BUREAU OF THE CENSUS
STATISTICAL RESEARCH DIVISION REPORT SERIES
SRD Research Report Number: CENSUS/SRD/RR-80/01
1979-80-CENSUS SEASONAL ADJUSTMENT PROJECT
FINAL REPORT ON RESEARCH ACTIVITIES
by
Steven Hillmer William Bell
Research Fellow Research Trainee
U.S. Bureau of the Census Washington, D.C. 20233
This series contains research reports, written by or in cooperation with staff members of the Statistical Research Division, whose content may be of interest to the general statistical research community. The views re- flected in these reports are not necessarily those of the Census Bureau nor do they necessarily represent Census Bureau statistical policy or prac- tice. Inquiries may be addressed to the author(s) or the SRD Report Series Coordinator, Statistical Research Division, Bureau of the Census, Washington, D.C. 20233.
Recommended by: Kirk M.Wolter
Report completed: August 31, 1980
Report issued: September 1, 1983

1979-80 ASA-Census Seasonal Adjustment Project Final Report on Research Activities
by

SEeven Hillmer

Research Fellcw
and
William Bell
Research Trainee

Introduction

The Census X -11 seasonal adjustment method is a widely used procedure that has been difficult to understand from a theoretical point of view. In an attempt to understand how X-11 might fit into the statistical framework of signal extraction, Cleveland and Tiao (1976) found an ARIMA model for the observed unadjusted series for which the standarc options of X-11 is appropriate. However, many series that are adjusted by X-11 do not follow the Cleveland and Tiao model; consequently an appropriate question is: given an ARIMA model for the unadjusted data, what is an appropriate way to seasonally adjust the series? In an attempt to answer this question, Box, Hillmer and Tiao (1978) began to develop an ARIMA model based approach to seasonal adjustment. The basic idea behind this approach is that there is infomation in the unadjusted series about how the seasonal adjustrent should be carried out and that this information should be fully exploited when seasonally adjusting a series. The ideas in Box, Hillner and Tiao (1978) are largely theoretical in nature and prior to this project have not been tested on a large umber of actual series. Therefore, the main purpose of this year's project has been to complate an ampirical comparison imolving the mocel based procedure given in Box, Hillner and Tiao (1978).

Before proceeding we shall briefly indicate some of the reasons that notivated us to complete the empirical stucy. First, a compariscn of the model based approach with $\mathrm{X}-11$ is inportant in order to evaluate the relative mertits of the tio methods. Second, as George Box has frequently pointed out, we believe that the most rapid progress can be achieved if we iterace between theory and practice. Since we have an available model based theory for seasonal adjusthent, an important next step is to apoly that technique to real data. At the beginning of this project we expected to Eind that the current modeling methods wera too narrow to apply 00 all of the Census Jureau series and thar these moceling eechniques wolle have to be expanciad and thei m impications for seasonal adjustant explored. In adition, we expectad
to leam more about how the model based approach fits into the idea of seasonal adjustment so that improvements can be made. Finally, we felt that it was important to demonstrate that a model based approach is feasible for the Cansus Bureau. Even though a model based approach is expensive in tems of the time required to model each time series, we believe that the advantages far outweight the expenses. Modeling the data is almays a good idea. It forces the model builder to learn more about the data so that the data is seen in a different perspective. Model building frequently provides rew insights about a data set that can be helpful in whatever the data is to be used for. We have a bias against automatic statistical methods because too eften an automatic method allows the user to do something without thinking; whenever this happens we are likely to lose some infomation that may be important. We believe that one of the biggest actvantages to a model based seasonal adjustrent technique is that it is not automatic and in contrast to an automatic method it forces the user to think about the data.

We next outline the structure of the remainder of this report. In part 1 we provide the theoretical details behind the ARIMA model based seasonal adjustment method used in the empirical study. In part 2 we describe the ways in which we have extenced the ARIMA tine series models to more appropriately model some of the serias that were considered in the study. In part 3 we report the results of the empifical study. Finally, in part 4 we discuss a moner of issues related to seasonal adjustment that arose during the year. We have written each part so that they are self contained as mich as possible. In partisuiar, the equation mubers are relevant only within each individual part.

Part 1: An ARIMA Model Based Approach to Seasonal Adjustment

I. Introchuction

Business and econcoric time series frequencly exhibit seasonality; this may be described as regular periodic fluctuations which reoceur with abour the same intensity each year. Many people argue that seasonality should be removed from econamic time series so that the underlying trend is more clearly discemable. As a result of this belief, a muber of procedures to seasonally adijust data have been developed, the most widely used is the Census X-11 procedure described in Shiskin, Young and Musgrave (1967). The X-11 program can be viewed as an emperically based method developed over many years. The purpose of this paper is to develop a model based apprcach to seasonal adjustment based in fart upon the years of experience inplicit in the $\mathrm{X}-11$ procentre.

It is assumed that an observable time series at time t, Z_{t}, can be represented as

$$
\begin{equation*}
Z_{t}=S_{t}+T_{t}+N_{t} \tag{1.1}
\end{equation*}
$$

wiere S_{t}, T_{t} and N_{t} are munally independent seasonal, trend and noise components. It may be the case that a more accurate representation for z_{t} would be the product of S_{t}, I_{t} and N_{t}. In this situation, however, the model (1.1) would be appropriate for the logarithms of the original series. We shall also assume that Z_{E} follows the miltiplicative ARIMA model. (Box and Jenicins, 1970)

$$
\begin{equation*}
\phi(B) \phi\left(B^{s}\right) Z_{t}=\theta(B) \quad \theta\left(B^{s}\right) a_{t} \tag{1.2}
\end{equation*}
$$

where B is the backshift operator, $B Z_{t}=Z_{t-1}, \phi(B)$ is a polynomial in B of degree P and $\phi\left(B^{s}\right)$ is a polynomial in B^{s} of degree P both having their zeros on or outside the unit circle, \exists (B) is a polynomial in B of degree q and $\ni\left(B^{s}\right)$ is a poiynomial in B^{s} of degree Q both having their zeros outside the urit circle, $p(B) \quad\left(B^{5}\right)$ and $\ni(B) \theta\left(B^{5}\right)$ have no common zeros, s is the
seasonal period and the a_{t} 's are independent and identically distributed as $N\left(0, \sigma_{a}^{2}\right)$. In what follows we shall denote $\phi(B) \phi\left(B^{5}\right)$ by $\phi^{*}(B)$ and $\theta(B) \theta\left(B^{5}\right)$ by $\theta^{*}(B)$. We assume in this paper that the parameters in (1.2) are known. The reason for restricting Z_{t} to be generated by an ARTMA model is that, Box, Hillner and Tiao (1978) have argued that the class of ARIMA models are flexible enough to describe the behavior of many actual economic series and that ARIMA models have been used to successfully model a wide variety of time series data. In addition, Box and Jenkins (1970) have described methods to build ARIMA models from actual data. In practice there are situations where ARIMA models may not be flexable enough to adequately approximate a particular data set, for exarmle a sat of data may be affected by a strike. However, in these situations ARIMA models can frequently be appropriately modified to better approxinate reality, for instance intervention analysis, Box and Iiao (1976), can be used to allcw for strikes.

Based upon (1.1) and (1.2), we propose a procedure to estimate S_{t} and I_{t} uniquely. Properties of the procecture are explored. The procecture is illustrated on actual tire series and the results are compared to those obtained by the Census X-11 method.

2. Properties of Seasonal and Trend Components

If in (1.1) the stochastic structures of S_{t}, T_{t} and N_{t} are known then estimates of S_{t} and I_{t} can be easily obtained (see whitcle, (1963) and Cleveland, (1972). In practice, however, neither S_{t} nor T_{t} are observable so that it is inpossible to comyletely specify their structures. In contrast, since the Z_{t} 's are observable, the stochastic structure of this component can be accurately detemined. It is therefore reasonable to expect that the known stochastic structure of Z_{t} will at least partially detamine the scochastic structures of S_{t} and T_{t}. This idea is more Eily developed in secrion 3 , however, we Einse investigate the properties that we expect the seasonal component and trand
components to have.
It is well known that the Census $\mathrm{X}-11$ procedure may be approximated by a linear filter, for irstance see Young (1960) and Wallis (1974). One important feature of the filter weights for both the trend and the seasonal components inplicit in the X-11 method is that the weights applied to more remved observations from the current time period decrease. This feature was probably incorporated into the X-11 program because many series have: both stochastic seasonal and stochastic trend components. In other words, the trend and saasonal components tend to change over time so that the information about the current trend or seasonal is contained in the values of Z_{t} close to current time. Therefore, in developing a seasonal adjustrent procedure we nust allow for stochastic trend and stochastic seasonal components.

2.1 Stochastic Trend

We stall assume that the trend component, T_{t}, follows a model in the ARTMA class.

$$
\begin{equation*}
{ }^{\phi} T(B) I_{t}=\eta(B) C_{t} \tag{2.1}
\end{equation*}
$$

where ${ }_{T}(B)$ and $\eta(B)$ are polynomials in B and c_{c} are i.i.c. N(O, ${ }_{c}{ }^{2}$). To allow for a stochastic trend component it is required that T_{t} be a nonstationary model or equivalently that $\phi_{I}(B)$ have zeros on the unit circle. Box and Jenicins (1970) have shown that if ${ }_{I}(B)=(1-B)$ the forecast finction of (2.1) is an updated level and if ${ }_{I}(B)=(1-B)^{2}$ the forecast function of (2.1) is a first order polynomial whose level and slope are updated each period. Furthermore, it is well known that reailzations of nonstationary tine series wander through tine with no fixed mean level.

We next consider the trenc component from the Erequency domair. For stationary tire series, the spectial densizy function of a zeenc component siould be large for cie low frequencias and relatively smaller for the high

Erequencies. Now the spectral density function of (2.1) if ${ }_{T}(B)=Y(B)(1-B)^{d}$ is strictly speaking not defined, however, we can define a pseudo spectral density function (p.s.d.f.) for (2.1) by

$$
\begin{equation*}
E_{T}(W)=\sigma_{c}^{2} \frac{n\left(e^{i W}\right) n\left(e^{-i w}\right)}{{ }_{0}^{\phi}\left(e^{i W}\right) \phi_{T}\left(e^{-i W}\right)} \tag{2.2}
\end{equation*}
$$

Now the p.s.d.f. (2.2) is infinite for $w=0$ and very large for small w. This is consistent with what could be viewed as a stochastic trand componert.

2.2- Stochastic Seasonal

Initially, it is more difficult to specify a mathematical model to describe the seasonal component than to describe the trend component. However, judging from considerations in the X-11 program it is evident that the seasonal component should (i) be capable of evolving over tine and (ii) be such that for an additive model, the sum of any s consecutive seasonal components should be close to zero. It is again assumed that the seasonal component is generated by an ARIMA model. In particular, we shall show that the model

$$
\begin{equation*}
\left(1+B+\ldots+B^{s-1}\right) S_{t}=U(B) S_{t}=\psi(B) b_{t} \tag{2.3}
\end{equation*}
$$

where $y(B)$ is a polynomial in B and b_{t} are iid. $N\left(0, \sigma_{b}{ }^{2}\right)$ satisfies the requirements (i) and (ii).

Since the polyncmial $U(B)$ has all of its zeros on the unit circle, (2.3) is the model for a nonstationary time series and the seasonal component will evolve over time. Aiso, $E\left[U(B) S_{t}\right]=E\left[Y(B) b_{t}\right]=0$; consequently the expected value of the sum of any s conseçucive seasonal components is zero. If in addicion the variance of $\mathbb{U}(3) S_{t}$ is relatively small, then requirement (ii) will be sacisfied by (2.3).

It is aiso informative to consider the psdf, $f_{s}(\omega)$, of the model in (2.3)

$$
\begin{equation*}
E_{s}(\omega)=\sigma_{0}^{2} \frac{\left(e^{i /}\right) u\left(e^{-i / v}\right)}{U\left(e^{i w}\right) U\left(e^{-i N}\right)} \tag{2.4}
\end{equation*}
$$

It can be shown that $f_{s}(w)$ has the following properties: (i) $f_{s}(w)$ is infinite at the seasonal frequencies $w=\frac{2 k \pi}{s}$ for $k=1, \ldots,\left[\frac{s}{2}\right]$ where $[x]$ denotes the greatest interger less than or equal to x. (ii) $f_{s}(w)$ has relative minimm near the frequencies $w=0$ and $w=\frac{(2 k-1) \pi}{s}$ for $k=2, \ldots,\left[\frac{s}{2}\right]$. Therefore, the p.s.d.f of (2.3) has infinite power at the seasonal frequencies and relatively small power away from the seasonal frequencies.

Based upon the preceding discussion we have the following requirements for the p.s.d.f, $f_{s}(w)$ of a stochastic seasonal component. (i) $f_{s}(w)$ is infinite at the $m=\left[\frac{s}{2}\right]$ seasonal frequencies $w=\frac{2 k \pi}{s}$ for $k=1, \ldots$, m. (ii) $f_{s}(\dot{w})$ has exactly m relative minimun near the frequencies $w=0$ and $w=\frac{(\pi i n-1) \pi}{s}$ for $k=2, \ldots,\left[\frac{s}{2}\right]$. Note that (ii) guarantees that $f_{s}(w)$ will extibit a "smoch" behavior around eac. relative minimm. Therefore, we desire that $f_{s}(w)$ exhibit monotonically decreasing behavior as w moves from one seasonal frequency to the local minimm and the extibit monotonically increasing behavior as w approaches the next seasonal frequency.

3. Model Based Seasonal Ad justment

Decomposition Weights for Known Commonent Models
In what follows, we assume the additive structure (1.1) and that the observable Z_{c} 's follow the ARIMA model (1.2). In addition, the unobservable seasonal component, S_{G}, follows the ARTMA model

$$
\begin{equation*}
\phi_{s}(B) S_{t}=\Psi(B) b_{t} \tag{3.1}
\end{equation*}
$$

the unooservable trend component, I_{t}, Eollows the ARIMA model

$$
\begin{equation*}
{ }_{T}(B) T_{t}=\eta(B) c_{t} \tag{3.2}
\end{equation*}
$$

and the unobservable noise comporent N_{t} follows the MA model

$$
\begin{equation*}
N_{t}=a(3) \mathrm{C}_{t} \tag{3.3}
\end{equation*}
$$

Then Cleveland and Tiao (1976) show that the optimal estimates of the seasonal and trend components at time t are respectively
$\hat{S}_{t}={ }_{j=-\infty}^{\infty} W_{j} Z_{t-j}=W(B) Z_{t}$ and $T_{t}={ }_{j=-\infty}^{\infty} h_{j} Z_{t-j}=h(B) Z_{t}$. For values of t near the middle of the observable data, the weight functions $W(B)$ and $h(B)$ are

$$
\begin{equation*}
W(B)=\frac{\sigma_{b}^{2}}{\sigma_{a}^{2}} \quad \frac{\phi_{T}(B) \Psi(B) \phi_{T}(F) \Psi(F)}{\theta^{\star}(B) \theta^{\star}(F)} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
h(B)=\frac{\sigma_{c}^{2}}{\sigma_{a}^{2}} \frac{\varphi_{s}(B) \pi(B) \phi_{s}(F) \pi(F)}{\theta^{*}(B) \theta^{*}(F)} \tag{3.5}
\end{equation*}
$$

Also, Cleveland (1972) and Bell (1980) have shown that the asympotic weigit functions (3.4) and (3.5) can be applied near the ends of the observed time series by obtaining minimm mean squarred error forecasts of the funtre and past of the Z_{t} series and using the forecasts as if they were actual observations in the asympotic formula.

Because in practice the S_{t}, I_{t} and N_{t} series are unobservable, it is usually unrealistic to assure that the models (3.1) - (3.3) are known as a result, the generating functions (3.4) and (3.5) cannot be obtained and the estimates \hat{S}_{E} and \hat{T}_{t} cannot be calculated. We can, however, get an accurate estimate of the model (1.2) from the observable Z_{t} series. Consequently, it is of interest to investigate to what extent a known model for z_{t} will detemine the models for the componenc series.

