## Standardization and Decomposition of Rates: A User's Manual


by Prithwis Das Gupta
U.S. Department of Commerce

Economics and Statistics Administration
BUREAU OF THE CENSUS


## Acknowledgments

This report was prepared in the Population Division, under the general direction of J . Gregory Robinson, Chief, Population Analysis and Evaluation Staff. Donald J. Hernandez and Jorge del Pinal reviewed the draft of the report. Rheta D. Pemberton typed the manuscript, and Tecora B. Jimason provided statistical assistance. Michael J. Roebuck of the Demographic Statistical Methods Division conducted the statistical review.

The staff of the Administrative and Publications Services Division, Walter C. Odom, Chief, provided publication planning, design, composition, editorial review, and printing planning and procurement. Linda H. Ambill edited and coordinated the publication; Shirley A. Clark designed the cover.

# Standardization and Decomposition of Rates: A User's Manual 



Issued October 1993

U.S. Department of Commerce Ronald H. Brown, Secretary
Economics and Statistics Administration
Paul A. London, Acting Under Secretary
for Economic Affairs

## BUREAU OF THE CENSUS

Harry A. Scarr, Acting Director


Economics and Statistics Administration
Paul A. London, Acting Under Secretary for Economic Âffairs


BUREAU OF THE CENSUS
Harry A. Scarr, Acting Director
Willlam P. Butz, Associate Director for Demographic Programs

POPULATION DIVISION
Arthur J. Norton, Chief

## SUGGESTED CITATION

Das Gupta, Prithwis, Standardization and Decomposition of Rates: A User's Manual, U.S. Bureau of the Census, Current Population Reports, Series P23-186, U.S. Government Printing Óffice, Washington, DC, 1993.

## Contents

Chapter 1.
$\qquad$

Chapter 2.

Rate as the Product of Factors.................................................................... 5
2.1 Introduction .................................................................................... 5
2.2 The Case of Two Factors ..................................................................... 6
2.3 The Case of Three Factors ................................................................. 7
2.4 The Case of Four Factors ................................................................... 9
2.5 The Case of Five Factors ................................................................... 11
2.6 The Case of Six Factors .................................................................... 14
2.7 The Case of P Factors ...................................................................... 15
2.8 The General Program ......................................................................... 16

Chapter 3.

Rate as a Function of Factors ...................................................................... 19
3.1 Introduction .................................................................................... 19
3.2 The Case of Two Factors .................................................................... 19
3.3 The Case of Three Factors .................................................................. 20
3.4 The Case of Four Factors .................................................................. 24
3.5 The Case of Five Factors .................................................................... 26
3.6 The Case of Six Factors ..................................................................... 27
3.7 The Case of P Factors ......................................................................... 32
3.8 The General Program ....................................................................... 32
3.9 Example 3.7 (Ten Factors) .................................................................... 33

Chapter 4.

Rate as a Function of Vector-Factors .............................................................. 37
4.1 Introduction ..................................................................................... 37
4.2 The Case of Two Vector-Factors ............................................................ 37
4.3 The Case of Three Vector-Factors ........................................................... 42
4.4 The Case of Four Vector-Factors ............................................................ 44
4.5 The Case of Five Vector-Factors ............................................................ 46
4.6 The Case of Six Vector-Factors ................................................................. 49
4.7 P Vector-Factors and the General Program ................................................. 53

## Chapter 5.

Rate from Cross-Classified Data ..... 55
5.1 Introduction ..... 55
5.2 The Case of One Factor ..... 55
5.3 The Case of Two Factors ..... 59
5.4 The Case of Three Factors ..... 63
5.5 The Case of Four Factors ..... 70
5.6 The Case of Five Factors ..... 75
5.7 The Case of Six Factors ..... 79
5.8 The Case of P Factors ..... 82
5.9 The General Program ..... 91
Chapter 6.
Three or More Populations ..... 97
6.1 Introduction ..... 97
6.2 The Case of Three Populations ..... 98
6.3 The Case of Four Populations ..... 99
6.4 The Case of Five Populations ..... 104
6.5 The Combined Program ..... 105
6.6 The General Case of N Populations (Including Time Series) ..... 105
TABLES
2.1 Mean Earnings as the Product of Two Factors for Black Males and White Males, 18 Years and Over: United States, 1980 ..... 7
2.2 Standardization and Decomposition of Mean Earnings in Table 2.1 ..... 7
2.3 Crude Birth Rates as the Product of Three Factors: Austria and Chile, 1981 ..... 9
2.4 Standardization and Decomposition of Crude Birth Rates in Table 2.3 ..... 9
2.5 Percentage Having Nonmarital Live Births as the Product of Four Factors for White Women Aged 15 to 19: United States, 1971 and 1979 ..... 11
2.6 Standardization and Decomposition of Percentages Having Nonmarital Live Births in Table 2.5 ..... 11
2.7 Total Fertility Rate as the Product of Five Factors: South Korea, 1960 and 1970 ..... 14
2.8 Standardization and Decomposition of Total Fertility Rates in Table 2.7 ..... 14
3.1 Crude Rate of Natural Increase as a Function of Crude Birth Rate and Crude Death Rate: United States, 1940 and 1960 ..... 20
3.2 Standardization and Decomposition of Crude Rates of Natural Increase in Table 3.1 ..... 20
3.3 Illegitimacy Ratio for Whites as a Function of Three Factors: United States, 1963 and 1983 ..... 22
3.4 Standardization and Decomposition of Illegitimacy Ratios in Table 3.3 ..... 22
3.5 Crude Birth Rate as a Function of Four Factors: Austria and Chile, 1981 ..... 25
3.6 Standardization and Decomposition of Crude Birth Rates in Table 3.5 ..... 25
3.7 Crude Birth Rate as a Function of Five Factors: Austria and Chile, 1981 ..... 27
3.8 Standardization and Decomposition of Crude Birth Rates in Table 3.7 ..... 27
3.9 Family Headship Rate for Mothers, 18 to 59 Years, as a Function of Six Factors: United States, White, 1950 and 1980 ..... 30
3.10 Standardization and Decomposition of Family Headship Rates in Table 3.9 ..... 30
3.11 Percentage Having Live Births as a Function of Six Factors, for White Women Aged 15 to 19: United States, 1971 and 1979 ..... 31
3.12 Standardization and Decomposition of Percentages Having Live Births in Table 3.11 ..... 31
3.13 Mean Parity of a Cohort as a Function of Ten Factors (Parity Progression Ratios), for White Women: United States, 1908 and 1933 Cohorts ..... 34
3.14 Standardization and Decomposition of Mean Parities in Table 3.13 ..... 34
4.1 Female Intrinsic Growth Rate per Person as a Function of Two Vector-Factors: United States, 1960 and 1965 ..... 39
4.2 Standardization and Decomposition of Female Intrinsic Growth Rates per Person in Table 4.1 ..... 39
4.3 Index of Male-Female Occupational Dissimilarity as a Function of Two Vector-Factors: United States, 1970 and 1980 (Partial Data) ..... 42
4.4 Standardization and Decomposition of Indices of Male-Female Occupational Dissimilarity in Table 4.3 ..... 42
4.5 Crude Birth Rate per 1,000 as a Function of Three Vector-Factors: Taiwan, 1960 and 1970 ..... 43
4.6 Standardization and Decomposition of Crude Birth Rates in Table 4.5 ..... 43
4.7 Illegitimacy Ratio as a Function of Four Vector-Factors: United States, Whites, 1963 and 1983 ..... 46
4.8 Standardization and Decomposition of Illegitimacy Ratios in Table 4.7 ..... 46
4.9 Expectation of Life at Birth as a Function of Five Vector-Factors: United States, White Males, 1940 and 1980 ..... 48
4.10 Standardization and Decomposition of Expectations of Life at Birth in Table 4.9 ..... 49
4.11 Expectation of Life at Birth as a Function of Six Vector-Factors: United States, Total, 1962 and 1987 ..... 52
4.12 Standardization and Decomposition of Expectations of Life at Birth in Table 4.11 ..... 53
5.1 Population Sizes (Percents) and Household Headship Rates per 100 by Age Groups: United States, 1970 and 1985 ..... 56
5.2 Standardization and Decomposition of Household Headship Rates in Table 5.1 ..... 57
5.3 Population Size and Percent Desiring More Children (Rate) by Age Groups for Parity 1 and Parity 4+ Women: 1970 National Fertility Survey ..... 59
5.4 Standardization and Decomposition of Percents Desiring More Children in Table 5.3 ..... 59
5.5 Population (in thousands) and Death Rates (per 1,000 Population) by Age and Race: United States, 1970 and 1985 ..... 61
5.6 Standardization and Decomposition of Crude Death Rates in Table 5.5 ..... 61
5.7 Population Size (Percents) and Job Mobility Rates (Mean Number of Jobs Held) by Migrant Status and Time Spent in the Labor Force: Philadelphia and Los Angeles, Men, 1940 to 1949 ..... 62
5.8 Standardization and Decomposition of Job Mobility Rates in Table 5.7 ..... 63
5.9 Single Live Births and Neonatal Mortality Rates (per 1,000 Live Births), by Age of Mother and Birth Weight: White and Non-White, 1960 ..... 64
5.10 Standardization and Decomposition of Neonatal Mortality Rates in Table 5.9 ..... 65
5.11 Population and Household Headship Rates per 100 Persons, by Age, Sex, and Marital Status: United States, 1970 and 1980 ..... 67
5.12 Standardization and Decomposition of Household Headship Rates in Table 5.11 ..... 68
5.13 Population and Mobility Rates per 100 Persons, by Age, Sex, Years of School Completed, and Residence: United States, 1975-76 and 1986-87 ..... 71
5.14 Standardization and Decomposition of Mobility Rates in Table 5.13 ..... 73
5.15 Civilian Labor Force with Earnings in 1979 and Mean Annual Earnings, by Occupation, Age, Education, Sex, and Work Status: Asian and Pacific Islander, and White, 1980 ..... 76
5.16 Standardization and Decomposition of Mean Annual Earnings in Table 5.15 ..... 79
5.17 Wives 35 to 44 Years Old and Average Number of Children Ever Born (Rate) by Family Income, Husband's Education, Husband's Occupation, Wife's Labor Force Status, Wife's Age at Marriage, and Race: Wives High School 4 years and Wives Not a High School Graduate, United States, 1970 ..... 83
5.18 Standardization and Decomposition of Average Number of Children Ever Born in Table 5.17 ..... 91
6.1 Standardization and Decomposition of Average Number of Children Ever Born Using 2 Populations at a Time ..... 97
6.2 Standardization and Decomposition of Average Number of Children Ever Born Using 3 Populations Simultaneously ..... 98
6.3 Standardization and Decomposition of Household Headship Rates Using 2 Populations at a Time ..... 101
6.4 Standardization and Decomposition of Household Headship Rates Using 4 Populations Simultaneously ..... 101
6.5 Standardization and Decomposition of Percents Desiring More Children Using 2 Populations at a Time ..... 103
6.6 Standardization and Decomposition of Percents Desiring More Children Using 4 Populations Simultaneously ..... 103
6.7 Standardization and Decomposition of Family Headship Rates Using 2 Populations at a Time ..... 104
6.8 Standardization and Decomposition of Family Headship Rates Using 4 Populations Simultaneously ..... 104
6.9 Standardization and Decomposition of Illegitimacy Ratios Using 2 Populations at a Time ..... 106
6.10 Standardization and Decomposition of Illegitimacy Ratios Using 5 Populations Simultaneously ..... 107
6.11 Illegitimacy Ratio as a Function of Four Vector-Factors: United States, Whites, 1963, 1968, 1973, 1978, and 1983 ..... 108
6.12 Population and Birth Rates by Nine Age-Sex Groups: United States, 1940 to 1990 ..... 109
6.13 Crude Birth Rates and Crude Death Rates per 1,000 Population and the Corresponding Adjusted (Standardized) Rates: United States, 1940 to 1990 ..... 111
6.14 Population and Death Rates by 11 Age Groups: United States, 1940 to 1990 ..... 115
6.15 Population and Census Undercount Rates by Race and Sex: United States, 50 States, and the District of Columbia, 1990 ..... 118
6.16 Crude Undercount Rates and the Corresponding Three Adjusted (Standardized) Rates: United States, 50 States, and the District of Columbia, 1990 ..... 120
EXAMPLES
2.1 Two Factors ..... 6
2.2 Three Factors ..... 8
2.3 Four Factors ..... 10
2.4 Five Factors ..... 13
3.1 Two Factors ..... 20
3.2 Three Factors ..... 21
3.3 Four Factors ..... 24
3.4 Five Factors ..... 26
3.5 Six Factors ..... 29
3.6 Six Factors ..... 31
3.7 Ten Factors ..... 33
4.1 Two Factors ..... 38
4.2 Two Factors ..... 41
4.3 Three Factors ..... 42
4.4 Four Factors ..... 44
4.5 Five Factors ..... 47
4.6 Six Factors ..... 49
5.1 One Factor + Rate ..... 56
5.2 One Factor + Rate ..... 57
5.3 Two Factors + Rate ..... 60
5.4 Two Factors + Rate ..... 62
5.5 Two Factors + Rate ..... 62
5.6 Three Factors + Rate ..... 66
5.7 Four Factors + Rate ..... 70
5.8 Five Factors + Rate ..... 75
5.9 Six Factors + Rate ..... 82
6.1 Three Populations ..... 99
6.2 Four Populations ..... 101
6.3 Four Populations ..... 102
6.4 Four Populations ..... 102
6.5 Five Populations ..... 105
6.6 Fifty-one Populations ..... 107
6.7 Fifty-one Populations ..... 113
6.8 Fifty-two Populations ..... 117
PROGRAMS
2.1 Four Factors ..... 12
2.2 Five Factors ..... 12
2.3 General Program for up to 10 Factors ..... 18
3.1 Three Factors ..... 23
3.2 Four Factors ..... 23
3.3 Five Factors ..... 28
3.4 Six Factors ..... 28
4.1 Two Factors ..... 40
4.2 Two Factors ..... 40
4.3 Three Factors ..... 45
4.4 Four Factors ..... 45
4.5 Five Factors ..... 50
4.6 Six Factors ..... 50
5.1 One Factor + Rate ..... 58
5.2 Two Factors + Rate ..... 58
5.3 Three Factors + Rate ..... 69
5.4 Four Factors + Rate ..... 74
5.5 Five Factors + Rate ..... 80
5.6 Six Factors + Rate ..... 89
5.7 General Program for up to Six Factors + Rate ..... 94
6.1 More than Two Populations ..... 100
6.2 Combined Program for Example 6.5 ..... 100
6.3 Time Series: Birth and Death Rates ..... 114
6.4 Census Undercount Rates for States ..... 121
FIGURES

