 

Our frame of reference for the treatment of time series with trends and 

seasonalities is the smoothing problem as defined by Whittaker (19231, and the 

explicit smoothness priors solution to that problem by Akaike (1979). The 

Kalman filter/smoother is a Bayesian computationally efficient device that sim- 

plifies the task of inverting the generalized covariance for the computation of 

likelihoods of particular models. The richness of that technology beckons us 

to implement new models when the existing models do not appear to be satisfac- 

tory. When that event occurs, we compute with both the original and the newly 
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invented models. Then we resort to the Akaike AIC criterion to determine the 

best of the alternative parametric models fitted to the data. In fact, consid- 

eration of the y model class only evolved after extensive experience was ob- 

tained with the t$ model class. Very simply, it appeared that in a considerable 

number of Y type models fitted to data, the local polynomial trend wiggled with 

a suggestive global stationary time series fluctuation. The I$ model allows for 

both the local polynomial and globally stationary time series trend components. 

A most comprehensive treatment of the smoothing problem approach to the 

modeling of time series with trend and seasonalities is in Kitagawa and Gersch 

(1982). Here we emphasize the prediction of such time series. The Analysis is 

in Section 2. State-space representations of the I'$ and @ models are described 

in Section 2.1. The minimum AIC procedure, including the maximization of the 

entropy of the predictive distribution interpretation of that procedure is in 

Section 2.2. The Kalman predictor and smoother are described in Sections 2.3 

and 2.4 respectively. Examples of y and Fp modeled time series according to 

one-step-ahead and twelve-step-ahead prediction criteria are shown in Section 4. 

In the Summary and Discussion, Section 5, among other things we compare our 

methodology with the Box-Jenkins-Tiao methodology. 

2. ANALYSIS 

In this section the state space representation of the local polynomial 

trend or t$ model and the local polynomial plus globally stationary time series 

component or 4 model are shown. Seasonal and observation noise components are 

also included in both the y and t$ models. The minimum AIC procedure for de- 

termining the best of alternative models is discussed next. The maximization of 

the expected entropy of a predictive distribution interpretation of the minimum 

AIC proceduure is exploited to determine the AIC criterion best one-step-ahead 

and twelve-step-ahead predictor models. Following that, the Kalman predictor 



4 

is discussed. The discussion includes formulas for the appropriate likelihoods 

and predictors. The Kalman smoother is applied to the AIC best prediction 

modeled data. The conventional smoother formulas are shown. 

2 .l ME MODELS 4 AND f$ 

Consider the two alternative models I$ and I$ for the observed data 

y(n), n = l,...,N, 

h: y(n) = t(n) t s(n) t e(n), n = l,...,N (2.la) 

4: y(n) = t(n) t s(n) t v(n) + c(n), n = l,...,N (2 .lb) 

In (2.la,b) t(n) is the local polynomial trend, s(n) is the seasonal, v(n) is 

the globally by stationary stochastic component of the observed time series 

y(n), n=l,..., N and E(n), n=l ,...,N is an i.i.d. "observation error" sequence 

assumed for convenience, to be N(0,02), a2 unknown. 

The trend and seasonal components are assumed to be represented by sto- 

chastically perturbed difference equation constraints 

Vkt(n) = w,(n) for k = 1,2,3 

b s(n-i) = w2(n) . 
i=o 

(2.2a) 

(2.2b) 

The stationary process v(n) is assumed to be in the autoregressive (AR) model 

form 

v(n) = ‘~1 v(n-1) + . . . + a,vh-p) + W3(n) (2.2c) 

In (2.2a) vt(n) = t(n) - t(n-1), v2t(n) = t(n) - 2t(n-1) + t(n-2) etc. Also, 

in (2.2a)-(2.2c) the "process noise" components wj(n), j = 1,2,3 and observation 

noise components E(n) are assumed to be zero-mean independent Gaussian distri- 

buted with 
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In a compatible vector-matrix notation (2.3a) is 

(2.3b) 

The constraints in equations (2.2a,b,c) and the observation equations in (2.la,b) 

are imbedded into the dynamical state space model for the observations, 

x(n+l) = F x(n) + G w(n) (2.4) 

y(n) = Hx(n) + c(n) 
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In (2.5a) the matrices FI,GI,HI are respectively (k+L*xk+L*),(k+LAx2),(lxktLA) 

where k is the order of the difference equation constraint in (2.2a) and LA = 

L-l is the seasonal period duration minus one, with L = 4, L = 12 for quarterly 

and monthly data respectively. The vector (cI,...,Ck) in (2.5a), (2.5b) re- 

flects the trend constraint in (2.2a). It is respectively: (1) for k-l; (2,-l) 

for k=2; and (3,.3,l) for k = 3. 

