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ABSTRACT

A numerical scheme to construct a two-way, movable, nested-mesh primitive equation model is
proposed. Dynamical coupling in a two-way nesting system is performed at a dynamical interface

which is separated from a mesh interface by two coarse-grid intervals.

Dynamical interaction

is achieved by a method which conserves mass, momentum and internal energy of the system. During the
course of integration, the nested mesh moves so that the central position of the disturbance con-
tained in the fine-mesh area never deviates from the center of the nest by more than one coarse-mesh
interval. New grid data near the leading and trailing edges of the moving nest are obtained by an
interpolation method which has a conservation property. The proposed methods of dynamical
coupling and mesh movement were extensively tested by a one-dimensional shallow water equation
model. Numerical results of these experiments are presented.

1. Introduction

The purpose of this paper is to describe a basic

numerical scheme of a movable nested-mesh primi-

_ tive equation model. The scheme has been utilized
in a tropical cyclone model at the Geophysical
Fluid Dynamics Laboratory, NOAA. The proposed
methods were tested extensively with a one-di-
mensional shallow water equation model before be-
ing incorporated into a three-dimensional model.
These test results are presented in order to demon-
strate the performance of the scheme.

The nested-mesh system considered in this study
belongs to a class of two-way nesting systems. In a
two-way system, the time integration proceeds
simultaneously for a fine and a coarse resolution
mesh area so that the two mesh areas interact
dynamically with each other. This differs from a
one-way approach in which a time integration is
performed first for the total domain by using a
coarse resolution and then the integration is re-
done for an inner limited area by utilizing a fine
resolution. The boundary conditions for the latter
integration are derived from the earlier one. A list
of works previously done along this line may be
found in a paper by Miyakoda and Rosati (1977).
Depending on the nature of the problems, one may
choose either a one-way or two-way system to treat
the evolution of small-scale disturbances in a larger
scale environment. So far, two-way nesting systems
have been adopted in some numerical modeling
studies of tropical cyclones. Such past attempts

! Present affiliation: Department of Atmospheric Science,
Colorado State University, Fort Collins, 80521.

are specifically mentioned in a paper by Ley and
Elsberry (1976).

In a two-way nesting system, dynamical interac-
tion between the two neighboring domains can be
achieved in various ways. A fairly common tech-
nique is to transfer meteorological information
from a fine to a coarse mesh and vice versa
frequently at a narrow zone where the two meshes
overlap (e.g., Harrison and Elsberry, 1972; Phillips
and Shukla, 1973). Two non-overlapping adjacent
meshes may be dynamically coupled when the time
integration for the grid points near the mesh inter-
face is performed in each side with the use of the
information in the other mesh domain (Ookochi,
1972). This idea was useful in developing nesting
tactics for the present work. One of the original
features of the nesting scheme proposed in this paper
is that an interface where the two integration do-
mains interact with each other (dynamical interface)
is intentionally separated from the mesh interface.
This is done in order to keep possible numerical
shock due to a dynamical coupling from occurring
at the mesh interface where noise may also result
from the change in grid resolution. Furthermore,
the interaction at the dynamical interface is ex-
pressed in the form of a flux condition so that the
transports of mass, momentum and internal energy
do not yield fictitious increases nor decreases of
these quantities. The finite difference scheme used
in this study reduces exactly to an ordinary ‘‘box”’
method (Kurihara and Holloway, 1967) if the resolu-
tions of all meshes become the same.

In Section 2 the grid structure of the proposed
nested system is defined and the treatment of the
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dynamical interaction between two integration do-
mains is described. Section 3 deals with a scheme
for moving a nested fine mesh within a coarse
mesh. In Section 4 numerical examples are pre-
sented to demonstrate the performance of the pro-
posed two-way nesting system.

2. A two-way nesting system

a. Mesh structure '

The configuration of mesh nesting in the present
study is simple. Fig. 1 shows the mesh structures
for a one-dimensional and a two-dimensional (longi-
tude-latitude) domain, respectively. Each mesh,
except for the innermost one, encloses a finer
resolution mesh. Since there is no overlapping of
meshes, the interface between the two adjacent
meshes is clearly defined. Hereafter, two meshes
of different resolution joining at any interface will
-be respectively referred to as a coarse mesh (CM)
and a fine mesh (FM). Grid spacing of a coarse mesh
is defined as a multiple of that of a fine mesh. (In the
GFDL nested-mesh model, the number of meshes,
the grid spacing ratios between two adjacent meshes
and the area of each mesh domain are all dis-
posable parameters.) In Fig. 1, the dots indicate
the grid points which are placed at the center of
each box, i.e., a mesh element. Grid points are
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FiG. 2. Time integration order for the case of a triple
integration domain.

not staggered and all meteorological variables are
defined at the same point.