1. Crude Birth Rates, and Age-Sex-Adjusted Birth Rates by Three Methods: United States, 1940 to 1990 ..... 112
2. Crude Death Rates, and Age-Adjusted Death Rates by Three Methods: United States, 1940 to 1990 ..... 112

## APPENDIXES

Appendix A. Derivation and Summary of Formulas. ..... A-1
A. 1 Derivation of Formulas (3.18) through (3.20) ..... A-1
A. 2 Three Factors With Interactions ..... A-1
A. 3 Derivation of Formulas in (5.16) ..... A-2
A. 4 Derivation of Formulas (6.4) and (6.5) ..... A-3
A. 5 Derivation of Formulas (6.7) and (6.8) ..... A-4
A. 6 Summary of Formulas in Chapter 2 ..... A-6
A. 7 Summary of Formulas in Chapter 3 ..... A-6
A. 8 Summary of Formulas in Chapter 4 ..... A-7
A. 9 Summary of Formulas in Chapter 5 ..... A-7
A. 10 Summary of Formulas in Chapter 6 ..... A-9
Appendix B. References ..... B-1
Appendix C. Author Index ..... C-1

# Chapter 1. Introduction 

Demographers and other social scientists have traditionally used the technique of direct standardization to eliminate the compositional effects from the overall rates of some phenomenon in two or more populations. Basically, the technique assumes a particular population as standard and recomputes the overall rates in the populations by replacing their compositions by the compositional schedule of the standard population. Numerous authors have dealt with the problem of standardization including Kuczynski (1935, p. 188); Woolsey (1959); Kitagawa (1964); Spiegelman and Marks (1966); Clogg (1978); Little and Pullum (1979); Curtin, Maurer, and Rosenberg (1980); Hoem (1987); and Johansen (1990).

Starting with the classic paper by Kitagawa (1955), another area of research, namely, the decomposition of the difference between the overall rates in two populations, has been fast developing in recent years. The decomposition deals with finding the additive contributions of the effects of the differences in the compositional or rate factors in two populations to the difference in their overall rates. The techniques have been extended to include any number of factors, various functional relationships of the factors with the overall rate including the rate from cross-classified data, and simultaneous considerations of three or more populations. Authors who have contributed to the subject of decomposition include Cho and Retherford (1973); Blake and Das Gupta (1976); Das Gupta (1978, 1988, 1989, 1990, 1991, 1992); Kim and Strobino (1984); Arriaga (1984); Pollard (1988); Nathanson and Kim (1989); and Pullum, Tedrow, and Herting (1989).

The subjects of standardization and decomposition are strictly linked and, logically, one cannot be treated independently of the other. Das Gupta (1992) has recently shown explicitly how these two areas are but parts of the same consistent system. The lack of recognition of a unified system encompassing the two areas has often led to arbitrary selection of standard populations in the past, producing results that are not defensible from the decomposition point of view.

To illustrate this point, let us consider the crude birth rates of 19.435 and 15.899 for the United States for the years 1940 and 1988, respectively, showing a decline of 3.536 points (the so-called "total effect") over the 48 -year period. This decline is the combined effects of the changes in the age-sex-specific birth rates and the age-sex structure, and we can compute these two effects separately by controlling for the age-sex structure and the age-sex-specific birth rates, respectively (table 6.12). If we use the 1940 age-sex structure as the standard, then the age-sex-adjusted birth rates for 1940 and 1988 are 19.435 and 16.495, respectively, and, traditionally, we interpret their difference of 2.940 as the effect of the changes in the age-sex-specific birth rates (the so-called "rate effect"). If this interpretation is correct, then, by the same logic, we should be able to use the 1940 age-sex-specific birth rates as the standard to compute the age-sex-specific birth rate-adjusted birth rates of 19.435 and 18.815 for 1940 and 1988, respectively, and interpret their difference of 0.620 as the effect of the changes in the age-sex structure (the so-called "compositional effect"). The sum of these two effects is 3.560 , which is, however, different from the total effect of 3.536. (This difference of -0.024 is sometimes called the interaction effect. Section A. 2 in appendix A and latter discussions in this chapter explain why there should not be an interaction effect in this case.)

Thus, in this case, use of the 1940 population as the standard produces unacceptable rate and compositional effects and, thereby, unacceptable standardized rates. When there are only two populations and two factors (e.g., age-sex-specific birth rates and age-sex structure), this problem can be easily resolved by using, for each factor, its average over the two populations as the standard (Kitagawa, 1955). However, when more than two populations and/or more than two factors are involved, it is not obvious how to choose standard populations that will not lead to any inconsistencies in the results. The objective of the present report is to provide methodologies for handling the problems of standardization and decomposition corresponding to any number of factors as well as any number of populations, for a variety of relationships of the factors with the overall rate including the rate from cross-classified data.

Chapters 2 through 5 deal with various forms of the overall rate when only two populations are compared. In chapter 2, the rate is expressed as the product of several factors. Bongaarts (1978), for
example, expressed the total fertility rate as the product of five factors, namely, proportion married, noncontraception, induced abortion, lactational infecundability, and total fecundity rate.

A more general case is considered in chapter 3, where the rate is expressed as any function of two or more factors. Pullum, Tedrow, and Herting (1989), for example, expressed the mean parity of a cohort of women as a function of the parity progression ratios.

Chapter 4 deals with the rate that is a function of two or more vector-factors, a vector-factor being a factor represented by several numbers, such as the set of six age-specific fertility rates by 5 -year age groups in the childbearing period. Smith and Cutright (1988), for example, expressed the illegitimacy ratio as a function of four vector-factors, namely, the age structure of childbearing women, the marital status structure within childbearing age groups, the age-specific nonmarital fertility rates, and the age-specific marital fertility rates.

The most widely used rates for the purpose of standardization and decomposition are those from cross-classified data, and these are discussed in chapter 5. Liao (1989), for example, studied the difference between two crude death rates in terms of the effects of age, race, and age-race-specific death rates. In these examples of cross-classifications, unlike those in the previous chapters, the total number of effects includes the effect of the cell-specific rates and is, therefore, always one higher than the number of variables involved in the cross-classification.

Finally, in chapter 6, the methodologies discussed in chapters 2 through 5 in the context of two populations are extended to include three or more populations. A good example of this topic is the problem of standardization and decomposition for the illegitimacy ratios for five years, considered by Smith and Cutright (1988).

Throughout the report, the applications of the standardization-decomposition techniques are illustrated by numerous examples taken from recently published literature. The report provides a working knowledge of the application of the techniques and interpretation of results without getting the reader lost in the technical mathematical derivations. The users of the techniques are expected to find the extensive supply of computer programs in FORTRAN language extremely helpful for routine applications.

The sources of data used in this report include the censuses of the United States and other countries, the national vital statistics provided by the National Center for Health Statistics, and numerous examples of standardization and decomposition published recently in various professional journals. In three examples (Examples 5.6, 5.7, and 6.8) where the data from the Current Population Survey (CPS) and the Post-Enumeration Survey (PES) are used, the discussions on their errors are available in the references cited. The standard errors used to test the differences in these examples are crude estimates based on standard error parameters from the referenced reports.

The problem of decomposition of the difference between two crude rates into several additive effects is different from the problem of, and cannot be adequately handled by, regression analysis. In other words, "the difference between two crude rates is not the equivalent of a concept like total variance of a dependent variable in regression analysis" (Kitagawa 1955). In the decomposition problem, the rate effect may not always decrease with the addition of each new factor, whereas in the regression analysis, "the addition of each independent variable to the equation increasingly explains the variation in the dependent variable" (Das Gupta 1978). Moreover, a characteristic may play a very important role as an independent variable in a regression equation in explaining the variation in a dependent variable, but the same characteristic may not be an important factor in explaining the difference between two crude rates constructed from the same dependent variable. For example, it is very likely that, in a regression analysis, a person's poverty status would be explained significantly by his (or her) race, but that the difference in the race composition in two years would not be an important factor in explaining the difference in the poverty rates in those years.

In defining the problems of standardization and decomposition, we have adopted a mathematical approach of solving unknowns from algebraic equations rather than a statistical modeling approach involving errors. This is evident from the equations in sections A.1, A.2, and A. 3 in appendix A, which do not include error components. The same decomposition problem based on log-linear analysis and the purging method has been studied by Clogg and Eliason (1988); Liao (1989); Santi (1989); and Xie (1989). This interesting statistical modeling approach is handicapped by the fact that it is too complicated to be of any practical use even for data involving only two factors, as Liao's paper and the two-factor example in it amply demonstrate. Also, this approach leads to several widely different sets of results depending on the type of purging used, and it is not clear how to justify choosing one set over all others. On the other hand,
the methods of standardization and decomposition provided in this report lead to a single set of solutions, and the computations involved in them are so simple that handling, for example, a six-factor case (Example 5.9 ) is no more difficult than handling a two-factor case, particularly if one uses the same simple general computer program provided in the report.

Again, unlike the statistical modeling approach, the present method decomposes the difference between two rates into additive main effects and does not involve any interaction effects. This should be a desirable aspect in a decomposition problem because it lends itself to easier and simpler interpretations of the results (for example, even for a four-factor problem, there are as many as 11 interaction terms). This elegance is achieved not by ignoring the parts in the total difference that other models might label interactions, but by fully accounting for the total difference in terms of main effects, and thereby distributing the so-called interactions among the main effects. This distribution does not change our conclusions about the relative importance of the factors, it only simplifies the picture. For example, in the preceding example with the crude birth rates of 1940 and 1988, the compositional effect and the rate effect are 0.620 and 2.940 (with the interaction effect of -0.024 ); whereas, when the interaction effect is eliminated, the same main effects become 0.608 and 2.928 . Thus, the interaction effect in the former case is distributed equally between the two main effects in the latter situation.

As the same example suggests, the interaction term arises because of our using 1940 as the standard population. There is no reason why 1940 should be used as the standard, particularly when the use of the average of the two populations leads to a neat solution without the interaction term. As Kitagawa (1955) has argued, "changes in rates and composition are seldom independent-rather, a change in one is likely to affect the other. It may be argued, therefore, that since both were changing during the period, a logical set of weights for summarizing changes in specific rates, for example, would be the average composition of the population during the period." Finding "average" populations as standards such that the difference between two rates can be expressed as the sum of only the main effects is the crux of the decomposition methodology used in this report.

Expressing the difference between two rates in terms of only the main effects can also be justified by expressing the rate in terms of a linear saturated model with interactions and then solving the unknowns from the same number of equations (see section A. 2 in appendix A). It is possible to show that for such models, the difference between two rates is always free from two-factor interaction effects, regardless of the number of factors. Since for any set of data, the three-factor and higher order interaction terms are expected to be negligible, it makes sense to find meaningful ways to decompose the difference into the main effects of the factors only by absorbing the interactions into the main effects.

The effects of factors do not necessarily imply any causal relationships. They simply indicate the nature of the association of the factors with the phenomenon being measured. There might be some hidden forces behind the factors that are actually responsible for the numbers we allocate to different factors as effects, but identifying those forces is beyond the scope of the decomposition analysis.

# Chapter 2. Rate as the Product of Factors 

### 2.1 INTRODUCTION

The simplest of the decomposition-standardization problems is the situation in which a rate can be expressed as the product of several factors. Some examples are as follows. Bongaarts (1978) expressed the total fertility rate as the product of five factors, namely, the index of proportion married, the index of noncontraception, the index of induced abortion, the index of lactational infecundability, and the total fecundity rate (Example 2.4). For adolescent women, Nathanson and Kim (1989) wrote the proportion of women having a nonmarital live birth as the product of four factors, namely, the proportion of live births among nonmarital pregnancies, the proportion of pregnancies among sexually active single women, the proportion of sexually active women among single women, and the proportion of single women among all women (Example 2.3). Das Gupta (1991) expressed the crude birth rate as the product of the general fertility rate, the proportion of women in the childbearing ages among all women, and the proportion of women in the population (Example 2.2).

In terms of the last example above, if $\mathrm{R}_{1}$ and $\mathrm{R}_{2}$ are the crude birth rates in population 1 and population 2, respectively, then questions are addressed separately for the problem of decomposition and for the problem of standardization, but these two areas are tied together by some consistency conditions, as indicated below.

## Problem of Standardization

1. What would be the crude birth rates in the two populations if only the general fertility rates in the two populations differed as they did, but if the other two factors, namely, the proportion of women in the childbearing ages among all women and the proportion of women in the population were identical? These conditional crude birth rates are the standardized birth rates controlled (or adjusted) for the latter two factors.
2. As in (1) above, if only the proportions of women in the childbearing ages among all women in the two populations differed as they did, what would be the standardized birth rates controlled for the general fertility rate and the proportion of women in the population?
3. Again, if only the proportions of women in the two populations differed as they did, what would be the standardized birth rates controlled for the general fertility rate and the proportion of women in the childbearing ages among all women?