In model $ only the process noise parameters r12, ~2~ and the observation 

noise c2 are unknown. In model 9 the process noise parameters TIN, 722, 732 

the AR parameters al,...,% and the observation noise variance c2 are unknown. 

From smoothing problem point of view, the parameters TV*, r22, 3' are tradeoff 

parameters or hyperparameters. The ratio of parameters Tj2/cr2 is a "signal to 
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noise" measure. It expresses the relative uncertainty of the constraints (2.2a), 

(2.2b) and (2.2~) assumed for the model. Larger values of 7j2 imply stricter ad- 

herence to the J .th difference equation constraint. 

2.2 THE MINI MJM AIC PROCEDURE 

Akaike"s minimum AIC procedure is interpreted here from a maximization of 

the entropy of the predictive distribution point of view. The treatment is 

phenomenological. The most relevant paper by Akaike on this topic is in Akaike 

(1980). 

Let the true distribution be g and the fitted distribution be f, then 

the entropy of g with respect to f is 

(2.2.1) 

2 = E log f(Y) - E log g(Y) . 
Y Y 

The true distribution g is unknown. It is known that B(g,f) 2 0 and B(g,f) = 0 

if and only if f = g almost everywhere. The closer B(g,f) is to zero, the clos- 

er we regard f as being to g . Hence the closeness of alternative f"s to 

the unknown true g can be ordered if the quantity E log f(Y) can be estimated 
Y 

from the observed data. 

Let ~1 ,...,yB be the observed data that occurs under the true distribution 

g and let f(yl0) be an assumed distributional model of the data with parameter. 

Let 

ece, = ; log f(Yib) 
i=l 

(2.2.2) 

be the likelihood of the parameter given 8 the data yI,...,yN. Then, from the 
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law of large numbers i!(g) forms a natural estimate of E log f(Ylg). Akaike% 

AIC criterion is a bias corrected estimate of - 2E log f(Yy$) for the practical 
Y 

situation in which the value of 8 must be estimated from the data, Akaike (1973, 

1974). 

The AIC statistic, a bias corrected estimate of E log f(Yl$) is 
Y 

AIC($,yl,...,yN) = -2 ($1 + 2k (2.2.3) 

where 8 is the KE of d, e(s) is the maximized log likelihood and k is the 

number of parameters fitted to the model. The minimum AIC procedure preferred 

model is the one for which the value of the AIC statistic is smallest. 

In the case of a one-step-ahead prediction criterion and Gaussian data, 

we consider the estimation of 

E log f(y(n)ly(n-l),...,Y(l)) by 
Y 

1 Ni1 log f(y(n+l)ly(n),...,y(l)) 
Ii n=l 

(2.2.4) 

N-l N-l 
log 2 TI u2(n+lln) - c (y(n+l) - Hx(n+lln)j2 

n=l 
2u2(n+lln) 

with 

u2(n+lln) = HV(n+lln)HL t ~2 . (2.2.5) 

In (2.2.4-5) the notation x(nln-1) and V(nln-1) are respectively the condition- 

al mean and conditional covariance of the state vector x(n) given the past data 

y(M), yh-2) ,...,y(l) and fl0). Also in (2.2.5) v(n+l) = (y(n+l) - Hx(n+lln)), 

n=l ,...,N are the innovations. From the preceeding formula, they represent the 

difference between the observed data and the conditional mean of the data given 

the past. The innovations are a normally distributed zero mean independent 
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process and are uniquely determinable from the observed process, y(n),n = l,..., 

N (Anderson and bore, 1979). 

