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ABSTRACT

The dynamic behavior of a floating, moored platform undergoing
continuous impact with a field of ice floes was investigated using the
ice towing tank of the Towa Institute of Hydraulic Research (IIHR). 1In
particular, the study was directed to investigate the influences of ice-
floe diameter and speed on the ice-related forces and motions experienced

by a moored platform of conical hull form.

A l.5-meter-diameter (at the load waterline) test platform was
connected to a linear-spring mooring harness which simulated the system
of cables used to moor a floating, conical platform. For a parallel
series of experiments, the test platform was fixed so that it was
restrained from moving. Comparison of results from the moored and fixed
conditions enabled the effects of platform motions on ice-related forces
to be established. The experimental results are compared with the design
requirements of an existing conical platform, "Kulluk”, which the test

platform simulated at a scale of 1:45.

The experiments showed that, for both the moored and the Ffixed
conditions of platform support, the maximum and average values of mooring
and restraining (ice-related) forces due to ice-floe impact increased
with increasing diameter of ice floe; the value asymptotically approached
that associated with the impact of a floe of annual ice much larger than
the platform. This increase 1is attributed primarily to the added
resistance required to flexurally break an ice floe impacting against the

platform.

The average and maximum values of mooring forces experienced by the
moored platform increased with increasing speed of ice-floe impact. When
impacted By ice floes, the moored platform experienced larger
fluctuations of surge displacements for relatively slow speeds (0.01 to
0.02 m/s, test speed) of ice~floe movement. This result can be ascribed
to a resonance condition that was set up between the platform's
oscillation and the dominant frequency of ice hreaking. Commensurately,
the fluctuation of mooring force experienced by the platform was greater
at lower speeds of ice~floe impact, because the mooring force was

proportional to the displacement of the linear harness.,
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The average and maximum values of vertical, restraining forces

experienced by the platform in the fixed condition decreased with

increasing speed of ice-floe impact.

The maximum mooring forces experienced by the test platform and the
design value of mooring force for the platform "Kulluk"” were found to be
in very good agreement. Also in good agreement were the magnitude of the
horizontal ice force calculated using Ralston's (1980) formulation and

that measured during the slow impact of ice with the test platform fixed

from moving.
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THE DYNAMIC BEHAVIOR OF A FLOATING, CABLE-MOORED
PLATFORM CONTINUOUSLY IMPACTED BY ICE FLOES

I. TINTRODUCTION

A floating, cable-moored platform of conical hull shape i1s a means
for providing a stable platform from which drilling activities can be
conducted through relatively deep, ice-covered waters. One such
platform, "Kulluk,"” is already in service (see, e.g., Hnatiuk and Wright
1984) in the Beaufort Sea. The hull form and mooring configuration of a
floating, conical platform of similar design to "Kulluk™ are shown in

figure 1.

A major concern for the designers and operators of a floating
platform is its dynamic response or the magnitudes of forces as well as
accelerations and displacements, that the platform is likely to encounter

when impacted by a field of ice floes.

A. Scope of Study. The principal objectives of the study were to

determine the influences of floe diameter and speed on the ice-related
loadings and motions (accelerations as well as displacements) that a
conical platform would encounter while being continuously impacted by a
field of annual-ice floes. Additionally, because a floating, moored
platform can surge, pitch and heave when impacted by ice, a further
objective of the study was to evaluate the influences of platform motions

on the ice loadings encountered by the platform.

To meet these objectives, model tests were conducted, at the IIHR
ice towing tank, using a l.5-meter diameter (at the load waterline) test
platform. The test platform, which is illustrated in figure 2, was
approximately a l:45-scale replica of the hull of the existing platform
"Kulluk.,”

So that the influences of platform motions on ice loadings would be
clearly discernable, a parallel series of tests were conducted with the
platform fixed, or restrained from surging and heaving, and partially

restrained from pitching.



The ice floes were prepared from sheets of urea ice which were cut
into regular arrays of square slabs, From a different view—point, the
cut sheets of ice can be considered as sheets with certain spatial

concentrations of long, linear fractures.

The results forthcoming from the model tests are compared with ice
loadings predicted using Ralston's (1980) formulation for quasi-static
ice-floe impact with a fixed, conical structure. Ralston's formulation
is presently the only readily accessible analytical model for predicting

ice loadings against a conical structure.

The results of the model tests are also compared with the
performance criterion for the cable-mooring system of the platform
"Kulluk.” By linking the model tests to a "prototype” platform such as
"Kulluk” it is intended that the results of this study be of direct and
immediate interest to designers and operators of floating platforms for

use on ice-covered waters.

B. Drilling Platforms for Ice-Covered Waters. A variety of design

concepts have been proposed for platforms from which oil-related drilling
activities can be conducted through ice-covered waters. A major factor
intluencing the selection of a particular platform concept is the depth
of water at potential drilling sites. Other factors include the ice and
wave conditions at drill sites, and, 1if required, the mobility or
portability of a platform. The importance of these and other factors are

ultimately reflected by the cost of fabricating and operating a platform.

At present, a cable-moored conical hull such as the one depicted in
figure 1 appears to be an economically viable and practicable means for
creating a relatively stable platform for conducting drilling operations
through relatively deep, ice-covered waters--i.e., water depths in the
range of about 20 to 60 meters. The symmetry of the conical hull form
makes 1t more stable than the conventional form of a ship hull which may
be prone to problematical loading conditions resulting from lateral

impact with ice.

Design constraints such as strength limitations of mooring systems,

together with weight and cost 1limitations, dictate the ice conditions



that a floating moored platform can operate in. For example, "Kulluk,”
when moored is designed (according to Gaida et al. 1983) to withstand
impact by floes of annual ice 1 to 1.,5-m thick. When floes of thicker
ice, especially floes of thick, multiyear ice, and large ice ridges
approach "Kulluk,"” it is designed to be towed from the drill site where
it is operating. For this purpose, and for general ice management around
"Kulluk,"” ice-breaking ships are required to regularly attend and escort
it (Hnatiuk and Wright 1984, Loh and Stamberg 1984). Typically,
therefore, a moored platform such as "Kulluk"” encounters fields of ice
floes and ice rubble rather than large monolithic sheets of ice, floes of

multiyear ice, or large ice ridges.

For relatively shallow, ice-covered waters, a convenient and a
comparatively cheap method of creating a drilling platform has been to
fashion an artificial island from gravel, sand or both. Outlines of the
design criteria used for island platforms can be found in a variety of
sources; e.g., Exxon (1979). For deeper waters, gravel/sand islands
become less attractive fiscally because excessively large amounts of fill
material are required, and, not unrelatedly, unacéeptably long
construction periods are needed. A caisson-retained, artificial island
has been found to be an appropriate platform concept for water depths
between about 20 to 30 meters. The main advantages of a caisson-retained
island is that it entails less fill material, and can be constructed so
as to be portable. An outer shell, or caisson, can be used to retain an
inner core of sand or gravel. The caisson itself can be fabricated so

that it can be refloated and reassembled at other drill sites.

A fairly detailed summary of concepts for drilling platforms in ice-
covered waters 1s offered by Frederking (1984), His summary indicates
the broad range of designs that have been conceived for arctic rilling

platforms.