## Problem of Decomposition

4. How much of the difference $R_{2}-R_{1}$ in the crude birth rates in the two populations can be attributed to the difference in their general fertility rates? This amount is the effect of the general fertility rate.
5. As in (4) above, how much of the difference $R_{2}-R_{1}$ is the effect of the proportion of women in the childbearing ages among all women?
6. Again, how much of the difference $R_{2}-R_{1}$ is the effect of the proportion of women in the population?

## Consistency Conditions

The decomposition-standardization methodology should be developed in such a way that the results would satisfy the following relationships:
(i) The difference between the standardized rates in question (1) above should give the answer to question (4).
(ii) The difference between the standardized rates in question (2) should give the answer to question (5).
(iii) The difference between the standardized rates in question (3) should give the answer to question (6).
(iv) The answers to questions (4), (5), and (6) should add up to the total difference $R_{2}-R_{1}$ between the crude birth rates in the two populations.

### 2.2 THE CASE OF TWO FACTORS

Let $\alpha$ and $\beta$ be the two factors so that the rate R can be expressed as

$$
\begin{equation*}
\mathrm{R}=\alpha \beta \tag{2.1}
\end{equation*}
$$

In population 1, $\alpha$ and $\beta$ take on the values $A$ and $B$; in population 2, the corresponding values are $a$ and b. The rates $R_{1}$ and $R_{2}$ in population 1 and population 2 are then

$$
\begin{equation*}
R_{1}=A B, \quad R_{2}=a b \tag{2.2}
\end{equation*}
$$

Following Das Gupta (1991, formula 6), if the factor $a$ differed in the two populations as it did, and if the factor $\beta$ remained the same, we have

$$
\begin{align*}
\beta \text {-standardized rate: in population } 1 & =\frac{b+B}{2} A  \tag{2.3}\\
\text { in population } 2 & =\frac{b+B}{2} a \tag{2.4}
\end{align*}
$$

Similarly, if the factor $\beta$ differed in the two populations while the factor $\alpha$ remained the same, we obtain

$$
\begin{align*}
\alpha \text {-standardized rate: in population } 1 & =\frac{a+A}{2} B,  \tag{2.5}\\
\text { in population } 2 & =\frac{a+A}{2} b . \tag{2.6}
\end{align*}
$$

Again, we can write the $\alpha$-effect and $\beta$-effect as

$$
\begin{align*}
& \alpha \text {-effect }=\frac{b+B}{2}(a-A),  \tag{2.7}\\
& \beta \text {-effect }=\frac{a+A}{2}(b-B) . \tag{2.8}
\end{align*}
$$

We notice that the $\alpha$-effect in (2.7) is the difference between the $\beta$-standardized rates in (2.3) and (2.4), and the $\beta$-effect in (2.8) is the difference between the $\alpha$-standardized rates in (2.5) and (2.6). Again, from (2.2), (2.7), and (2.8), we have the identity

$$
\begin{equation*}
R_{2}-R_{1}=\alpha \text {-effect }+\beta \text {-effect } \tag{2.9}
\end{equation*}
$$

Therefore, all the consistency conditions in section 2.1 for two factors are satisfied.

## Example 2.1

In the data for Black males and White males in table 2.1, equation (2.1) takes on the form

$$
\begin{align*}
& \text { Mean earnings } \\
& \text { based on all }  \tag{2.10}\\
& \text { persons }(R)
\end{aligned} \quad \begin{aligned}
& \text { Mean earnings } \\
& \text { based on those } \\
& \text { who earned }(\alpha)
\end{aligned} \quad \begin{aligned}
& \text { Proportion of } \\
& \text { persons who } \\
& \text { earned }(\beta) \text {. }
\end{align*}
$$

The results shown in table 2.2 can be summarized as follows:

1. The mean earnings (based on all persons) for Black males and White males are $\$ 7,846.56$ and $\$ 13,703.73$, respectively. The difference (total effect) is $\$ 5,857.17$.
2. If the proportions of persons who earned were identical in the two populations, the standardized mean earnings would be $\$ 8,437.23$ and $\$ 12,807.14$, respectively. The difference, $\$ 4,369.91$, gives the effect of the difference in the mean earnings of the earners in the two populations.
3. If the mean earnings of the earners were identical in the two populations, the standardized mean earnings would be $\$ 9,878.55$ and $\$ 11,365.81$, respectively. The difference, $\$ 1,487.26$, gives the effect of the difference in the proportion of earners in the two populations.
4. As expected, the total effect in (1) above is equal to the sum of the effects in (2) and (3). Since both the effects are positive, we can meaningfully express them as percentages of the total effect. Thus, 74.6 percent of the difference between the mean earnings of Black males and White males based on all persons can be attributed to the difference in the mean earnings of the earners. The remaining 25.4 percent can be attributed to the difference in the proportion of earners in the two populations.

Table 2.1. Mean Earnings as the Product of Two Factors for Black Males and White Males, 18 Years and Over: United States, 1980

| Measures | Black males (population 1) | White males (population 2) |
| :---: | :---: | :---: |
|  |  |  |
| $\text { Mean earnings }=\frac{\text { Total population }}{}(=\mathrm{R})$ | \$7,846.56 ( $=\mathrm{R}_{1}$ ) | \$13,703.73 (= $\mathrm{R}_{2}$ ) |
| Total earnings |  |  |
| Persons who earned | \$10,930 ( $=\mathrm{A}$ ) | \$16,591 (=a) |
| Persons who earned |  |  |
| Total population ( $=\beta$ ) | 0.717892 (=B) | 0.825974 (=b) |

Source: U.S. Bureau of the Census (1984a), table 296.
Table 2.2. Standardization and Decomposition of Mean Earnings in Table 2.1

| Measures | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | White males (population 2) | Black males (population 1) | Difference (effects) | Percent distribution of effects |
| $\beta$-standardized mean earnings [Formulas (2.3) and (2.4)] | \$12,807.14 | \$8,437.23 | \$4,369.91 ( $\alpha$-effect) | 74.6 |
| $\alpha$-standardized mean earnings [Formulas (2.5) and (2.6)] | \$11,365.81 | \$9,878.55 | \$1,487.26 <br> ( $\beta$-effect) | 25.4 |
| Mean earnings (R) | \$13,703.73 | \$7,846.56 | $\begin{array}{r} \$ 5,857.17 \\ \text { (Total effect) } \end{array}$ | 100.0 |

### 2.3 THE CASE OF THREE FACTORS

In this case, the rate R can be expressed as

$$
\begin{equation*}
R=\alpha \beta \gamma, \tag{2.11}
\end{equation*}
$$

where $\alpha, \beta$, and $\gamma$ are the three factors. If these factors assume the values $A, B$, and $C$ in population 1 , and $a, b$, and $c$ in population 2, then the rates $R_{1}$ and $R_{2}$ in the two populations are

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{ABC}, \quad \mathrm{R}_{2}=\mathrm{abc} \tag{2.12}
\end{equation*}
$$

From Das Gupta (1991, formula 7), we have

$$
\begin{align*}
\beta \gamma \text {-standardized rate: in population } 1 & =\left[\frac{b c+B C}{3}+\frac{b C+B c}{6}\right] A,  \tag{2.13}\\
\text { in population } 2 & =\left[\frac{b c+B C}{3}+\frac{b C+B C}{6}\right] a,  \tag{2.14}\\
\alpha \gamma \text {-standardized rate: in population } 1 & =\left[\frac{a c+A C}{3}+\frac{a C+A C}{6}\right] B,  \tag{2.15}\\
\text { in population } 2 & =\left[\frac{a c+A C}{3}+\frac{a C+A c}{6}\right] b,  \tag{2.16}\\
\alpha \beta \text {-standardized rate: in population } 1 & =\left[\frac{a b+A B}{3}+\frac{a B+A b}{6}\right] C,  \tag{2.17}\\
\text { in population } 2 & =\left[\frac{a b+A B}{3}+\frac{a B+A b}{6}\right] c . \tag{2.18}
\end{align*}
$$

Also, consistent with the above standardized rates, the factor effects have the following expressions:

$$
\begin{align*}
& \alpha \text {-effect }=\left[\frac{b c+B C}{3}+\frac{b C+B c}{6}\right](a-A),  \tag{2.19}\\
& \beta \text {-effect }=\left[\frac{a c+A C}{3}+\frac{a C+A c}{6}\right](b-B),  \tag{2.20}\\
& \gamma \text {-effect }=\left[\frac{a b+A B}{3}+\frac{a B+A b}{6}\right](c-C) . \tag{2.21}
\end{align*}
$$

It is easy to verify from (2.12) and (2.19) through (2.21) that

$$
\begin{equation*}
\mathrm{R}_{2}-\mathrm{R}_{1}=\alpha \text {-effect }+\beta \text {-effect }+\gamma \text {-effect. } \tag{2.22}
\end{equation*}
$$

## Example 2.2

The data in table 2.3 are for Austria and Chile, 1981, in which equation (2.11) assumes the form, as in Das Gupta (1991, equation 11),

Crude birth rate $(\mathrm{R})=$ General fertility rate ( $\alpha$ )
$x$ Proportion of women in the childbearing ages among all women $(\beta)$
$x$ Proportion of women in the total population $(\gamma)$.

For convenience, i.e., for making the difference $\mathrm{R}_{2}-\mathrm{R}_{1}$ a positive number, we assume Chile, 1981, and Austria, 1981, to be population 2 and population 1, respectively, although the results and the conclusions do not depend on how the two populations are labeled. We will follow this rule of positive $\mathbf{R}_{\mathbf{2}}-\mathbf{R}_{\mathbf{1}}$ in all our examples.

The results in table 2.4 show that the crude birth rates for Chile, 1981, and Austria, 1981, were 32.845 and 12.512, giving a total difference of 20.333 . However, if these rates are standardized with respect to the proportion of women in the childbearing ages among all women and the proportion of women in the population, then the standardized rates become 26.750 and 16.310 , producing a difference of 10.440 , and this difference is the effect of the difference in the general fertility rates. In other words, the difference between the birth rates for Chile and Austria would have been significantly smaller had the factors other than the general fertility rate been identical in the two populations. Other standardized rates in table 2.4 reveal that the effect of the difference in the proportion of women in the childbearing ages was to make the birth rate for Chile 10.559 points higher than that for Austria. On the other hand, the effect of the difference in the proportion of women in the population was to raise the birth rate for Austria 0.666 point above that for Chile. We have expressed the effects in terms of the percentages of the total effect in the last column of table 2.4, and we will show this percent distribution in all our examples. However, it is easier to interpret these percentages when the factor effects are positive, as in Example 2.1. If an effect is negative, we may ignore the percent of this effect in the last column and interpret the result in terms of the numbers in the preceding three columns.

Table 2.3. Crude Birth Rates as the Product of Three Factors: Austria and Chile, 1981

| Measures | Austria, 1981 (population 1) | Chile, 1981 (population 2) |
| :---: | :---: | :---: |
| $\text { Crude birth rate }=\frac{\text { Births } \times 1000}{\text { Total population }}(=R)$ |  |  |
|  | $12.512\left(=R_{1}\right)$ | $32.845\left(=\mathrm{R}_{2}\right)$ |
| $\text { General fertility rate }=\frac{\text { Births } \times 1000}{(=)}$ |  |  |
| General fertility rate $=\overline{\text { Women aged 15-49 }}(=$ | 51.76746 (=A) | 84.90502 (=a) |
| Women aged 15-49 |  |  |
| Total women $\quad(=\beta)$ | 0.45919 (=B) | 0.75756 ( $=\mathrm{b}$ ) |
| Total women |  |  |
| $\overline{\text { Total population }}$ ( $=\gamma$ ) | $0.52638(=C)$ | 0.51065 ( $=\mathrm{c}$ ) |

Source: United Nations (1988, table 23; 1989, table 29).
Table 2.4. Standardization and Decomposition of Crude Birth Rates in Table 2.3

| Measures | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Chile, 1981 (population 2) | Austria, 1981 (population 1) | Difference (effects) | Percent distribution of effects |
| $\beta \gamma$-standardized birth rates <br> [Formulas (2.13) and (2.14)] | 26.750 | 16.310 | $\begin{array}{r} 10.440 \\ (\alpha \text {-effect) } \end{array}$ | 51.4 |
| $\alpha \gamma$-standardized birth rates [Formulas (2.15) and (2.16)] | 26.810 | 16.251 | $\begin{array}{r} 10.559 \\ (\beta \text {-effect }) \end{array}$ | 51.9 |
| $\alpha \beta$-standardized birth rates [Formulas (2.17) and (2.18)] | 21.651 | 22.317 | $\begin{array}{r} -.666 \\ (\gamma \text {-effect }) \end{array}$ | -3.3 |
| Crude birth rates (R) | 32.845 | 12.512 | $\begin{array}{r} 20.333 \\ \text { (Total effect) } \end{array}$ | 100.0 |

### 2.4 THE CASE OF FOUR FACTORS

When there are four factors $\alpha, \beta, \gamma$, and $\delta$, the rate R is written as

$$
\begin{equation*}
\mathrm{R}=\alpha \beta \boldsymbol{\beta} \delta, \tag{2.24}
\end{equation*}
$$

and, using similar notation, we can write the rates in population 1 and population 2 as

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{ABCD}, \quad \mathrm{R}_{2}=\mathrm{abcd} \tag{2.25}
\end{equation*}
$$

From Das Gupta (1991, formula 8), we obtain

$$
\begin{align*}
\beta \gamma \delta \text {-standardized rate: in population } 1 & =\mathrm{QA},  \tag{2.26}\\
\text { in population } 2 & =\mathbf{Q a}, \tag{2.27}
\end{align*}
$$

so that

$$
\begin{equation*}
\alpha \text {-effect }=\mathbf{Q}(a-A), \tag{2.28}
\end{equation*}
$$

where $Q$ is a function of $b, c, d, B, C, D$ given by

$$
\begin{equation*}
Q=Q(b, c, d, B, C, D)=\frac{b c d+B C D}{4}+\frac{b c D+b C d+B c d+B C d+B c D+b C D}{12} \tag{2.29}
\end{equation*}
$$

Other standardized rates and factor effects can be derived easily by interchanging the letters in equations (2.26) through (2.29). For example, the $\alpha \gamma \delta$-standardized rates and $\beta$-effect are obtained by substituting $b, a, B, A$ for $a, b, A, B$, respectively.