3.1 Restrictions upon the Component Models

Now (1.1) and (1.2) imply that $\theta^{*}(3) a_{t}=p(3) p\left(3^{s}\right) S_{t}+\phi(B) \geqslant\left(B^{s}\right) T_{t}-$ $p(3) \theta\left(3^{s}\right) N_{t}$. By taking the covariance generating functions of both sices of
 $a_{c}^{2} \frac{*(B)-(B) D_{0}^{*}(F) n(F)}{{ }^{*}(B){ }_{T}(F)}-\sigma_{d}^{2} p^{*}(B) a(B) p^{*}(F) a(F)$

We assume that $\phi_{s}(B)$ and $\phi_{T}(B)$ have no common zeros since in practice the only zeros that we would expect to be common to $\phi_{S}(B)$ and $\phi_{T}(B)$ would lie on the unit circle and Pierce (1979) gives reasons to rule these out. In this case it follows from (3.6) that $\phi^{*}(B)=\phi_{s}(B) \phi_{T}(B)$. If $\phi_{s}(B) \phi_{T}(B)$ does not include all of the zeros of $\phi^{*}(B)$ then $\theta^{*}(B)$ will have at least one zero in common with $\phi^{*}(B)$ violating an assumtion in section 1 . Corversely, let X be a zero of $\phi_{s}(B) \phi_{T}(B)$ but not of $\phi_{\star}(B)$. Then (3.6) implies

$$
\begin{align*}
& \sigma_{a}^{2 \theta^{*}(B) \theta^{*}(F) \phi_{T}(B) \phi_{s}(B) \phi_{T}(F) \phi_{s}(F)=\sigma_{b}^{2} \phi^{*}(B) \phi_{T}(B) \varphi(B) \phi^{*}(F) \phi_{T}(F) \psi(F)} \\
& +\sigma_{c}^{2} \phi^{*}(B) \phi_{s}(B) \pi(B) \phi^{*}(F) \phi_{s}(F) \pi(F)+\sigma_{d}^{2} \phi^{*}(B) \phi_{T}(B) \phi_{S}(B) \phi^{*}(F) \phi_{T}(F) \phi_{s}(F) \tag{3.7}
\end{align*}
$$

Now if X is a zero of $\phi_{S}(B)$ and by assumption not a zero of $\phi_{T}(B)$ then substituting X in (3.7) implies that $\psi(X)=0$ which contradicts the assumtion that $\phi_{s}(B)$ and $\psi(B)$ have no common zeros. A similiar argument can be made if X is a zero of $\phi_{I}(B)$. Therefore, it is evident that given the model (1.2) for Z_{t} that the models for S_{t} and T_{t} are restricted so that the procuct of their autoregressive polyn:mials, $\phi_{s}(B) \phi_{T}(B)$, is equal to $\hat{\phi}(B)$.

Therefore, (3.6) reduces to

$$
\begin{align*}
& \sigma_{a}^{2} \theta^{*}(B) \theta^{*}(F)=\sigma_{b}^{2} \phi_{T}(B) Y(B) \phi_{T}(F) \Psi(F)+\sigma_{c}^{2} \phi_{s}(B) \pi(B) \phi_{s}(F) n_{\eta}(F) \\
& +\sigma_{d}^{2} \phi_{T}(B) \phi_{s}(B) \alpha_{(B)} \phi_{T}(F) \phi_{s}(F) a(F) . \tag{3.8}
\end{align*}
$$

3.2 A Particular Model for Z_{t}

To facilitate the developrents that follow we first consicer the case where z_{t} follows the particular model

$$
\begin{equation*}
(1-B)\left(1-B^{5}\right) z_{t}=\left(1-\theta_{1} B\right)\left(1-\theta_{2} 3^{5}\right) a_{t} \tag{3.9}
\end{equation*}
$$

We know that the procuct of the autoregressive polynomials of S_{t} and T_{t} must be equal to $(1-B)\left(1-B^{5}\right)$. Therefore, a particular factorization of $(1-B)\left(1-B^{5}\right)$ mist be chosen. Based upon the discussion in sections 2.1 and 2.2 we take the model for the stochastic trend to be

$$
\begin{equation*}
(1-B)^{2} T_{t}=n(B) c_{t} \tag{3.10}
\end{equation*}
$$

and the model for the stochastic seasonal to be

$$
\begin{equation*}
U(B) S_{t}=\Psi(B) b_{t} \tag{3.11}
\end{equation*}
$$

It follows from (3.6) that

$$
\begin{align*}
& \sigma_{a}^{2}\left(1-\theta_{1} B\right)\left(1-\theta_{2} B^{s}\right)\left(1-\theta_{1} F\right)\left(1-\theta_{2} F^{5}\right)=\sigma_{b}^{2}(1-B)^{2} y(B)(1-F)^{2} u(F) \\
& +\sigma_{c}^{2} U(B) \eta(B) U(F) \pi(F)+\sigma_{d}^{2}(1-B)\left(1-B^{s}\right) a(B)(1-\bar{F})\left(1-F^{s}\right) a(F) \tag{3.12}
\end{align*}
$$

Observe that for $\eta(B), \Psi(B)$ and $a(B)$ to be consistent with the model (3.9) these polynomials aust be chosen so that they satisfy equation (3.12). Any polynomials that satisfy (3.12) will be called acceptable polymomials and the resulting decomposition will be called an acseptable decomposition. Note that the largest power of B on the left hand side of (3.12) is $s+1$, thus it follows that in general the degree of $y(B)$ will be s-1+k, the degree of $n(B)$ will be $2+k$ and the degree of $a(B)$ will be k. Also, if $k>0$ then at least two of the polynomials $(1-B)^{2} y(B), U(B) n(B)$ and $(1-B)\left(1-B^{s}\right) \sigma(B)$ must have orders larger than $S+1$ and furthemore the polynomials $y(B), \eta(B)$ and $\approx(B)$ wust be chosen in a manner so that the powers of B larger than $s+1$ on the right hand side of (3.12) exactly cancel. Therefore, even though strickly speaking to 0 is possible, this case seems inrealistic and we shall requize the order of $\%(B)$ to be less than or equal to $s-1$, the order of $n(B)$ to be less than or equal to 2 , and the orcter or $a(B)$ equal to zeso for the particular model (3.9).

$$
\text { If boh sides cit }(3.12) \text { are divided by }(1-3)\left(1-B^{s}\right)(1-\vec{F})\left(1-\bar{F}^{s}\right) \text { we oicain }
$$

$$
\frac{a_{a}^{2}\left(1-\theta_{1} B\right)\left(1-\theta_{2} B^{s}\right)\left(1-\sigma_{1} F\right)\left(1-\hat{\theta}_{2} F\right)}{(1-B)\left(1-3^{s}\right)(1-F)\left(1-\bar{F}^{s}\right)}=\frac{v_{b}^{2}(B) \because(F)}{U(B) U(F)}-
$$

$$
\begin{equation*}
\frac{c^{2 n(B) n(F)}}{(1-B)^{2}(1-F)^{2}}-d_{d}^{2} \tag{3.15}
\end{equation*}
$$

In equation (3.15) the left hand side iskow and we wish to detemine the elements of the right hand side. One way to proceed is to do a partial fractions decomposition of the left hard side of (3.15). For instance, a unique partial fractions expansion is

$$
\begin{align*}
& \frac{\sigma_{a}^{2}\left(1-\theta_{1} B\right)\left(1-\theta_{2} B^{s}\right)\left(1-\theta_{1} F\right)\left(1-\theta_{2} F^{S}\right)}{(1-B)\left(1-B^{S}\right)(1-F)\left(1-F^{S}\right)}= \\
& \frac{\phi^{*}(B, F)}{U(B) U(F)}+\frac{n^{*}(B, F)}{(1-B)^{2}(1-F)^{2}}+\bar{\varepsilon}_{3} \tag{3.16}
\end{align*}
$$

where expressions for $\psi^{*}(B, F), \eta^{*}(B, F)$ and ε_{3} are given in the appendix. Lat $f_{s}^{*}(w)=\frac{D^{*}\left(e^{i w}, e^{-i w}\right)}{U\left(e^{i w}\right) U\left(e^{-i w}\right)}$ and $E_{T}^{*}(w)=\frac{\eta^{*}\left(e^{i w}, e^{-i w}\right)}{\left(1-e^{i w}\right)^{2}\left(1-e^{-i w}\right)^{2}}$. Then we note the following: (i) For the partial fractions decomposition to correspond to stochastic models for S_{t}, T_{t} and N_{t} and hence an acceptable decomposition, it is required that $f_{s}{ }^{*}(w) \geq 0, f_{T}{ }^{*}(w) \geq 0$ for $0 \leq w \leq \pi$ and $\varepsilon_{3} \geq 0$. (ii) Other possible decompositions can be derived from (3.16) by adding constants to any or all of $\frac{v^{*}(B, F)}{U(B) U(F)}, \frac{n^{*}(B, F)}{(1-B)^{2}(1-F)^{2}}$ or ε_{3} subject to the restriction that the net amount added to all three expressions be zero. Consequently, if an initial partial fractions decomposition yields values of $f_{s}^{*}(w)$ or $f_{T}^{*}(w)$ or ε_{3} which are unacceptable then it may be possible to add constants to these elements so that they are all positive. In particular, if we let $\varepsilon_{1}=0 \leq m \leq \pi f_{s}^{\text {min }}{ }^{*}(w)$ and $\varepsilon_{2}=0_{0}^{\min } w<\pi E_{T}^{*}(w)$ then it follows that it is possible to create at least one acceptable decomposition from an initial partial fractions decomposition if and only if $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3} \geq 0$. (iii) If $\varepsilon_{1}-\varepsilon_{2}+\varepsilon_{3}>0$ then it follows that there are an infinite muber of ways to modify (3.16) and obtain acceptable decompositions. In this case the known nodel for z_{t} does not specify a unique deccmposition.

In sumary, if we are given a model for Z_{t} then we can perform an initial partial fractions expansion and find $\varepsilon_{1}, \varepsilon_{2}$ and ε_{3}. If $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}<0$ then there does not exist an acceptable decomposition which is consistent with the known model for Z_{t} and the restrictions we have imposed on S_{t}, T_{t} and N_{t}. If $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}=0$ then there is a unique acceptable deconposition. If $\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}>0$ then there are an infinite numer of acceptable decompositions consistent with the given model for Z_{t}.

Properties of the Seasonal and Trend Derived from the Partial Fractions

- From the previous discussion it is evident that the partial fractions expansion (3.16) will detemine the general shape of the pseudo spectral density functions $f_{s}^{*}(w)$ and $f_{T}^{*}(w)$. It is of interest to examine if the partial fractions approach leads to psdf's which are similiar to those of the stochastic trend and stochastic seasonal discussed in sections 2.1 and 2.2 . The details involved for the developrent of this portion of the paper are included in the appendix. The mein conclusions follow.

The Case $\theta_{1}=1$
We first discuss the case where $\theta_{1}=1$ so that the model (3.9) for z_{t} rectuces to

$$
\begin{equation*}
\left(1-B^{s}\right) z_{t}=\left(1-\theta_{2} B^{s}\right) a_{t} \tag{3.17}
\end{equation*}
$$

It is shown in the appencix that the following are true based upon the model (3.17) For z_{t}. (i) The trend psdf is infinite at $w=0$ and monotonically decreasing for any g_{2} in the range $-1 \leq \theta_{2}<1$. (ii) The seasonal p.s.d.E. is infinite at the seasonal Erequencies and has exactly $m=\left[\frac{s}{2}\right]$ relative minimm at $w=0$ and near $\mathrm{j}=\frac{(2 k-1) \pi}{s}$ or $k=2, \ldots, m$. (iii) In is possible to cierive an acceptable deccmposition when z_{t} follows (3.17) as long as $\theta_{2} \geq \frac{-\left(10 s^{2}-4\right)-\left(96 s^{4}-96 s^{2}\right)^{\frac{1}{2}}}{2\left(s^{2}+2\right)}$.

Values of the minimm possible $\dot{\theta}_{2}$ for selected values of s are given in the following tabulation.

	s	2	4	6	8	10	12	∞
min.	θ_{2}	-.1716	-.1170	-.1080	-.1049	-.1035	-.1027	-.1010

$(0,1,1)(0,1,1)^{s}$ Model

' In the situation where Z_{t} follows the model (3.9) the following results are derived in the appendix. (i) The p.s.d.f. of the trend is infinite at $w=0$ and is monotonically decreasing for θ_{1} and θ_{2} satisfying the inequality

$$
\begin{equation*}
\frac{1}{6}\left(1-\theta_{1}\right)^{2}\left(1-\theta_{2}\right)^{2}+2 \theta_{2}\left(1-\theta_{1}\right)^{2}+\frac{1}{6} s^{2}\left(1-\theta_{2}\right)^{2}\left(1+\theta_{1}\right)^{2}+4\left(1-\theta_{2}\right)^{2}\left(1+\theta_{1}^{2}\right) \geq 0 \tag{3.18}
\end{equation*}
$$

Furthernore, if $\theta_{2}>-.1010$ then any value of θ_{1} in the range $-1 \leq \theta_{1}<1$ will satisfy (3.18) for any s. (ii) The p.s.d. of the seasonal is infinite at the seasonal frequencies and has a relacive minimm at $w=0$. (iii) If we require that the p.s.d. of the trend is monotonically decreasing then the p.s.d. of the seasonal has unique relative minimm near $w=\frac{(2 k-1) \pi}{s}$ for $k=2, \ldots, m$.

In sumary, for the two models of z_{t} considered, the shape of the p.s.d.'s behave in a reasonable manner for a large range of the possible parameters. However, in both examples we concluce that there are values of θ_{1} and θ_{2} corresponding to the moclel for Z_{5} witich are not consistent with decomposing the Z_{t} series as we have derined the decomposition.

3.3 A Canonical Decomoosition

In this section we assume that an acmissable deconposition corresponding
to the model for Z_{t} exists. In the absence of prior knowledge about the stochastic structure of the trend and seasonal conmonents, all of the information in the known model of Z_{t}, (1.2), about S_{t} and T_{t} is embodied in (3.8). However, as indicated previously this information is not sufficient to uniquely detemine the models for S_{t} and T_{t}. Therefore, we must rely upon additional information or arother principle to detemmine these models.
. If the observed series follows (1.2) than $\phi_{s}(B) \cdot \phi_{T}(B)=\phi^{*}(B)$ were $\phi_{s}(B)$ is the seasonal autoregressive polynomial and $p_{T}(B)$ is the trend autoregressive polynemial and

$$
\begin{equation*}
\frac{\sigma_{a}^{2} \theta^{\star}(B) \theta^{\star}(F)}{\phi^{*}(B) \phi^{\star}(F)}=\frac{\theta_{r}^{*}(B, F)}{\phi^{*}(B) \phi^{*}(F)}+a^{*}(B, F) \tag{3.19}
\end{equation*}
$$

where $a^{*}(B, F)$ and $\theta_{r}(B, F)$ are respectively quotienc and remainder where the maneator of the left hand side of (3.19) is divided by the denominator. Then the Iight hand side of (3.19) can be expanded by partial Eractions as follows.

$$
\begin{equation*}
\frac{a_{a}^{2} \theta^{*}(B) \theta^{*}(F)}{\phi^{*}(B) \phi^{*}(F)}=\frac{\psi^{*}(B, F)}{\phi_{s}(B) \phi_{s}(F)}+\frac{\eta^{*}(B, F)}{\phi_{T}(B) \phi_{T}(F)}+\alpha^{*}(B, F) \tag{3.20}
\end{equation*}
$$

$\varepsilon_{3}=0 \leq w \leq \pi^{*}\left(e^{i w}, e^{-i w}\right)$ then it follows from the developments in section 3.I that for an acceptable decomposition to exist it is necessary and sufficient that $E_{1}-\varepsilon_{2}-\varepsilon_{3} \geq 0$. In whar Eollows we assume that an aceeptable decomposition exists, then other acceptable decompositions can be derived from (3.20) by adiing
constants to the components subject to the restrictions that for all $0 \leq w \leq \pi$, $\frac{\Psi\left(e^{i \omega}, e^{-i \omega}\right)}{\phi_{s}\left(e^{i \omega}\right) \phi_{s}\left(e^{-i \omega}\right)}+\cdot \xi_{1} \geq 0, \frac{n\left(e^{i \omega}, e^{-i \omega}\right)}{\phi_{I}\left(e^{i w}\right) \phi_{T}\left(e^{-i \omega}\right)}+\xi_{2} \geq 0, a\left(e^{i w}, e^{-i \omega}\right)+\xi_{3} \geq 0$ and $\varepsilon_{1}+\varepsilon_{2}+\xi_{3}=0$. Eqrivalently we require that $-\varepsilon_{1} \leq \varepsilon_{1} \leq \varepsilon_{2}+\varepsilon_{3},-\varepsilon_{2} \leq \varepsilon_{2} \leq \varepsilon_{1}+\varepsilon_{3}$, $-\varepsilon_{3} \leq \xi_{3} \leq \varepsilon_{1}+\varepsilon_{2}$, and $\xi_{1}+\xi_{2}+\varepsilon_{3}=0$.