In the case of twelve-step-ahead prediction, consider the estimation of 

E log f(y(n+l2)ly(n),...,y(l)) by 
Y 

N-12 

A! n=l 
c log f(y(n+l2)lyh),...,y(l)) 

(2.2.6) 

N-12 N-12 

T&Z?) n=l 
1 log 2 u2(n+12/n) - 1 (y(n+12) - Hx(ntl2ln))E 

n=l 
2u2(n+12ln) 

with 

u2(n+12ln) = HV(n+lEln)H’ + ,2 . (2.2.7) 

The last lines in (2.2.4) and (2.2.6), the approximations for the one-step- 

ahead and twelve-step-ahead maximized predictive likelihoods, are computed for 

particular values of f12, '22 in the Y model and particular values of 712, 722, 

732 in the M2 model. Formulas for the computation of the relevant condition 

state mean value and variance terms in the predictive likelihoods are in the sec- 

tion immediately following. (In the I$ model the AR parameter estimates "1, 

. . ..ff p are estimated by a quasi Newton-Raphson type procedure for particular 

values of 712, ~2~ and 732.) 

Under the AIC procedure, an exact maximum likelihood computation is assumed. 

The number of unknown parameters in the state space model is the dimension of 

the state, for the implicit or explicit estimation of x(O), plus the number of 

hyperparameters and the number of AR parameters fitted. Thus in the f$ model, 

the number of parameters fitted is (k t (L-l) t 2), the order of the different 

equation constraint, the period of the seasonal duration minus one plus two for 

the hyperparameters i2, ~~2. Similarly, under the 
Y 

model the number of para- 
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meters fitted is (k t (L-l) t 2p + 3) where the dimensionality of the state is 

(k + (L-l) + pl, p is the number of AR parameters fitted and there are 3 

noise process terms or hyperparameters 71 
2 , ~2~ and 732. 

2.3 THE KALMN PREDICTOR FORMJLAS, (Anderson and Fbore, 1979). 

Let the mean and covariance of the Gaussian density function of the state 

x(n+l) given the observations y(n),y(n-1) ,...,y(l) be denoted by x(n+lln) and 

V(n+lln). Starting with the initial conditions x(010) = x(O), V(Ol0) = V, : 

One-step-ahead prediction equations are computed recursively from: 

x(n+l( n) = F x(nln) 
(2.3.1) 

V(n+lln) = F V(nln) F" + GQGL . 

Time update equations are computed from: 

x(n+lln+l) = x(n+lln) + K(n+l) v(n+l) 

K(n+l) = V(n+lln) H’fHV(n+lln)H” + RI-1 

v(n+l) = y(n+l) - H x(n+lln) 

u2(n+lln) = H V(n+lin) H" + R 

V(n+lln+l) = (I-K(n+l) H)V(n+lln) . 

(2.3.2) 

In (2.3.2) K(n+l) is the Kalman filter gain at time ntl, v(n+l) is the in- 

novations at time n+l and u2(n+lfn) is the conditional variance of y(n+lln), the 

observation process, at time n+l given the past data y(n),...,y(l). 

The k-step-ahead predictions formulas for k = 1,2,... are 

x(n+kln) = Fk-1 x(n+lln) 
k-l 

V(n+kln) = Fk-1 V(ntlfn)Fk-lL t 1 FjGQGJaFLj 
j=o 

y(n+kln) = Hx(n+kln) 

u2(k+nln) = HV(n+kln)H& + R 

(2.3.3) 
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These quantities are used for the calculation of the likelihood. 

For the examples worked in the next section, models are fitted to the y( 11, 

. . ..y(N) data and several types of predictors are computed for the future data 

y(Nt1) ,...,y(N+M) from that model. For convenience the formulas for those pre- 

dictors are: 

One step-ahead-prediction (2.3.4a) 

y(nt1 In) n = N,Ntl,...,N+Kl 

Increasing horizon prediction (2.3.4b) 

y(N+i 1 N) i l,...,M = 

Twelve step-ahead prediction 

First: y(N+iln) i = 1,...,12 

Then: y(NtlZtjlNtj), j = l,...,(M12) 

(2.3.4c) 

2.4 THE BACKWARD SMDDTHING ALGORITHM 

The smooth of the state and of the observation at time n given all of the 

data y(l) ,...,y(N) are denoted respectively x(nlN) and y(nlN). The smoothed 

estimates are derived from the forward state estimates by the backward smooth- 

ing algorithm for n = N-l ,.. .,l, (Anderson and bore, 1979). It is the smoothed 

estimates of the trend, the seasonal, and when appropriate, the AR component 

of the series that are used in the final estimates. 

x(nlN) = x(nln) + A(n)(x(n+llN) - Fx(nln) 

V(nfN) = V(nln) + A(n)(V(n+llN) - V(n+lln))A(n)" 

y(nlN) = Hx(nlN) 

(2.3.5) 

where 

A(n) = V(nln) PV(n+lln)-I . 
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3. EXAWLES 

t$ and l$ type models, models with local polynomial trends and local poly- 

nomial plus globally stochastic stationary trend components were fitted to the 

BLSALLFOOD data, Jan. 66 - Dec. 79, N = 156. 