## Example 2.3

Table 2.5 provides the data for the example given in Nathanson and Kim (1989). Here, the rates in (2.24) for the White women aged 15 to 19 for 1971 and 1979 are expressed as follows:

> Percentage having nonmarital live births $(\mathrm{R})$
> $=$ Percentage having nonmarital live births among nonmarital pregnancies $(\alpha)$
> $\times$ Proportion of nonmarital pregnancies among sexually active single women $(\beta)$
> $\times$ Proportion of sexually active single women among total single women $(\gamma)$
> $\times$ Proportion of single women among all women ( $\delta$.

The percentages R for 1971 and 1979 are, respectively, 1.434 and 4.423, giving a total difference of 2.989. The eight standardized rates for the two years (standardizing with respect to three factors at a time and allowing the fourth factor to vary) are given in table 2.6. For example, if only the proportions of sexually active single women among total single women ( $\gamma$ ) varied as they did in 1971 and 1979, and all the remaining three factors ( $\alpha, \boldsymbol{\beta}$, and $\delta$ ) were identical in the two years, then the standardized percentages having nonmarital live births would be 1.989 and 3.372 in 1971 and 1979, respectively, producing a difference of 1.383 as the $\gamma$-effect. In other words, as shown in the last column of table 2.6, 46.3 percent of the increase in the percentage having nonmarital live births between 1971 and 1979 can be attributed to the increase in the proportion of sexually active single women among total single women ( $\gamma$ ) in the 8 -year period. We can make similar comments on other standardized rates and factor effects. The decomposition in table 2.6 agrees with the results shown in table 2 of Nathanson and Kim. The extension of this example to all live births as a 6 -factor case is shown in Example 3.6.

## Program 2.1

The results in table 2.6 can be easily obtained by using the computer program in FORTRAN (Program 2.1) in which $P(1, J)$ 's are $A, B, C$, and $D$ and $P(2, J)$ 's are $a, b, c$, and $d$ from table 2.5, the format of the data input being given in line 3 of the program. The subscripts $I$, $J$, and $K$ in $R(I, J, K)$ in line 7 refer to the two populations ( 1 and 2); the four factors ( $1,2,3$, and 4); and the two expressions ( 1 and 2 ) on the right-hand side of (2.29). Attaching a value of 1 to the capital letters and a value of 2 to the small letters in (2.29), and adding these values for each three-letter term, we find that the first expression in (2.29) includes terms with 3 and 6 points; the second expression includes terms with 4 and 5 points. M1 and M2 in lines 16 and 17 of the program for $M=1,2$ give the above two pairs of points, namely, $(3,6)$ and $(4,5)$. $S(1, J)$ 's in line 24 are the eight standardized rates, and $\mathrm{E}(\mathrm{J})$ 's in line 25 are the four factor effects in table 2.6. R2, R1, and T in line 26 are the numbers in the last row of table 2.6 giving $R_{2}$ and $R_{1}$ in (2.25) and their difference.

Table 2.5. Percentage Having Nonmarital Live Births as the Product of Four Factors for White Women Aged 15 to 19: United States, 1971 and 1979

| Measures | 1971 (population 1) | 1979 (population 2) |
| :---: | :---: | :---: |
| Nonmarital live births $\times 100$ |  |  |
| Total women | $1.434\left(=R_{1}\right)$ | $4.423\left(=R_{2}\right)$ |
| Nonmarital live births $\times 100$ |  |  |
| Nonmarital pregnancies $(=\alpha)$ | 25.3 ( $=$ A) | 32.7 (=a) |
| Nonmarital pregnancies |  |  |
| $\overline{\text { Sexually active single women }}$ ( $=\beta$ ) | . 214 (=B) | . 290 (=b) |
| Sexually active single women |  |  |
| Total single women ( $=\boldsymbol{\gamma}$ ) | . 279 (=C) | . 473 ( $=\mathrm{c}$ ) |
| Total single women |  |  |
| Total women ( $=\delta$ ) | . 949 (=D) | . 986 ( $=\mathrm{d}$ ) |

Source: Nathanson and Kim (1989), table 1.

Table 2.6 Standardization and Decomposition of Percentages Having Nonmarital Live Births in Table 2.5

| Measures | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1979 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1971 \\ \text { (population } 1 \text { ) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| $\beta \gamma \delta$-standardized percentages [Formulas (2.26) and (2.27)] | 3.044 | 2.355 | $\begin{array}{r} 0.689 \\ (\alpha \text {-effect) } \end{array}$ | 23.0 |
| aro-standardized percentages | 3.100 | 2.288 | $\begin{array}{r} 0.812 \\ (\beta \text {-effect }) \end{array}$ | 27.2 |
| $\alpha \boldsymbol{\beta}$-standardized percentages | 3.372 | 1.989 | $\begin{array}{r} 1.383 \\ (\gamma \text {-effect) } \end{array}$ | 46.3 |
| $\alpha \beta \gamma$-standardized percentages | 2.792 | 2.687 | $\begin{array}{r} 0.105 \\ (8 \text {-effect) } \end{array}$ | 3.5 |
| Percentages having nonmarital live births (R) | 4.423 | 1.434 | 2.989 (Total effect) | 100.0 |

### 2.5 THE CASE OF FIVE FACTORS

In this case, using analogous notation, we can write the rate as

$$
\begin{equation*}
\mathrm{R}=\alpha \beta \gamma \delta \epsilon, \tag{2.31}
\end{equation*}
$$

which assumes the values

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{ABCDE}, \quad \mathrm{R}_{2}=\text { abcde }, \tag{2.32}
\end{equation*}
$$

## Program 2.1 (Four Factors)



1
RIMENSION
REAL
FORMAT
R

2

3


4
DO
DO
R


6
WRITE
FORMAT
STOX
( STop END

Program 2.2 (Five Factors)

1


3

4 S

N STOP
END
in population 1 and population 2 , respectively.
Using formula 9 in Das Gupta (1991), we have

$$
\begin{align*}
\beta \gamma \delta \epsilon \text {-standardized rate: in population } 1 & =\mathrm{QA},  \tag{2.33}\\
\text { in population } 2 & =\mathrm{Qa}, \tag{2.34}
\end{align*}
$$

so that

$$
\begin{equation*}
\alpha \text {-effect }=Q(a-A), \tag{2.35}
\end{equation*}
$$

where $Q$ is a function of $b, c, d, e, B, C, D, E$ given by

$$
\begin{align*}
Q & =Q(b, c, d, e, B, C, D, E)=\frac{b c d e+B C D E}{5}  \tag{2.36}\\
& +\frac{b c d E+b C D E}{20} \\
& +\frac{b c D E+b c d E}{30}
\end{align*}
$$

Other standardized rates and factor effects follow directly from those in (2.33) through (2.36).

## Example 2.4

Bongaarts (1978) expressed the total fertility rate (TFR) as

$$
\begin{equation*}
T F R=C_{m} \times C_{c} \times C_{a} \times C_{i} \times T F, \tag{2.37}
\end{equation*}
$$

where $C_{m}, C_{c}, C_{a}, C_{1}$ are, respectively, the indices of proportion married, noncontraception, induced abortion, and lactational infecundability, and TF is the total fecundity rate. We can treat equation (2.37) as equation (2.31) expressing $R$ in terms of five factors $a, \beta, \gamma, \delta$, and $\epsilon$. The data corresponding to this equation are given in table 2.7 for South Korea for 1960 and 1970. The results from the application of the standardization and decomposition techniques to these data are shown in table 2.8.

The total fertility rate in South Korea declined 2.08 points during 1960 to 1970, from 6.13 in 1960 to 4.05 In 1970. This decline would have been only 1.23 points (from 5.68 in 1960 to 4.45 in 1970) if only the index of noncontraception ( $\beta$ ) declined as it did during 1960 to 1970, and the other four factors were identical. In other words, 59.1 percent of the total decline in the total fertility rate in the decade can be attributed to the increased use of contraception during the same period. Similar conclusions can be drawn from the other standardized rates and factor effects in table 2.8. Again, we should ignore the negative percents in the last column and interpret these results from the corresponding numbers in the other columns. Although Bongaarts provided the data for this example, he did not do any computations for standardization or decomposition similar to those in table 2.8.

Moreno (1991, table 8) used a shorter version of the model in equation. (2.37) given by

$$
\begin{equation*}
\text { TFR }=\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{c}} \times \mathrm{C}_{l} \times \text { Other, } \tag{2.38}
\end{equation*}
$$

for six Latin American countries to decompose the difference between the total fertility rates from the Worid Fertility Survey and the Demographic and Health Survey, and his results involved interaction terms. The four-factor formulas for standardization and decomposition given in section 2.4 can be easily applied to his data to obtain the results without the interaction terms. The justification for not including the interaction terms separately but absorbing them into the main effects is given in chapter 1.

Table 2.7. Total Fertility Rate as the Product of Five Factors: South Korea, 1960 and 1970

| Measures | 1970 (population 1) | 1960 (population 2) |
| :--- | ---: | ---: |
| Total fertility rate (=R) | $4.05\left(=R_{1}\right)$ | $6.13\left(=R_{2}\right)$ |
| Index of proportion married $(=\alpha)$ | $0.58(=A)$ | $0.72(=a)$ |
| Index of noncontraception $(=\beta)$ | $0.76(=B)$ | $0.97(=b)$ |
| Index of induced abortion $(=\gamma)$ | $0.84(=C)$ | $0.97(=c)$ |
| Index of lactational infecundability $(=\delta)$ | $0.66(=\mathrm{D})$ | $0.56(=d)$ |
| Total fecundity rate $(=\epsilon)$ | $16.573(=\mathrm{E})$ | $16.158(=e)$ |

Source: Bongaarts (1978), table 3.
Table 2.8. Standardization and Decomposition of Total Fertility Rates in Table 2.7

| Measures | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1960 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 1) } \end{array}$ | $\begin{aligned} & \text { Difference } \\ & \text { (effects) } \end{aligned}$ | Percent distribution of effects |
| $\beta \gamma \delta \epsilon$-standardized TFR's [Formulas (2.33) and (2.34)] | 5.61 | 4.52 | $\begin{array}{r} 1.09 \\ (\alpha \text {-effect) } \end{array}$ | 52.4 |
| $\alpha \gamma \delta \epsilon$-standardized TFR's | 5.68 | 4.45 | $\begin{array}{r} 1.23 \\ (\beta \text {-effect) } \end{array}$ | 59.1 |
| $\alpha \beta \delta \epsilon$-standardized TFR's | 5.43 | 4.70 | $\begin{array}{r} 0.73 \\ (\gamma \text {-effect }) \end{array}$ | 35.1 |
| $\alpha \beta \gamma \epsilon$-standardized TFR's | 4.70 | 5.54 | $\begin{array}{r} -0.84 \\ \text {-effect } \end{array}$ | -40.4 |
| $\alpha \beta \gamma \delta$-standardized TFR's | 5.02 | 5.15 | $\begin{array}{r} -0.13 \\ (\epsilon-\text { effect }) \end{array}$ | -6.2 |
| Total fertility rates (R) | 6.13 | 4.05 | (Total effect) | 100.0 |

## Program 2.2

The results in table 2.8 can be obtained from Program 2.2, which is almost identical with Program 2.1 except for the minor changes needed for the change in the number of factors from four to five. As before, $P(I, J)$ 's are input data $A, B, C, D, E$ and $a, b, c, d$, e from table 2.7. The subscripts $I, J, K$ in $R(I, J, K)$ in this program refer to the two populations, the five factors, and the three expressions on the right-hand side of (2.36). Again, attaching a value of 1 to the capital letters and a value of 2 to the small letters in (2.36), and then adding these values for each four-letter term, we find that the first, second, and third expressions in (2.36) include terms with points (4,8), ( 5,7 ), and 6, respectively. Accordingly, N1 and N2 in lines 17 and 18 correspond to the three pairs $(4,8),(5,7)$, and $(6,6)$. As in Program 2.1, $S(1, J)$ 's in line 26 are the 10 standardized rates, and $E(J)$ 's in line 27 are the five factor effects in table 2.8. Again, R2, R1, and T in line 28 give the numbers in the last row of table 2.8 .