The time integration of a nested mesh model is
usually performed with different time increments for
each integration domain. In the present study, the
integration domains are bounded by the dynamical
interfaces which are intentionally separated from
the mesh interfaces by two coarse-grid intervals
as shown in Fig. 1. Accordingly, the integration
for the inner two grid points of CM are made when
FM is integrated.

b. Time integration method

The rules defining the order of time integration
in the present model are as follows: 1) the integra-
tion of a certain integration domain proceeds only
when all the inner domains are integrated up to the
time-level of that domain, and 2) when two or more
integration domains are synchronized, the integra-
tion proceeds from the outermost domain of those
synchronized to the inner domains. An example of
the time integration order is schematically pre-
sented in Fig. 2 for the case of a triple integration
domain. A

The time integration may be performed by a
scheme proposed by Kurihara and Tripoli (1976)
which is designed to preserve low-frequency waves
in a primitive equation model while suppressing
high-frequency noises. A local tendency of a quantity
h may be expressed as

%}IL=LF+HF+DIF,

@2.1)

where ¢ is time and the right-hand side consists of
the advection terms which usually yield a low fre-
quency change (LF), the terms primarily relating to
high frequency mode (HF) and the diffusion terms
(DIF). The numerical integration of (2.1) may be
made by the following two-step iterative scheme:

(h* — h")/At = LF" + HF" + DIF
(™ — h))/At = [(1 — «)-LF" + a-LF*]
+ [(1 — B)-HF" + g-HF*] + DIF

. (2.2)
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In (2.2), 7 and 7+1 are time levels, Az a time incre-
ment, h* a temporary value, and the superscripts
attached to the terms indicate the time level for
which those terms are calculated. The diffusion
term may be estimated either explicitly at the time
level 7 (the horizontal diffusion term in the present
model) or implicitly (the vertical diffusion term).
In the present study, the weights « and B in (2.2)
were chosen to be 0.506 and 1, respectively. The
terms other than the advection and diffusion terms
were treated as the HF. If another term such as the
effect of diabatic heating is included in the right
hand side of (2.1), then the change due to this effect
may be added after the iteration (2.2) is performed.

When the o-coordinate system (see Phillips, 1957)
is used in modeling, the equation for a quantity
h often takes the form

) _ _pay +
-

where p, is the surface pressure and, D(h4) denotes
the sum of the horizontal divergence V-(hp,v)
and the vertical flux divergence d(hp,d)/dc
(see Kurihara and Holloway, 1967). The above equa-
tion may be rewritten as

6(’;:*) = —D(h) + hD(1) — hD(1) + . . . ,

where D(1) means the mass divergence V-(p,v)
+ 0(p,5)/dc. The sum of the first two terms in the
right hand side of (2.3) represents the advection
~p,V'Vh — p,G0h/do. Therefore, these two terms
correspond to the LF of (2.1). The third term in the

right hand side of (2.3) should be included in the
HF of (2.1).

2.3)

¢. Dynamical interaction

In the present two-way nesting system, a dynami-
cal interface is defined at a distance of two coarse-
grid intervals outward from the mesh boundary.
A strategy for dynamic coupling of the two integra-
tion regions is illustrated in Fig. 3 for the case of a
-one-dimensional nest. In this figure, an area of
interest near the mesh interface is shown at the
top. The large dots symbolize the status of the grids
at time 7. The open circles denote the results of
prediction for ¢ + Az, (At is a coarse time interval),
while the cross marks are used to indicate the
intermediate status at a smaller time interval
At;. As shown in the figure, a prognosis is made first
for the area outside of the dynamical interface.
The initial condition for this marching is given by
data in the CM area only. In the course of integra-
tion, meteorological quantities and their fluxes at the
dynamical interface are computed. These values are
preserved for the use in prognosis 2 in which the
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integration is performed for the area inside of the
dynamical interface, i.e., for the FM area plus two
inner coarse grids. Usually, prognosis 2 consists of a
few marchings of a smaller time step Az, At each
marching, the boundary conditions at the dynamical
interface are derived from the values obtained at
prognosis 1. If the conservation of a quantity is re-
quired, it can be satisfied by making the total flux
of that quantity across the boundary during prog-
nosis 2 equal to that during prognosis 1. The scheme
of integration mentioned above establishes a two-
way system, because the area outside of the dynami-
cal interface is influenced by the inner area in
prognosis 1, and the inner area is forced by the
outer area in prognosis 2.