The original data, and data decompositions including trend, seasonal, and 

AR components and the innovations are exhibited for each of the AIC best ?$ and 

MJ models under both the best one-step-ahead prediction and twelve-step-ahead 

prediction criteria. The models are fitted to the observed y(l),...,y(N) data. 

One-step-ahead (y(n+lln), n=N,N+l,..., N+M-1) increasing horizon (y(N+jlN), j=l, 

. . ..ryO and twelve-step-ahead predictions (y(N+jlN), j=1,...,12, y(N+j+lElN+j), 

j=l ,...,M12), are shown as are the true data y( N+l) ,...,y(N+M), and plus and 

minus one sigma confidence intervals. From a likelihood interpretation of the 

AIC, Akaike (1979)) the AIC best of the best HI and I$ model classes is that 

for which the AIC is minimum. The legends with each illustration are rather 

complete. The information in those legends is not repeated in this section. 

Instead, here we concentrate on interpretations of the illustrations. 

EXAWLE 1: 

BLSALLFOOD data Figures lA, lB1, and lC1 show the trend components on the 

BLSALLFOOD data computed by the Census X-11, default option and models 4 and 

t$ respectively. The data points are connected together in Figure lB1 for eas- 

ier interpretation. A comparison of Figures 1A and 1Bl illustrates that the MI 

modeled trend is very similar to that obtained by the Census X-11 program. The 

X-11 trend is computed by an ad-hoc two sided filtering method that was devel- 

oped to achieve acceptable or pleasing results for the knowledgeable consumer. 

The local polynomial trend plus AR component computed by the I$ model is in 

Figure lC2. The trend computed by the f+ model is much smoother than that com- 

puted by the Y model. The trend plus AR model of order 2 component of the !$ 
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model are very similar to the trend of the MI model. The seasonal components 

computed in the MI and !$ models, Figures lB2 and lC3, are very similar. The 

appearance of the innovations of the t$ model, Figure lB3, does not suggest that 

a stationary time series component could be profitably removed from the t$ 

model. Nevertheless, the The MJ model is the AIC criterion best model. 

The minimum AIC criterion model has an optimal mean square one-step-ahead 

prediction property. Therefore, the suggestion is that, for this data set, the 

decomposition of the trend into a local polynomial plus a globally stationary AR 

part will yield superior one-stepahead prediction performance than that obtain- 

able by modeling the trend by a local polynomial model. 

In Figures 2A, 2B the statistical performance of the one-step-ahead predic- 

tions of the MI and f$ models have similar appearances. A careful examination 

-of Figures 2A, 2B suggests that the 4 model prediction performance is slightly 

superior to that achieved by the Y model predictions. This comparative one- 

step-ahead prediction performance is consistent with a likelihood interpretation 

of the AIC, Akaike (1979). The increasing horizon performance predictions 

achieved by the y model, Figure 2C, show the increasing divergence between true 

and predicted data and the increasing with horizon forbiddingly large plus and 

minus one sigma confidence intervals. The increasing horizon predictions 

achieved by the f$ model, Figure 2D, appears to be quite satisfactory. It is 

important to note that the one-step-ahead best prediction performance does not 

have any necessary implications about increasing horizon prediction performance. 

EXAWLE 2. BLSALLFOOD date re-examined, 12.month horizon best MI and l$~ models. 

Figures 3 and 4 respectively illustrate the original data, the additive com- 

ponent decomposition of the BLSALLFOOD data for the 12.month ahead prediction - 

criterion best MI and f$ models and the one-step-ahead, increasing horizon and 

twelve-months-ahead prediction performance. For this performance criterion, the 
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12.month ahead prediction criterion best local polynomial trend model MI, is 

slightly superior to the f$ model. The 12.month forecast criterion y trend, 

Fig. 3A, is somewhat similar to the one-month forecast criterion t$ trend, Fig. 