### 2.6 THE CASE OF SIX FACTORS

When there are six factors so that

$$
\begin{equation*}
\mathrm{R}=\alpha \beta \gamma \delta \epsilon \eta, \tag{2.39}
\end{equation*}
$$

and in the two populations,

$$
\begin{equation*}
\mathrm{R}_{1}=\mathrm{ABCDEF}, \quad \mathrm{R}_{2}=\text { abcdef } \tag{2.40}
\end{equation*}
$$

then, formula 10 in Das Gupta (1991) gives

$$
\begin{align*}
\beta \gamma \delta \epsilon \eta \text {-standardized rate: in population } 1 & =\mathrm{QA},  \tag{2.41}\\
\text { in population } 2 & =\mathbf{Q a}, \tag{2.42}
\end{align*}
$$

so that

$$
\begin{equation*}
\alpha \text {-effect }=Q(a-A), \tag{2.43}
\end{equation*}
$$

where

$$
\begin{align*}
& Q=Q(b, c, d, e, f, B, C, D, E, F)=\frac{b c d e f+B C D E F}{6} \\
&+\frac{b c d e F+b C D E F}{30} \\
&+\frac{\begin{array}{c}
b c d E F+b C d e f
\end{array}}{+B C D e f+B c D E F} .
\end{align*}
$$

Other rates and effects can be easily obtained from (2.41) through (2.44).

### 2.7 THE CASE OF P FACTORS

Let us write the rate as the product of $\mathbf{P}$ factors as

$$
\begin{equation*}
\mathrm{R}=\alpha_{1} \alpha_{2} \ldots \alpha_{\mathrm{p}} . \tag{2.45}
\end{equation*}
$$

In the two populations, this rate assumes the values

$$
\begin{equation*}
R_{1}=A_{1} A_{2} \ldots A_{p}, \quad R_{2}=a_{1} a_{2} \ldots a_{p} . \tag{2.46}
\end{equation*}
$$

It follows from formula A6 in Das Gupta (1991) that

$$
\begin{align*}
& \alpha_{2} \alpha_{3} \ldots \alpha_{\mathrm{p}} \text {-standardized rate: in population } 1=Q A_{1},  \tag{2,47}\\
& \text { in population } 2=\mathrm{Qa} 1_{1}, \tag{2.48}
\end{align*}
$$

so that

$$
\begin{equation*}
\alpha_{1} \text {-effect }=Q\left(a_{1}-A_{1}\right) \text {, } \tag{2.49}
\end{equation*}
$$

where

$$
Q=Q\left(a_{2}, a_{3}, \ldots, a_{p}, A_{2}, A_{3}, \ldots, A_{p}\right)=\frac{a_{2} a_{3} \ldots a_{p}+A_{2} A_{3} \ldots A_{p}}{P}
$$




$$
=\sum_{r=1}^{s} \frac{\begin{array}{c}
+\ldots . . . . . . . . . \\
\text { sum of all }(P-1) \text {-letter terms with }(P-r) \text { small letters and }(r-1) \\
\text { capital letters or }(P-r) \text { capital letters and }(r-1) \text { small letters } \tag{2.50}
\end{array}}{P\binom{P-1}{r-1}},
$$

where

$$
\begin{aligned}
S & =P / 2, \text { when } P \text { is even }, \\
& =(P+1) / 2, \text { when } P \text { is odd. }
\end{aligned}
$$

### 2.8 THE GENERAL PROGRAM

From Programs 2.1 and 2.2 corresponding to four and five factors, it is clear how to develop a FORTRAN program for any number of factors higher than five. However, it is not necessary to use different programs for data involving different numbers of factors. A program written for, say, 10-factor data can be used for any number of factors not exceeding 10 by changing the expression for the rate $R$ and the input and output statements and formats in the program. No changes are necessary in the data files previously created to be used with the specific programs.

Assuming that no one is expected to deal with more than 10 multiplicative factors, we provide below a program (Program 2.3) for 10 factors that can be used as a general program for any number of factors up to 10. In order to show how to use this program for a smaller number of factors, we again consider Examples 2.1 through 2.4 involving two to five factors, and indicate the changes in the input and output statements (lines 2,42); the input and output formats (lines 3,43); and in the expression for the rate (lines 18,19 ) in Program 2.3 that are necessary in these examples to generate the results in tables 2.2, 2.4, 2.6, and 2.8, respectively:

Example 2.1 (two factors)
Lines 2,42: Replace 10 in each line by 2
Lines 3,43: Replace (10F8.4) by (F8.0, F8.6) and 15.3 by 15.2
Lines 18,19: Replace the two lines by $H=P(I, 1)^{*} P(J, 2)$
Example 2.2 (three factors)
Lines 2,42: Replace 10 in each line by 3
Lines 3,43: Replace (10F8.4) by (3F10.5) and no change in line 43
Lines 18,19: Replace the two lines by $H=P(1,1)^{*} P(J, 2)^{*} P(K, 3)$
Example 2.3 (four factors)
Lines 2,42: Replace 10 in each line by 4
Lines 3,43: Replace (10F8.4) by (F6.1, 3F6.3) and no change in line 43
Lines 18,19: Replace by $H=P(1,1)^{*} P(J, 2) * P(K, 3) * P(L, 4)$
Example 2.4 (five factors)
Lines 2,42: Replace 10 in each line by 5
Lines 3,43: Replace (10F8.4) by (4F8.2, F8.3) and 15.3 by 15.2
Lines 18,19: Replace by $H=P(I, 1) * P(J, 2) * P(K, 3) * P(L, 4)^{*} P(M, 5)$.

Program 2.3 (General Program for up to Ten Factors)

[^0]
## Chapter 3. Rate as a Function of Factors

### 3.1 INTRODUCTION

A more general case of standardization and decomposition than that in the preceding chapter is the situation in which the rate can be expressed as any function of two or more factors. Obviously, the rate expressed as the product of factors in chapter 2 is a special case of the present situation. To give an example of a rate that is a function of factors, Pullum, Tedrow, and Herting (1989) expressed the mean parity of a cohort of women as a function of the parity progression ratios (Example 3.7). Again, based on the study by Wojtkiewicz, McLanahan, and Garfinkel (1990), the family headship rate of mothers can be expressed as a function of six factors (Example 3.5). These and other examples of rates expressed as functions of factors are used in this chapter to illustrate the standardization of rates and the corresponding decomposition of rate differences.

### 3.2 THE CASE OF TWO FACTORS

If there are two factors $\alpha$ and $\beta$, the rate $R$ in this case is a function given by

$$
\begin{equation*}
R=F(\alpha, \beta) . \tag{3.1}
\end{equation*}
$$

If the factors $\alpha$ and $\beta$ take on the values $A$ and $B$ in population 1 and the values $a$ and $b$ in population 2, then the rates $R_{1}$ and $R_{2}$ in population 1 and population 2 are

$$
\begin{equation*}
R_{1}=F(A, B), \quad R_{2}=F(a, b) \tag{3.2}
\end{equation*}
$$

If the factor $\alpha$ differed in the two populations as it did, and if the factor $\beta$ remained the same, then it follows from Das Gupta (1991, formula 1) that

$$
\begin{align*}
\beta \text {-standardized rate: in population } 1 & =\frac{F(A, b)+F(A, B)}{2},  \tag{3.3}\\
\text { in population } 2 & =\frac{F(a, b)+F(a, B)}{2} . \tag{3.4}
\end{align*}
$$

Similarly, if the factor $\beta$ differed in the two populations and the factor $\alpha$ remained the same, we have

$$
\begin{align*}
\alpha \text {-standardized rate: in population } 1 & =\frac{F(a, B)+F(A, B)}{2},  \tag{3.5}\\
\text { in population } 2 & =\frac{F(a, b)+F(A, b)}{2} . \tag{3.6}
\end{align*}
$$

The $\alpha$-effect, as the difference between (3.3) and (3.4), and the $\beta$-effect, as the difference between (3.5) and (3.6), are

$$
\begin{align*}
& \alpha \text {-effect }=\frac{[F(a, b)-F(A, b)]+[F(a, B)-F(A, B)]}{2},  \tag{3.7}\\
& \beta \text {-effect }=\frac{[F(a, b)-F(a, B)]+[F(A, b)-F(A, B)]}{2} \tag{3.8}
\end{align*}
$$

It is easy to verify from (3.2), (3.7), and (3.8) that the sum of the two effects is equal to the difference between the two rates, as in (2.9).

## Example 3.1

In the data for 1940 and 1960 in table 3.1, equation (3.1) takes on the form

$$
\begin{align*}
& \text { Crude rate of natural }=\underset{\text { Crude birth }}{\text { increase }(\mathrm{R})} \quad \text { Crude death }(\alpha) \quad \text { rate }(\beta) \tag{3.9}
\end{align*}
$$

As shown in table 3.2, the crude rates of natural increase in 1940 and 1960 are 8.60 and 14.20, respectively, their difference being 5.60 (the total effect). If the death rates were identical in the two years, the standardized rates of natural increase would be 9.25 and 13.55, respectively, their difference of 4.30 giving the effect of the difference in the birth rates in the two years. Similarly, the rates of natural increase standardized for birth rate are 10.75 and 12.05 for 1940 and 1960 , their difference of 1.30 indicating the effect of the difference in the death rates. As expected, the birth-rate effect and the death-rate effect add up to the total effect. In terms of percentages, 76.8 percent of the change in the rate of natural increase during 1940-1960 can be attributed to the difference in the birth rates and the remaining 23.2 percent, to the difference in the death rates.

Table 3.1 Crude Rate of Natural Increase as a Function of Crude Birth Rate and Crude Death Rate: United States, 1940 and 1960

| Measures | 1940 (population 1) | 1960 (population 2) |
| :--- | ---: | ---: |
| Crude rate of natural increase | $8.6\left(=R_{1}\right)$ | $14.2\left(=R_{2}\right)$ |
| $=\frac{(\text { Births }- \text { Deaths }) \times 1000}{\text { Total population }}=F(\alpha, \beta)=\alpha-\beta(=R)$ |  |  |
| Crude birth rate $=\frac{\text { Births } \times 1000}{\text { Total population }(=\alpha)}$ | $19.4(=A)$ | $23.7(=\mathrm{a})$ |
| Crude death rate $=\frac{\text { Deaths } \times 1000}{\text { Total population }}(=\beta)$ | $10.8(=\mathrm{B})$ | $9.5(=\mathrm{b})$ |

Source: National Center for Health Statistics (1990a, table 1-1; 1990b, table 1-2).

Table 3.2. Standardization and Decomposition of Crude Rates of Natural Increase in Table 3.1

| Measures | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1960 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1940 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| $\beta$-standardized rate of natural increase [Formulas (3.3) and (3.4)] | 13.55 | 9.25 | $\begin{array}{r} 4.30 \\ (\alpha \text {-effect) } \end{array}$ | 76.8 |
| $\alpha$-standardized rate of natural increase [Formulas (3.5) and (3.6)] | 12.05 | 10.75 | $\begin{array}{r} 1.30 \\ (\beta \text {-effect }) \end{array}$ | 23.2 |
| Crude rate of natural increase (R) | 14.20 | 8.60 | (Total effect) | 100.0 |

### 3.3 THE CASE OF THREE FACTORS

In this case, the rate R can be expressed as

$$
\begin{equation*}
R=F(\alpha, \beta, \gamma), \tag{3.10}
\end{equation*}
$$

where $\alpha, \beta$, and $\gamma$ are the three factors. If these factors assume the values $\mathrm{A}, \mathrm{B}$, and C in population 1 and $a, b$, and $c$ in population 2, then the rates in the two populations are

$$
\begin{equation*}
R_{1}=F(A, B, C), R_{2}=F(a, b, c) . \tag{3.11}
\end{equation*}
$$

It follows from equation (2) in Das Gupta (1991) that

$$
\begin{align*}
\beta \gamma \text {-standardized rate: in population } 1 & =Q(A),  \tag{3.12}\\
\text { in population } 2 & =Q(a),  \tag{3.13}\\
\alpha \gamma \text {-standardized rate: in population } 1 & =Q(B),  \tag{3.14}\\
\text { in population } 2 & =Q(\mathrm{~b}),  \tag{3.15}\\
\alpha \beta \text {-standardized rate: in population } 1 & =Q(C),  \tag{3.16}\\
\text { in population } 2 & =Q(\mathrm{c}), \tag{3.17}
\end{align*}
$$

so that

$$
\begin{align*}
& \alpha \text {-effect }=Q(a)-Q(A),  \tag{3.18}\\
& \beta \text {-effect }=Q(b)-Q(B),  \tag{3.19}\\
& \gamma \text {-effect }=Q(c)-Q(C), \tag{3.20}
\end{align*}
$$

where

$$
\begin{align*}
& Q(A)=Q(A ; b, c, B, C)=\frac{F(A, b, c)+F(A, B, C)}{3}+\frac{F(A, b, C)+F(A, B, c)}{6},  \tag{3.21}\\
& Q(B)=Q(B ; a, c, A, C)=\frac{F(a, B, c)+F(A, B, C)}{3}+\frac{F(a, B, C)+F(A, B, c)}{6},  \tag{3.22}\\
& Q(C)=Q(C ; a, b, A, B)=\frac{F(a, b, C)+F(A, B, C)}{3}+\frac{F(a, B, C)+F(A, b, C)}{6}, \tag{3.23}
\end{align*}
$$

and $Q(a), Q(b)$, and $Q(c)$ are, respectively, the same expressions as those in (3.21), (3.22), and (3.23) with $A, B$, and $C$ replaced by $a, b$, and $c$.

We can verify from (3.11) and (3.18) through (3.20) that the three effects add up to the difference between the two rates, as in (2.22). The derivation of effects (3.18) through (3.20) and also their expressions when interactions between the factors are allowed are shown in sections A. 1 and A. 2 in appendix A .

## Example 3.2

The data in table 3.3 for White women in the United States for 1963 and 1983 express the illegitimacy ratio (the ratio of births to unmarried women to total births) as

$$
\begin{equation*}
\frac{1}{I+L}=\frac{\frac{U}{W} \cdot \frac{1}{U}}{\frac{U}{W} \cdot \frac{1}{U}+\frac{M}{W} \cdot \frac{L}{M}} \tag{3.24}
\end{equation*}
$$

where $U, M$, and $W$ are unmarried, married, and total women in the childbearing ages 15 to 44, and $I$ and L are births to unmarried and married women.