Using the same strategy as explained above, one
can construct a two-way nesting system in a two-
dimensional domain. Fig. 4 illustrates such a system.
The line M in the figure separates the CM domain
and the FM domain. The FM area, C, is surrounded
by a narrow zone B. The outer rim of the zone,
indicated by the line N, is the dynamical inter-
face of this system. In prognosis 1, the prediction is
made for area A with the use of data in areas A and
B. Various meteorological information on the inter-
face N during prognosis 1 is preserved. This informa-
tion is utilized in prognosis 2 to specify the boundary
condition along the line N in order to make the pre-
diction for the area B plus C.

Next, a scheme for the time interpolation of bound-
ary conditions in prognosis 2 is considered. Sup-
pose that an equation which is written in the flux
form (2.3) is integrated with (2.2). Denoting the
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normal flux of a quantity across the dynamical
interface at the time levels 7 and * (temporary ad-
vanced level) in prognosis 1 by F° and F?, respec-
tively, one obtains the flux in the corrector step
from [(1 — a)F° + oF"]. -Similarly, the flux in a
short marching step in prognosis 2 may be given
by [(1 — a)f% + afL], where f is the flux in a short
step and m represents the step number which pro-
ceeds from 1 to n (n = AtJ/Aty). The condition of
conservation may be expressed by

[ — )F° + aF']AL,
= 310 - a)f$, + afhlay. 24)

Since F! is taken for the flux at the advanced time
level, it is desirable that (2.4) is satisfied while f},
smoothly approaches F! as m increases. This is met
when f9 and f}, are computed by

f,°,,=n_m+1F°+m_1F1 1
n n
n—m 200 — 1
o= [F°+ (2.5)
n [0
x (FI—FO)}JrﬂF1
n

J

The above formulas show that f3, is obtained from
linear interpolation between F° and F!, while
f) is computed by an interpolation which has re-
“duced weight on F° (if « > 0.5). Note that f1, in
(2.5) reduces to F'if « = 1. In the present modeling
work, fluxes of momentum, temperature and mixing
ratio across the dynamical intérface during prog-
nosis 2 are obtained from (2.5). Accordingly, the
conservations of momentum, internal energy and
latent energy are exact. On the other hand, the wind
and the mass flux at the interface during prognosis
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2 are specified by the following formulas, which
correspond to (2.5) with « = 0.5:

f?,,=n_m+1F°+m_lF1

oo n (2.6)
fr=""lp g

n n

The reason for the use of (2.6) is that it yields a
gradual change in £, and hence smooth time varia-
tion in the vertical velocity and the surface pres-
sure at a boundary box. Although the mass con-
servation is not exact unless a = 0.5, it is practically
perfect in the present study. The geopotential or the
pressure at the dynamical interface is also re-
quired to compute the pressure gradient force. It
is determined from the surface pressure and the
temperature at the interface. A formula similar to
(2.6) is used to obtain thése quantities during
prognosis 2.

d. Spatial finite differencing

The finite difference equations for the present
nested mesh model are formulated based on the so-
called box method, version 1 (Kurihara and
Holloway, 1967), with some modifications. In the
box method, the flux divergence of any quantity
from a key box is estimated from the sum of fluxes
across the interfaces between a key box and con-
tiguous boxes. In the present work, quantities such
as wind velocity, surface pressure and any advected
quantity at an interface are obtained through linear
interpolation of grid values rather than from simple
average of grid values. The upper part of Fig. 5
shows how to obtain a value at a mesh interface
in a two-dimensional nest. In this case, linear
interpolation is made first in the direction parallel to
an interface m to obtain values at the open circles
between the coarse grids. Then, linear interpolation
along a ‘perpendicular to the line m is applied be-
tween the open circles and the fine grid points to
estimate the values at the cross marks on the mesh
interface. Compared with the original box method,
the above scheme gives a more accurate value at the
mesh interface and causes less noise in the course
of time integration of a model. The conserva-
tion property of kinetic energy in the original
box method does not hold exactly at the mesh
interface. It is, however, still preserved in the
interior of each mesh domain because of the regular
configuration of grids. :