The foregoing background sets the scene for the present study.
Before embarking on the full presentation and discussion of the results
of the study, a brief review of literature related to ice loading of

inclined surfaces and conical structures is offered in Section It.



II. LITERATURE REVIEW

The literature on the dynamics of floating conical platforms in ice-
covered waters is not extensive. However, it is beginning to grow since
the recent awakening of interest in the potential recovery of oil from
deeper waters of the Arctic. The following brief review, which primarily
deals with studies related to ice loading of conical structures, begins

with a short discussion of ice forces against an inclined plane.

A. Ice Forces Against an Inclined Plane. Possibly the simplest

ice-structure interaction occurs when a level ice sheet impacts an
inclined plane (figure 3). Quite a 1large number of experiments and
theoretical studies of ice forces on an inclined plane structure have
been carried out (e.g., Sorensen 1975, Tryde 1977, Frederking 1980,
Croasdale 1980, Ralston 1978, Abdelnour 1979, Timco 1984, Frederking and
Timco 1985).

A recent study was conducted by Frederking and Timco (1985) who
conducted experiments to determine ice-force components as well as to
formulate and verify an analytical model for predicting ice forces
against inclined planes. They found that the flexural failure of an ice
sheet against a flat plane of finite width was characterized by the
formation of radial cracks emanating from the plane, and a
circumferential crack, as depicted in figure 3. Frederking and Timco
attribute the ice forces associated with the flexural failure of an ice
sheet pressed against an inclined plane to three components: breaking of
the ice sheet, rotation of ice slabs and sliding of broken ice slabs.
These components are further divided as follows: horizontal force (y is

taken as the horizontal axis, and x as the vertical axis in this report),

F‘yzFb+Fr+FS+Fp; (1)
and vertical force
F o= F (sin @ + lcos a) (2)
x 'y (cos a —usina) °*



In (1), F, = horizontal component of the maximum force associated with
the development of either radial or circumferential cracks (see figure
3), which do not form simultaneously through an ice sheet. Frederking
and Timco suggest that the larger value of F, associated with the
formation of either radial or circumferential cracks be used for
estimating ice forces against an inclined plane. Also in (1), F. =
horizontal component of the force associated with the rotation of ice
slabs until they become parallel to the inclined plane; Fgs = the force
generated by ice slabs sliding up the inclined plane; while Fp = the
horizontal component of force attributable to the pressure exerted
against the inclined plane by the impinging ice sheet as it thrusts ice
slabs up the plane. 1In (2), o = the angle of plane (figure 3); and u =

coefficient of friction between ice slabs and the inclined plane.

The analytical model proposed by Frederking and Timco is useful for
conducting parametive studies on ice forces exerted against inclined
planes. They do note, however, that the predicted values of total ice
load were about 20% larger than the ice loads that they measured during

model-scale experiments.

B. Ice Forces Against Conical Structures. Frederking and Schwarz

(1982) conducted a series of model tests with the purpose of
investigating the ice-breaking performance of a downward-breaking cone
which was restrained from moving (see figure 4). TIn the course of their
experiments, they examined the influences of cone angle, which they
varied from 15 to 60 degrees, and relative speed between ice and
structure, which they varied from 0.01 to 0.5 m/s. The effects of
thickness and flexural strength of ice were also investigated. Some of
the results from their study are shown in figures 5 through 8. They
observed that horizontal forces increased with increasing speed of ice
impact (figure 5). TIce thickness was observed to have a more pronounced
influence on the vertical forces than on the horizontal forces (figure

7). Vertical and horizontal forces, both, decreased with decreasing

flexural strength (figure 8).

Frederking and Schwarz also conducted tests with a vertically and

horizontally oscillating cone which had a cone angle of 45-degrees.  They



found that, for the oscillating cone, the horizontal force component of
the ice force was two-thirds of that measured for the cone restrained

from moving.

Ralston (1978, 1980) formulated a relationship for determining the
ice forces 1imposed against upward- and downward-breaking conical
structures impacted by ice sheets. 1In his formulation, he assumed that
an elasto-plastic foundation response could be used to describe the
submerged reaction (involving the submerged weight of ice) for downward-
breaking cone and the emerged reaction for upward-breaking cone
(involving the weight of ice). Two plastic-limit failure criteria were
used to evaluate breaking of an ice sheet. Ralston's formulation does
not take into account the dynamic, or inertial, effects resulting from

the interactions between platform, ice and water,

The following relationships were proposed by Ralston for estimating

horizontal and vertical components, F_ and F,, of the ice force exerted

y
by an ice sheet impacting against an upward-breaking conical structure

(for downward-~breaking cones, b8 should be replaced by Dwg/9 in all of

the expressions):

bp+plm]

F p-1

_ tana P
y 1 g(o,n) {ZMo [p-—ll + M, [

p &n p 2, 2
2 Lol -
+ (3,422 M+ 1.422 M) oo7  t0.9p.mtD (™ +0-2)/12
2 2
+ 0.9 PE tr (D —DT ) [ 1 + LE(sin a) y f(a,u) g (a,u)]} (3)
4 cos o sin o tan o
and vertical force
_ h(a,u)
Fy = Ry 7 . Ho }
—4-51na + tan o
0.9p gt (D2 D)
TP R e SR £(o,u) h(o,u)
+ 7 [5 cos a - ua - - ] (4)

— sin o +
z sin tan o



in which F,E = the complete elliptic integral of the first and second
kinds, respectively; D = waterline diameter of the cone; Dg = top (or

bottom) diameter of cone; M, = bending moment capacity of ice sheet; tg =

o
ride—up (accumulation) thickness of dice ; » = a non-dimensional
parameter which defines the size of the deforming ice region in fron of

the cone; and

f(o,u) = sina +u cos o F(sin a) ;
1 o T, ua cos a4
ga,u) B (2 + sin ZG)/(4 sin @ + sin a ) 3
h(a,u) = a - [E (sin a) - za F(sin a)]
JH = cos cos o sin cos sin .
Equation (3) corresponds to the Johansen yield criterion. The

corresponding forms of (3) and (4) for the Tresca yield criterion are

virtually the same, except that the term 1.422 M, is deleted.

A sample calculation by Ralston showed that a downward-breaking cone
offers some advantages over an upward-breaking cone. In particular, a
downward-breaking cone produces lower values of horizontal loads compared
to those associated with an upward-breaking cone. This load reduction
occurs because lesser forces are needed to submerge broken ice pieces
than are needed to push them up and over the surface of an upward-
breaking cone, However, Ralston pointed out that additional factors,
such as the contribution of the vertical force to the over—-turning moment
and the potential jamming of ice ridges against a downward-breaking cone
in shallow-water, should also be considered when downward-breaking
geometries were of interest. Equations (3) and (4) are used, in section
V.H, to compare Ralston's formulation with ice forces measured from the

test platform.