Using our notation, equation (3.24) can be written as

$$
\begin{equation*}
R=F(\alpha, \beta, \gamma)=\frac{\alpha \beta}{\alpha \beta+(1-\alpha) \gamma} \tag{3.25}
\end{equation*}
$$

where $\alpha, \beta, \gamma$ represent, respectively, the proportion of unmarried women in the childbearing ages, the nonmarital general fertility rate, and the marital general fertility rate.

Table 3.4 shows that there was an increase of 94.23 in the illegitimacy ratio per 1,000 births in the 20 -year period, from 30.95 in 1963 to 125.18 in 1983 . If only the nonmarital general fertility rate ( $\beta$ ) changed as it did during the two decades but the other two factors were identical, the illegitimacy ratios in 1963 and 1983 would be 50.89 and 87.63 , their difference of 36.74 being the effect of the change in $\beta$. In other words, only 39.0 percent of the increase in the illegitimacy ratio during 1963-1983 can be attributed to the increase in nonmarital fertility. From the other standardized illegitimacy ratios in table 3.4, it follows that the increase in the proportion of unmarried women and the decrease in marital fertility during the period explain, respectively, 35.4 percent and 25.6 percent of the total increase in the illegitimacy ratio. This example will be discussed again in Example 4.4 with expanded data incorporating age.

Table 3.3. Illegitimacy Ratio for Whites as a Function of Three Factors: United States, 1963 and 1983

| Measures | 1963 (population 1) | 1983 (population 2) |
| :--- | ---: | ---: |
| Mlegitimacy ratio $(=\mathrm{R})$ | $.03095\left(=\mathrm{R}_{1}\right)$ | $.12518\left(=\mathrm{R}_{2}\right)$ |
| Proportion unmarried among women aged 15 to 44 years $(=\alpha)$ | $.295876(=\mathrm{A})$ | $.416950(=\mathrm{a})$ |
| Nonmarital general fertility rate $(=\beta)$ | $.010569(=\mathrm{B})$ | $.019025(=\mathrm{b})$ |
| Marital general fertility rate $(=\gamma)$ | $.139055(=\mathrm{C})$ | $.095082(=\mathrm{c})$ |

Source: Smith and Cutright (1988), table 2.

Table 3.4. Standardization and Decomposition of Illegitimacy Ratios in Table 3.3
(For convenience, results obtained from data in table 3.3 are multiplied by 1,000 before presenting them in table 3.4)

| Measures | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1983 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1963 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| $\beta \gamma$-standardized illegitimacy ratios | 86.04 | 52.67 | $\begin{array}{r} 33.37 \\ (\alpha \text {-effect) } \end{array}$ | 35.4 |
| $\alpha \boldsymbol{\gamma}$-standardized iliegitimacy ratios | 87.63 | 50.89 | $\begin{array}{r} 36.74 \\ (\beta \text {-effect) } \end{array}$ | 39.0 |
| $\alpha \beta$-standardized illegitimacy ratios | 81.80 | 57.68 | $\begin{array}{r} 24.12 \\ (\gamma \text {-effect }) \end{array}$ | 25.6 |
| Illegitimacy ratios (R) | 125.18 | 30.95 | 94.23 (Total effect) | 100.0 |

## Program 3.1

The results in table 3.4 can be obtained by using Program 3.1 in which $P(1, J)$ 's are A, B, and C and $P(2, J)$ 's are $a, b$, and $c$ from table 3.3, the format of the data input being given in line 3 of the program. The subscripts $\mathrm{I}, \mathrm{J}$, and K in $\mathrm{R}(\mathrm{I}, \mathrm{J}, \mathrm{K})$ in line 7 refer to the two populations, the three factors, and the two expressions on the right-hand sides of (3.21) through (3.23). Taking any one of these three equations, say, $Q(A)$ in (3.21), we leave the argument $A$ untouched but attach a value of 1 to the other capital letters and a value of 2 to the small letters, and add these two values of the arguments for each $F$. We find that the first expression in (3.21) includes F's with a total of 2 and 4 points for the arguments. The second expression includes F's with a total of 3 points. $L 1$ and $L 2$ in lines 15 and 16 of the program for $L=1,2$

## Program 3.1 (Three Factors)



Program 3.2 (Four Factors)

1

FORMAT $4 F 10$
DO $2=1,2$
DO
2 $\begin{array}{ll}D O & 2 \\ D O & 2\end{array}$
$k(I, J, K)=0.0$
DO
DO
DO
DO

3 DO $\frac{1}{5}+J+K$.


WRITE $(6,6)(S(2, J), S(1, J), E(J), J=1,4), R 2, R 1, T$
FORMAT $40 X, 3 F\{5,3)$
$6 \begin{aligned} & \text { FORMA } \\ & \text { STOP } \\ & \text { END }\end{aligned}$
give the above two pairs of points, namely, $(2,4)$ and $(3,3) . \mathrm{H}$ in line 11 is the expression for the rate R in (3.25). $S(1, J)$ 's in line 22 are the six standardized rates, and $E(J)$ 's in line 23 are the three factor effects in table 3.4. R2, R1, and $T$ in line 24 are the numbers in the last row of table 3.4 giving $R_{2}$ and $R_{1}$ in (3.11) and their difference.

### 3.4 THE CASE OF FOUR FACTORS

When there are four factors $\alpha, \beta, \gamma$, and $\delta$, the rate R is written as

$$
\begin{equation*}
R=F(\alpha, \beta, \gamma, \delta), \tag{3.26}
\end{equation*}
$$

and, using similar notation, we can write the rates in population 1 and population 2 as

$$
\begin{equation*}
R_{1}=F(A, B, C, D), R_{2}=F(a, b, c, d) . \tag{3.27}
\end{equation*}
$$

It follows from equation (3) in Das Gupta (1991) that

$$
\begin{align*}
\beta \gamma \delta \text {-standardized rate: in population } 1 & =Q(A),  \tag{3.28}\\
\text { in population } 2 & =Q(a), \tag{3.29}
\end{align*}
$$

so that

$$
\begin{equation*}
\alpha \text {-effect }=Q(a)-Q(A), \tag{3.30}
\end{equation*}
$$

where

$$
\begin{gather*}
Q(A)=Q(A ; b, c, d, B, C, D)=\frac{F(A, b, c, d)+F(A, B, C, D)}{4} \\
+\frac{F(A, b, c, D)+F(A, b, C, D)}{12}, \tag{3.31}
\end{gather*}
$$

and $Q(a)$ is the same expression as that in (3.31) with $A$ replaced by a.
Other standardized rates and factor effects can be derived easily by interchanging the letters in equations (3.28) through (3.31).

## Example 3.3

This is an extended version of Example 2.2 in which the data on marital and nonmarital births are used for Austria and Chile, 1981, as given in table 3.5. In this case, equation (3.26) assumes the form

$$
\begin{equation*}
R=[\alpha \beta+\delta(1-\beta)] \gamma, \tag{3.32}
\end{equation*}
$$

where $R=$ Crude birth rate per 1,000 population,
$\alpha=$ Marital general fertility rate
$=$ Marital births per 1,000 married women aged 15 to 49,
$\beta=$ Proportion of married women among all women aged 15 to 49,
$\gamma=$ Proportion of women aged 15 to 49 in the total population,
$\epsilon=$ Nonmarital general fertility rate
$\delta=$ Nonmarital births per 1,000 unmarried women aged 15 to 49 .

As shown in table 3.6, the crude birth rates for Chile, 1981, and Austria, 1981, were 32.845 and 12.512, giving a total difference of 20.333 . If the proportion of women aged 15 to 49 in the population ( $\gamma$ ) differed as it did in the two populations, but all other factors remained identical, then the standardized birth rates for Chile and Austria would be 26.497 and 16.556, their difference of 9.941 being the $\gamma$-effect. In other words, 48.9 percent of the excess of the crude birth rate in Chile over Austria is explained by the significantly higher ratio of women in the childbearing ages to the total population in Chile compared with that in Austria. Although the data in Example 2.2 are not exactly the same, this percentage of 48.9 is roughly equal to the combined effect of 48.6 percent for the factors $\beta$ and $\gamma$ in Example 2.2, as expected. If only the proportion of married women among all women in the childbearing ages ( $\beta$ ) varied as it did; the birth rate in Austria would be 0.994 point higher than that in Chile. As before, the negative percent in the last column should be ignored, and the corresponding numbers in the three preceding columns should be used for interpretation.

Table 3.5. Crude Birth Rate as a Function of Four Factors: Austria and Chile, 1981

| Measures | Austria, 1981 <br> (population 1) | Chile, 1981 <br> (population 2) |
| :--- | ---: | ---: |
| Crude birth rate $=\frac{\text { Births } \times 1000}{\text { Total population }}(=\mathrm{R})$ |  |  |
| Marital general fertility rate per $1,000(=\alpha)$ | $12.512\left(=\mathrm{R}_{1}\right)$ | $32.845\left(=\mathrm{R}_{2}\right)$ |
| Proportion married among women aged 15 to $49(=\beta)$ | $71.83691(=\mathrm{A})$ | $115.73732(=\mathrm{a})$ |
| Proportion of women aged 15 to 49 in the population $(=\gamma)$ | $0.58048(=\mathrm{B})$ | $0.52500(=\mathrm{b})$ |
| Nonmarital general fertility rate per 1,000 $(=\delta)$ | $0.24171(=\mathrm{C})$ | $0.38685(=\mathrm{c})$ |

Source: United Nations (1988, tables 23, 33; 1989; table 29).

Table 3.6. Standardization and Decomposition of Crude Birth Rates in Table 3.5

| Measures | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Chile, 1981 (population 2) | Austria, 1981 (population 1) | $\begin{array}{r} \text { Difference } \\ \text { (effects) } \end{array}$ | Percent distribution of effects |
| $\beta \gamma \delta$-standardized birth rates | 25.496 | 17.899 | $\begin{array}{r} 7.597 \\ (\alpha-\text { effect }) \end{array}$ | 37.4 |
| $\alpha \gamma \delta$-standardized birth rates | 21.493 | 22.487 | $\begin{array}{r} -0.994 \\ (\beta \text {-effect }) \end{array}$ | -4.9 |
| $\alpha \beta \delta$-standardized birth rates | 26.497 | 16.556 | $\begin{array}{r} 9.941 \\ (\gamma \text {-effect }) \end{array}$ | 48.9 |
| $\alpha \beta \gamma$-standardized birth rates | 23.638 | 19.849 | $\begin{array}{r} 3.789 \\ (\delta \text {-effect) } \end{array}$ | 18.6 |
| Crude birth rates (R) | 32.845 | 12.512 | 20.333 (Total effect) | 100.0 |

## Program 3.2

The results in table 3.6 can be obtained by using Program 3.2. This program is identical to Program 2.1 except for lines 3 and 12. The interpretations of the variables in Program 3.2 are the same as those for Program 2.1, except that the attachment of values of 1 and 2 should be described in a little different way, as indicated in the text for Program 3.1. Line 3 in Program 3.2 is consistent with the data format in table 3.5 (which is different from the data format in table 2.5). Also, H in Line 12 of Program 3.2 gives the expression for $R$ in (3.32), whereas the same line in Program 2.1 gives the expression for $R$ in (2.24).

### 3.5 THE CASE OF FIVE FACTORS

In this case, using analogous notation, we can write the rate as

$$
\begin{equation*}
R=F(\alpha, \beta, \gamma, \delta, \epsilon), \tag{3.33}
\end{equation*}
$$

which assumes the values

$$
\begin{equation*}
R_{1}=F(A, B, C, D ; E), R_{2}=(a ; b, c, d, e), \tag{3:34}
\end{equation*}
$$

in population 1 and population 2 , respectively.
Using formula (4) in Das Gupta (1991), we have

$$
\begin{align*}
\beta \gamma \delta \epsilon \text {-standardized rate: in population } 1 & =Q(A),  \tag{3.35}\\
\text { in population } 2 & =Q(a), \tag{3.36}
\end{align*}
$$

so that

$$
\begin{equation*}
\alpha \text {-effect }=\mathbf{Q}(\mathbf{a})-\mathbf{Q}(\mathrm{A}), \tag{3.37}
\end{equation*}
$$

where

$$
\begin{align*}
& Q(A)=Q(A ; b, c, d, e, B, C, D, E)=\frac{F(A, b, c, d, e)+F(A, B, C, D, E)}{5} \\
& +\frac{F(A, b, c, d, E)+F(A, b, c, D, e)+F(A, b, C, d, e)+F(A, B, c, d, e)}{+F(A, B, C, D, e)+F(A, B, C, d, E)+F(A, B, c, D, E)+F(A, b, C, D, E)}  \tag{3.38}\\
& 20
\end{aligned}+\begin{aligned}
& F(A, b, c, D, E)+F(A, b, C, d, E)+F(A, b, C, D, e) \\
& +F(A, B, C, d, e)+F(A, B, c, D, e)+F(A, B, c, d, E) \\
& +\frac{20}{}
\end{align*}
$$

and $Q(a)$ is the same expression as that in (3.38) with $A$ replaced by a.
Other standardized rates and factor effects follow directly from those in (3.35) through (3.38).