In the box method, the gradient of a quantity is
computed from a value at the center of a box and
those on its sides. When a box faces more than one
box along one side, an average value along that
side is taken as a side value in the original box
method. In the present scheme, a linearly inter-
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polated value to the mid-point of a side is utilized.
For example, in the case of the lower part of Fig.
5, the west—east gradient of a quantity A is ob-
tained from wg(Agp — Agx) + wu{Ax — Ay), Where
Ap and Ay are the linearly interpolated values
between the CM grids and a weight w is equal to a
side length divided by the area of a box. The south—
north gradient is estimated by wy(Ay — Ag)
+ wg(Ax — Ag). Linear interpolation between the
two CM grids yields Ay, while interpolation be-
tween b and ¢ on the line m gives Ag. The values at
b and ¢ are obtained in the manner described above.
If the grid ratio between the CM and the FM is odd,
A coincides with the northern side value of the
middle fine box.

It is noted here that the abovementioned modi-
fications are made in order to reduce a computa-
tional excitation of noise in a moving nested mesh
model. The proposed method becomes identical to
an energy-conserving box method if nested meshes
are reduced to a single uniform mesh.

3. Movement of a nest

When a small-scale disturbance moves in the
course of a time integration, it can be followed
with a moving nested fine mesh. In the problem of
mesh movement, the position of a disturbance has
to be defined appropriately. A location of minimum
surface pressure in a certain domain or the location
of an apparent center of gravity of a given field may
be used to determine such a position. Then, the
position of the disturbance can be checked against
the center of a certain mesh domain whenever that
mesh is synchronized with the outer mesh. If the
position difference in any coordinate direction ex-
ceeds a grid spacing of the outer coarse mesh,
the mesh is shifted by a muitiple, usually one, of
the coarse grid distance so that the disturbance is
relocated near the center of the mesh.

When a FM domain moves, a part of the CM
domain becomes a new FM area and a part of the
FM becomes a CM area. If the schemes to be pre-
sented below are used to establish new grid data
in the affected areas, the area integral of a variable
will remain unchanged after the mesh is moved.
Accordingly, the conservation of mass, momentum
and internal energy can be maintained.

If n FM boxes are combined to form a single CM
box, a new value A, of a certain quantity is given by

n
A() = 2 (aiAsi)/AS(), (3.1)
i=1
where a; is the value in a small FM box. A small box
has the area As;, and a large one has AS, which
is equal to the sum of As;. The conservation property
is obvious in (3.1).
Next, suppose that one CM box has to be divided
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Fi1G. 5. Interpolation near a mesh interface m. Black dots indi-
cate grid points. Values at the coarse grids are first inter-
polated to the auxiliary points (open circles). Subsequent inter-
polation between the auxiliary points and the fine grids yields
the values at the interface points (cross marks). In the lower
part, open squares indicate the north (N), east (E), south (S)
and west (W) points for a key grid (K).

into n FM boxes in the longitude-latitude coordinate
system. Denoting the longitude and latitude of a
box center by A, and ¢;, respectively, and the
radius of the earth by r and using the same nota-
tions as used in (3.1), one can specify a new value
a; for a new small box by

04
a; =Ay+ |— | alh; — A
i 0 (aa)\)o( O)

(s

where a = r cos¢, and the zonal and the meridional
gradients are those evaluated for the CM field. The
factor AS,/(nAs;) is included in (3.2) so that the
conservation condition is satisfied; i.e., Za,As;
= AoAS,. {Note that Z{\;— Ay As; =0 and
S[(ASnAs) (P; — Po)As;] = 0.} It is easy to
modify (3.1) and (3.2) to the formulas applicable
to a one-dimensional mesh system.

There is no guarantee that the mass and wind
fields are dynamically balanced with each other
after the application of (3.1) or (3.2). Probably,
inertia-gravity waves will be excited. It should be a
serious concern whether the generated noise can
be damped quickly by some means or not. How-
ever, an effective damping scheme has been de-
vised which suppresses the noise caused by a mesh

)(AS")r(dn ~ g, (.2)
0 nAsi
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movement in a nonlinear, three-dimensional, nested-
mesh primitive equation model. This method will
~ be explained in a paper appearing in the future.