Milano (1975) formulated a model for predicting the resistance
likely to be encountered by ship and other hull forms in level ice. His
formulation is based on the principle of conservation of energy applied
to a hull in the continuous mode of icebreaking. Milano's formulation
holds that, if the ice is relatively thick, the total amount of energy

lost during a typical cycle of ice-breaking can be written as

E =E + E +E.+F, +F (5)

in which

Ey = energy lost due to hull motion through floating broken ice;

E21 = energy lost due to impact of the hull's bow with cuspate ice
wedges, causing local crushing of ice;

Eq = energy lost when the hull's bow slides onto the ice until
sufficient force is generated to cause ice failure;

E, = energy lost as the hull's bow slides downwards after ice
failure;

Eg = energy lost due to submerging broken ice beneath the hull;

If the ice is relatively thin, it can be flexurally failed to form
cuspate wedges before total impact energy is absorbed. 1In this case the

total energy loss is

= + E + + + + E
Ep = By # By ¥ Eg # By + B+ Eg (6)
in which
Eoo = energy lost due to ice crushing, the strain energy of deflection
of cusp wedges and due to ice impact with the hull's bow;
Ee = frictional energy loss at bow and side cusps during hull motion
onto the ice field;
Ey = frictional energy involved in deformation of ice wedge at the

bow;



If the ice is very thin, impact will cause both bow and cusp wedges
to fail due to bending before total available impact energy can be

absorbed. The total energy loss in this case is
E_ =EFE +E _+E_+E +E (N
in which

Es3- = energy lost due to strain energy of deflection of cusp wedges,

bending and crushing for all cusps.

In each of the above summations, total resistance to hull motion,
Fp, may be taken as the total energy lost, Ep, divided by the distance x'

over which the cycle of ice-~breaking takes place; i.e.,

FT = ET/x' . (8)

Although the above expression is seemingly general, its
applicability is 1largely limited to the hull forms of conventional
icebreaker ships. Because extrapolation of Milano's model to commercial
hulls, for which the pattern of icebreaking 1is wunknown, 1is often
difficult, Milano (1980) extended his model so that it could be applied
to hull forms of large commercial bulk carriers configured for effective
movement through ice. Milano (1982) applied the extended version of
his model so as to predict ice forces exerted against a conical,
floating structure. The results of his calculations are shown in figures

9 and 10.

Wessels (1984) reported the results of an extensive program of model
tests that were conducted for the purpose of documenting the influences
of an array of parameters on the ice forces exerted against conical
structures. He varied cone angle, platform diameter at the waterline,
ice-breaking mode (upward- and downward-flexure), friction coefficient

between ice and cone surface, speed of ice, and ice thickness.



Wessels conducted most of his tests with cones rigidly fixed to an
underwater carriage, which was pushed by a motorized carriage. For
testing the -behavior of moored conical structures impacted by ice sheets,
Wessels attached a test cone via a single steel cable to the underwater
carriage. In this experimental harness, the cone was free to pitch,
heave and surge about the single, centerline mooring point. Some of the

results from Wessels tests are shown in figures 9 and 10,

Milano (1982) wused some of Wessels data to compare with 1loading
predictions obtained from his extended formulation. The predicted and
test values were in reasonable agreement (see, for example, figures 9 and
10). As was also shown by Ralston (1980), Wessel's data confirmed that,
compared to the loads experienced by an upward-breaking fixed cone, a
very large decrease in horizontal and vertical forces occurred for a
downward-breaking cone. This result was found for both the fixed and

floating conditions of cone support.

I1I. EXPERIMENTS

A. Experimental Facilities.

1. The TIHR ice towing tank. The experiments were conducted using
the TIHR ice towing tank which is 20-m long, 5-m wide, and 1.3-m deep. A
schematic layout of the tank and the cold room, in which the ice tank is
housed, and its cooling system is given in figure 11, The cooling system
is composed of two compressors which provide coolant to the two cooler
units situated at each end of the cold room. The compressors are in turn
cooled by water pumped from a 200 m3 sump. If the sump exceeds a certain
limiting temperature, a cooling tower situated out-doors is operated to

cool the sump water.

Fans inside the four cooler units draw air from the cold room and,
after the heat exchange has occurred, discharge it into eight ducts which
extend the whole length of the cold room. The chilled air is forced
through an array of 20-mm diameter holes along the base of each duct,

thereby producing a flow of chilled air over the towing tank. The four
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ducts are alternately arrayed so as to provide an even distribution of
cold air. Every two hours, one pair of cooler units is defrosted by
electrical heating. Depending on the ambient air temperature outside the
cold room, the total cooling capacity of the system varies between 15 and
20 kW, which enables an ice sheet to grow at a rate of 1.5 to 2.0 mm per

hour.

The 5-m-wide, 2.4-m—long motorized carriage, depicted in figure 12,
was used to push ice floes against the model platform. The carriage rums
along rails on the tank's walls. The level of each rail was adjusted to
a tolerance of * 1.5 mm along its length. An angle beam on one side of
the basin gives the lateral guidance to the carriage and carries the rack
of the rack-and-pinion drive mechanism. The D.C. motor on the carriage
has a maximum torque of 31 Nm and a speed range of 58 to 1750 RPM. A
1:15 gear box increases the torque to 465 Nm and gives a reduced speed
range of 3.9 to 117 RPM. The effective radius of the pinion is 0.06 m;
consequently the carriage has a maximum driving force of 7750N and a
velocity range of 0.024 m/sec to 0.74 m/sec. Higher velocities, up to
2.2 m/sec, can be achieved if a 1:5 gear box is coupled to the D.C.

motor,

In order to measure the velocity of the carriage, a wheel carrying a
circular array of holes is mounted on the drive shaft of the D.C.
motor. The passage of each hole, as the shaft rotates, is sensed by a
photo detector which emits a 1light through the hole. The number of
pulses counted during a time interval is proportional to the velocity of
the carriage. The length of the time interval is 0.371 seconds so that
1000 pulses correspond to a velocity of 0.333 m/sec. After each interval
of 0.371 sec, the number of pulses is latched to a display and to a
digital-analog converter which holds the voltage during the following
interval until the next measurement is available. The mean velocity of

the preceding interval is therefore, displayed and can be sampled.

2. The test platform. The test platform was similar in form to the
existing floating, cable-moored platform “Kulluk.” For modelling
purposes, a scale of 1:45 can be used to relate geometrically the test

model to "Kulluk.” The principal dimensions of the test platform and
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-"Kulluk”™ are 1listed in table 1. The test platform was shaped as an
inverted cone which flared down to a circular cylinder as 1is shown in

figure 13.

A floating, cable-moored platform 1is secured by mooring-cable
tensions and supported by the foundation reaction of the water upon which
it floats. The reaction is equal to the weight of water displaced. The
mooring cables and restoring forces can be related to the platform's
displacement by treating these forces as linear spring systems. The

equivalent spring stiffnesses of the floating, moored test platform were
a) spring stiffness of mooring cables
ko= 1.7 kN/m 9 .
b) spring stiffnesses of the foundation reaction

kh = 17.3 kN/m, for heave (10)
and

kp = 35.1kNm/degree, for pitch. (11)

The ratio of water depth, where floating platforms are typically
designed to operate, to the length of mooring cable is typically in the
range of 0.02 to 0.05 (Gaida et al. 1983). Consequently, the vertical
component of the mooring forces is much smaller than the horizontal
component. Moreover, as the spring stiffness of mooring cables, (9), is
an order of magnitude smaller than that of the foundation, (10), the
contribution of mooring cables to restraining surge and pitch motions can
be disregarded. It is therefore possible to idealize the cable mooring

system as a linear horizontal spring.