In the general situation it is evident that an infinite number of acceptable decompositions corresponding to (1.2) may exist and in order to perform the seasonal adjustment we must pick one decomposition based upon information other than that contained in the observable series Z_{t}. Intuitively, it seems reasonable to extract as meh white noise as possible from the seasonal and trend components subject to the restrictions in (3.8). This will maximize the error variance $\sigma_{d}{ }^{2}$ and yield the most deterministic seasonal and trend components. Therefore, we define the canonical decomposition as the decompesition which maximizes $\sigma_{d}{ }^{2}$ subject to the restrictions in (3.8). Some properties of this decomposition are now discussed.
(i) From (3.20) and the restrictions upon ξ_{1}, ξ_{2}, and ξ_{3} it is evident that every admissible combination of ξ_{1}, ξ_{2} and ξ_{3} defines a unique acceptable decomposition. Now from (3.20) it follows that

$$
\begin{equation*}
\sigma_{a}^{2 \theta^{*}}(B) \theta^{*}(F)=\psi^{*}(B, F) \phi_{T}(B) \phi_{T}(F)+\eta^{*}(B, F) \phi_{S}(B) \phi_{S}(F)+a^{*}(B, F) \phi^{*}(B) \phi^{*}(F) \tag{3.21}
\end{equation*}
$$

Using a result of Hannan (1970, p. 137) we have that

$$
\begin{equation*}
\ln \sigma_{d}^{2}\left(\xi_{3}\right)=\frac{1}{2} f_{\pi}^{\pi} \ln f_{3}\left(w, \xi_{3}\right) d w \tag{3.22}
\end{equation*}
$$

where $f_{3}\left(w, \xi_{3}\right)=\left[a^{*}\left(e^{i w}, e^{-i \omega}\right)-\xi_{3}\right]\left|0^{*}\left(e^{i w}\right)\right|^{2}$. Now $F_{3}\left(w, \xi_{3}\right)$ does not depend on \bar{F}_{3} if $\rho^{*}\left(e^{i w}\right)=0$ and is otherwise stricely increasing in F_{3}. Thus it follows that $\sigma_{d}{ }^{2}$ is maximized when $\xi_{3}=\varepsilon_{1}-\varepsilon_{2}$. However, from the restriction that $\bar{F}_{1}-\bar{F}_{2}+\bar{s}_{3}=0$ and the restrictions on ξ_{1} and ξ_{2} we have that for the canonical decomposition $j_{1}=-s_{1}$ and $\xi_{2}=-s_{2}$. It follows that the canonical decomposition is unique.
(ii) The canonicai decomposition minimizes $\sigma_{b}{ }^{2}$, the innovation variance of the shocks driving the seasonal component, and $\sigma_{c}{ }^{2}$, the innovation variance of the shocks driving the trend compor.ent. To see this result note that

$$
\begin{equation*}
\ln \sigma_{b}^{2}\left(\xi_{1}\right)=\frac{1}{2} f_{-\pi}^{\pi} \ln \left[f_{1}\left(w, \xi_{1}\right)\right] d w \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln \sigma_{c}^{2}\left(\xi_{2}\right)=\frac{1}{2 \pi} f_{-\pi}^{\pi} \ln \left[f_{2}\left(w, \xi_{2}\right)\right] d w \tag{3.24}
\end{equation*}
$$

where

$$
\begin{aligned}
& f_{1}\left(w, \xi_{1}\right)=\sigma_{a}^{2}\left|\theta^{*}\left(e^{i w}\right)\right|^{2}-n^{*}\left(e^{i w}, e^{-i w}\right)\left|\phi_{s}\left(e^{i w}\right)\right|^{2}-a^{*}\left(e^{i w}, e^{-i w}\right)\left|\phi^{*}\left(e^{i w}\right)\right|^{2} \\
+ & \left.\xi_{1}\left|\phi_{T}\left(e^{i w}\right)\right|^{2} \text { and } E_{2}\left(w, \xi_{2}\right)=\sigma_{a}^{2}\left|\theta^{*}\left(e^{i w}\right)\right|^{2}-\right\rangle^{*}\left(e^{i w}, e^{-i w}\right)\left|\phi_{T}\left(e^{i w}\right)\right|^{2} \\
- & \alpha^{\star}\left(e^{i w}, e^{-i w}\right)\left|\phi^{*}\left(e^{i w}\right)\right|^{2}+\xi_{2}\left|\phi_{s}\left(e^{i w}\right)\right|^{2} \text {. Since } f_{1}\left(w, \xi_{1}\right) \text { either does not }
\end{aligned}
$$

depend on ξ_{1} or is strictly decreasing as ξ_{1} decreases and a similiar observation holds for $f_{2}\left(w, \xi_{2}\right)$ it is clear that $\sigma_{t}{ }^{2}$ is minimized when $\xi_{1}=-\varepsilon_{1}$ and $\sigma_{c}{ }^{2}$ is minimized when $\xi_{2}=-\varepsilon_{2}$. Since these values correspond to the canonical decanposition the stated result is true. These particular properties of the canonical decomposition are intuitively pleasing since the ranconness is S_{t} arisas from the sequence of t_{t} 's and the randonness in I_{t} arises from the sequence of c_{t} 's. Thus minimizing $\sigma_{b}{ }^{2}$ and $\sigma_{c}{ }^{2}$ makes the seasonal and trend components as deterministic as possible witile remaining consistent with the infomation in the observable Z_{t} series.
(iii) we let $p(B)$ denote the moving average polynonical of the seasonal and $n^{\prime}(B)$ the moving average polynonical of the trend in the cannonical decomposition. Then from (3.20) we have that $y(B) \psi(F)=v^{*}(B, F)-\varepsilon_{1} p_{s}(B) \phi_{s}(F)$ and $\eta(B) \pi(F)=$ $\eta^{*}(B, F)-\varepsilon_{2}{ }^{*} T^{(B) o_{T}}(F)$. From the definitions of s_{1} and s_{2} it is evident that both $y(B)$ and $n(B)$ have at least one zero on the urit circle. Thus for the canonical decomposition both the model for S_{t} and the model for T_{t} are not invertible. When S_{t} and I_{t} are stationary it is known that for large n the aigenvalues of the covariance ratix of S_{t} aptroach $2 \pi f_{s}\left(-T+2 \pi j^{\lambda} / n,-\varepsilon_{1}\right)$ and those of I_{t} approact. $2 T f_{T}\left(-\pi-2-j^{i} / n,-\varepsilon_{2}\right)$.

Then, asympotically, for both S_{t} and T_{t} at least one of the eigenvalues will approach zero inmplying a linear dependence in each component.

3.4 More General ARIMA Models

The developnents in section 3.1 were based on the assumption that the model for Z_{t} was (3.9). However, the properties of the canonical decomposition were based on the general ARIMA model (1.2). A close look at the derivations in the previous sectiors reveals that as long as an acceptable decomposition is achievable, there is no restrictions upon the form of the moving average polynomial θ^{*} (B) in the model based method. In addition, it is an easy manner to enlarge the possible autoregressive polynomials over the $(1-B)\left(1-B^{s}\right)$ polynomials considered in section 3.1. AIl that is requied is to chose a particular factorization of the autoregressive polynomial for the trend and seasonal components. In particular a model for Z_{t} which has the autoregrassive operator $\phi(B)\left(1-B^{S}\right)$ should be factored so that $\phi(B)(1-B)$ is. the trend polynomial and $U(B)$ is the seasonal polymomial. With these extensions the model based seasonal adjustment techniques that have been described should cover a wide range of actual tine series.

Appendix

In this appendix we develop some properties of the shape of the p.s.d.f of the trend and seasonal components based upon a partial fractions expansion for the models (3.9) and (3.17). Without loss of generality we take $\sigma_{a}^{2}=1$. After quite a bit of algebra it can be shown that the partial fractions expansion based upon (3.9) is

$$
\begin{align*}
& \frac{\left(1-\theta_{1} B\right)\left(1-\theta_{2} B^{S}\right)\left(1-\theta_{1} F\right)\left(1-\theta_{2} F^{S}\right)}{(1-B)\left(1-B^{S}\right)(1-F)\left(1-F^{S}\right)}=\theta_{1} \theta_{2}+ \\
& \frac{1}{(1-B)^{2}(1-F)^{2}}\left\{\frac{\left(1-\theta_{1}\right)^{2}\left(1-\theta_{2}\right)^{2}}{S^{2}}+\left[\theta_{2}\left(1-\theta_{1}\right)+\frac{\theta_{1}\left(1-\theta_{2}\right)}{S^{2}}+\frac{(S+1)(S-1)}{12 S^{2}}\left(1-\theta_{1}\right)^{2}\left(1-\theta_{2}\right)^{2}\right]\right. \\
& (1-B)(1+F)\}+\frac{\left(1-\varepsilon_{2}\right)^{2}}{U(B) U(F)}\left\{\frac{(S+1)(S)(S-1)}{6 S^{2}} \theta_{1}+\left\{\frac{(S+1)(S-1)(S+1)(S)(S-1)}{72 S^{2}}\right.\right. \\
& \left.\left.-\frac{(S+2)(S+1)(S)(S-1)(S-2)}{120 S^{2}}\right\}\left(1-\theta_{1}\right)^{2}\right]+\left[\frac{S(S-1)(S-2)}{6 S^{2}} \theta_{1}+\left\{\frac{(S+1)(S-1)(S)(S-1)(S-2)}{72 S^{2}}\right.\right. \\
& \left.\left.-\frac{(S+1)(S)(S-1)(S-2)(S-3)}{120 S^{2}}\right\}\left(1-\theta_{1}\right)^{2}\right](B+F)+\ldots+\frac{[(4)(3)(2)}{6 S^{2}} \theta_{1}+ \\
& \left.\left\{\frac{(S-1)(S-1)(4)(3)(2)}{72 s^{2}}-\frac{(5)(4)(3)(2)(1)}{120 S^{2}}\right\}\left(1-\theta_{1}\right)^{2}\right]\left(B^{s-3}+F^{s-3}\right)+ \\
& \left.\left.\frac{[(3)(2)(1)}{6 S^{2}} \theta_{1}+\frac{(S+1)(S-1)(3)(2)(1)}{72 S^{2}}\left(1-\theta_{1}\right)^{2}\right]\left(B^{s-2}+F^{s-2}\right)\right\} \tag{A.1}
\end{align*}
$$

Also it can be shown that the partial fractions decomposition based upon the model (3.17) is

$$
\begin{align*}
& \frac{\left(1-\partial_{2} B^{s}\right)\left(1-\hat{\theta}_{2} F^{s}\right)}{\left(1-B^{s}\right)\left(1-F^{s}\right)}=\theta_{2}+\frac{\frac{1}{2}^{2}\left(1-\theta_{2}\right)^{2}}{(1-B)(1-\bar{F})}-\frac{\left(1-\theta_{2}\right)^{2}}{U(3) U(F)}\left\{\frac{(S-1)(S)(S-1)}{6 S^{2}}-\right. \\
& \left.\frac{(S)(S-1)(S-2)}{6 S^{2}}(3-\bar{F})-\ldots+\frac{(3)(2)(1)}{6 S^{2}}\left(B^{S-2}+F^{s-2}\right)\right\} \tag{AL}
\end{align*}
$$

Now consider first the expansion (A.2) corresponding to the model (3.17). It is evident that the trend p.s.d.f is infinite for $\omega=0$ and monotonically decreasing in w since the term $\frac{1}{s^{2}}\left(1-\theta_{2}\right)^{2} \geq 0$ for any possible θ_{2}. Aiso, we conjecture that the p.s.d.f of the seasonal component has its minimum at w=0. This conjecture is difficult to verify analytically but has been verified by mumerical means for S from 3 to 20. Consequently, we have that $\varepsilon_{1}=\frac{1}{4 S^{2}}\left(1-\theta_{2}\right)^{2}, \varepsilon_{2}=\frac{(S+1)(S-1)}{12 S^{2}}\left(1-\theta_{2}\right)^{2}$ and $\varepsilon_{3}=\theta_{2}$ so that for an acceptable decomposition to exist it is required that

$$
\begin{gather*}
\varepsilon_{1}+\varepsilon_{2}+\varepsilon_{3}=\left(S^{2}+2\right) \theta_{2}^{2}+\left(10 S^{2}-4\right) \theta_{2}+\left(S^{2}+2\right) \geq 0 \text { or equivalently } \\
=\theta_{2} \geq \frac{-\left(10 S^{2}-4\right)+\left(96 S^{4}-96 S^{2}\right)^{\frac{1}{2}}}{2\left(S^{2}+2\right)} \tag{A.3}
\end{gather*}
$$

In sumary, for the model (3.17) any θ_{2} which satisfies (A.3) will via partial fractions lead to an acceptable decomposition with a trend p.s.d.f that is infinite at $\omega=0$ and monotonically decreasing. The characteristics of the seasonal p.s.d.f for this model are similiar te that of model (3.9) given below. They follow from the fact that the trend p.s.d.f is monotonically decreasing.

For the model (3.9) and the corresponding partial fractions deconfosition (A.1) we first consider if the trend p.s.d.f is monotonically decreasing. From (A.1) the Erend p.s.d.f is

$$
\begin{equation*}
£_{T}(w)=\frac{a_{1}}{4[1-\cos (w)]^{2}}+\frac{a_{2}}{2[1-\cos (w)]} \tag{A.4}
\end{equation*}
$$

where $\alpha_{1}=\frac{1}{s^{2}}\left(1-\theta_{1}\right)^{2}\left(1-\theta_{2}\right)^{2}$ and $\alpha_{2}=\theta_{2}\left(1-\theta_{1}\right)+\frac{1}{s^{2}} \theta_{1}\left(1-\theta_{2}\right)+$ $\frac{(S+1)(S-1)}{12 S^{2}}\left(1-\theta_{1}\right)^{2}\left(1-z_{2}\right)^{2}$. Now for $f(w)$ to be monotonically decreasing in w we require that $f^{\prime}(w) \leq 0$ Eor all $0 \leq w \leq \pi$. This chen requires that whe have $a_{1}+a_{2}[1-\cos (\omega)] \geq 0$ for all $0 \leq w \leq \pi$. If $a_{2}>0$ then this inequality is satisfied for all w and if $a_{2}<0$ the extreme case is at $w=\pi$. To guarantee that the inectality is satisfied for $a l l$ we require that $a_{1}+2 a_{2} \geq 0$. Therefore, the region for
which the trend p.s.d.f is monotonically decreasing is

$$
\begin{equation*}
\frac{1}{6}\left(1-\theta_{1}\right)^{2}\left(1-\theta_{2}\right)^{2}+2 \theta_{2}\left(1-\theta_{1}\right)^{2}+\frac{1}{6 S^{2}}\left\{\left(1-\theta_{2}\right)^{2}\left(1+\theta_{1}^{2}\right)+4\left(1-\theta_{2}\right)^{2}\left(1+\theta_{1}^{2}\right)\right\} \geq 0 \tag{}
\end{equation*}
$$

Note that the last term in (A.5) is positive for all values cf θ_{1} and θ_{2} and it's influence decreases as S becomes large. It follows that if $\theta_{2}>-.1010$ then the sum of the first two terms in (A.5) is positive and thus any $\theta_{2}>-.1010$ will lead to a trend p.s.d.f which is monotonically decreasing.