## Example 3.4

This is a further extension of Example 3.3 in which the data on total women are used explicitly for Austria and Chile, 1981, as shown in table 3.7. In this case, equation (3.33) assumes the form

$$
\begin{equation*}
R=[\alpha \beta+\epsilon(1-\beta)] \gamma \delta, \tag{3.39}
\end{equation*}
$$

where $R=$ Crude birth rate per 1,000 population,
$\alpha=$ Marital general fertility rate per 1,000 ,
$\beta=$ Proportion of married women among all women aged 15 to 49,
$\gamma=$ Proportion of women aged 15 to 49 among all women,
$\delta=$ Proportion of women in the total population,
$\epsilon=$ Nonmarital general fertility rate per 1,000 .

The results in table 3.8 are virtually identical with those in table 3.6 except for the fact that the factor $\gamma$ in Example 3.3 is broken down into two factors $\gamma$ and $\delta$ in Example 3.4. We now see that as high as 52.1 percent of the difference between the crude birth rates of Chile and Austria is explained by the substantially higher proportion of women in the childbearing ages among all women in Chile relative to that in Austria. On the other hand, a smaller proportion of women in the population in Chile had a negative effect on the difference between the birth rates; that is, if all other four factors (except $\delta$ ) were identical, the birth rate in Chile would be 0:668 point less than that in Austria.

Table 3.7. Crude Birth Rate as a Function of Five Factors: Austria and Chile, 1981

| Measures | Austria, 1981 <br> (population 1) | Chile, 1981 <br> (population 2) |
| :--- | ---: | ---: |
| Crude birth rate $=\frac{\text { Births } \times 1000}{\text { Total population }}(=\mathrm{R})$ | $12.512\left(=\mathrm{R}_{1}\right)$ | $32.845\left(=\mathrm{R}_{2}\right)$ |
| Marital general fertility rate per 1,000 $(=\alpha)$ | $71.83691(=\mathrm{A})$ | $115.73732(=\mathrm{a})$ |
| Proportion married among women aged 15 to $49(=\beta)$ | $0.58048(=\mathrm{B})$ | $0.52500(=\mathrm{b})$ |
| Proportion of women aged 15 to 49 among all women $(=\gamma)$ | $0.45919(=\mathrm{C})$ | $0.75756(=\mathrm{c})$ |
| Proportion of women in the population $(=\delta)$ | $0.52638(=\mathrm{D})$ | $0.51065(=\mathrm{d})$ |
| Nonmarital general fertility rate per $1,000(=\epsilon)$ | $23.99823(=\mathrm{E})$ | $50.82674(=\mathrm{e})$ |

Source: See the footnote of table 3.5.

Table 3.8. Standardization and Decomposition of Crude Birth Rates in Table 3.7

| Measures | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Chile, 1981 (population 2) | Austria, 1981 (population 1) | Difference (effects) | Percent distribution of effects |
| $\beta \gamma \delta \epsilon$-standardized birth rates | 25.559 | 17.943 | $\begin{array}{r} 7.616 \\ \text { ( } \alpha \text {-effect) } \end{array}$ | 37.4 |
| $a \boldsymbol{\gamma} \boldsymbol{\delta} \boldsymbol{\epsilon}$-standardized birth rates | 21.545 | 22.542 | $\begin{array}{r} -0.997 \\ (\beta-\text { effect }) \end{array}$ | -4.9 |
| $\boldsymbol{a} \boldsymbol{\beta} \boldsymbol{\epsilon}$-standardized birth rates | 26.872 | 16.288 | $\begin{array}{r} 10.584 \\ (\gamma-\text { effect }) \end{array}$ | 52.1 |
| $\boldsymbol{\alpha} \boldsymbol{\beta} \boldsymbol{\gamma} \epsilon$-standardized birth rates | 21.700 | 22.368 | $\begin{array}{r} -0.668 \\ (\delta \text {-effect }) \end{array}$ | -3.3 |
| $\boldsymbol{\alpha} \boldsymbol{\beta \gamma \delta} \mathbf{\delta}$-standardized birth rates | 23.686 | 19.898 | $\begin{array}{r} 3.798 \\ (\epsilon-\text { effect }) \end{array}$ | 18.7 |
| Crude birth rates (R) | 32.845 | 12.512 | $\begin{array}{r} 20.333 \\ \text { (Total effect) } \end{array}$ | 100.0 |

## Program 3.3

We can obtain the results in table 3.8 by using Program 3.3. This program is identical with Program 2.2 except for lines 3, 13, and 30. The interpretations of the variables in Program 3.3 are the same as those for Program 2.2 except for the manner in which the values 1 and 2 are attached, as described in the text for Program 3.1. Lines 3 and 30 in Program 3.3 are different because the formats of the input and output data in tables 3.7 and 3.8 are different from the corresponding formats in tables 2.7 and 2.8. Again, H in line 13 of Program 3.3 gives the expression for $R$ in (3.39), whereas the same line in Program 2.2 expresses R in (2.31).

### 3.6. THE CASE OF SIX FACTORS

When there are six factors so that

$$
\begin{equation*}
R=F(\alpha, \beta, \gamma, \delta, \epsilon, \eta), \tag{3.40}
\end{equation*}
$$

and in the two populations,

Program 3.3 (Five Factors)


```
    \(H=(P(I, 1) * P(U 2)+P(M, 5) *\)
\(I F\)
\(I F\)
\(I+J+K+L+M . E Q .5\)
\(I+J+K+L+M . E Q .10)\)
    DO \(3 \quad \mathrm{~N}=1,3\)
    \(\mathrm{N} 1=\mathrm{N}+3\)
    \(\mathrm{N} 2=12-\mathrm{N} 1\)
    \(N 2=12-N 1 . E M \cdot E Q \cdot N 1 \cdot O R \cdot U+K+L+M . E Q \cdot N 2) R(I, 1, N)=R(I, 1, N)+H\)
```




```
    S (I, J) \(=R\left(I, J_{2} 1\right) / 5,+R(I, J, 2) / 20 .+R(I, U, 3) / 30\).
```



```
    WRITE \((6,6)(S(2, J), S(1, J), E(J), J=1,5), R 2, R 1, T\)
    STOP
```

1

3
6

Program 3.4 (Six Factors)

1
DIMENSION P(2, 6), R(2,6,3), E(6),S(2,6)
DO $2 I=1,2$
DO $2 \quad$ (F5.
2

$$
\begin{aligned}
& \text { Do } 2, J=1: 6 \\
& D O 2 K=1 ; 3 \\
& R(I, U)=0 .
\end{aligned}
$$

3

4
6
$H=P(I, 1) * P(J, 2) * P(K, 3) * P(L, 4)$
$I F(I+J+K+L+M+N . E Q .6)$
$I F 1=H$
IF $\left\{\begin{array}{l}I+U+K+L+M+N . E Q . \\ I\end{array}\right.$
DO 3 KK=1,3.
$K 1=K K+4$
$K 2=15-K 1$
$I F(J+K+L+M+N \cdot E Q \cdot K 1 \cdot Q R \cdot U+K+L+M+N \cdot E Q \cdot K 2) \quad R(I, 1, K K)=R(I, 1, K K)+H$


1
1
$001+K+K+N$.
DO $4 \quad I=1,2$
 STOP

$$
\begin{equation*}
R_{1}=F(A, B, C, D, E, F), R_{2}=(a, b, c, d, e, f), \tag{3.41}
\end{equation*}
$$

then, formula (5) in Das Gupta (1991) gives

$$
\begin{align*}
\beta \gamma \delta \in \eta \text {-standardized rate: in population } 1 & =Q(A),  \tag{3.42}\\
\text { in population } 2 & =Q(a), \tag{3.43}
\end{align*}
$$

so that

$$
\begin{equation*}
\alpha \text {-effect }=Q(a)-Q(A), \tag{3.44}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q(A)=Q(A ; b, c, d, e, f, B, C, D, E, F)=\frac{F(A, b, c, d, e, f)+F(A, B, C, D, E, F)}{6} \\
& F(A, b, c, d, e, F)+F(A, b, c, d, E, f)+F(A, b, c, D, e, f)+F(A, b, C, d, \mathrm{C}, f)+F(A, B, c, d, e, f) \\
& ++F(A, B, C, D, E, f)+F(A, b, C, D, E, F) \\
& 30
\end{aligned}
$$


and $Q(a)$ is the same expression as that in (3.45) with A replaced by a.
Other standardized rates and factor effects follow directly from those in (3.42) through (3.45).

## Example 3.5

The data in table 3.9 are taken from Wojtkiewicz, McLanahan, and Garfinkel (1990) where the family headship rates per 1,000 for White mothers, 18 to 59 years, for 1950 and 1980 are expressed as follows:

Mothers who are family heads $\times 1000$
Total women
Formerly married mothers who are family heads $\times 1000$
= Formerly married mothers

which, in our notation, reduces to

$$
\begin{equation*}
R=F(\alpha, \beta, \gamma, \delta, \epsilon, \eta)=\alpha \beta \gamma \delta+\epsilon \eta(1-\delta) . \tag{3.47}
\end{equation*}
$$

The family headship rates increased from 22.70 to 55.02 during 1950 to 1980, producing a total increase of 32.32 points. The standardized rates and the effects of the six factors are shown in table 3.10. For example, if only the proportions of formerly married mothers among ever-married mothers ( $\beta$ ) varied as they did in 1950 and 1980, and all the remaining five factors were identical in the two years, then the standardized headship rates would be 26.36 and 49.14 in 1950 and 1980, respectively, producing a difference of 22.78 as the $\beta$-effect. In other words, 70.5 percent of the increase in the headship rate between 1950 and 1980 can be attributed to the increase in the proportion of the formerly married mothers among ever-married mothers $(\beta)$ in the three decades. Similar observations can be made about other numbers in table 3.10. Wojtkiewicz, McLanahan, and Garfinkel decomposed the difference between the
numbers of female family heads rather than between the female family headship rates and also considered interaction between the factors. Their results are, therefore, not directly comparable with those presented here. This example will be extended to four populations for the years 1950, 1960, 1970, and 1980 in Example 6.4 (tables 6.7 and 6.8).

Table 3.9. Family Headship Rate for Mothers, 18 to 59 Years, as a Function of Six Factors: United States, White, 1950 and 1980

| Measures | 1950 (population 1) | 1980 (population 2) |
| :---: | :---: | :---: |
| Family headship rate of mothers per 1,000 total women (=R) | $22.70\left(=\mathrm{R}_{1}\right)$ | $55.02\left(=R_{2}\right)$ |
| Formerly married mothers who are family heads per 1,000 formerly married mothers (= $\alpha$ ) | 688 (=A) | 878 (=a) |
| Proportion of formerly married mothers among ever-married mothers ( $=\beta$ ) | 0.067 (=B) | 0.129 (=b) |
| Proportion of ever-married mothers among ever-married women ( $=\gamma$ ) | 0.571 (=C) | $0.562(=\mathrm{c})$ |
| Proportion of ever-married women among total women ( $=\delta$ ) | 0.851 (=D) | 0.808 (=d) |
| Never-married mothers who are family heads per 1,000 never-married mothers (=€) | 509 (=E) | 623 (=e) |
| Proportion of never-married mothers among never-married women ( $=\eta$ ) | 0.004 (=F) | 0.030 (=f) |

Source: Wojtkiewicz, McLanahan, and Garfinkel (1990), table 2.

Table 3.10. Standardization and Decomposition of Family Headship Rates in Table 3.9

| Family headship rates | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1980 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1950 \\ \text { (population 1) } \end{array}$ | $\begin{aligned} & \text { Difference } \\ & \text { (effects) } \end{aligned}$ | Percent distribution of effects |
| $\beta \gamma \delta \epsilon \eta$-standardized rates | 42.03 | 33.31 | 8.72 (a) | 27.0 |
| $\alpha \gamma \delta \epsilon \eta$-standardized rates | 49.14 | 26.36 | 22.78 ( $\beta$ ) | 70.5 |
| $\alpha \beta \delta \epsilon \eta$-standardized rates | 37.84 | 38.42 | -0.58 ( $\gamma$ ) | -1.8 |
| $\alpha \beta \gamma \in \eta$-standardized rates | 37.43 | 38.89 | -1.46 (8) | -4.5 |
| $\alpha \beta \gamma \delta \eta$-standardized rates | 38.21 | 37.87 | 0.34 ( ) | 1.0 |
| $\alpha \beta \gamma \delta \epsilon$-standardized rates | 39.25 | 36.73 | 2.52 ( $\boldsymbol{7}$ ) | 7.8 |
| Crude headship rates (R) | 55.02 | 22.70 | $\begin{gathered} 32.32 \\ \text { (Total effect) } \end{gathered}$ | 100.0 |

## Program 3.4

The results in table 3.10 can be obtained by using Program 3.4. The format of this program and the interpretations of the variables are the same as those for Program 3.3 except for the changes that are needed to go from five to six factors. Also, the input and output formats in lines 3 and 32 in Program 3.4 are made consistent with the numbers in tables 3.9 and 3.10 . The equation in (3.47) is expressed in line 14. The subscripts $I, J$, and $K$ in $R(I, J, K)$ in line 7 of Program 3.4 refer to the two populations, the six factors, and the three expressions on the right-hand side of (3.45). In (3.45), we leave the argument $A$ untouched but attach a value of 1 to the other capital letters and a value of 2 to the small letters, and add these two values of the arguments for each $F$. We find that the first expression in (3.45) includes $F$ 's with a total of 5 and 10 points for the arguments, the second expression includes $F$ 's with a total of 6 and 9 points, and the third expression includes F's with a total of 7 and 8 points. K1 and K2 in lines 18 and 19 of Program 3.4 for $K K=1,3$ give the above three pairs of points, namely, $(5,10),(6,9)$, and $(7,8)$.