Although a system of mooring cables for use in shallow waters can

respond non-linearly to applied mooring forces, the mooring system for a
floating, drilling platform can be treated as being 1linear for the

following reasons:
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a. the stiffness of the mooring system is increased by initial
tensioning of cables, such that the relationship between
cable tension and platform displacement becomes virtually

linear; and,

b. the maximum drift, or surge displacement, of a platform is
restricted to a value less than 5% of water depth, in order
that the drill pipe is not subjected to excessive, and
dynamic, loadings. For this relatively small value the
relationship between mooring force and platform

displacement can be taken as being linear.

A fuller discussion of cable-mooring for floating platforms is given
in Appendix 2, following Appendix 1 which contains the time histories of

measured quantities.

3. Instrumentation. The test platform was connected to an
instrument beam by way of a linear mooring harness and a load cell, as
shown in figures 14 and 2. The mooring harness was comprised of a pair
of elastic leaf springs which exerted a horizontal (surge) restoring
force, a spline bearing, stroke bhearings and universal bearings, as
indicated in figures 14 and 16. The harness facilitated the accurate
simulation of the motion of a floating, moored platform. Horizontal
mooring force and surge displacement were measured using a 490-newton
NISHO DENKI LMC-3502-50 load cell which connected the instrument harness
to the instrument beam. Yawing and swaying of the moored platform were
restricted by two vertical rods 1located at the fore and aft of the
platformy, as shown in figure 15. The 10-mm diameter rods were
constrained to slide in 10.5-mm wide slots as shown in figure 16. The
floating, moored platform had three~degrees of freedom for motion:

surge, heave and pitch.

The heave and pitch motions of the moored platform were measured by
recording, with two linear voltage displacement transducers (LVDT's), the
vertical motion of the platform at two positions. The LVDT's were

excited using 12 volts, which corresponded to a full stroke movement
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range of 0.15 m. The outputs of the potentiometers were transmitted by

means of two voltage followers.,

Vertical and horizontal accelerations of the moored platform were

measured with three, 2g (19.6 m/sz) KYOWA ASQ-2BL accelerometers.

In order to examine the performance of the platform when restrained
from moving, and compare it with the platform's performance when it was
moored, the test platform was directly connected to a load cell which wasg
bolted to the instrument beam. Figure 17 depicts this test arrangement
which was used to simulate the impact of ice floes with a fixed,

downward—breaking cone,

The horizontal and vertical restraining forces and pitching moment
experienced by the fixed platform were measured using a 196-newton and

98-newton-meter NISHO DENKI LMC-~4107-20 1load cell,

The locations of the measuring sensors and the positive directions

of recorded data are shown in figure 18,

The output voltages from the load cells, LVDT's, accelerometers and
the carriage velocimeter were scanned using a digital voltmeter. The
digitized data were serially transmitted through a telephone 1link to the
IIHR HP-1000E computer system, and were there stored on disk. The
bandwidth of the data acquisition link was 120 Hz, although each channel

was sampled at a rate of 4, 5 or 10 Hz.

4. Calibration of transducers. For each of the data-logging
transducers (force, displacement, acceleration, velocity) the zero level

and sensitivity of the transducer were determined before each test,

Each output voltage of the 1load cells and accelerometers V wasg
measured for a calibration strain EC created by an amplifier. The

sensitivity, S, of each/transducer was evaluated as

in which C is a predetermined ratio of strain to force or acceleration

experienced by transducer.
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The sensitivity of LVDT's, were evaluated by measuring the voltage
change for a given displacement of the transducer rod, and were

determined to be 13.03 mm/volt and 12.92 mm/volt.

The sensitivity of the circuit for the carriage velocity was
determined by correlating its output voltage with the mean velocity of
the carriage (determined by use of a stop watch and a length scale).
Then, the analogue setting of the carriage speed control was calibrated

against the voltage output.

B. The Platform's Natural Periods of Oscillation. Free-oscillation

tests were carried out to determine the natural periods and logarithmic
decrements of surge and pitch oscillations of the test platform, The
recorded data are shown in table 4. The platform's natural period of

heave was estimated as

T =2n/w = 21/ /pwg Aw/(M+m) (13)
for which
A, = water plane area of the platform =1 Diw/A 5 DLy = the load

waterline diameter of the platform; M = mass of the platform; m = added
mass assumed to be 1.2 M (from Faltinsen 1975, Van Oortmersen 1976);

and Dwg = gpecific weight of water.

C. Openwater Tests. Openwater tests were conducted to examine if

the push-blade attached to the carriage caused additional hydrodynamic
forces to be exerted against either the moored or the fixed platform. Tt
was found that the additional hydrodynamic forces exerted against the
platform in open-water were negligibly small for the velocity range

tested.

D. Ice Floes

1. Model ice. Ice sheets were grown from a 0.7-percent, by weight,
urea solution according to the following procedure: With the cooler
system operating at full capacity, the urea solution was cooled to a

temperature of about 0.1°C above the solution's freezing temperature
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(-0.30°C) and the air in the room was chilled to about =-12°C. A water
circulation system provided the necessary mixing of the solution to
prevent the formation of an unwanted ice cover. BRefore being wet-seeded,
the surface of the urea solution was screened to remove any ice which may
have formed during the solution cooling process. Then, the water
circulation and the blowers of the cooling units were shut off and the
cold room was fogged with a fine spray of water droplets. The spray was
produced using a pressurized air spray gun and a pressurized tank. The
water droplets froze in the air and settled onto the surface of the water
which had by then reached the freezing temperature of the solution
(-0.30°C). This wet-seeding process prevented the unwanted formation of
relatively large ice crystals and enabled a multitude of small crystals

to grow simultaneously over the surface of the urea solution.

Fach ice sheet was grown to about 85-percent of its final thickness
30 mm (1.35 m prototype thickness). The room temperature was then raised
so that the air temperature at an elevation of about 10 mm above the ice

sheet was about 2 to 4°C, and the ice sheet was warmed and weakened.

The flexural strength, of, and the flexural modulus of elasticity,
E¢, were monitored until of attained a prescribed value of about 20
kPa. The load ¥ to fail a cantilever beam of length £, thickness h, and
width b, in downwards flexure, was used to estimate of;
g, = — (14)

Four to six cantilever beams were tested at several locations around the
ice sheet in order to obtain a representative mean value of Gf at regular

periods before the test.

The flexural elastic modulus Ef was determined by measuring the
increment § of the vertical deflection of the ice sheet due to small
increments of a point load AP, which was applied at the center-point of

the ice sheet. Thereby,

2 2
~ A
E; = 0.188 U220 (A2 (15)

£ =
Dwgh
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in which v = Poisson ratio for ice, which was taken as 0,3; pw = density

of water; and, g = gravity acceleration.

The principal dimensions of the ice sheets are listed in table 2.

The data associated with each ice sheet are listed in table 3.

2. Preparation of jice floes. The ice sheet grown prior to each
test was cut into Square ice floes having uniform width or nominal

diameter, D;j, In the range of 0.075 to 5 m (3 to 225 n in prototype),

E. Test Procedure. A total of 15 tests were conducted; eight using

the cable—moored, floating platform and seven using the fixed platform as
shown in figure 19. For each test series, ice floes were pushed with a
constant speed in the range of 0.01 to 0.12 n/s (0.13 to 1.6 kts in
approximate prototype scale for "Kulluk") against the test platform. The
relationships between model and pPrototype values of ice-floe speeds are
given in figure 20, while the relationships between forces and moments of

model platform and those of prototype are shown in figure 21.