Finally, we consider the shape of the seasonal p.s.d.f in the case where the trend p.s.d.f is monotonically decreasing. We first consider the p. s.d.f.of Z_{t}

$$
f(w)=\frac{\left|1-\partial_{1} e^{i w}\right|^{2} \cdot\left|1-\theta_{2} e^{i s w}\right|^{2}}{\left|1-e^{i w}\right|^{2} \cdot\left|1-e^{i s w}\right|^{2}}
$$

Now $f(w)=f_{1}(w) \cdot f_{2}(w)$ where $f_{1}(w)=\frac{\left(1+\theta_{1}\right)^{2}-2 \theta_{1} \cos (w)}{2[1-\cos (w)]}$ and $f_{2}(w)=$ $\frac{\left(1+\theta_{2}^{2}\right)-2 \theta_{2} \cos (s w)}{2[1-\cos (s w)]}$. Furthermore, we have that

$$
E_{2}^{\prime}(w)=-\frac{\sin (w)\left(1-\partial_{1}\right)^{2}}{2[1-\cos (w)]^{2}} \leq 0 \text { for } 0<w \leq \pi
$$

and

$$
E_{2}^{\prime}(w)=-\frac{s \sin (s w)\left(1-\theta_{2}\right)^{2}}{2[1-\cos (s w)]^{2}}
$$

so that the sign of $E_{2}^{\prime}(w)$ depends upon the value of $\sin (s . w)$. Now if $s . w=$ $(2 k-1)$, for $k=1,2, \ldots, m$ with $a=\left[\frac{s}{2}\right]$ then $\sin (s . w)=0$ and $\cos (5 w)=-1$ so that $\hat{E}_{2}{ }^{\prime}(w)=0$. This implies that there are a relative minimum of $E_{2}(w)$ at iv $=\frac{1}{S}(2 k-1)$ for $k=1$, ..., w. In addition, since $-\sin (s w)$ is a monotonic increasing function in $\frac{1}{S}(2 k-2) \pi<w<\frac{1}{S}(2 k)$ for $k=1, \ldots$, m then the value of $E_{2}^{\prime}(w)$ is - $\quad(w o r o n i c a l l y$ increasing in these intervals.

Next we have that $f^{\prime}(w)=f_{1}^{\prime}(w) . f_{2}(w)-f_{1}(w) . f_{2}^{\prime}(w)$ so that $f^{\prime}(w)=0$ if and only if $E_{1}^{\prime}(w) f_{2}(w)=-f_{1}(w) f_{2}^{\prime}(w)$. From the previcus discussion it follows that $f_{1}^{\prime}(w) . E_{2}(w) \leq 0$ for all w and $f_{1}(w) . f_{2}^{\prime}(w)$ is monotonically increasing for $\frac{1}{3}(2 k-2) \pi<\omega<\frac{1}{S}(2 k) \pi$ and $k=1, \ldots, m$. Thus, there are m unicue relative minimm of $f(w)$ and $E^{\prime}(w)$ is monotonically increasing for $\frac{1}{S}(2 k-2) \pi<w<\frac{1}{S}(2 k) \pi \quad k=1, \ldots, m$.

Now we have that $f(w)=f_{T}(w)+f_{s}(w)$ where $f_{s}(w)$ is the p.scd $f_{\text {of }}$ of the seasonal and $f_{T}(w)$ is the p.s.d.f.of the trend. We consider the case where $f_{T}(0)=\infty$ and $f_{T}(w)^{\wedge}$ is monotonically decreasing. We let the set $\Omega=w:\left\{w=\frac{1}{S} 2 k \pi k=0, \ldots, m\right\}$, then it follows that $f_{S}^{\prime}(w)=f^{\prime}(w)-f_{T}^{\prime}(w)$ if $w \not a$ and $f_{S}^{\prime}(w)=0$ if and only if $f^{\prime}(w)=f^{\prime}(w)$. From the fact that $f^{\prime} T^{\prime}(w) \leq 0$ for all $0<w<\pi$ and the properties of $f^{\prime}(w)$ derived above we have that $f_{s}(w)$ has $m-1$ unique relative minimm in the range $\frac{1}{S}(2 k-2) \pi<\omega<\frac{1}{S}(2 k) \pi k=2, \ldots, m$. Finally, it is an easy matter to verify directly from the form in (A.1) that $f_{s}^{\prime}(w)=0$ for $w=0$, so that $f_{s}(w)$ has an additional relative minimm at $w=0$.

Part 2: Extensions of ARIMA Models

A time series model builder amed with Box-Jenkins ARIMA methods discovers very quickly that ARIMA models alone are insufficient to deal with many of the Census Bureau's time series. Simple ARIMA models do not specifically allow for the possibility of outliers, trading day variation and variation due to the placement of Easter; however, a large percentage of Bureau series contain one or more of these characteristics. Consequently, if we are advocating a model based approach to seasonal adjustment, then it becomes necessary to develop methods which allow one to model time series with these characteristics. During the course of this year we have begun to develop these models. Our attempts should not be regarded as the final procuct but rather a first step in the right direction. Even though we fraquencly used some simple minded models, we have found that our efforts have appeared to be sucessfil in many casas. In this section, we shall briefly describe the tachniques we have developed to deal with outliers, tradirg day variation, and holiday variation in time series. We acknowledge that there are other types of problems that occur in Bureau series (e.g., strikes), but thus far we have not considered these. One obvious approach to many other probiems is to use the intervention analysis technique developed by Box and Tiac (1975).

Qutliers

When dealing with outliers in ARIMA time series models, it is important to understand the ways in which potential outliers impact the original tire series. These issuas can probably be best illustrated by means of a simile example. Suppose that an observed tine series, Z_{6}, follows a randem walk model

$$
\begin{equation*}
(1-B) z_{t}=a_{t} . \tag{2.1}
\end{equation*}
$$

Then suppose we have an outlier at tine $t=t_{0}$. It will be convenient to define the "pulse" variable

$$
P_{t}^{\left(t_{0}\right)}= \begin{cases}1 & \text { if }==t_{0} \tag{2.2}\\ 0 & \text { otherrise }\end{cases}
$$

We let Z_{t} denote the value of the time series at time excluding the effect of the outlier and \tilde{z}_{t} denote the value of the time series at time t including the effect of the outlier. Then there are at least two ways to allow for the fossibility of an outlier at $t=\varepsilon_{0}$. We can let model be

$$
\begin{equation*}
(1-B) z_{t}=a_{t} \text { and } \tilde{z}_{t}=z_{t}+w \cdot P_{t}\left(t_{0}\right) \tag{2.3}
\end{equation*}
$$

or formally

$$
\begin{equation*}
\tilde{z}_{t}=w \cdot F_{t}^{\left(t_{0}\right)}+\frac{a_{t}}{1-B} . \tag{2.4}
\end{equation*}
$$

The cutlier model (2.3) clearly allows for $\tilde{z}_{t_{o}}=z_{t_{o}}+w$ and $\bar{z}_{t}=z_{t}$ if $t=t_{0}$ so that the result of (2.3) is a pertubation at time t_{0} in the original tire series. We shall call outliers generater in this manner "observation outliers".. Another possible model is

$$
\begin{align*}
& (1-B) z_{t}=a_{t} \text { and }(1-B) \tilde{z}_{t}=(1-B) z_{t}+w \cdot p_{t}\left(t_{0}\right) \tag{2.5}\\
& (1-B) \tilde{z}_{t}=w \cdot F_{t}\left(t_{0}\right)+a_{t} \tag{2.5}
\end{align*}
$$

Now from (2.5) it follows that $\tilde{z}_{t}=z_{t}$ if $t<t_{0}$. However, $\tilde{z}_{E_{0}}=z_{E_{0}-1}-w \cdot p_{t}\left(t_{0}\right)_{+}$ $a_{t_{0}}=z_{t_{0}}+w, \tilde{z}_{t_{0}-1}=\tilde{z}_{t_{0}}+a_{t_{0}+1}=z_{t_{0}+1}+w$ and $\bar{z}_{t_{0}+k}=z_{t_{0}+k}+w$ for $k \geq 0$. Therefors, the effect of (2.5) is a pertubation of w in every vaiue of the original time series after $t=t_{0}$. Since in (2.6) the outlier can be viewed as a shift in $a_{t_{0}}$ we call outliers generated in this manner "innovation outliers".

The choice of the way in which we wish to mociel outliers should depend in part upon knowledge about the time series being modeled. However, for most cases if would seem to be unreascrable to expect an outlier to affect all of the observations subseq̣ient to its inizial imeact. Thus, in che absence of any other knowledge it sems more reasonable to use the observation outlier concept. But as an illustration that the coservation cutlisr concept should not be unversaliy apelied, we Eurc :mile modeling the tire seties "retail sales of variety stores" that there were probiems when che cosemarion outlier concept was appliec. After some investigacion
we were told that at the time of the apparent outlier a large variety score chain went out of business ard, as a result, many of the variety stores sales were probably transferred to the category of departnent stores sales. Therefore, in this Farticular series the innovations outlier formation is more appropriate.

We next describe the procedure that was usually followed to identify and model outliers for the time series analyzed dring this year. First an ARIMA tine series model which allowed fcr trading day and holiday effects where appropriate was identified and the parameters were estimated. The estimated residuals, \hat{a}_{t}, were obtained and if $\hat{a}_{t_{0}}$ was larger than three times its estimated stancard errer a potential outlier at tine t_{0} was identified. The model

$$
t^{\left(t_{0}\right)}+N_{t}
$$

where N_{t} is the previously identified ARIMA model was then fit and the estimated value of w, \hat{w}, was compared to its standard error. If \hat{w} was larger than twice its standard error then the outlier was taken to be signifigant and left in the model; if \hat{w} was smaller than twice its standard error the outlier was not ircluced in the model.

There are at least two pocential problens with the above procecture that need to be investigated further. First, using \hat{a}_{t} to judge the timing of an outiler is appropriate if we are using the innovations outlier concept. But because for most cases we want to allow for observation outliers, it is not clear that examination of the \hat{a}_{t} 's will necessarily lead to the correct specification of t_{o}. For instance, an observation outlier at time t_{0} following model (2.1) can lead to large values of $\hat{a}_{E_{0}}$ and $\hat{a}_{E_{0}-1}$. The point is that unless we are careful we nay try and include more outliers in a mociel than are truly presenc in the data or we nay axclude a pocential Outiier from the model. This issue clearly deserves frrher irvestigation. Secondly, wile the probability of observing, say, a nomal rancon variable more than three standard erors atway Erom its mean is small, it is not zero. Therefore, we may be
fitting outliers and deciding that potential outliers are significant when in fact they were just random cccurances. Again this area needs further study.

Modeling Trading Day Effects

A signifigant proportion of the Census Bureau's time series are affected by the fact that every month except February has a variable mober of the different kind of days of the week. This arises in part because of the fact that individuals burying behavior and some institutional patterns are based upon the days of the week zather than the month. Tine series models such as ARIMA models mitich attemt to describe the correlation pattem between months without allowing for these trading day effects are inadequate for widespread use at the Census Bureau. In what follows we descrite the way in wich we have expanded the class of ARIMA models to allow for trading day variation.

We assune that after appropriately accounting for the seascnality in a time series that the residul effect of trading day changes can be approxinated by a detsministic model. We let I_{t} denote the trading day variation of monch t. Then $I D_{t}$ should be a finction of the mmber of distinct types of days in month t. In particular, we assume that

$$
I D_{L}=\stackrel{7}{\Sigma_{i=1}} \quad 3_{i} \cdot X_{i L}
$$

where $X_{i t} i=1, \ldots, 7$ are respectively the mmber of Mondays, Tuesdays, Wedresdays, Thursdays, Fridays, Saturdays and Sundays in month t and $3_{1}, \ldots, s_{7}$ are parameters. Now since (2.7) represents the trading day portion of the time series and since we are developing the models with the idea of seasonal adjustrent, we rant to inyose the restriction that the average trading day affect cver the long tern is zero. Othemise, D_{t} could be viewed as including a portion of the Erenc. Therefore, for large a we desire that

$$
\begin{equation*}
0=\sum_{t=1}^{n} \mathbb{D}_{t}=\sum_{t=1}^{n} \sum_{i=1}^{7} B_{i} X_{i t}=\sum_{i=1}^{7} s_{i} \sum_{t=1}^{n} X_{i t} \tag{2.8}
\end{equation*}
$$

Now, we note that $\sum_{t=1} X_{1 t}$ is the total number of Mondays in the n months and similarily for $\sum_{t=1}^{n} X_{i t} i=2, \ldots, 7$. In addition, for given large n the value of n $\sum_{t=1} X_{i t}$ will be approximately the same for each i. Therefore, from (2.8) if we want $\sum_{t=1}^{n} T D_{t}=0$ then we must have $\sum_{i=1}^{7} 3_{i}=0$. Incorporating this restriction inco (2.7) we may write, 6

$$
\begin{equation*}
T D_{t}=\sum_{i=1} \beta_{i} D_{i t} \tag{2.9}
\end{equation*}
$$

where $D_{i t}=X_{i t}-X_{7 t} \quad i=1, \ldots, 6$.
Now he assume that seasonality apart from ID_{t} can be modeled by ARIMA models; therefore an overall model for a tine series ircluding trading day variation is

$$
\begin{equation*}
z_{t}=I D_{t}+N_{t} \tag{2.10}
\end{equation*}
$$

where N_{t} is an appropriately chosen ARIMA model. We nota that (2.10) is a member of the class of regression modells with ARIMA errors.

Now it is well known (see e.g. Pierce (1971)) that under some relatively weak restrictions as n gets large the parameter estimates of $\underline{g}^{\prime}=\left(3_{1}, \ldots, 3_{6}\right)$ in (2.10) are approximately nomally distributed and are distributed independently of the parameter estimates in the ARIMA model. Therefore, inferences abour 3 can be made separately from inferences about the ARTMA parameters and standard comal theory can be applied. However, the estimates of the parameters, $\underset{\sim}{3}$, are correlated so that inferancas about the paraneters $\underset{\sim}{3}$ should be made jointly. For exampla, we would like to test the hypothesis $H_{0}: 3_{1}=3_{2}=\ldots=\xi_{6}=0$ since if that hypothesis cannct be rejected than there is no evidence that the trading day variables are necessary in the model (2.10). Now if we let A dencte the covariance
matrix of 3 then assumir.g H_{0} is true it follows from standard nomal theory that $Q={\underset{\sim}{s}}^{\prime} A^{-1} \underset{\sim}{\hat{3}}$ has asymptetically a chi-squared distribution with 6 degrees of freedom. Consequently, this distribution theory can be used to find a critical value for which H_{C} will be rejected when Q is too large. In our arcieling this year we viewed the parameters $\underset{\sim}{3}$ as a set and either included all six parameters in the model or did not include any of the six. There are undcubeedly cases where there is a signifigant trading day effect but six distinct parameters are not necessary; however, for the purposes of seasonal adjustment we see no need to redice the muber of parameters.

Identification and Estimation of Models which include tradirg day variation

In the model (2.10) the nature of $T D_{t}$ has been specified above; however, it is necestary to identify a particular ARIMA process for the model. One approach that has worked sucesstully is to examine the sample autocorrelation function of the original time series in order to detemmine the degree of differencing. Suppose that it is appropriate to difference the data so that the sample autocorrelation function of $W_{t}=(1-B)^{d}\left(1-B^{12}\right)^{D} Z_{t}$ dies out. It is frecuently the case that the sample autocorrelation function of W_{t} extibits a confused pattern because of the trading day influence. Therefore, what we have done is to consider the sample autcorrelation function of the resicuals from the regression of W_{t} on $(1-B)^{d}\left(1-B^{12}\right)^{D} D_{i t} i=1, \ldots, 6$. The basic idea is to remove the influence of the trading day factors by a preliminary regression so that the pattern in the sample autccorrelation function of the regression residuals can be clearly seen. Note, it is necessary to first detemine the degree of differencing since othervise the escinates of the 3_{i} 's in the praliminary regression will be inconsistent and the sanmle autocormelation pattarns may be misleading.

The mechoc described above has seemed to bee successfil ; but it sinould be examined from a more theoretical viewooint in order to have aberter understanding of the process. ilso, it is of interest to know how the veacing day factors affect the sample aucocorrelation Enceion.