4. Numerical tests

In this section, the capabilities of the present
two-way nesting system are demonstrated by inte-
gration of a one-dimensional primitive equation model.
This same model had been extensively used to
investigate the various nesting techniques before
the proposed strategy was established.

a. Test of dynamical interaction

We consider a wave train which propagates along
a one-dimensional cyclic channel domain. Predic-
tion of such a wave will be made by a nested
mesh system fixed to the channel. If a two-way
nesting method works satisfactorily, a wave train
should move repeatedly from the CM domain into
the FM domain and out again to the CM domain
without causing any significant noise.

In this study, a perturbation is governed by the
linearized shallow water equations;

d 1é]

ot ox Ox

ov av

—=-U — —fu , (4.1
ot ox f @D
ad _ 9

Ou
= -U— + - —_
ot ox fUv — gl ox

where symbols are conventional. The constants
are set to U = 50 m s™1, f taken at 45° latitude and
gH = 8 X 10* m?s~2. Note that a strong basic flow is
chosen so as to make the test condition severe. Solu-
tions of (4.1) are described in Kurihara and Tripoli
(1976). In this experiment, the initial fields are de-
" rived from the geopotential perturbation consisting
of a slowly moving sinusoidal wave with the
amplitude 1000 m2?s~2 and two inertia-gravitational
waves with the amplitude 50 m2s~2 each. Since those
initial amplitudes are used regardless of the wave-
length, the initial wind perturbation is larger for a
wave with a smaller scale.

In Fig. 6, the initial fields of ¢ with wavelengths
of 4200 km and 600 km are drawn in parts (a) and (c),
respectively. At the top of (a), the domain sizes of
the CM and the FM are shown. Dashed lines indi-
cate the mesh interfaces. The grid distances of the
CM and the FM are 60 and 30 km, respectively.
The time increment for the two integration domains
are 120 and 60 sec. A point P is fixed to each of the
wave trains. Its initial position is P,. The fields of
¢ and the positions of P after 48 h integration are
presented in parts (b) and (d). At the bottom of each
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part, the change of x coordinate of the point P
during the integration is indicated by the arrows.
Both wave trains moved through the cyclic channel
for a distance of almost two cycles. The initial shape
of each wave is preserved well. Thus, in these cases,
the proposed two-way nesting strategy worked. If a
slow wave moves with an accurate speed and the
inertia-gravity waves are damped by 48 h, the traced
point should be found at the mark Q in parts (b)
and (d) of the figure. It is seen that the phase speed
of the computed wave is pretty accurate in the case
of the 4200 km wave, but slightly less than the

_ analytical value in the case of the 600 km wave.

Eq. (4.1) used for the above test does not include
the diffusion terms. In the next experiments, the
diffusion terms are added to (4.1) and integrations
are performed to see whether these added terms
cause any problem in a two-way system. At the
dynamical interface, diffusive fluxes are computed
at prognosis 1 and are subdivided equally into
boundary diffusive fluxes at prognosis 2, so that
there are no spurious sources of quantities at the
interface. In a one-dimensional model, the diffusive
flux of a quantity 4 between two adjacent boxes is
obtained by —K 0h/dx, where K is a diffusion co-
efficient. The coefficient expressing a nonlinear
viscosity is

2 271/2
k=G ()|
Oox ox

In (4.2), k, is a parameter to be specified and A

denotes the distance between the two grids. In case

of a linear viscosity, the diffusion coefficient is
given by

. K = 0.2A%3, 4.3)

where both K and A are in cgs units. In any case, K
is dependent on A. Accordingly, a test is needed con-
cerning the effect of diffusion in a nested-mesh
model.

Predictions of a wave train with a wavelength of
600 km were performed including the diffusion
effects. The initial geopotential perturbation is the
same as that in Fig. 6¢c. Geopotential fields after
48 h of integration are presented in Figs. 7a and 7b.
Both nonlinear and linear viscosities reduced the
amplitude of waves in the channel more or less
uniformly. No numerical problems appeared at the
mesh interfaces.

