

... for a brighter future





A U.S. Department of Energy laboratory managed by The University of Chicago The Value of Product Flexibility in Nuclear Hydrogen Technologies: A Real Options Analysis

Audun Botterud, Bilge Yıldız, Guenter Conzelmann, *Mark C. Petri* 

International Conference on Non-Electric Applications of Nuclear Power Oarai, Japan April 16-19, 2007

# Current U.S. Hydrogen Markets

- Oil refining (4.1M tonnes H<sub>2</sub>).
- Ammonia (2.6M tonnes H<sub>2</sub>).
- [Canadian oil sands (0.5M tonnes H<sub>2</sub>)].
- Methanol
  - (0.4M tonnes  $H_2$ ).
- Chemical, metal, food, etc.
  (0.1M tonnes H<sub>2</sub>).

April 16-19, 2007

Argonne



# An Evolving Hydrogen Economy



Each market will have different hydrogen needs. Alternative technologies must compete in each market.



## Hydrogen Production Options

- Almost all H<sub>2</sub> today comes from steam reforming of CH<sub>4</sub>. – Costs rising with natural gas prices. —  $>750^{\circ}$ C. —  $CO_2$  emissions.
- Low-temperature water electrolysis.
  - Energy intensive (i.e., costly). Production decoupled from heat source.
  - Precious-metal catalysts.
- Thermochemical cycles.
  - 550°C 2000°C.
- High-temperature steam electrolysis.
  - Solid-oxide fuel cell technology. Durability?
- Solar hydrogen.
  - Direct solar production: photo-electrochemical cells; artificial photosynthesis.
  - Biomass as feedstock.
- Other options under investigation:
  - Biological/biomimetic hydrogen production.
  - Coal gasification.

Argonn

– Direct ceramic-membrane separation of water.

4

## Nuclear Hydrogen Production Plant Configuration Options

- Multiple energy products.
  - Dedicated H<sub>2</sub> vs. hydrogen plus electricity.
- Plant size.
  - Large-scale vs. modular/distributed.
- Flexibility of changing product output rate in co-generation.
  - Load following on either electricity or hydrogen rate without changing the reactor power.
- Direct vs. indirect heating of the electricity production cycle (if electricity is produced).
- Parallel vs. series arrangement of heat loads.
  - Heat transfer to the  $H_2$  production process at the exit of the reactor or the turbine.

Implications for

- Efficiency
- Cost
- Location requirement

for the specific technology in a specific market.



## Electricity (and Hydrogen) Costs Can Vary Widely

- There's great promise in taking advantage of price fluctuations.
- But price variations are not predictable.
- A hydrogen production system based on off-peak (low-price) electricity would have to be flexible enough to adapt to changing market conditions.







## **Investment Decisions**

- Several plant configurations are being considered for nuclear  $H_2$  production.
  - Electrochemical cycles.
  - Thermochemical cycles.

#### How does an investor decide?

- Cost analysis is important, but
  - Levelized cost is not the only input factor for potential investors.
  - The cheapest plant may not be the most attractive investment alternative.
- Investments in these plants will be based on *profitability assessments*.
  - Future cash flows are exposed to a high degree of uncertainty.
  - Real options analysis is a convenient tool for this type of analysis.

## **Real Options Analysis**

- Developed for financial analysis of investments under uncertainty.
- Estimates the value of flexibility in future decisions regarding operations or investment.
- The *option value of flexibility* is not included in traditional Net Present Value (NPV) calculations.



### A Model for Financial Assessment of Nuclear H<sub>2</sub> Plants

- Cash flow analysis of nuclear hydrogen options.
  - Spreadsheet model calculates annual revenues and costs.
  - Revenue depends on  $H_2$  and electricity prices, which are uncertain.
  - Same cost structure as Technology Insight's levelized cost analysis.
  - No additional capital cost for flexible co-generation plants.
- Demand and prices.
  - Three demand/price sub-periods within each year (low, medium, high).
  - A flexible plant can switch output product instantaneously between subperiods with no additional operational cost, producing either only H<sub>2</sub> or only electricity.
  - Electricity price varies within the three sub-periods, but the  $H_2$  price is constant.
  - Prices do not include transmission and distribution costs.