1C. The seasonal components of the 12-month forecast MI and b models are very 

similar to each other. The superiority of the MI model over the I$ model for 12 

months prediction performance is supported by comparisons of Figs. 383 and Fig. 

483 for the t$ and b models respectively. Also, the increasing horizon pre- 

diction performance of MI is superior to that achieved by I$. As before, the 

one-step-ahead prediction performance of the k model is superior to that 

achieved by the MI model, Figures 4BI and 381 respectively. Figure 3A4 shows 

the the 12.month-ahead prediction performance achieved by the one-step-ahead 

best 4 model. The excessively large one sigma confidence intervals make this 

model unsatisfactory for 12 month prediction for the given data. 

4. SUMMARY AND DISCUSSION 

A maximization of the expected entropy of the predictive distribution fn- 

terpretation of Akaike"s minimum AIC procedure was exhibited and exploited here 

in the modeling and prediction of time series with trends and seasonalities. 

The AIC criterion best one-step-ahead and best twelve-step-ahead prediction mod- 

els are different and individually, they exhibit the relative optimality prop- 

erties for which they were designed. These results relate to the trend estima- 

tion and seasonal adjustment procedures in the Census X-11, Shiskin et al (1978), 

1967), and the ARIM based seasonal adjustment methods, Cleveland and Tfao 

(1970), Hillmer, Bell and Tiao (19811, and Hillmer and Tiao (1982). 

An emphasis in the employment of the Census X-11 is in achieving an apprafs- 

al of the current status or current trend of an econometric time series. The 

X-11 procedures are subject to certain practical public data reporting con- 

straints which influence the determination of that trend, Shiskin and Plenes 
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(1967). We do note that the X-11 seasonal adjustment procedures are implicitly 

prediction motivated procedures in that seasonalities one year in advance are 

computed to facilitate deseasonalization of current data. 

The AR1 M9 model is an innovations type model. Thus, it has optimal one- 

step-ahead prediction properties under the class of signal and noise model con- 

straints with which it is designed. Other horizon prediction performance ARIM 

models are not known to have been sought for with the Box-Jenkins-Tiao modeling 

procedure. 

The exhibited statistical performance of the AIC maximized predictive dis- 

tribution performance procedure suggests new inquiries as to what is really 

the problem in the seasonal adjustment of time series. Our evidence suggests 

that rather reliable one-step-ahead and twelve-step-ahead predictions can be ob- 

tained by our methodology. The models, and hence the estimate of trend, differ 

according to whether the desired optimal prediction performance is one-step- 

ahead or twelve-steps-ahead. Trend estimation and seasonal adjustments might 

well be considered as procedures whose results depend upon the purpose for 

which the data is modeled. 
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LEGENDS 

Figure 1: BLSALLFOOD data and trends, Jan. 66 - Dec. 79, N = 156. 

A. Census X-11, default option 

B. bbdel 4: Bl Original data plus trend, AIC = 1342.49, B2 

Seasonal component, 83 Innovations 

c. bdel t$: Cl Original data plus trend, AIC = 1309.82, C2 

Original data and trend plus AR component, C3 Seasonal 

component, C4 AR component, C5 Innovations 

Figure 2: BLSALLFOOD data predictions, the actual data, and plus 

and minus one sigma confidence intervals 

A. f$: One step ahead predictions 

8. f$: One step ahead predictions 

C. 4: Increasing horizon predictions 

D. t$: Increasing horizon predictions 

Figure 3: BLSALL FOOD data, bdel 4 : 12.months-ahead predictions 

criterion, AIC = -725.46. 

Original data, component decomposition and predictions, 

true values and plus and minus one sigma confidence intervals. 

AI: &de1 I$: Original plus trend, A2 seasonal component, 

Bl One step-ahead prediction, B2 increasing horizon prediction, 

B3 12.step-ahead prediction 

C bdel Y: One step ahead criterion model 4 

twelve months ahead predictions. 
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Figure 4: BLSALLFOOD data, bbdel &: 12.months-ahead prediction 

crf terion, AIC = -715.45. 

Original data and component decompositions, and predictions, 

true values and plus and minus one sigma confidence intervals. 

AI 4: Original data and trend, A2 4: BI Original data and trend plus AR 

components 

BS AR component, BS Seasonal component,. 

CI 4: One-step-ahead predictions, C2 &: Increasing horizon predictions, 

CS t$: 12-months-ahead predictions. 
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