Cnce a model has been tentatively identified, the parameters $\underset{\sim}{3}$ and the ARIMA model parameters can be simultaneousily estimated using the TSPACK package. In addition, TSPACK can be used to perform diegnostic checks on the fitted model. Once an adequate model has been found it is an easy matter to trading day adjust the data: (i) The estinated trading day factors are calculated by $\hat{\mathbb{D}}_{t}=\sum_{i=1}^{6} \hat{B}_{i} D_{i t}$ where \hat{c}_{i} are the estimates of s_{i} for $i=1, \ldots, 6$. (ii) The trading day adjusted series for month t is then $z_{t}-\hat{T D}_{t}$.

Easter Holicay Effects

- For a rumber of retail sales series, the level of the series can be significantly changed because of consumer buying behavior and stores mariketing tehaviof around the date of Easter. This Fhencmenon creates a different kind of problem than many other holidays (such as Christmas) because the date of Easter changes each year so that its impact upon March and April also charges each year depending upon its placement relative to these months. We next consider one method to model the effects of Easter on a time series.

For illustration we assume that a series of hypochetical daily sales will increase by a constant unknow amount s for a fixed muner of days, say m days, prior to Easter. We ackowledge that this is a simple minded assumption; however, because we can only observe monthiy data, it is impossible to empirically cetemine the daily moverents around Easter. Furthemore, the effects of our simyle assumption upon the final results are probably very similar to the effects of more complex assumptions about the daily behavior.

Under the above assumption, in order to account for the effect of Easter we need to properiy allccate the effects from Easter to the months of March and fpril. To accomplish this we define

$$
E_{j}=\left\{\begin{array}{l}
S \quad \text { if Easter falls on April } S \text { in year } j \\
S-31 \text { if Easter falls on March } S \text { in year } j
\end{array}\right.
$$

and further define for month t in year j
$Y_{t}=\left[\begin{array}{ll}0 & \text { if the month is not March or April } \\ 1 & \text { if } E_{j} \leq 1 \text { and the month is March } \\ 0 & \text { if } E_{j} \geq m+1 \text { and the month is March } \\ \frac{m-E_{j}+1}{m} & \text { if } 2 \leq E_{j} \leq m \text { and the month is March } \\ 0 & \text { if } E_{j} \leq 1 \text { and the month is April } \\ 1 & \text { if } E_{j} \geq m+1 \text { and the monch is April } \\ \frac{E_{j}-1}{m} & \text { if } 2 \leq E_{j} \leq m \text { and the month is April. }\end{array}\right.$

Note that for each month Y_{t} represants the proportion of the m days assumed to be affected by Easter in that month. Eased upon these developments, the model describing the Easter holiday effect is

$$
H_{t}=(m \cdot \delta) \cdot Y_{t}=\Delta \cdot Y_{t} .
$$

where Δ is an unknown parameter witich will be estimated from the observed data. If we assure that the Easter effect is fixed, that there are trading day effects and a residual ARTMA model to describe the seasonality $\left(N_{\imath}\right)$ then an appropriate model is

$$
\begin{equation*}
Z_{t}=\Delta \cdot Y_{t}+\sum_{i=1}^{6} 3_{i} \cdot D_{i t}+N_{t} . \tag{2.11}
\end{equation*}
$$

when modeling series with changes due to Easter we have fit nocel (2.11). However, it is necessary to seeciEy a value of min orcer to calculare Y_{E}. what we have done to detemire m is to Eit modei (2.11) using $m=0,7,14$ and 21 and tien. choose the value of m which yeilds the smallest sum of squares. In this way we let tie value of m be deremined from the series being moceled. This proceciume
has seemed to work successfilly for most of the series that we have modeled. Hewever, we feel that the best way of modeling Eastar variation should be studied Errcher.

Part 3: The Embirical Study

As we stated in the introduction to this report, our main goal this year was to conduct a moderate sized empirical study comparing the model based seasonal adjustrent method to Census X-11 and Statistics Canada X-11 ARIMA. The reasons for including X-11 in the study are fairly obvious. (i) X-11 is the method anrently being used at the Census Bureau. (ii) X-11 has been used for many years and most people involved with seasonal adjustment have had experience using X-11, therefore X-11 is a natural method to use as a standard of comparison. (iii) Apparently peopile are somewhat happy with the results of $\mathrm{X}-11$ so that any new method must not give results which are radically different than X-11 for the majority of series or the new method is probably suspect. X-11 ARIMA was included in the study because we felt that there was a chance that it might replace $\mathrm{X}-11$ in the near future; consequently, comparisons of the model based and X-11 ARIMA were inportant. Finally, the particular nodel based procechre was included because of the research fellow's involvement in developing it and the theoretical acvantages cited in part 1 of this report.

From a purely theoretical viewpoint there are several reasons winy the model based procedure could be considered superior to the other two methods in the comparison. The model based method uses infomation about the individual time series being adjusted in a rigorous way when deriving the moving average filters to be used for adjusting the series. In this sanse, the model based adjustaent is therefore consistent with the structure of the data while K-11 and X-11 ARIMA are not necessarily consistent with this infomation. The filters in the model based approach are derived Erom the theory of optimal signal extraction so that in particular the Eil:ars appiied at the encs of the data are more appropriate than those of $\mathrm{X}-11$. As opposed to X-11 and X-11 ARIMA, all of the statistical assumptions For the aodel based proceciure are rigorously specified and the degree of arbitrariness is avactiy
known. Because the idea behind the model based approach is to make use of the information available in the series to be adjusted when deriving the estirates of seasonal factors, in principle we might expect the model based procscure on the average to give a better seasonal adjustnent than $\mathrm{X}-11$ or $\mathrm{X}-11$ ARIMA.

Even though in theory a model based adjustment may be better than an adjustment from either of the other two methods, it is of interest to detemine if in practice there are any major differences in the various methods. If, for instance, for all practical purposes the model based approach yields the same results as $\mathrm{X}-11$ then there would be no advantage in using the model based approach even though in theory it may be superior. Detemmining the degree to which the three methods differ in practice is largely an empirical matter. In addition, there are several questions about the fociel based approach that can only be answered enpirically. First, as is evident from the theoretical discussion of the model based approach given in part 1 of this report, there do exist ARIMA models for which a seasonal decomposition does not exist. An important empirical question is whether or not these gypes of ARIMA models cccur in data series that are commonly seasonally adjusted at the Census Bureau. Secondly, we have chosen to use the cannonical seasonal defined in part 1 of this report as the model for the seasonal conponent. Since this can be regarded as an arbitrary choice, it is inmortant to fird out if the results from making this choice are consistent with what experts consider an adequate seasonal adjustrent. Again, one way to judge this is empirically. Finally, an empirical study of this kird should raise questions about seasonal adjustment in general and about model based seasonal adjustment in particular. We address some of the issues that resulted from this empirical study in part 4 of this report.

One of the problems in concucting an empirical study comparing seasonai adjustment methods is in deciding how to judge the relative merits of the various methods. It is not difficult to eliminate a procedure if it is grossly inadequate; for exarpla, if there was substantial rasiciuai seasonality in the seascnally adjusted series or there was a potion of the trenc in the seascnal component. On the ocher hard, because
of the arbritrary nature of seasonal adjustnent, there is nct a "corract seasonal component' that can be used as an absolute standard of conparison. Therefore, judging the virtues of the methods in this study is difficult and to a large extent is a matter of personal opinion about what constitutes a good seasonal adjustment.

For the purfoses of this discussion we assume that the three methods are not grossly inadequate. To compare the three methods in this situation we have chosen to calculate measures of revisions in the seasonally adjusted series, a measure of smoothess in the seasonally adjusted series and a measure of the extent to which the level of the unadjusted series is praserved by the adjusted series. It may be valuable to look at these measures even if they are not used to judge the adequacy of a seasonal adjustnent. This is because the measures may provide infomation as to how the methods behave. For example, they may indicate that one method is brying smoothness at the expense of high revisions when compared with another method. We next discuss our reasons for using these particular measures and the results of the study.

Revisions

The current seasonal adjustnent practice at the Cansus Bureau is at the beginning of each year, to adjust a particular series using data through the months of Decanier of the previous year and using the same data forecasts of the seasonal factors for the next 12 months are procuced. We call the forecasted seasonal factors the year anead Eactors. These year ahead seascnal factors are then used to derive the official seasonally adjusted series as the unadjused data becomes available. After an additional year's worth of unadjusced data becomes available, the process is repeated. However, because there is infomation abcut the curnent year's seasonal factors in curment and fucure data, as more daca becomes availabie tve axpen= that the estimated seasonal factors will be changed. These onanges in seasonal Eiecors then lead to revisions in the seasonaliy adjusted series. In particular, if we let
$X_{t}{ }^{f}=$ the seasonally adjustad value for month t based upon the forecasted seasonal factors and let $X_{t}{ }^{i}=$ the seasonally adjusted value for month t based upon i years of additional data ($i=1,2,3$); then the revisions in the seasonally adjusted value for month t after i years of new data becomes available are $X_{t}{ }^{i}-X_{t}{ }^{f}$ for $i=1,2,3$. For each series considered in the study, we have taken as a measure of revisions the average relative absolute revisions

$$
\begin{equation*}
R^{i}=\frac{1}{12} \sum_{t=1}^{12} \frac{\left|X_{t}^{i}-X_{t}^{f}\right|}{X_{t}^{i}} \quad 1=1,2,3 . \tag{3.1}
\end{equation*}
$$

Then for each series R_{i} for $i=1,2,3$ is a measure of the relative anount of revision in the seasonally adjusted series after one, two and three years of additional data become available.

Note that for each series R^{i} is a measure of the average amount of revision relative to the level of the most recent estimate of the seasonally adjusted series. If everything else were equal we would prefer small values of R^{i}. Therefore, one way to compare the three seasonal adjustment methods is, for each series to compute $R^{i} \quad i=1,2,3$ for the threc different seasonal adjustment methods and detemine which approach if any gives smaller value of R^{i}.

In this empiricai study we used 76 tine series. A brief description of these series together with the abbreviations used to refer to each series are given in table A. 1 of the appendix. In addition, the dates of each series that were used in this study are given in table A. 2 of the appendix. For the purpose of calculating the measures of revisions in this study, we used data from the starting date up to three years from the ending date to caiculate the year ahead seasonal factors and the values of $X_{t}{ }^{f}$. we then added one, two and three years of data in order to compute respectively X_{t}^{1}, X_{t}^{2} and X_{t}^{3} also the values R^{1}, R^{2} and R^{3} were computed. We note that R^{1}, R^{2} and R^{3} were computed for 69 of the 76 series and only R^{1} was computed for 7 series because the lergth of tire for wich daca was available was
too short to compute R^{2} and R^{3} with these 7 series. These computations were done for each of the three seasonal adjusment methods (the standard options were used for X-11 and X-11 ARIMA). Then for each series, the values of R^{i} for the model based adjusment and for $X-11$ ARIMA were divided by the values of R^{i} for $X-11$. The values of these relative ratios for each series are reported in table A. 3 of the appendix. Note a value of the relative ratio witich is less than 1.00 indicates the approach did better than $X-11$ and a value greater than 1.00 indicates the approach did worse than $X-11$. In order to get an idea of the overall perfomance of the three methods we calculated the average of the relative ratios of table A.3. These averages are reported in table 3.1.

Based upon table 3.1 we draw the following conclusions. On the average thera is about a 40 percent reduction in the relative absolute first, second and third year revisions of the model based method over $\mathrm{X}-11$. In addition, the model based method had a smaller measure of revisions than $X-11$ in over 85 percent of the series for each of the first, second and third year measures. There is about a 50 percent reduction in the relative absolute first year revisions and about a 40 percent recuction in the sacond and third year revisions when using the model based approach mether than X-11 ARIMA. Note that the averages for X-11 ARIMA are divided into the subset of series in which the program automatically picked a mocel and the stibset of series in which a model was picked by the user (model forced). This was done to detemine if forcing a nociel in the ARIMA program would lead to larger revisions than the cases where modais were chosen by the program. In this study, the forced models had about the same or a smallar amount of revisions than did the autornatically chosen models. In sumary, from the results of the stidy, we conclude that on the everage there is a substantial reduction in Zirst, second and third year revisions when the model based approach is usec asther than $\mathrm{X}-11$ or $\mathrm{X}-11 \mathrm{ARTMA}$.

Table 3.1

Average Relative Ratio of Revision Measures for Model Based and X-11 ARIMA

First Year Revisions

Adinstment Method	n	Average Relative Ratio	Number Better Tnan X-11
Model Based	76	.62	66
X-11 ARIMA	76	1.25	28
X-11 ARIMA - automatic	60	1.26	23
X-11 ARIMA - forced	16	1.20	5

Second Year Revisions

Adjustment Method			
	Average Relative Ratio	Number Better Tnan X-11	
Model Based	69	.60	61
X-11 ARIMA	69	1.06	36
X-11 ARIMA - autcratic	53	1.08	27
X-11 ARIMA - forced	16	1.05	9

Third Year Revisions

Adiustment Method	n	Average Relative Ratio	Nuber Better Than X-11
Model Based	69	.57	63
X-11 ARIMA	69	.96	41
X-11 ARIMA - autoratic	53	.95	34
X-11 ARIMA - Eorced	16	.98	7

It is of interest to attempt to understand why in our study there were smaller revisions when using the model based procedure rather than the other methods. One way to do this is to examine the plots of the series for the model based and X-11 seasonal adjustments in the appendix. In particular, for each series it is helpful to compare the estimated seasonal factors obtained with the two methods. It is evident from these plots that the seasonal factors for the model based approach evolve more slowly than do the seasonal factors for X-11. In addition, if we examine the form of the smothing formalas given in part 1 of this report it is evident that the length of the moving averages is deternined by the parameters in the moving average polynomial of the model for Z_{ε}. In particuiar, the magnitude of the seasonal moving average paraneter is the most important factor in detemining the length of the seasonal filter. Now Cleveland and Tiao (1976) have found that the X-11 program with the standard options is in some sense assuming the observable series has a seasonal moving average parameter equal to about .43. This is to be contrasted with the estimated seasonal moving average parameters for the series in this sowiy. These are sumarized in table 3.2. In all but one of the 76 series the estimated \hat{s}_{12} was larger than .45 and in most cases the estimated θ_{12} was substantially greater than .45. Although the collection of Bureau series chosen was not a ranciom sample, the series were in no way selected with an eye toward large O_{12} values. These Eacts ingly that the length of the moving average filter for estinating the seasonal component in the wodel based method was almost always longer than the length of the corresponding X-11 moving average. Thus the estimated seasonal component for the model based procedure will not change as rapidly as the estimated seasonal component for X-11.

Table 3.2

$$
(1-B)\left(1-B^{12}\right) Z_{t}=\left(1-\theta_{1} B\right)\left(1-\theta \cdot 12^{\left.B^{12}\right) a_{t}}\right.
$$

For all possible combinations of $\theta_{1}=.1, .3, .5, .7, .9$ and $\theta_{12}=.1, .3, .5, .7, .9$ we computed the expected mean square error in revisions for a grid of eleven possible acceptable decompositions including the canonical_decomposition. We assumed that the revisions were computed from the initial adjusted values derived from the year ahead seasonal factors. For all of the combinations of e_{1} and θ_{12} considered we found that the canonical. deccmposition gave the smallest expected trean squared error in revisions. Therefore, these findings seem to support our intrition; however, additional work needs to be done in this regard.

In summary, we have shown in an empirical study that a substantial reduction in the amount of revisions can be achieved if the model based seasonal adjustnent approach is used rather than either X-11 or X-11 ARIMA. We have argued that one reason for this result is that the majority of Bureau series have seasonality which evolves rather slowly. Furthemore, the model based metiod provides a way to discover when the seasonal pattem of a series is slowly changing so that this fact can be used to obtain more appropriate estimates of the seasonal components.