For some ice sheets, two tests were conducted: an initial test with
smaller ice floes, a second test with a sheet of level ice corresponding

to an ice-floe diameter of 5m (225 m in prototype),

IV. PRESENTATION OF RESULTS

The time-histories of horizontal (surge) mooring forces, vertical

the temporal mean, standard deviation about the temporal mean, together
with the maximum and the minimum values for each transduced signal. The
resulting values are presented in tahle 5. Appendix 1 contains records

of the time histories.

The effects of ice~-floe diameter on  mooring force, heave
displacement and maximum pitch angle due to ice-floe impact are plotted
in figures 22, 23 and 24, respectively. The effect of ice-floe speed on
the horizontal component of mooring force, vertical displacement (heave)

and pitch angle can be seen in figures 25, 26 and 27.
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The time-histories of restraining forces (heave and surge) and
moment (pitch) during full contact between fixed platform and floes of
level ice were analyzed to yield the temporal mean, standard deviation
dbout the temporal mean, and the maximum and the minimum for each
records The resulting values are given in figures 22 through 27 and are

listed in table 6.

The effects of ice-floe diameter on the restraining forces and
moments experienced by the fixed platform are plotted in figures 28, 29
and 30. The effects of ice-floe impact speed on restraining forces and

moments are shown in figures 31, 32 and 33,

V. DISCUSSION OF RESULTS

It was found that the test platform's facility to surge, heave and
pitch significantly affected the ice-related forces that it
experienced. The following discussion documents the influences of
platform motions on ice-related forces and describes the effects of ice-—
floe diameter and speed on both the ice-related forces and motions that

were experienced by the test platform.

A. Observations of Ice-Floe Impact with the Test Platform.

When the field of ice floes impacted the test platform, ice was
deflected downwards and flexurally failed to produce cusp-shaped ice
rubble, The impact of ice floes, together with the vertical force
required to break the ice floes, caused horizontal and vertical forces to
be exerted against the platform. Together, these forces exerted a
pitching moment about the platform's center of gravity, Pieces of ice
rubble were rotated until they were parallel to the surface of fhe
platform, then were slid down and along the platform. Some ice rubble
accumulated in front of the platform and some were pushed beneath it.
Usually a layer of about two-pieces thick accumulated in front of the

platform, while a single layer of ice rubble became lodged beneath the

platform,
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The foregoing description of ice—-floe impact with the platform is
schematically depicted in figure 34, The series photographs shown in
figure 35 illustrate ice-~floe impact for the four sizes of ice floes that

were used for the study.

The flexural failure of the ice floes, together with the
submergence, sliding and accumulation of broken ice pieces, and friction
between ice and platform, all exerted forces against the platform. These
forces caused the moored platform to respond dynamically, by heaving,
surging and pitching. For the test platform fixed or restrained from
moving the 1ice forces invoked restraining forces acting through the

multi—-axial load cell.

Because the ice forces acted intermittently for varying periods of
time and over different areas of the platform's hull, the test platform
experienced unsteady ice loadings. For this reason, the mean values and
the standard deviations of the ice forces and platform displacements are

plotted in figures 21 through 33.

The smaller ice-floes (ratio of ice-floe diameter to waterline
diameter of the platform, D;/Dyy < 0.1) when impacting the platform did
not fail by bending because they were of similar size, or smaller than
the ice rubble produced by the flexural failure of the large floes. As
the smaller ice floes advanced toward and impacted the platform, they
were pushed down without flexural failure, they were then rotated until
becoming parallel to the surface of the platform and finally slid along
the surface of the platform's hull. The smaller ice floes moved in a
similar manner around the platform as did ice rubble broken from larger
ice floes (Di/DLw > 0.5). The movement of the smaller ice floes around
the platform did not involve the flexural failure of ice, therefore the
ice forces generated by smaller ice floes were smaller than those
produced by bigger ice floes which had to be broken flexurally, so that

they could pass around the platform.

The simulated field of ice floes did not become laterally unsatable

and did not buckle during the tests.
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average value plus two times the standard deviation of the values
recorded during full contact between 1ice floes and the platform, For
estimating the maximum values of measured forces, moment, etc., the
limited length of the time histories of the recorded data, and the
possible variation of mechanical properties of ice over the test floes, a
97.7% confidence limit would be statistically more reliable than the

measured maximum value,

(for "circumferential", or lateral, dimension of the ice rubble) of the
characteristic length (see figures 3 and 4) of the ice floe (for radial

dimension of the resulting jce rubble),

of ice, The effect of ice-floe diameter on the platform's surge
displacement can be seen in figure 22; surge force kSy was proportional

to the platform's surge displacement,

As is suggested 1in section I, because the test ice sheet was cut

into regular arrays of rectangular slabs, the effect of floe diameter—-
slab size--can, perhaps, be also viewed as the effect on ice loads of

fracture/crack density in an ice sheet. From this view-point it ig
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C. The Effect of Ice~Floe Speed on Ice Loads. The average values

of the horizontal component of the mooring forces experienced by the
moored platform increased linearly with increasing speed of ice-floe
impact, as is shown in figure 25. From figures 26 and 27 it can be seen
that the average values of heave and pitch motions that the moored
platform underwent increased slightly with increasing speed of ice-floe
impact. The maximum values of the mooring force, and the heave and pitch
motions increased generally with increasing speed of ice~floe impact, as

is indicated in figures 25, 26 and 27.

A marked difference occurred in the surge motion of the moored
platform for relatively low speeds (0.01 to 0.02 m/s in model scale, N.13
to 0.21 kts in prototype scale) compared to the larger speeds (see figure
25). When continuously impacted by ice floes, the moored test platform
experienced its largest fluctuation of surge motion for relatively slow
speeds of impact (see figure 25). This result can be attributed to a
resonance condition that was set up between the oscillation of the
platform and the dominant forcing frequency associated with ice
breaking. For this reason, the fluctuations of mooring force experienced
by the moored platform were greatest at lower speeds because the mooring
force was proportional to the displacement of the linear mooring

harness.

(see figure 31). However, the maximum values of horizontal restraining
force did increase linearly with increasing speed of ice-floe impact.
Conversely, the average and maximum values of the vertical restraining
forces experienced by the fixed platform decreased with increasing speed

of ice-floe impact (see figure 32).

D, Inertia Forces and Moments Experienced by the Moored Platform.

The equations of motion for a floating, moored platform can be written in
tensor form as:

(mij + U{j) XJ' + Cijxj + kijxj = Fi (16)

(1) (i1) (iii)  (iv)
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in which terms (i) relate to platform inertia; terms (ii), (iii) and (iv)
relate to damping, mooring and water-reaction restoring force/moment, and
ice force/moment, respectively; mij = mass matrix components; uij
= added-mass and damping coefficients, respectively; per convention, x =

and cij

is a displacement for j = 1,2,3 and a rotation for j = 4,5,6; kij =

stiffness matrix components; F; = force matrix components.