As mentioned before, the finite difference
schemes used in the present study have some
unique features. As to the space differencing, the
original box method (Kurihara and Holloway, 1967)
is modified so that a value at a box interface is
evaluated from linear interpolation of grid values.
The result of integration with the new method (Fig.
6d) may be compared against that obtained with
the original box method (Fig. 7c). The improvement

4.2)
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FiG. 6. Movement of wave trains through a nested mesh system in a one-
dimensional cyclic free-surface channel. Geopotential perturbations of 4200 km
wave (upper) and 600 km wave (lower) at t = 0 (left) and ¢ = 48 h (right) are
respectively shown. A trough (P, at ¢t = 0) moved to the point P during the
48 h numerical integration. A cross mark Q indicates an analytically exact
position of the trough at ¢ = 48 h.
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original box method and (d) the Euler-backward scheme are also shown.
Dashed lines denote the mesh boundary.
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due to the new method is clearly seen. Another
feature of the integration is the use of the time
integration scheme proposed by Kurihara and
Tripoli (1976) which is designed to preserve low-
frequency waves. If the integration is made with
the Euler-backward scheme (¢.g., Kurihara, 1965),
the slowly moving wave is gradually suppressed
to yield the field as shown in Fig. 7d at 48 h. Viscosity
terms are not included in the integrations for Figs.
7c and 7d.

In a nested-mesh system, numerical behavior of

a wave'in one mesh domain is different from that in
other domains. However, this did not cause any
serious computational problem in the present tests
provided the wave was resolved in the CM domain
by six or more grid points. If the scale of a wave is
reduced further, irregularities in the predicted fields
become noticeable, especially in the FM domain.
There, very short waves, unresolvable in the CM,
are reflected off the interface and trapped. Such a
difficult situation will develop inevitably in a non-
linear system, and it has to be kept under control.
‘In Fig. 8a, a wave train with a wavelength of 300
km is shown. Time integration for this case was
performed with the proposed scheme first without
viscosity terms. The geopotential field after 48 h of
integration is displayed in Fig. 8b, showing the de-
velopment of noise. While the growth of noise is
very sensitive to the finite difference scheme
chosen to integrate the model, the noise is not ex-
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cessively large in the present case. Next, an attempt
is made to suppress the noise with nonlinear
viscosity. This viscosity may also damp short
waves which cannot be treated accurately in the
CM anyway. Results of the 48 h integration which
includes the diffusion are presented in Fig. 8c. With
the parameter k, = 0.4, the wave train is almost
entirely diffused. Fig. 8d shows the results after
48 h using the Euler-backward method. Pre-
sumably, this integration suppresses all waves ex-

“cept for standing waves. The figure indicates that a

noise of a form of a standing mode remains if no
viscosity term is included; such noise can be
smoothed out by means of nonlinear viscosity.

b. Test of mesh movement

In this subsection, tests are made on the move-
ment of a single disturbance which is superposed
on a stationary field and which moves along a one-
dimensional channel. The initial perturbation of
the geopotential field consists of a disturbance ¢’
and a stationary component, ¢, i.e.,

b=9¢' + ¢, 4.4

The channel is 9600 km long and cyclic. The dis-
turbance is specified by

¢ = —Soexpl—(x —xp)?L¥] + C'  (4.5)

which applies for |x — x,| < 4800 km and is re-
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Fi1G. 8. Integration of a train of 300 km waves. Geopotential fields are shown
at (@) r = 0, (b) t = 48 h, obtained without viscosity, (c) ¢ = 48 h, with vis-
cosity and (d) 7 = 48 h, computed by the Euler-backward scheme. Dashed

lines denote mesh boundary.
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peated in a cyclic manner. The scale of the dis-
turbance is determined by L. In (4.5), C’ is chosen
so that the average of ¢’ in the channel vanishes. In
this study, a disturbance with S, = 1000 m2s~2 and
L = 173 km is placed at x, = 2010 km. The sta-
tionary field is given by

¢, = =8, sin{(2n/D)x]. 4.6)
The values for S, and D will be specified later. The
initial flow is assumed to be geostrophic: ¥ = 0,
v = (8¢/dx)/f. The disturbance thus specified at the
initial time will simply be advected in the channel if
the fields are governed by '

oy 0 |
ot ox ox
1
o p® gy Ui(___ad’*) @7
ot Ox ox \f ox
i) 0 0
ﬁ = -U _d) — gng_ + U d)*
ot ox ox ox J

The last terms in the above equations for v and ¢
are the forcing terms used to maintain the stationary
field. Note that frictional effects are not included
in (4.7). Numerical integration of (4.7) may reveal
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troublesome problems such as numerical dispersion
of a pattern and generation of computational noise.