Measures of smoothness and level preservation
As a means of comparing the broad characteristics of the model based adjustrent method and X-11 for this empirical study we have computed the measures

$$
\begin{equation*}
S M=\sum_{t=3}^{\eta}\left(x_{t}-2 x_{t-1}+X_{t-2}\right)^{2} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.F=\sum_{t=12}^{n} \sum_{j=5-11}^{\sum}\left(z_{t}-X_{t}\right)\right]^{2} \tag{3.3}
\end{equation*}
$$

where Z_{z} and X_{t} cenote respectively the oniginal value and the seasonaliy adjusted value for month E. Note that (3.2) is a crice measure of the smootiness of the seasoraily $\approx d j u s t a d$ series ard (3.3) is a crude measure of how closely the moving
tweive monch totals of the unadjusted and adjusted data agree. we calculate (3.3) using the metric for witich the additive representation $Z_{t}=S_{t}+X_{t}$ is appropriate. For the purpose of comparison we have calculated the values of SM and Ffor each of the 76 series in our study and for the model based and X-11 methods. We excluded X-11 ARIMA because we view X-11 ARIMA as an attenpt to improve the adjustment of the ends and consequently X-11 ARIMA's broad characteristics should be similiar to those of X-11. For each series the values of SM and F for the model based approach were divided by the values for $\mathrm{X}-11$. These ratios are reported in table A. 4 of the appendix. Based on this table it is evident that $\mathrm{X}-11$ has on the average a smoother seasonally adjusted series than does the model based approach and that the model based adjusted series preserves the level of the twelve month moving sums better than the X-11 adjusted series. These observations are consistent with the earlier observations about the two methods.

Rescurce requirements of the model based aporcach

One of the important things that must be considered before any model based seasonal adjustment procedure can be adopted is the amount of resources required for its use. Based upon our experience with this empirical study we have a rough idea about what would be required to implement the particular nodel based approach used in the study.

First, scme kind of Box-Jenkins ARTMA modeling software package is necessary. For Census Bureau series it is essential to be able to handle intervention models and regression type models with ARIMA error structures. In our opinion, the best available software package is the TSPACK routine which we used this year. That routine is available at the Bureau.

Another software requirament is a program to compute the seasonal adjustment based upon the particular model for the data. This program was partially writtan before the start of the project this year and during the course of the year it has
been checked and rewritten to include more general models. However, before the program can be used extensively it probably should be rewritten so that its input can be simplified and its output made to conform more closely to Census needs.

Finally, the largest resource comitment, at least initially, is the time required to model the individual series. The time required to model a series depends both on the experience of the model builder and the difficulty of the series. Cur opinion is that someone with a moderate amount of experience should be able to adequately model an easy to moderately difficult series (at least 75% of those in this study were easy to moderately difficult) in less than 2 hours. Modeling a large number of series thus involves a large time committment. However, we must also recognize that for most series this is an initial imvestment that will not have to be repeated. Once a model is built for most series the model probably will not change, and updating may only involve reestimation of the model parameters. An additional advantage is that a model based approach forces us to become intimately involved with the tire series being adjusted. We therefore woll expect that a model based approach may not only lead to better seasonal adjustnent, but aiso to a better understanding of the uradjusted series. Consequentiy, a model based seasonal adjustment approach may lead to inprovements in areas of interest at the Bureau other than seasonal adjustrent.

Part 4: Other Issues Related to Seasonal Adiustrent

During the course of conducting the empirical study several issues that have not yet been discussed arose. In this part of the report we briefly discuss these issues. To a certain extent what we will consider in this part are some interesting but only partially answered questions. Our hope is that these questions may generate some acditional research interest.

Deciding when a series should not be ad iusted
One question that is inportant to be able to answer is: how can we decide if a particular series should not be seasonally adjusted? This question can be addressed from a number of different angles, however we shall consider the question from a statistical modeling viempoint. We assume that the unadjusted series can be approximated by an ARIMA model. Now for montily data if the particular ARTMA model representing an unadjusted series dees not have any seasonal part then it is clear that the unadjusted data is not seasonal and the series should not be seasonally adjusted. Is an example, during the course of the enpirical study we found that the model

$$
\begin{equation*}
z_{t}=z_{t-1}+a_{t} \tag{4.1}
\end{equation*}
$$

was an appropriate model to describe the behavior of the \log of the industrial inventory series S45TI (ship building). Because there is no seasonality implicit in a series witich follows model (4.1) we conclude that this series should not be seasonally adjusted.

The above exarmle was clear cut; however we can also consider the example of the industrial inventory series SOTII (glass containers) winich follows the model

$$
\begin{equation*}
w_{t}=.26 w_{t-12}-a_{t} \tag{4.2}
\end{equation*}
$$

where ${ }_{N}$ is the first differance of the logs of the unadjusted data. Now the model (4.2) does allow for some seasonalizy since w_{E} is miated to the value twelve months ago. However, the seasonality implicit in (4.2) can be considered very weak. First,
the values of W_{t} for each different month vary around zero rather than a distinct monthly mean. As a result the values of W_{t} will stay close to zero. Second, in successive years the values of say, Jamury, are positively correlated; but that correlation is very small. Therffore, it would not be umsual to have a positive value of W_{t} for one Jamary and in a year or two to have a negative value of W_{t} and a year or two later another positive value. These renarks are also valid for the other months. Therefore, we can compare the expected behavior of a series following the model (4.2) with a definition given by Kallek (1978) that seasonality is "regular periodic fluctuations which recur every year with about the same timing and intensity'". It is evident that realizations of a series that has as its model (4.2) de ngt extibit the behavior in this definition. Fence, we can argue that based uron statistical modeling considerations the series SOTTI should not be seasonally adjusted.

From the last example it appears that correlation at a twelve month lag is not a sufficient reason to justify seasonal adjustnent of a series. Consequently, we need to have some other criterion to jucge whether or nct to seasonally adjust a series. With this in mind we consicer the model

$$
\begin{equation*}
W_{t}=W_{t-12}+N_{t} \tag{4.3}
\end{equation*}
$$

where N_{t} is the value of a series (possibly transformed or differenced) at montit t and N_{t} follows a stationary zero mean model. The model (4.3) implies that the value of the serias for say, Jamury, is equal to the value for last Jamary plus an error term chat varities around zero. Thus, a series following (4.3) will extibit ragilar monthly Eluctuations which recur with about the same intensity provided the variability in N_{t} is not large comyared te the monthly values of W_{t}. Now the mociel (4.3) is seasonally nonstationary because it will typically not have a level that is time imvariant but rather the level will depend upon the particular month. The montily incensities in (4.3) will change but as long as the variance of Ne is act toc large the charges will be gracial.

Based upon the above considerations we call a monthly series strongly seasonal if it is necessary to include a twelfth differerce in its model and we call a monthly series weakly seasonal if it has significant autocorrelations at multiples of lag 12 but no twelfth difference in its model. If we base our decision only on statistical modeling considerations, we feel that only strongly seasonal time series should te adjusted. Of course, in practice the modeling considerations may be only part of what is used to decide whecher or not to adjust a particular series, but we feel that they may help in making the decision. During the process of modeling series fir the enpirical study we found several series that were rot strongly seasonal; they are listed in table 4.1.

Table 4.1

Series that are weakly seasenal or not seasonal

Series I.D.	Description
SOTII	industry inventories - glass containers
S13TI	industry inventories - nonferrous metals
S24TI	industry inventories - construction mining material hancling
S25II	industry inventories - metal woricing machinery
S29II	industry inventories - general incustry machinery
S37II	incustry inventories - commercial equipment
S38TI	incustry inventories - electrical components
S4SII	industry inventories - ship building
S76II	industry inventories - paperboard containers
S83TI	industry inventorias - incustriai chemicals
SXRTI	industry invencories - electrical transmition \& distribution equip.
SXITI	industry inventories - aircraft, missiles, parts
TI301	wholesale inventories - motor vehicles, autcmotive parss anc supolies
TI302	wholesale inventories - Erniture and home Eumishings
II308	wholesale inventories - mactinery, equipment and supplies

Detection of Detemministic Seascnality
When modeling and anaiyzing seasonal time series it is sometimes possible to represent the seasonality in the series as a fixed or deterministic component like monthly means. Of course not all seasonal tine series can be modeled using deterministic seasorality, but when that is possible there are several advantages to representing the seasonality in that way. First, the behavior of deteministic seasonality is easy to explain. Second, in constrast to the situation where we have stochastic seasonality, if there is fixed saasonality then there is no unresolved ambiguity about how to do the seasonal acjustment. Therefore, it can be inportant to develop techniques to discover when using a fixed seasonal is apprcpriate.

In the context of ARIMA modeling there is an informal way to discover when fixed seasonality is appropriate. Suppose that an observed time series, Z_{t}, is equal to the sum of a seasonal component S_{t} and a white noise component a_{t}. Furthemore, we assume that the S_{t} are fixed, distinct monthly means so that $S_{t}=s_{t-12}$ for all t. Now if we perform a standard Box-Jenkins analysis on Z_{t} we will be lead to consider

$$
\begin{equation*}
\left(1-B^{12}\right) z_{t}=\left(1-B^{12}\right) s_{t}+\left(1-3^{12}\right) a_{t}=\left(1-B^{12}\right) a_{t} \tag{4.4}
\end{equation*}
$$

Therafore, in theory the series $W_{t}=\left(1-B^{12}\right) z_{t}$ follows a stationary moving average process with seasonal moving average parameter equal to 1 . If we appropriately estinate the parameter ∂_{12} in the model

$$
w_{t}=a_{t}-\theta_{12} a_{t-12}
$$

then for the above situation we would get an estirate of ${ }^{\circ} 12$ near 1 . we note in passing that this situation can create some rather difficult estination problems. The point of this illustration is that if it is necessary to seasonally difference a series and if the resulting model includes a seasonal moving average paramerer whose estimate is "close to 1 ", then there is some incication that the data could be modeled using a fixed seasonal mpresentation.

The signifigance of this is from table A. 2 in the appendix there are a muber of series for which the estinate of θ_{12} is larger than .75. In addition, the method used in TSPACK tends to give estimates of ${ }^{\theta} 12$ which are less than 1 in the case where the true value is equal to 1 . A better way to estimate θ_{12} is by using an exact likelihood procecure. In order to check if there is evidence for deterministic seasonality in the series modeled for the empirical study, we took 24 series that had estimates of θ_{12} calculated by the TSPACK routing to be larger than .75 and estimated the parameters using an exact likelihood method available in the Wisconsin Multiple Time Series package. Note that we would have preferred to use an exact likelihood procedure originally but we needed to have the capability to simultaneously estimate outlier, trading day and holiday effects along with ARIMA parameters. The results of this comparison are reported in table 4.2. From this table we see that the informal procecure does not indicate the presense of deteministic seasonality except for the series HSTS and possible S23TI. In fact for most of the 24 series the exact likelihood estimates of θ_{12} were smaller than the TSPACK estimates of θ_{12}. We suspect that in cases where the true θ_{12} is not close to 1 ISPACK estimates tend to be larger than exact likelihood estimates of ${ }_{12}$.

Therefore, for most of the series considered there is not substantial evidence, based upon the cancellation argment, that using deteministic seasonality is appropriate. Surprisingly, we have found for some series (e.g., HSII and EnRO) that we can mociel the data using monthly means and apparently account for all of the seasonality in the data, even if the cancellation argment does not indicata deterministic seasonality. This raises some interesting questions. It would seem to be important to investigate the theoratical implications of the model with deteministic seasonality compared to the model with stochastic seasonality to decide if one should be preferfed over the ocher on theorerical srounds. In addition, it would be use=ul to develop \neq Eomal test to decide with of the two representations are more aporopriate for a given time series. Einally, it would be important to kncw in what circmseances using the $=$:no noceis will result in signizionntiy difierent conclusions.

Table 4.2
Estimates of θ_{12} in candidate series for deteministic seasonality

Series I D	Backforecasted Estimate	Exact Likelihcod Estinate
SHIP	. 80	. 74
S6OII	. 85	. 77
S65TI	. 78	. 71
TI506	. 90	. 74
TI507	. 87	. 74
EaM2O	. 88	. 74
EvF20	. 90	. 82
INVE	. 91	. 84
Enimo	. 88	. 81
S62TI	. 79	. 72
TI500	. 90	. 79
S35II	. 88	. 76
S36II	. 91	. 85
HST1	. 82	. 70
UF16	. 74	. 63
EM16	. 87	. 72
EIF16	. 87	. 74
HSTS	. 92	1.00
HSIT	. 89	. 87
S1STI	. 90	. 84
EMME	. 90	. 84
EAFI6	. 77	. 68
S23II	. 91	. 93
S2IVSU	. 88	. 88

Multiplicative vs Log Additive Seasonal Adjustnent

The most common way in which people conceive of an observed time series, Z_{t}, in terms of its components is the mutiplicative model

$$
\begin{equation*}
Z_{t}=S_{t} \cdot X_{t} \tag{4.5}
\end{equation*}
$$

where S_{t} is a seasonal component and X_{t} is a nonseasonal component. Some reasons for using the representation (4.5) are: (i) it is an empirical fact that the seasonal variability tends to increase as the level of the series increases for many series, and (ii) many series are measured in dollars so that both the level of the series and the magritude of the seasonality can be affected by inflation. If the representation (4.5) is appropriate than it follows that the additive representation

$$
\begin{equation*}
\ln z_{t}=\ln s_{t}+\ln x_{t} \tag{4.6}
\end{equation*}
$$

is appropriate for the logarithms.
Now if we assume that seasonal adjustment can be thought of as a signal extraction preblem, then it is necessary to use represertation (4.6) rather than (4.5) because the theory of signal extraction is developed in tems of an additive structure. In addition, in the situation where S_{t} is deteministic then some form of regressior: analysis would be appropriate. For example, if $\ln X_{t}$ were wite noise (4.6) is the standard regression model. However, again we aust use the aditive representation because the usual regression assumptions are not satisfied in the milticlicative framework. Of course if the analysis is done in the log metric then the results must be transformed back into the metric of the originai series for puilication purposes.

The above discussion is relevant because for a multiplicative representation the current verison of $X-11$ perfoms its analysis upon the original data using arithemerric averages (multiplicative adjustment) winen a strong theoratical casa can be mada for first transforning the data by taking logarithms anc then treating the resultant series as if it were an additive nodel (log additive adjustment). For
the majority of series adjusted there are only minor differences between the results of the X-11 multiplicative adjustment and the X-11 log additive adjustnent; however, there are a few cases where the two altematives do give different results. As an example, in figure 4.1 we have plotted the seasonally adjusted series for the series 598000 , the retail sales for fuel oil dealers, liquefied petroleun dealers and fuel and ice dealers. The multiplicative seasonally adjusted series is plotted in the solid line and the log additive seasonally adjusted series is plotted in the dashed line. As is evident from the plot, there is approximately a constant difference between the two adjusted series. It is also clear that at least one of the methods must be miled out.

Aftex scme thought and an examination of the original data it is relatively easy to explain the difference in the two methods. The miltiplicative version of X-11 tends to make the yearly arithmetic average of the seasonal components close to $1\left({ }_{1} \frac{1}{2} \sum_{i=1}^{12} S_{i}=1\right)$. In contrast, the $X-11$ log additive adjustnent tends to make the arithnetic average of the logarithons of the seascnal factors equal to $0\left(\frac{1}{1} \sum_{i=1}^{12} 1 n S_{i}=0\right)$. Equivalentiy, for the $\log \frac{\text { additive approach we have that the }}{12}$ geometric mean of the seasonal factors is about $1\left(\left[\sum_{i=1}^{12} S_{i}\right]^{1 / 12}=1\right)$. Now for the particular series under consideration it happens that the seasonal components range Erom as low as . 6 to as higin as 1.7 so that the S_{i} are not close to 1 . In this case it is easy to show that the geomerric mean is substantially smaller than the arithmetic mean. Therefore, for this series the seasonal factors for the two methods differ by about a constant amount and these relatively constant differences are reflected in the seasonally adjusted series.