Note that in this report the following nomenclature is used:

y = X, displacement in the surge direction;

X = X3, displacement in the heave direction

z = X5, displacement in the sway direction;

6 = X3, pitch rotation;

kz = kll’ stiffness in surge direction;

kK, = k33, stiffness in heave direction;

kp = k55, stiffness in pitch rotation;

M, = (mll + ull) = virtual mass for surge;

M, = (m33 + u33) = virtual mass for heave;

Ip = (m55 + USS) = virtual mass moment of inertia for pitch;

F1 = Fy, ice force in surge direction;

Fq = Fy, ice force in heave direction;

Fg = M., pitch moment induced by ice forces F; and F3;
€111C335Cg5 = Cq» Cp and Cp» respectively, The parameters Mg, Mp s Ip,

ks, kh and kp are properties of platform geometry and structure, and were
estimated in accordance with their openwater values., The damping

coefficients Cgs ¢, and Cp for ice were not determined.

The magnitudes of 1inertia forces and moments, terms (i), were
determined by multiplying measured acceleration and angular acceleration
with the corresponding factors given in (16). Values of the restoring
forces and restoring moment, terms (iii), were obtained by multiplying
recorded surge and heave displacements and pitch angle with the

corresponding spring stiffnesses given in (9) through (11).

Time histories of the force and moment components experienced by the
floating, moored platform are shown in figures 36 through 39. Temporal

records of the instantaneous ratio of inertia forces (for surge, heave
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and pitch) to mooring forces during the period of full contact between

ice floes and the platform are shown in figure 40.

The mean value of inertia force plus two times the standard
deviation of the inertia force, which corresponds to a 97.7% confidence
limit, were calculated from the measured record. The ratios of the 97.7%
confidence limit of inertia force to that of mooring force for the period

of full contact between ice floes and the platform are given in table 7.

During Exp. No. 5-2 (ice-floe diameter 5 m and ice-floe impact speed
0.08 m/s), the platform experienced large peak values of inertia force
associated with surging (see figure 36). This occurred because Fxp. No.
5-2 was the first experiment and no low-pass filter was used to filter
noise from the transduced acceleration signals., For subsequent
experiments (e.g., see figure 37) low-pass filters with a cut-off
frequency 10 Hz were used to eliminate frequencies greater than 10 M1z

from the accelerometer signals.

It can be concluded from figures 36 through 40 that the maximum
value of the instantaneous ratio of inertia forces to mooring forces had
a value of approximately 0.5. However, due to phase differences between
inertia forces and mooring forces, the maximum inertia force, which
corresponds to a 97.7% confidence limit, was approximately one third of
the maximum mooring force as shown in table 7. The value of this ratio

decreased with decreasing speed of ice impact,

E. The Dominant Period of Platform Motion During Ice Impact. The

variance spectral densities of the dynamic behavior (forces and motions)
of the floating, moored platform were analyzed wusing a Fast Fourier
Transformation technique. The densities are plotted in figures 41
through 44. The periods corresponding to the 1st through 4th peaks in

the spectra were evaluated and are presented in table 8,

For better resolution of the variance spectral density, longer time
histories with higher sampling frequencies are needed. For the present
study, the results were obtalned using relatively short time historios
due to the size limitation of computer memory that was availahbhle for the
present study. (Considerably greater computer memory capacity will be

available for future tests.)
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Two distinct periods can be identified in the records of mooring
force (ksy); i.e., shorter and longer periods. The shorter period was

approximately equal to the natural period for surge motion of the
floating platform (see table 4). The longer period can be attributed to

the occurrence of beating during platform motions.

The equation of surge motion, ((16) with i,j, = 1), can be rewritten
and used to explain the occurrence of beating. 1In order to simplify the
analysis, let the damping force in (16), Cs§’ be neglected and the pitch

moment be uncoupled. Also assume that the ice force F is given as

y
F =F sinuwt . (17)
y yo
in which Fyo = the maximum value of an ice-force cycle with a frequency
of w., For an initial condition,
y=y =20, at t = 0, (18)

(16) can be solved (assuming motions to be uncoupled) to yield

W
y = —§~i—75(31n wt - = sin pt), (19)
p —~W P
in which
=V
P ks/Ms
and
= F M .
9 yo/ S

If the frequency, v, of the 1ice force approaches the natural

frequency of the mooring system, p, the following relation holds

p-w=2A (20)

in which A is infinitesimally small. For this condition, the moored
platform moves as if it were undergoing a beating oscillation, and the

surge motion of the platform is given as
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y = - Eﬁx-sin At cos wt. (21)
The term sinAt in (21) represents the longer-period oscillation,

while cos wt is the shorter-period oscillation.

When the moored platform was impacted by ice floes moving relatively
slowly (0.01 to 0.02 m/s), the platform's surge motion was in resonance
with the frequency of ice breaking and the platform experienced its

largest surge motion.

The dominant periods of the mooring force during Exp. No. 10-2 (ice-
floe diameter 5 m, ice impact speed 0.02 m/s) were longer than the
natural period of surge motion. The component of the natural period of
surge can be observed in the time histories given in figure of 39(a).

Its amplitude was not dominant.

The dominant periods of pitch motion were approximately equal to the
natural period of pitch motion as given in table 4. The dominant periods

of heave motion were longer than the natural period of heave.

F. The Effect of Platform Motion on Ice loads. 1In order to examine

the effect of platform motion on ice-related forces, the restoring forces
and moments experienced by the moored test platform were compared with
restraining forces and moments experienced by the platform fixed so that
it could not move. Values of the mooring and restoring forces (ksy and
ksx) and moments (kpep) were determined by multiplying displacements and
pitching angles with the corresponding values given in (9), (10) and
(11). The ratios of the restraining forces to the restoring forces are

shown in Table 9.

It is evident that, for slow impacts, the horizontal and vertical
restoring forces experienced by the moored platform were of similar
magnitude to the restraining forces experienced by the fixed platform.
However, for the larger speed, the mooring force, ksy, experienced by the
moored platform was significantly less than the horizontal restraining

force, Fo» experienced by the fixed platform.
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The ratio of the restrafning pitch moment, M experienced by the

z)
fixed platform to the pitch moment, kpep, experienced by the moored test
platform was in the range of 0.41 to 0.67. This occurred because the
lever arm of the pitching moment was bigger than the diameter of the load
cell which was used to fix the platform. 1In other words, the twisting
stiffness of the 1load cell was insufficient to fully restrain the
platform from pitching. The pitching moment applied to the fixed
platform was counteracted by both the load cell and water pressure which
was equal to the product of the spring stiffness, (11), and pitching

angle.

G. Comparison with the Performance Criterion for "Rulluk.” The

platform "Kulluk" is designed to be moored by twelve cables of diameter
85 mm, length 1150 m and breaking strength per cable, P, , of 5.1 MN (from
Gaida et al, 1983). The layout of cables in shown in figure 45. Because
the ratio of water depth to cable length is as low as 0.02 to 0.05, the

equilibrium of forces in the horizontal (surge) direction need only be

considered.
The total mooring force associated with ice-floe impact, Fp, can be
stated as ,
N
hX F =F (22)
n=] n p

in which F, = increment of mooring tension of n~th cable in the direction
of ice movement; and, N = number of cahles. The increment of mooring

tension acting through each cable due to ice-flow impact is

2
F =k cos B (23)
in which kn = the equivalent spring stiffness of the n-th cable; Bn =
angle of n~th cable with respect to the direction of ice movement; and,

6§ = displacement of moored platform, as is indicated in figure 45.