First, the case without a stationary field, i.e.,
S, = 0in (4.6), is considered. Numerical values in
@7 aresetto U = 50ms™?, gH = 8 X 10* m?s~2
and f is defined at 45° latitude. The results of a
numerical integration at 0, 12, 24 and 36 h from a
model with a uniform 60 km mesh and a 120 s time
step are presented in the right part of Fig. 9. The
phenomenon of numerical dispersion is clearly
shown. An increase in the grid resolution near the
disturbance will reduce the dispersion because small-
scale components in the disturbance will be ad-
vected more accurately. The numerical results from
a model in which a mesh of 20 km grid resolution is
nested are shown in the middle part of Fig. 9. The
integration for the inner domain is made with a 40 s
time step. The fine grid domain is moved so that the
grid point nearest to the position of the geopotential
minimum always coincides with the center of the
FM domain. Improvement of the result is con-
siderable. When the grid distance in the fine mesh
is reduced further to 10 km and the time step is re-
duced to 20 s, the disturbance moves without leav-
ing a noticeable trailing irregularity. The results for
this case are presented in the left part of the figure.

In the experiments mentioned above, the back-
ground field near the mesh interfaces remains flat
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Fi6. 9. Movement of a single disturbance in a one-dimensional

cyclic free-surface channel.

Integration is made with a moving nested mesh of 1:6 grid ratio (left), a moving nested mesh of 1:3 grid
ratio (middle) and a uniform mesh of 60 km resolution (right). Geopotential perturbations are
shown at ¢z = 0, 12, 24 and 36 h. (from top to bottom)
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over the 36 h period (see the fields near dashed lines
in Fig. 9). In the following experiments, a stationary
field is assumed so that a mesh interface moves on a
spatially varying field. The stationary field is speci-
fied by Eq. (4.6). Numerical values in (4.6) are
chosen as §, = 500 m?>s~% and D = 9600 km in one
experiment and as S, = 500 m*s~? and D = 3200 km
in the other. A geostrophic disturbance, which takes
the same shape as that in the previous experiments,
. is superposed on these stationary fields and the
numerical integrations of (4.7) are performed. The
mesh system used in these integrations is the one
which yielded the left part of Fig. 9. The results of
numerical integrations for the two cases are pre-
sented in Fig. 10. No noticeable noise is observed
despite the fact that new grid data near the mesh
interface were computed by the rather simple
scheme as described before whenever the nested
mesh moved.

§5. Summary and remarks

\

In this paper, a design of a two-way nested-mesh
system was described. This design features the
separation of a dynamical interface from a mesh
interface and the conservation of mass, momentum
and internal energy. The proposed scheme was
tested with a one-dimensional wave train model.
When a wave is resolved sufficiently well by the
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coarse mesh, little noise is excited. However,
shorter waves may cause irregularities, some of
which are stationary, in the predicted field. In
the present experiments, such noise could be con-
trolled by diffusion. :
The movement of the nested mesh requires resolu-
tion changes from coarse to fine at the leading edge

" of the mesh and vice versa at the trailing edge. An

interpolation scheme to establish the data in the
affected areas was proposed. The conservation of
mass, momentum and internal energy is maintained
during this movement. This scheme was tested by
tracking' a moving disturbance with a fine mesh.
Although the experiments in the last section gave
satisfactory results, there may be cases in which
special caution and treatment are required to sup-
press noise. This is because a dynamical balance is
not guaranteed between the mass and wind fields
established by the mesh movement procedure.

In this paper, the numerical results from a one-
dimensional two-way nested model are presented.
Since the test experiments with this model were
completed, an effort has been made to construct a
three-dimensional movable nested-mesh model. The
numerical formulation of the model is based entirely
on the computation schemes described in this paper.
Numerical experiments with the three-dimensional
model are yielding very satisfactory results which
will be reported in the future. In short, the proposed
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mesh nesting strategy works equally well in a three-
dimensional model as in a one-dimensional model.
This fact prompted the present authors to publish
this paper.
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