The series 598000 was tine sase that showed the most extreme differance between the $\mathrm{X}-11$ multiplicative and $\mathrm{X}-\mathrm{il}$ log additive adjustment. In orcier to get an idea of the magnitude of diEEerence in the two approaches for some ocher sezias we have included plots For Eive ocher zeries thar showed some dizarences (in fizures ú.2 through 4.6). Keep in mind that these examples vere chosen because they nepresenc

RETAIL 598000 X-II MULTIPLICATIVE AND X-II LOG ADDITIVE
Figure 4.1

RETAIL 520002 X-II MULTIPLICATIVE AND X-II LOG ADDITIVE
Figure 4.2

SERVICE 701000 X-II MULTIPLICATIVE AND $X-11$ LOG ADDItIVE

RETAIL $570002 \times$ - 11 MULTIPLICATIVE AND $X-11$ LOG ADDITIVE

Figure 4.4

WHOLESALE 518000×-11 MULTIPLICATIVE AND $X-11$ LOG ADDITIVE

Figure 4.5

VIP X-II MULTIPLICATIVE AND X-II LOG ADDItIVE

Figure 4.6

examples of cases where there are differences in the two procedures and for the majority of series'we considered there would not be discernable differences.

Because of the discrepancy between the multiplicative and log additive methods, it may be necessary to determine which of the two approaches is preferrable. The argunents in support of the \log additive are: (i) from the point of view of signal extraction the analysis is more appropriately performed for an additive representation; (ii) from the view of modeling the original series, the usual ARIMA model assumptions are going to be more appropriate in tems of the logarithmic metric since for instance the data in the original metric will not have a constant variance if (4.5) is true, (iii) the multiplicative approach of $X-11$ is inconsistent in that it is mixing arithmetic averages with data assumed to have proportional seasonality. For multiplicative X-11 it would be more appropriate to use geometric averages instead of arithnetic averages. On the other hand, we can only think of one possible reason to support the maltiplicative approach. That is that the restriction implicit in the rultiplicative approach, $1 \frac{1}{2} \sum_{i=1}^{12} S_{i}=1$, tends to make the yearly totals of the unadjusted series more nearly, equal to the yearly totals of the adjusted series than does the restriction, $\left[\prod_{i=1}^{12} S_{i}\right]^{1 / 12}=1$. Some additional thought is nesded about whether or not the yearly sums of the adjusted and unadjusted series should be approximately equal.

Bell, W.R. (1980) 'Miltivariate Tine Series. Smoothing and Backward Models'' Unpublished Ph.D Thesis, Statistics.Department, The University of WisconsinMadison.

Box, G.E.P., Hillmer, S.C. and Tiao, G.C. (1978) "Analysis and Modelling of Seasonal Tine Series' in Seasonal Analysis of Economic Time Series edited by Amold Zellner U.S. Deparment of Comerce.

Box, G.E.P. and Jerkins, G.M. (1970) Time Series Analvsis: Forecasting and Control. San Francisco, Holden Day.

Box, G.E.P. and Tiao, G.C. (1975) 'Intervention Analysis with Applications to Esonomic and Envirormental Problems" JASA, 70, 70-79.

Cleveland, W.P. (1972) "Analysis and Forecasting of Seasonal Tine Series" Unpublished Ph.D Thesis, Statistics Departrent, The University of WisconsinMadison.

Cleveland, W.P and Tiao, G.C. (1976) 'Decomposition of Seasonal Time Series: A Model for the Census X-11 Program" JASA, 71, 581-587.

Kallek, S. (1978) "An Overview of the Objectives and Framework of Seasonal Adjustment" in Seasonal Analysis of Economic Time Series edited by Arnold :Zellner U.S. Department of Comnerce.

Pierce, D.A. (1971) 'Teast Squares Estimation in the Regression Model with Autoregressive- Moving Average Errors." Biometrika, 58, 299-312.

Pierce, D.A. (1980) 'Signal Extraction Error in Nonstationary Time Series'" The Annals of Statistics, $1,1303-1320$.

Pierce, D.A. (1980) 'Data Revisions with Moving Average Seasonal Adjustment Procedures" forthcoming in The Joumal of Econometrics.

Shiskin, J., Young, A.H. and Misgrave, J.S. (1967) 'The X-II Variant of Census Method IT Seasonal Adjustment Program" U.S. Departnent of Commerce, Technical Paper 15, Washington, I.C., Govermment Printing Office.

Wallis, K.F. (1974) 'Seasonal Adjustment and Relations Betimen Variables', JASA, 69, 18-31.

Whittle, P. (1963) Prediction and Requlation bv Linear Least-Souare Methods, Princeton, D. Van Nostrand Co.

Young, A.H. (1968) 'Tinear Approximations to the Census and BLS Seasonal Adjustment Procedures', JASA, 63, 445-471.

Appendix to the Report

In this appendix we present some details about the individual series that were modeled during the year. Table A. 1 gives a legend of the series ID's that are used throughout the report. Table A. 1 gives a list of the series used in the empizical comparison grouped by the type of ARIMA model which was built for the series. Parameter estimates for the ARIMA model parameters are given along witt. an indication of whether or not outliers were included in the model. Note that the remaining tables and plots of the series in the empirical study are arranged in the same order as this table. Table A. 3 gives a summary of the first, second and thizd year revision measures for each individual series. Table A. 4 gives the smoothness and fit measures for the individual series. For each of the series considered in the empizical study we have included two diagrams. The first diagzam includes for the model based approach a plot of the original series and seasonally adjusted series (in a dashed line) on one graph and a piot of the seasonal factors for the model based adjustrent on a separate graph. The second diagram includes the aralogous plots for the X-11 adjusment. Finally, dring this year some series that included Easter holiday effects were modeled but not included in the empirical study. All of these series were modeled from 1/67 through $9 / 79$. The models for these series are given in table A.5.

Table A. 1

Lengend of Series ID's

SOTII:	inventories - glass containers
SI1TI:	inventories - blast furnaces
S13TI:	imventories - nonferrous metals
S16TI:	inventories - metals, cans, barrels, drus
S23II:	imventories - farm machinery and equipment
S24TI:	imventories - construction mining material handling
S25TI:	inventories - metal working machinery
S29II:	inventories - general industry macininery
S35TI:	inventories - household appliances
S36II:	inventories - radio and T.V.
S37TI:	imventories - commercial equipment
S38II:	inventories - electircal components
S45II:	inventories - ship building
SOOTI:	imentories - meat products
S62TI:	inventories - beverages
S63TI:	inventories - fats and oils
S64TI:	inventories - all other nondurable products
S65II:	inventories - tobacco
S76II:	inventories - paperboard containers
S83TI:	inventories - industrial chemicals
S85II:	imventories - drugs, soap, toiletries
SX2TI:	inventories - electrical transmition and distribution equipment and industrial apparatus
SX4TI:	inventories - motor vehicle and parts
SX5TI:	inventories - aircraft, missiles, parts
TI500:	wholesale inventories - U.S. Cotal
TI501:	wholesale inventories - motor vehicles, automotive parts and supplies
TI502:	wholesale inventories - Eurniture and home Eurnisiings
TI503:	wholesale inventories - lumber and other construction materials
TI506:	wholesale inventories - electrical goods
II507:	wholesale imventories - tardware, plumbing, heating equipment and supplies

TI508:
TI517:
501000:
502000:
503000: 504000: 505000: 506000: 507000:

508000:
, 511000:
512000:
513000: 514000: 515000: 516000: 517000: 518000: 701000: 721000:

723000:
724000:
731000:
750000:
753000:
760000:
SOTVSU:
SIIVSU:
S13VSU:
S16VSU:
S21VSU:
S23VSU:
S24VSU:
S25VSLi:
s29VSU:
s35vsu:
wholesale inventories - machinery, equipment and supplies wholesale inventories - petroleum and petroleum procucts wholesale sales - motor vehicles, automotive parts and supplies wholesale sales - furniture and hone furnishings wholesale sales - lumber and other construction materials wholesale sales - sporting, recreational, photographic goods wholesale sales - metals and minerals except petroleun wholesale sales - electrical goods
wholesale sales - harciware, plumbing, heating equipment and supplies
wholesale sales - machinery, equipnent, and supplies wholesale sales - paper and paper products wholesale sales - cirugs, drug proprietaries, drugest' sundries wholesale sales - apparel, fiece goods and notions wholesale sales - groceries and related products wholesale sales - farm product raw materials wholesale sales - chemicals and allied products wholesale sales - petroleum and petroleum products wholesale sales - beer, wine and distilled alcoholic beverages retail service receipts - hotels, motels, and tourist courts retail service receipts - laundries, launciry services and cleaning ard dyeing plants
retail service receipts - beauty shops
retail service receipts - barber shops
retail service receipts - advertising
retail service receipts - automotive repair
retail service receipts - automotive repair shops
retail service receipts - misc. repair services
value shipped - glass containers
value shipped - blast furnaces
value shipped - nonferrous metals
value shipped - metals, cans, barrels, drums
value shipped - steam engines and turbines
value shipped - farm machinery and equiprent
value shipted - constmuction, mining, material handling
value shipped - metal working machinery
value sinipped - general industry machinery
value shipped - household appliances

```
S36VSU: value stripped - radio and T.V.
S38VSU: .. value shipped - electrical components
S48VSU: value shipped - scientific and engineering
SSOVSU: value shipped - photographic good
S6OVSU:
S62VSU:
S63VSU:
S64VSU:
S76VSU:
S83VSU:
S85VSU:
SHIP:
INVE:
VIP:
EAF16:
ENM2O:
EAF20:
EAM2O:
LM16:
UF16:
EM16:
ENF2O:
EAM16:
HPT:
HST1:
HSTI:
HST5:
520002:
525100:
550001:
553100:
570001:
570002:
531100:
retail sales - deparment stores
```

```
    533100: recail sales - variety stores
539900: retail sales - misc. general merchandise stores
541100: retail sales - grocery stores
554100:
561100:
566100:
560001:
580000:
591200:
- 592100:
596101:
594400:
j98000:
retail sales - gasoline service stations
retail sales - mens and boys clothing and furnishing stores
retail sales - shoe stores
retail sales - women's ready to wear stores, women's
    accessary and specialty stores, furriers and fur shops
retail sales - restaurants and lunchrooms, social caterers,
    cafeterias, refreshment places, contract feeding, ice
    cream and frozen custard stands, drinking places
retail sales - drug stores and proprietary stores
retail sales - liquor stores
retail sales - mail order houses
retail sales - stationary stores
reciail sales - Euel oil dealers, liquefied petroleum gas
    dealers, fuel and ice dealers
```

Table A. 2

The 76 series used in the Enpirical Comparison Grouped by Model Type (* under outliers indicates outliers were modeled)

Model: $(1-B)\left(1-B^{12}\right)\left(1 n Z_{t}-T D_{t}\right)=\left(1-\theta_{1} B\right)\left(1-\theta_{12} B^{12}\right) a_{t}$

Series ID	Time Period Available	$\hat{\theta}_{1}$	$\hat{\mathrm{e}}_{12}$	Outliers
501000	1/67-11/79	. 37	. 79	
503000	1/67-11/79	0.	. 87	
504000	1/67-11/79	. 29	. 90	*
505000	1/67-11/79	0.	. 88	
506000	1/67-11/79	0.	. 87	*
507000	1/67-11/79	. 20	. 74	
508000	1/67-11/79	. 29	. 88	*
511000	1/67-11/79	0.	. 91	
512000	1/67-11/79	. 26	. 54	
513000	1/67-11/79	. 34	. 87	
514000	1/67-11/79	. 41	. 91	*
515000	1/67-11/79	0.	. 91	
516000	1/67-11/79	. 27	. 84	*
517000	1/67-11/79	0.	. 86	*
518000	1/67-11/79	.49	. 70	*
520002	1/67-9/79	0.	. 86	
550001	1/67-9/79	0.	. 87	*
598000	1/67-9/79	. 38	. 87	*
570001	1/67-9/79	. 27	. 73	
S13VSU	1/63-12/78	0.	. 92	*
S16VSU	1/63-12/78	. 64	. 88	*
S29VSU	1/63-12/78	. 34	. 91	*
S35VSU	1/63-12/78	. 31	. 88	
S38VSU	1/67-12/78	0.	. 95	*
S50VSU	1/63-12/78	. 53	. 89	
S60VSU	1/63-12/78	. 22	. 88	*
S62VSU	1/67-12/78	. 51	. 87	
S63VSU	1/67-12/78	0.	. 88	*
S64VSU	1/63-12/78	. 26	. 86	*

S76VSU		$1 / 63-12 / 78$.31	.92	$*$
S83VSU	\cdots	$1 / 63-12 / 78$	0.	.56	$*$
701000		$1 / 71-11 / 79$.24	.84	$*$
723000	$1 / 71-11 / 79$	0.	.83	$*$	
724000	$1 / 71-11 / 79$	0.	.88		
731000	$1 / 71-11 / 79$.30	.59	$*$	

Model: $(1-B)\left(1-B^{12}\right)\left(\ln Z_{t}-D_{t}\right)=\left(1-\theta_{1} B-\theta_{2} B^{2}\right)\left(1-\theta_{12} B^{12}\right) a_{t}$

Model: $(1-\phi B)(1-B)\left(1-B^{12}\right)\left(1 n z_{t}-T D_{t}\right)=\left(1-\theta_{12} B^{12}\right) a_{t}$

| Series ID | Time Period Available $\hat{\phi}$ $\hat{\sigma}_{12}$$\quad$ Outliers | | |
| :--- | :--- | :--- | :--- | :--- |
| S25VSU | $-1 / 63-12 / 78$ | -.42 | .91 |

Model: $(1-B)\left(1-B^{12}\right) \ln Z_{t}=\left(1-\theta_{1} B\right)\left(1-\theta_{12} B^{12}\right) a_{t}$

Model: $(1-B)\left(1-B^{12}\right) n_{n} Z_{t}=\left(1-\hat{\theta}_{1} B-e_{2} B^{2}\right)\left(1-\theta_{12} B^{12}\right) a_{t}$

Series ID	Time Period Available	$\hat{\theta}_{1}$	$\hat{\theta}_{2}$	${ }^{6} 12$	Outliers
S2IVSU	1/63-12/78	. 60	. 25	. 88	

Model: $(1-\phi B)(1-B)\left(1-B^{12}\right) 1 n Z_{t}=\left(1-\theta_{12} B^{12}\right) a_{t}$

Series ID	Time Period Available	$\hat{\phi}$	${ }^{8} 12$	Outliers
ENM2O	1/65-8/79	. 26	. 88	
INVE	1/58-8/78	. 66	. 91	*
VIP	1/66-12/77	. 88	. 80	*
S36TI	1/60-6/79	. 26	. 91	*
S62TI	1/58-6/79	. 13	. 79	*
S64II	1/58-6/79	. 32	. 79	
S85TI	1/58-6/79	. 35	. 66	*
TI500	1/67-4/79	. 39	. 90	*

Model: $(1-B)\left(1-B^{12}\right) Z_{t}=\left(1-\theta_{1} B\right)\left(1-\theta_{12} B^{12}\right) a_{t}$

Series ID	Time Period Available	$\hat{\theta}_{1}$	$\hat{\theta}_{12}$	Outliers
EAF20	1/65-8/79	. 32	. 58	*
LM16	1/65-8/79	. 31	. 82	
UF16	1/65-8/79	. 61	. 74	
ENMI6	1/65-8/79	. 25	. 87	
ENF16	1/65-8/79	. 22	. 87	
EAM2O	1/65-8/79	0.	. 88	*
ENF20	1/65-8/79	0.	. 90	*
HST5	1/64-8/78	. 45	. 92	
HSTT	1/64-8/78	. 28	. 89	*
HSTI	1/64-8/78	. 25	. 87	
721000	1/71-11/79	. 25	. 86	

Mocel: $(1-\otimes B)\left(1-B^{12}\right) Z_{t}=\left(1-\theta_{12} B^{12}\right) a_{t}$

Series ID	Time Period Available	$\hat{\phi}$	$\hat{6}_{12}$	Outliers
EMM15	1/65-8/79	. 54	. 90	*
EAF16	1/65-8/79	. 51	. 77	*

Model: $(1-\phi B)(1-B)\left(1-B^{12}\right) Z_{t}=\left(1-\theta_{12} B^{12}\right) a_{t}$

| Series ID | Tine Period Available | $\hat{\Phi}_{\text {S35II }}$ | - | $\frac{\hat{\theta}_{12}}{8}$ |
| :--- | :--- | :--- | :--- | :--- |$\quad \frac{\text { Outliers }}{*}$