The platform experiences a maximum mooring force when tension in
cable 1 reaches one-third of its breaking strength (Det Norske Veritas
1984). Commensurately, each cable exerts the following tension

increments (figure 45):
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Fl = PU/3 - Ft

2
Fy = Fip F,cos 82

1
. 2
F3 = F11 =7 FICOS 83
— ° 2
Fy = FIO;—‘FI cos 84=O

- 2
Fg = Fg = (Ft - FSR) cos 85

F, =F

7 ¢~ FIr (24)

in which F, = initial cable tension; suffix R = residual tension of each
cable when the platform experiences a maximum mooring force. If it is
assumed that the residual tensions are negligibly small and that each
cable is sized using a safety factor of 3 (Det Norske Veritas 1984),

(22), (23) and (24) determine that Fp = 5,1 MN.

Using the Froude-number similarity criterion for scale-testing of
vessels or structures in water, the maximum mooring force experienced by

the model platform can be compared with the design value of mooring load

for the cables of "Kulluk.” The corresponding magnitude of Fp at a
geometric model scale of 1:45 is
- 3 -
Fp = (1/45)°F, = 56 N (25)

The maximum mooring force that was experienced by the test platform
occurred for the 5-m diameter test floe moving with the largest test
speed (see table 2). the maximum measured mooring force was 56.0N,
although the mean force plus two times 1its standard deviation was
50.9N. Both values are in remarkably good agreement with the design

value estimated for "Kulluk.”

H. Comparison with 1Ice Forces Predicted Using Ralston's

Formulation. Measured values of ice forces are compared in figures 46
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and 47 with values of ice forces that were calculated using (3) and (4),
as proposed by Ralston (1980). It should be noted that Ralston's
formulation does not take into account the dynamic effects associated
with the relative motion of ice and platform. For this reason, the
predicted values are compared with the test values obtained from the the
platform fixed, so that it did not move, and for the slowest speed of
ice~floe impact; 0.04 m/s and the largest diameter of ice floes; Dy = 5m
(Exp. No. 4~2). The measured value of horizontal ice force which the
fixed platform experienced was 1in quite good agreement with the values
calculated by Ralston's plastic limit formulation (figure 46). However,
Ralston's formulation predicts a larger vertical 1ice force than was

measured during the test (figure 47).

Parametric studies were conducted using (3) and (4) to investigate
the effects of ice-sheet properties and platform geometry on the ice
forces likely to be experienced by conical platforms. The parameters
varied were flexural strength and thickness of 1ice sheets, ice
accumulation around a concial platform, cone angle of platform, and

frictional coefficient between ice and platform. The results are shown

in figures 48 through 52.

Ralston's formulation of Fy and Fy, indicates that F_, is linearly

y
proportional to the flexural strength of an impacting ice floe (figure

48), and 1is proportional to 2.4 powers of ice-floe thickness (figure
49), His formulation also indicates that both Fy and FX are linearly
proportional to the amount of ice accumulated against a conical hull
(figure 50), and that Fy is affected by both cone angle of the hull
(figure 51) and friction coefficient between hull and ice (figure 52).

However, his formulation suggests that vertical force, F is not

x’
influenced significantly by either cone angle or coefficient of friction.

VI. CONCLUSIONS

The following principal conclusions were drawn from the study:

l. When the test platform was either moored or fixed, the mooring or
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restraining forces, respectively, increased with increasing diameter
of impacting ice-floes (figures 22 and 28). The forces
asymptotically approached values that are associated with the impact
of the platform with an ice floe that is much larger than the
platform. This trend is attributed primarily to the fact that more
ice breaking occurred when a field of larger ice floes impacted and

was pushed around the platform.

Commensurately with item 1, the moored platform experienced larger
displacements and accelerations when it was impacted by larger ice

floes (figures 23 and 24).

The mooring forces experienced by the test platform increased with

increasing speed of ice-floe impact (figure 25),

When continuously impacted by ice floes, the moored test platform
experienced its largest fluctuation of surge motion for relatively
low speeds of impact (0.01 to 0.02 m/s in model scale, 0.13 to 0.26
kts in prototype scale). This result can be attributed to a
resonance condition set up between the oscillation of the platform
and the dominant frequency of ice breaking. Relatively, the
fluctuation of mooring force of the platform was greater for lower
speeds, because mooring force was proportional to the displacement of

the linear mooring harness.

The average values of the horizontal restraining force experienced by
the fixed platform were independent of the speed of ice-floe impact
(figure 31). However, the maximum values of horizontal (surge)
restraining force increased linearly with 1increasing speed of ice-
floe impact. Average and maximum values of vertical (heave)
restraining force, on the contrary, decreased with increasing speed

of ice-floe impact (figure 32).
The maximum inertia force, determined for the 97.7% confidence limit,

was approximately one third of the maximum mooring force. The value

of this ratio decreased with decreasing speed of ice-floe impact.
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10.

For very slow impact with ice floes, the restoring forces experienced
by the moored test platform were almost equal to the restraining
forces experienced by the platform when it was fixed. However, with
increasing impact speed, the moored test platform experienced lesser
forces than did the fixed platform. The restraining pitching moment
of the fixed platform was smaller than the restoring moment of the
floating platform. This was due to the smaller twisting stiffness of

the load cell which was used for fixing the platform.

There were two, distinct periods in the temporal records mooring
forces experienced by the moored test platform. One period was
approximately equal to the natural period of the surge motion. The
other, and longer, period is attributed to the set-up of beating in
platform motion. When the platform experienced the large surge
motion at relatively low speed (0.0l to 0.02 m/s) due to a resonance
condition set up between the oscillation of the platforth and the
dominant frequency of ice breaking, the dominant periods of the
mooring forces was longer than the natural frequency of the surge
motion, The dominant periods of pitch motion were close to the
natural period of pitch. The dominant periods of heave motion were

longer than the natural period of heave.

The measured value of the maximum mooring force experienced by the
model test platform and the design value for the prototype platform

"Kulluk"” were in remarkably good agreement.

For the slowest speed of ice-floe impact (0.04 m/s), the measured
value of the horizontal ice force exerted against the platform when
fixed from moving was 1in quite good agreement with the " values
calculated using Ralston's (1980) formulation. However, Ralston's
formulation predicts a larger vertical force than was measured during

the model tests.
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1]..

It was found through parametric studies that the horizontal ice
forces experienced by a conical platform fixed from moving are
linearly dependent on the flexural strength of ice, the thickness of
ice accumulation around the platform and frictional coefficient
between ice and platform, and on 2.4 powers of ice thickness, and
cone angle. Vertical ice forces are linearly dependent on flexural
strength of ice and ice accumulation thickness, and on 2.4 powers of
ice thickness. Frictional coefficient and cone angle do not

signficantly effect vertical ice forces.
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Layout of a floating, moored platform in
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Figure 2.