### A Model for Financial Assessment of Nuclear H<sub>2</sub> Plants

- Two operational modes.
  - 1) *Inflexible*: Pure H<sub>2</sub> production.
  - 2) *Flexible*:  $H_2$  or electricity, depending on what is more profitable at any time.
- The value of flexibility in output product.
  - The difference in profits between flexible and inflexible operations.
  - Not all nuclear H<sub>2</sub> technologies have the switching flexibility (e.g., SI HTGR).

## Uncertainty in Hydrogen and Electricity Prices

- Two stochastic processes used to represent future prices (annual average).
  - Geometric Brownian Motion (GBM). Mean Reversion (MR).
  - Correlation between  $H_2$  and electricity prices is represented.
- Monte-Carlo simulations are used for discrete sampling of prices.
  - Example: GBM 10,000 M-C iterations:





April 16-19, 2007

## Analysis of Nuclear H<sub>2</sub> Technologies

• The model is used to analyze three potential nuclear H<sub>2</sub> technologies:

| Hydrogen Production Process                             | Nuclear Reactor Type                       | Cogeneration of<br>Hydrogen and<br>Electricity? |
|---------------------------------------------------------|--------------------------------------------|-------------------------------------------------|
| High-pressure, low-temperature water electrolysis (HPE) | Advanced Light Water Reactor (ALWR)        | Yes                                             |
| High-temperature steam electrolysis (HTE)               | High-Temperature Gas-Cooled Reactor (HTGR) | Yes                                             |
| High-temperature sulfur-iodine cycle (SI)               | High-Temperature Gas-Cooled Reactor (HTGR) | No                                              |

• Levelized cost, pure hydrogen production:

|            | ANL model |
|------------|-----------|
| HPE – ALWR | \$2.91/kg |
| HTE – HTGR | \$2.51/kg |
| SI - HTGR  | \$2.26/kg |



## **Results – Expected Profits**

- Price assumptions for GBM (subjective)
  - Average electricity price: 50 \$/MWh.
  - Average  $H_2$  price: 3 \$/kg.
  - Electricity and  $H_2$  price volatilities: 20 %/year.
  - Electricity and  $H_2$  price correlation: 0.5.
- Expected lifetime profits with real options analysis (GBM):

|                      | Expected Profit (M\$) |          |
|----------------------|-----------------------|----------|
| HPE-ALWR, Inflexible | 96                    | ¢670M    |
| HPE-ALWR, Flexible   | 770                   | \$070IVI |
| HTE-HTGR, Inflexible | 530                   | ¢21011   |
| HTE-HTGR, Flexible   | 870                   | \$340IVI |
| SI-HTGR, Inflexible  | 860                   |          |

Flexibility adds substantial value to production technologies. Stochastic analysis is needed to capture the full option value of flexibility.



## **Results – Profit Distributions for HTE-HTGR**



- Flexibility in output product
  - Increases upside of profit distribution and expected profits.
  - Reduces downside of profit distribution.
  - Lowers risk for investor.

rgonn



April 16-19, 2007

Argonn

The Value of Product Flexibility in Nuclear Hydrogen Technologies Pr

## **Results – Sensitivity Analysis: Price Correlation**



- The value of flexible plants is higher for a low price correlation.
- The amount of  $H_2$  production increases with price correlation.

Argonn

## **Conclusions and Future Work**

- Main conclusions
  - In addition to cost estimates, it is important to consider profit opportunities and risks.
  - Flexibility to switch between H<sub>2</sub> and electricity can have substantial value for a potential investor.
  - Assumptions about costs and price distributions are highly uncertain.
  - DOE should consider R&D efforts towards developing processes and durable materials that can enable co-generation.
- Future work
  - Refinement of real options model (e.g. cost sensitivity analysis, switching costs, firm H<sub>2</sub> demand, intra-year variations in H<sub>2</sub> price).
  - Extension of real options model (e.g. modular expansion, investment timing, on-site H<sub>2</sub> storage).