Model: $\left(1-\phi_{1} B-\phi_{2} B^{2}\right)(1-B)\left(1-B^{12}\right) Z_{t}=\left(1-\theta_{12} B^{12}\right) a_{t}$

Series ID	Time Period Available	$\hat{\phi}_{1}$	$\hat{\phi}_{2}$	$\hat{\theta}_{12}$	Outliers
S23TI	1/58-6/79	. 27	. 20	. 91	*

Model: $\quad(1-B)\left(1-B^{12}\right)\left(Z_{t}^{\frac{1}{2}}-T D_{L}\right)=\left(1-\theta_{1} B\right)\left(1-\alpha_{12} B^{12}\right) a_{C}$

Series ID	Tine Period Available	${ }^{3}$	${ }^{6} 12$
525100	1/67-9/79	. 30	. 36
502000	1/67-11/79	. 39	. 87

Outliers

Model: $(1-B)\left(1-B^{12}\right)\left(Z_{t}^{1 / 3}-T_{t}\right)=\left(1-\theta_{1} B\right)\left(1-\theta_{12} B^{12}\right) a_{t}$
Series ID

Time Period Available		
$1 / 67-9 / 79$	$\frac{\hat{\theta}_{1}}{.31}$	$\frac{\hat{\theta}_{12}}{.56}$

Outliers

Table A. 3

> Revision Measures for Individual Series (* under X-11 ARIMA indicates that an ARIMA model was forced)
Series ID

First Year Revisions
Model Based X-11 ARIMA

Mode1 Based
Second Year Revisions
Thirci Year Revisions
X-11 ARIMA Model Based X-11 ARIMA

501000	. 59	1.15	. 76	1.16	1.06	1.18
503000	. 42	. 88	. 43	. 67	. 61	. 72
504000	. 88	1.06	. 49	. 81	. 47	1.74
505000	. 40	.55*	. 30	.69*	. 30	.75*
506000.	. 29	. 56	. 40	. 44	. 49	. 94
507000	. 86	1.72	1.21	1.68	. 96	1.08
508000	. 76	1.49	. 61	1.25	. 50	1.11
511000	. 46	1.67	. 27	. 91	. 28	. 85
512000	1.25	. 82	. 82	. 49	1.16	. 75
513000	. 33	. 66	. 55	. 81	. 60	. 90
514000	. 52	1.22	. 41	1.19	. 43	1.25
515000	. 79	1.59	. 42	1.02	. 37	. 83
516000	. 77	1.19	. 60	. 83	.47	. 76
517000	. 62	1.35*	. 45	. 90*	. 48	.87*
518000	. 51	. 93	. 71	. 65	. 94	. 74
520002	. 58	1.25	. 84	1.21	. 76	1.01
350001	. 20	. 99	. 28	. 66	. 28	. 76
598000	1.70	2.27	1.03	1. 33	. 72	. 86
570001	. 41	1.02	. 67	. 87	. 73	. 74
SI3VSU	1.07	1.08*	. 68	1.10*	. 63	1.07*
SI6VSU	. 35	. 80	. 34	. 90	. 32	. 98
S29VSU	. 83	1.65	. 44	1.01	. 43	1.21
S35VSU	. 91	2.41	. 48	1.41	. 46	1.38
S38VSU	1.07	2.21	. 41	. 95	. 23	1.00
S50VSU	. 33	1.34	. 30	1.21	. 23	. 88
S60VSU	. 42	. 81	. 35	1.04	. 49	1.19
S62VSU	1.72	1.67	1.19	1.13	. 78	. 99
S63VSU	1.31	2.28*	. 84	1.88*	. 62	1.22*

Table A. 3 (con't.)

Series ID	First Year Revisions		Second Year Revisions		Thirc Year Revisions	
	Model Based	X-11 ARIMA	Model Based	X-11 ARIMA	Model Based	X-11 ARIMA
S64VSU	. 70	1.44	. 86	1.81	. 76	1.76
S76VSU	. 93	3.32	. 66	2.21	. 46	1.51
S83VSU	1.52	1.73*	1.32	1.40*	1.03	1.04*
701000	. 35	. 76	-	-	-	-
723000	. 72	. 99	-	-	-	-
724000	. 71	1.24	-	-	-	-
731000	. 40	1.18	-	-	-	-
S24VSU	1.99	1.03*	1.26	.89*	. 75	.88*
750000	. 31	. 81	-	-	-	-
753000	. 33	. 60	-	-	-	-
570002	. 64	. 93	. 52	. 83	. 47	. 79
S25VSU	. 23	. 95	. 25	. 99	. 27	1.02
S16TI	. 39	1.33*	. 30	. 82 *	. 39	.89**
S60II	. 64	1.67	. 52	1.01	. 45	. 65
S63TI	. 26	. 98	1.19	2.22	. 60	1.14
S65TI	. 77	1.33	. 52	. 90	. 56	. 86
SX4II	1.14	. 97	. 76	. 71	. 64	. 64
TI503	. 86	1.13*	. 57	.78*	. 45	.49*
TI506	. 63	2.06	. 52	1.19	. 53	. 86
TI507	. 49	1.72*	. 80	1.38*	. 67	1.06*
SHIP	. 45	1.01	. 38	. 91	. 47	. 79
S2IVSU	. 31	.86*	. 26	.65*	. 39	.73*
EM20	. 38	1.02	. 68	1.18	. 27	1.05
INVE	. 17	1.04	. 28	. 81	. 47	. 95
VIP	. 43	1.64	. 35	. 97	. 45	1.10
S36II	. 30	1.61	. 32	1.03	. 44	1.13
S62II	. 41	.61*	. 76	. $87 *$. 72	.73*
Sobti	. 51	1.02	. 56	1.24	. 71	1.17
S85TI	. 64	.59*	$1 . \infty$. $98 *$	1.08	1.05*
T1500	. 25	1.10	. 47	1.40	. 35	. 90
E4F2O	. 93	1.29*	. 80	1.04*	. 71	. 86%

Table A. 3 (con't.)

Series ID

First Year Revisions
Second Year Revisions
Third Year Revisions
Model Based X-11 ARTMA
Model Based X-11 ARTMA Model Based X-11 ARIMA

UM16	.45	1.20^{*}	.64	$.94 *$.63	$1.15 *$
UF16	1.02	$1.58 *$	1.02	$1.35 *$	1.26	$1.32 *$
ENM16	.93	2.33	.64	1.09	.54	.83
ENF16	.72	1.57	.77	1.14	.62	.89
EAM2O	.19	.92	.27	.75	.28	.68
ENF20	.31	1.31	.45	1.26	.61	1.07
HST5	.13	.81	.34	.73	.36	.63
HSIT	.24	.98	.25	.69	.56	.74
HSII	.44	.86	.62	.89	1.04	1.11
721000	.41	1.36	-	-	-	-
EAM16	.28	.83	.51	1.02	.56	.89
EAF16	.33	$.91 *$.52	$1.07 *$.77	$1.57 *$
S35TI	.36	.35	.35	.83	.35	.70
525100	1.03	1.25	1.01	.97	1.00	.93
502000	.56	.65	.50	.75	.41	.71
553100	.57	1.36	.76	.93	.86	.87

Table A. 4

Smoothness and Fit Measures for Individual Series

Series ID	SM	\underline{F}
501000	1.07	. 70
503000	1.16	. 80
504000	1.18	. 68
505000	1.13	. 82
506000	1.12	. 71
507000	1.05	. 70
508000	1.05	. 73
511000	1.00	. 80
512000	. 83	. 90
513000	1.07	. 71
514000	1.20	. 63
515000	1.04	. 69
516000	1.06	. 82
517000	1.10	. 60
518000	. 99	. 93
520002	1.13	. 67
550001	1.13	. 70
598000	1.05	. 72
570001	1.10	. 47
S13VSU	1.06	. 54
S16VSU	1.09	. 86
S29VSU	1.11	. 66
S35VSU	1.11	. 68
S38VSU	1.24	. 44
S50VSU	1.13	. 72
S60VSU	1.03	. 63
S62VSU	2.39	. 72
S63VSU	1.19	. 48
S6LivSU	1.11	. 75
S76VSU	1.23	. 78
S83VSU	. 93	. 87
701000	1.10	. 46
723000	1.05	. 54

Table A. 4 (con't.)

Series ID	SM	F
724000	1.00	. 51
731000	1.13	1.11
S24VSU	1.32	. 21
750000	1.09	. 60
753000	1.12	. 69
570002	1.56	. 09
S25VSU	1.13	. 53
S16II	1.13	. 16
S6OTI	1.16	. 40
S63TI	1.02	1.69
S65PI	1.06	. 62
SX4TI	. 93	2.88
TI503	. 96	1.62
TI506	1.15	. 16
TI507	. 95	. 60
SHIP	1.06	. 58
S21VSU	1.24	. 10
ENM2O	1.13	. 29
INVE	1.08	. 10
VIP	1.07	. 21
S36II	1.09	. 14
S62TI	1.07	. 69
S64TI	1.04	. 56
S85TI	. 75	4.23
TI500	1.22	. 13
EAF20	. 94	1.31
LM16	1.02	. 67
UF16	. 98	. 88
EM16	1.06	. 27
ENF16	1.04	. 29
Eam20	1.12	. 23
ENE20	1.07	. 14
HSTS	1.14	. 09
HSTI	1.08	. 19

Table A. 4 (con't.)

Series ID	SM	F
HSTI	1.05	.29
721000	1.18	.72
EAM16	1.07	.11
EAFI6	1.02	.50
S35II	.96	1.48
S23TI	1.09	.08

Table A. 5

Easter Holiday Series Modeled

Series ID	Length of Holidav	Noise Model	Outliers	Intervention
580000	no effect	$(0,1,2) \times(0,1,1){ }_{12}$	*	
566100	7 day	$(0,1,1) \times(0,1,1)_{12}$	*	
561100	14 day	$(0,1,2) \times(0,1,1)_{12}$		
531100	14 day	$(0,1,1) \times(0,1,1){ }_{12}$		
533100	7 day	$(2,1,0) \times(0,1,1)_{12}$	*	*
539900	7 day	$(0,1,1) \times(0,1,1)_{12}$	*	
541100	7 day	$(2,1,0) \times(0,1,1)_{12}$		
554100	no effect	$(0,1,0) \times(0,1,1) 12$	*	
560001	14 day	+	*	

- The noise model for this series was $(1-B)\left(1-B^{12}\right) N_{t}=\left(1-\theta_{1} B-\theta_{12} B^{12}-\theta_{13} 3^{13}\right) a_{t}$

WHOLESALE SALES 501 x- 11

WHOLESALE SALES 503 夭- 11

Wholesale sales 503 mOdel based

WhOLESALE SALES 504 MODEL BASED

WHOLESALE SALES 504 K-11

WHOLESALE SALES 505 MODEL BASED

Wholesale sales 506 model based

Wholesale sales 50才 ̌-il

Wholesale sales 507 model based

WHOLESALE SALES $507 x-11$

WhOLESALE SALES 508 MODEL BASED

WHOLESALE SALES 508 ̌̌-11

Wholesale sales 511 modei based

WHOLESALE SALES $511 x-7$

Wholesale sales 512 modei based

WhOLESALE SALES $512 \check{x}$ 亿 11

WhOLESAlE SALES 513 mOdEL EASED

WhOLESALE SALES 513 x-il

WHOLESALE SALES 514 MODEL BASED

WHOLESALE SALES $514 x$-ii

Wholesale sales 515 modei based

WHOLESALE SALES $515 \mathrm{x}-11$

Wholesale sales 516 mOdfi based

Whoiesale sales 510 x-il

Wholesale sales 517 model based

Wholesale sales 5i7 x-il

WhOLESALE SALES 518 MODFL EASED

WhOLESALE SALES 518 x-ii

RETAIL 520002 MODEL BASED

RETAiL 520002×-11

RETAIL 550001 MODEL BASED

RETAIL 550001×-11

RETAI 598000 MODEL BASED

RETAIL 598000 X-11

RETAIL 570001 MODEL EASED

RETAIL $570001 x-11$

INDUSTRY SIZVSU MODEL BASED

INDUSTRY SIBVSU $x-11$ LOG

INDUSTRY SIOVSU MODEL BASED

INDUSTRY SIGVSU X-II LOG

INDUSTRY S28VSU X-11 LOG


```
INDUSTRY S35VSU MODEL BASED
```


INDUSTRY S35VSU X-II LOG

s38vSU X-11

INDUSTRY SSOYSU MODEL BASED

INDUSTRY SSOVSU X-11 LOG

INDUSTRY SGOVSU MODEL BASED

INDUSTRY SGOVSU X-11 LOG

INDUSTRY SG3YSU MODE: 3ASED

INDUSTRY SO3YSU X-11 LOG

INDUSTRY SOAYSU MODEL BASED

INDUSTRY SGAYSU X-11 LOG

INDUSTRY S83VSU X-11 LOG

RETAIL 701000 MODEL BASED

RETALL 701000×-11


```
RETAIL \(723000 \times-11\)
```


RETALL 724000 MODEL BASED

RETAIL 724000×-11

RETAIL 731000 MODEL BASED

RETAK 731000 x-11

INDUSTRY S2AYSU MODEL BASED

INDUSTRY S24VSU $x-11$ LOG

RETAIL $750000 \mathrm{X}-11$

RETAIL 750000 MODEL BASED

RETAIL 753000 MODEL BASED

RETAIL 753000×-11

INDUSTRY S2SVSU MODF:L BASED

INDUSTRY S25YSU X-11 LOG

INDUSTRY S16T1 X-11 LOG

INDUSTRY SGOTI MODEL BASED

INDUSTRY S60TI X-II LOG

SE3TI MODEL BASED

So3T1 $x-11$ LOG

INDUSTRY S65TI MODEL BASED

INDUSTRY S65T: $x-11$ LOG

INDUSTRY SX4TI MODEL BASED

INDUSTRY Š4TI X-11 LOG

WHOLESALE TISO3 MODEL BASED

WHOLESALE TISO3 $x-11$ LOG

WHOLESALE TI5O6 MODEL BASED

WHOLESALE TI506 X-11 LOG

WHOLESALE TI507 X-11 LOG

SHIPMENTS MODEL BASED

SHIPMENTS X-II LOG

INDUSTRY S2IVSU MODE: BASED

INDUSTRY S2IVSU X-11 LOG

RETALL 570002 MODEL BASED

RETAIL 570002×-11

ENM2O MODEL BASED

ENM:2C $x-11$ LOG

INVENTORIES MODEL BASED

INVENTORIES X-II LOG

value put in place model based

value put in place x-11 log

S36TI MODEL BASED

S36TI X-11 LOG

INDUSTRY SO2TI MODEL BASED

INDUSTRY S62TI X-11 LOG

INDUSTRY SO4TI MODEL BASED

INDUSTRY S64TI X-11 LOG

INDUSTRY S85TI MODEL BASED

INDUSTRY S85T1 $X-11$ LOG

WHOLESALE TI500 MODEL BASED

WHOLESALE TIS00 X-11 LOG

EAF20 $x-11$ LOG

UMIS MODEL EASED

UMlG x-il LOG

UFIO MODFL BASED

UFIG $x-11$ LOG

ENMIG MODEL BASED

ENMIC $X-11$ LOG

ENFIG X-II LOG

EAM20 MOOEL BASED

EAM20 $x-11$ LOG

ENF2O MODE: BASED

ENF20 X-11 LOG

total 5 OR more unit housing starts model based

TOTAL 5 OR MORE UNIT HOUSING STARTS $X-11$

total housing starts model based

total housing starts $x-11$

TOTAL SINGLE FAMILY hOUSING STARTS $X-11$

total single family housing starts model bised.

721000 MODEL BASED

$721000 x-11$

EAMIG MODEL BASED

EAMIS X-II LOG

EAFIG MODEL BASED

EAFIG X-II LOG

S35TI MODEL BASED

INDUSTRY S23TI MODEL BASED

RETAIL SALES 525100 MODEL BASED

RETAIL SALES $525100 \mathrm{X}-11$

WhOLESALE SALES 502000 MODEL BASED

RETAIL SALES 553100 MODEL BASED

retail sales 553100 X-II