The test platform undergoing impact with ice floes.
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Figure 25. The effect of ice speed on mooring force.
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Figure 26. The effect of ice speed on vertical (heave)
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Figure 27. The effect of ice speed on pitching angle.
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rable 1. Principal Dimensions of the Test Platform and "Kulluk.”

Test Platform "Kulluk"
(1/45 scale)
Diameter at deck level, Dp (m) 1.8 81.0
Diameter at load waterline, Diy (m) 1.5 67.5
Diameter at base line, Dy (m) 1.334 60.0
Depth, D (m) 0.334 15.5
Draft, d (m) 0.187 8.4
Displacement, V (m3) 0.271 24700
Cone angle, o (degree) 31.4 31.4
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Table 2. Ice-sheet data

Thickness, t{(m) 0.029-0.,032

Flexural strength, Of (kpa) 16.6 — 24.4

Elastic modulus, E(MPa) 8.2 - 14.8
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Table 3. Properties of Ice Sheets

Ice File Exp Date Mean Mean Flex Mean Young's
Sheet No No Thickness Strength Modulus
No (mm) (kPa) (MPa)
1 D17A I 1-1,9 12-17-84 29.0 21.9 10.7
2 D21A F 2-1,6 12-21-84 29.3 23.0 9.4
3 D27A N 3-1, 14 12-27-84 30.0 18.2 12,7
4 D29A E 4-1,5 12-29-84 30.0 22,2 14.8
5 JO3A I 5-1,9 01-03-85 31.7 16.6 19.1
6 JO7A 6-1 01-07-85 30.0 22.2 8.6
7 JI1A H 7-1,8 01-11-85 31.0 18.5 14.5
8 J14A F 8-1,6 01-14-85 30.0 19.0 13.0
9 J16A G 9-1,7 01-16-85 31.7 24.4 12.2
10 J18A E 10-1,5 01-18-85 30.0 22,0 8.2
11 J21A H 11-1, 8 01-21-85 30.0 21.9 12.7
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Table 4. Natural periods and logarithmic decrements of
the test platform when moored

SURGE HEAVE PITCH

Natural Period, T 3.00 1.41 1.17
(seconds)

0029 - 0.55

Logarithmic Decrement §
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Table 7.

Ratio of inertia force to mooring force
(the mean force plus two times the standard deviation)

Exp. Ice-Floe Ice Speed Inertia Mooring

No. Dia. (m) (m/s) Force Fy (N) Force Fy (N) F{/Fy
5-2 5 0.08 27.5 48.9 0.56
7-1 0.15 0.08 5.8 19.5 0.30
8-1 0.75 0.08 11.1 32.4 0.34
10-2 5 0.02 4.9 35.0 0.14
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Table 8. Dominating Periods Corresponding Peaks in Spectrum

Dominating Peaks (s)

Exp. No. Floe Dia. Ice Speed Surge Heave Pitch
(m) (m/s)
5-2 5 0.08 1) 31.5 3) 4.1 1)10.2 3) 2.0 1) 1.7 3) 2.2
2) 2.9 4) 2.5 2) 2.2 4) 3.0 2) 1.6 4) 2.0
2) 1.9 4) 4.6 2)11.4 4)20.5 2)102 4) 1.7
8-1 0.75 0.08 1) 34.1 3) 3.3 1)12.8 3)102 1) 1.8 3) 1.7
2) 4.4 4) 2.2 2) 4.9 4) 3.1 2) 1.6 4) 1.6
10-2 5 0.02 1) 113 3) 7.4 1)128 3)22.3 1) 8.5 3) 7.3
2) 7.0 4) 8.8 2)513 4) 7.3 2) 8.1 4) 5.7
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Table 9.

Comparison of ice force component of moored

and fixed platforms

Di VC Type of mooring force / restraining force
force surge "heave pitch
mean 1.06 1.05 0.55

5 0.04
mean+20 1.05 1.04 0.53
mean 1.32 0.98 0.34

0.75 0.08
mean+2o 1.19 0.91 0.34
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APPENDIX l: Time Histories of Measured Quantities

Note:
1) Ordinate is in voltage.

2) Calibration coefficient for ice-flow speed, V, is (0.417 Volts-0.0025) m/s
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Table A-1. Calibration Coefficients

Exp. No. Fy Fy M, X4 X9 Ay Ag,y Ag

(N/Volt)  (N/Volt) (N-m/Volt) (mm/Volt) (mm/Volt) (m/sZ/Volt)

1-1 1-9 21.4 21.4 21.4 13.03 12.92 -
2-1 2-6 9.8 9.8 9.8 13.03 12.92 -
3-1 3-14 19-6 19.6 19.6 13.03 12.92 -
4-1 4-5 19.6 19.6 19.6 13.03 12.92 -
5-1 5-9 19.6 19.6 19.6 13.03 12.92 0.490
6-1 19.6 19.6 19.6 13.03 12.92 0.196
7-1 7-8 19.6 19.6 19.6 13.03 12.92 0.196
8-1 8-6 19.6 19.6 19.6 13.03 12.92 0.196
9-1 9-7 19.6 19.6 19.6 13.03 12.92 0.196
10-1 10-5 19.6 19.6 19.6 13.03 12.92 0.196
11-1 11-8 19.6 19.6 19.6 13.03 12.92 0.196
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APPENDIX 2: Cable-Mooring Systems for Floating Platforms

Generally, the relationship between mooring force acting through a
mooring cable and the displacement experienced by the cable is increasingly
non-linear with decreasing depth of water in which a platform, or vessel, is
moored. Typical relationships between mooring force and Tthorizontal

displacement of cable are shown in figure A-77.

For a platform which is moored by a system of cables, the relationship
between total mooring force experienced by the system of cables and the
horizontal displacement of the moored platform is influenced by the following:
number of cables; arrangement of cables; and initial tensions applied to the
cables. An example is shown in figure A~78 of the relationship between total
mooring force, for a system of cables, and platform drift. Figure A-78

involves the following specifications:

* for each cable, the force-displacement relationship is as indicated in

figure A-77.
* eight cables, each 76 mm in diameter, are used to moor the platform.
* the cables are arrayed symmetrically around the platform.

* initial tension is such so that the leading cable (e.g., cable 1 in
figure 45, for a 12-cable array), which undergoes the maximum laoding during
ice impact, becomes tensioned to one-third of its breaking strength when the
platform drifts, or moves horizontally, 5% of the water depth upon which it is

floating.

Although the precise characteristics of the mooring system for "Kulluk”
are unavailable to the authors, it can be assumed, for the following reasons,

that the mooring system can be treated as being linear:

a) the mooring system is stiffened by pre-tensioning of its cables, such
that its response is along the near linear portion of the curve, shown in

figure A-77, for a water depth fo 50 m; and

b) the allowable drift of the platform is less than 5% of water depth—-
i.e., less than about 2.5 m--in order to protect the drill string from
excessive, dynamic, loadings. For this allowable drift the relationship

between total mooring force and horizontal drift can be assumed to be linear.
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Figure A-77. Example of the relationship between mooring tension and
horizontal displacement of a mooring cable. ©Note: (i)
cable diameter is 76 mm; (ii) initial tension is prescribed
such that the total tension reaches one-third of its breaking
strength when a moored platform drifts horizontally 5% of
water depth (Det Norske Veritas 1984).
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