## Example 3.6

Exactly the same six-factor model in equation (3.47) can also be used to extend the four-factor model by Nathanson and Kim (1989), given in equation (2.30), to all live births (nonmarital and marital) by defining $R$ as the percentage having live births, and adding to equation (2.30) the term $\epsilon \eta(1-\delta)$ where
$\epsilon=$ Percentage having marital live births among marital pregnancies,
$\eta=$ Proportion of marital pregnancies among total married women,
$1-\delta=$ Proportion of married women among all women.
The data for this example are provided in table 3.11, and the corresponding standardized rates and the factor effects, in table 3.12. The percentages R for 1971 and 1979 are, respectively, 3.592 and 4.846, giving a total difference of 1.254. Although this difference is much smaller than the difference of 2.989 in table 2.6 based on nonmarital live births, the absolute values of $\alpha, \beta$, and $\gamma$ effects are identical in tables 2.6 and 3.12. These results follow from a comparison of equations (2.24) and (3.47) since, for given values of $\epsilon, \eta$, and $\delta$, the additional term in (3.47) does not have any effect on the difference. It is interesting to note that the increase in the proportion of single women among all women ( $\delta$ ) during 1971-1979 tended to increase the percentage having nonmarital live births ( 0.105 in table 2.6 ) and decrease the percentage having live births (-1.237 in table 3.12) during the same period. A significant decline in the proportion of marital pregnancies among married women $(\eta)$ during the 8 -year period also had a negative effect on the difference between the percentages having live births in table 3.12.

The results in table 3.12 can be obtained by using the data in table 3.11 and Program 3.4. The only changes needed in the program are the input and output format statements in lines 3 and 32 as follows:
Line 3: 1 FORMAT (F6.1, 3F6.3, F6.1, F6.3)
Line 32: 6 FORMAT (40X, 3F15.3)
Table 3.11. Percentage Having Live Births as a Function of Six Factors, for White Women Aged 15 to 19: United States, 1971 and 1979

| Measures | 1971 (population 1) | 1979 (population 2) |
| :--- | ---: | ---: |
| Percentage having live births (=R) | $3.592\left(=\mathrm{R}_{1}\right)$ | $4.846\left(=\mathrm{R}_{2}\right)$ |
| Percentage having nonmarital live births among nonmarital pregnancies $(=\alpha)$ | $25.3(=\mathrm{A})$ | $32.7(=\mathrm{a})$ |
| Proportion of nonmarital pregnancies among sexually active single women $(=\beta)$ | $.214(=\mathrm{B})$ | $.290(=\mathrm{b})$ |
| Proportion of sexually active single women among total single women $(=\gamma)$ | $.279(=\mathrm{C})$ | $.473(=\mathrm{c})$ |
| Proportion of single women among all women $(=\delta)$ | $.949(=\mathrm{D})$ | $.986(=\mathrm{d})$ |
| Percentage having marital live births among marital pregnancies $(=\epsilon)$ | $92.0(=\mathrm{E})$ | $91.4(=\mathrm{e})$ |
| Proportion of marital pregnancies among total married women $(=\eta)$ | $.460(=\mathrm{F})$ | $.331(=\mathrm{f})$ |

Source: Nathanson and Kim (1989), tables 1 and 4; table 2.5 in this report.
Table 3.12. Standardization and Decomposition of Percentages Having Live Births in Table 3.11

| Percentages having live births | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1979 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1971 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| $\beta \gamma \delta \epsilon \eta$-standardized percentages | 4.260 | 3.572 | 0.688 ( $\alpha$ ) | 54.9 |
| $\alpha \gamma \delta \in \eta$-standardized percentages | 4.317 | 3.504 | 0.813 ( $\beta$ ) | 64.8 |
| $\alpha \beta \delta \epsilon \eta$-standardized percentages | 4.588 | 3.205 | 1.383 (\%) | 110.3 |
| $\alpha \beta \gamma \in \eta$-standardized percentages | 3.299 | 4.536 | -1.237 (8) | -98.7 |
| $\alpha \beta \gamma \delta \eta$-standardized percentages | 3.960 | 3.968 | -0.008 ( $\epsilon$ ) | -0.6 |
| $\alpha \beta \gamma \delta \epsilon$-standardized percentages | 3.735 | 4.120 | -0.385 ( $\eta$ ) | -30.7 |
| Percentages having live births (R) | 4.846 | 3.592 | $\begin{gathered} 1.254 \\ \text { (Total effect) } \end{gathered}$ | 100.0 |

### 3.7 THE CASE OF P FACTORS

Let us write the rate as a function of $P$ factors as

$$
\begin{equation*}
R=F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\rho}\right) \tag{3.49}
\end{equation*}
$$

and, in the two populations, this rate assumes the values

$$
\begin{equation*}
R_{1}=F\left(A_{1}, A_{2}, \ldots, A_{p}\right), \quad R_{2}=F\left(a_{1}, a_{2}, \ldots, a_{p}\right) \tag{3.50}
\end{equation*}
$$

It follows from formula A5 in Das Gupta (1991) that

$$
\begin{align*}
\alpha_{2} \alpha_{3} \ldots \alpha_{p} \text {-standardized rate: in population } 1 & =Q\left(A_{1}\right),  \tag{3.51}\\
\text { in population } 2 & =Q\left(a_{1}\right), \tag{3.52}
\end{align*}
$$

so that

$$
\begin{equation*}
\alpha_{1} \text {-effect }=Q\left(a_{1}\right)-Q\left(A_{1}\right), \tag{3.53}
\end{equation*}
$$

where

$$
Q\left(A_{1}\right)=Q\left(A_{1} ; a_{2}, a_{3}, \ldots, a_{p}, A_{2}, A_{3}, \ldots, a_{p}\right)=\frac{F\left(A_{1}, a_{2}, a_{3}, \ldots, a_{p}\right)+F\left(A_{1}, A_{2}, A_{3}, \ldots, A_{p}\right)}{P}
$$

$+\frac{$|  sum of all $F^{\prime} \text { 's with } A_{1},(P-2) \text { small letters and } 1 \text { capital }$ |
| :---: |
|  letter or $A_{1},(P-2) \text { capital letters and } 1 \text { small letter }$ |}{$P\left({ }^{(P-1} 1\right)$}

$$
+\frac{\begin{array}{c}
\text { sum of all } F \text { 's with } A_{1},(P-3) \text { small letters and } 2 \text { capital } \\
\text { letters or } A_{1},(P-3) \text { capital letters and } 2 \text { small letters }
\end{array}}{P\binom{P-1}{2}}
$$

$+. . . . . . . . . .$.

$$
=\sum_{r=1}^{s} \frac{\begin{array}{l}
\text { sum of all } F \text { 's with } A_{1},(P-r) \text { small letters and }(r-1) \text { capital } \\
\text { letters or } A_{1},(P-r) \text { capital letters and }(r-1) \text { small letters }
\end{array}}{P\binom{P-1}{r-1}}
$$

where

$$
\begin{aligned}
S & =P / 2, \text { when } P \text { is even } \\
& =(P+1) / 2, \text { when } P \text { is odd. }
\end{aligned}
$$

### 3.8 THE GENERAL PROGRAM

From Programs 3.1 through 3.4 corresponding to three to six factors, a FORTRAN program can be developed for any number of factors higher than six. However, it is not necessary to use different programs for data involving different numbers of factors. A program written for, say, 10 -factor data can be used for any number of factors not exceeding 10 by changing the expression for the rate $R$ and the input and output statements and formats in the program, as suggested in section 2.8. Again, no changes are needed in the data files previously created to be used with the specific programs.

As a matter of fact, the general program for up to 10 factors (Program 2.3) given in section 2.8 can also be used for any number of factors up to 10 for the standardization and decomposition problems in chapter 3, i.e., when the rate is a function of the factors. As before, the only changes needed in Program 2.3 are
in the input and output statements in lines 2 and 42, the input and output formats in lines 3 and 43, and in the expression for the rate in lines 18 and 19. We show below the specific changes in Program 2.3 that will be needed to generate the results in tables 3.2, 3.4, 3.6, 3.8, 3.10, and 3.12 corresponding to Examples 3.1 through 3.6 in this chapter:

Example 3.1 (two factors)
Lines 2,42: Replace 10 in each line by 2
Lines 3,43: Replace (10F8.4) by (2F8.1) and 15.3 by 15.2
Lines 18,19: Replace the two lines by $H=P(1,1)-P(J, 2)$
Example 3.2 (three factors)
Lines 2,42: Replace 10 in each line by 3
Lines 3,43: Replace (10F8.4) by (3F10.6) and 15.3 by 15.5
Lines 18,19: Replace the two lines by line 11 in Program 3.1
Example 3.3 (four factors)
Lines 2,42: Replace 10 in each line by 4
Lines 3,43: Replace (10F8.4) by (4F10.5) and no change in line 43
Lines 18,19: Replace the two lines by line 12 in Program 3.2
Example 3.4 (five factors)
Lines 2,42: Replace 10 in each line by 5
Lines 3,43: Replace (10F8.4) by (5F10.5) and no change in line 43
LInes 18,19: Replace the two lines by line 13 in Program 3.3
Example 3.5 (six factors)
Lines 2,42: Replace 10 in each line by 6
Lines 3,43: Replace (10F8.4) by (F5.0, 3F5.3, F5.0, F5.3) and 15.3 by 15.2
Lines 18,19: Replace the two lines by line 14 in Program 3.4
Example 3.6 (six factors)
Lines 2,42: Replace 10 in each line by 6
Lines 3,43: Replace (10F8.4) by (F6.1, 3F6.3, F6.1, F6.3) and no change in line 43
Lines 18,19: Replace the two lines by line 14 in Program 3.4

### 3.9 EXAMPLE 3.7 (TEN FACTORS)

Pullum, Tedrow, and Herting (1989) expressed the mean parity $M$ of a cohort of women by

$$
\begin{equation*}
M=P_{0}+P_{0} P_{1}+P_{0} P_{1} P_{2}+\ldots \ldots+P_{0} P_{1} P_{2} \ldots P_{9}, \tag{3.55}
\end{equation*}
$$

where $P_{i}$ is the parity progression ratio for transition from parity $i$ to parity $i+1$ (we assume here that the highest possible parity is 10 ).

In terms of our notation, equation (3.55) can be written as

$$
\begin{align*}
\mathrm{R} & =\mathrm{F}(\alpha, \beta, \gamma, \delta, \epsilon, \eta, \theta, \lambda, \mu, v) \\
& =\alpha+\alpha \beta+\alpha \beta \gamma+\ldots \cdots+\alpha \beta \gamma \delta \epsilon \eta \theta \lambda \mu v . \tag{3.56}
\end{align*}
$$

The values of the two rates and the 10 factors for White women for 1908 and 1933 cohorts are shown in table 3.13.

In the 25 -year period from 1908 to 1933, the mean parity of a cohort increased by .854, from 2.247 in 1908 to 3.101 in 1933. As shown in table 3.14, the mean parities in 1908 and 1933 would have been 2.454 and 2.854 if only the parity progression ratio from parity 0 to parity 1 ( $\alpha$ ) changed as it did between 1908 and 1933, and all other parity progression ratios were equal in the two years. Therefore, .400 ( 46.8 percent) of the increase in the mean parity in the 25 -year period was contributed by the increase in the parity progression ratio from parity 0 to parity 1 . It is interesting to note that the first four parity progression ratios
made positive contributions to the total increase in the mean parity, and the remaining ratios contributed negatively. The decomposition in table 3 of Pullum, Tedrow, and Herting by and large agrees with that presented in the last two columns of table 3.14.

Table 3.13. Mean Parity of a Cohort as a Function of Ten Factors (Parity Progression Ratios), for White Women: United States, 1908 and 1933 Cohorts

| Mean parity and parity progression ratios (PPR's) | 1908 cohort (population 1) | 1933 cohort (population 2) |
| :---: | :---: | :---: |
| Mean Parity ( $=\mathrm{R}$ ) | $2.247\left(=R_{1}\right)$ | 3.101 (=R2) |
| PPR for transition from parity 0 to $1(=\alpha)$ | 0.7921 (=A) | 0.9215 (=a) |
| PPR for transition from parity 1 to $2(=\beta)$ | 0.7247 (=B) | 0.8950 (=b) |
| PPR for transition from parity 2 to $3(=\gamma)$ | 0.5937 (=C) | 0.7198 (=c) |
| PPR for transition from partit 3 to $4(=8)$ | 0.5924 (=D) | 0.6016 (=d) |
| PPR for transition from parity 4 to 5 ( $=$ ¢) | 0.6057 (二日) | 0.5354 (=e) |
| PPR for transition from parity 5 to $6(=\eta)$ | 0.6353 (=F) | 0.5267 (=f) |
| PPR for transition from parity 6 to $7(=\theta)$ | 0.6396 (=G) | 0.5214 (=g) |
| PPR for transition from parity 7 to $\mathbf{8}(=\lambda)$ | 0.7948 (=H) | 0.6381 (=h) |
| PPR for transition from parity 8 to $9(=\mu)$ | 0.7468 (=1) | 0.5522 (=i) |
| PPR for transition from parity 9 to $10(=v)$ | 0.6746 (=J) | 0.4162 (=1) |

Source: Pullum, Tedrow, and Herting (1989), table 1 (data extended for higher parities).

Table 3.14. Standardization and Decomposition of Mean Parities in Table 3.13

| Mean parities standardized for- | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1933 cohort (population 2) | 1908 cohort (population 1) | Difference (effects) | Percent distribution of effects |
| All PPR's except $\alpha$ | 2.854 | 2.454 | . 400 (a) | 46.8 |
| All PPR's except $\beta$ | 2.842 | 2.464 | . 378 ( $\beta$ ) | 44.3 |
| All PPR's except $\gamma$ | 2.761 | 2.549 | . 212 ( $\gamma$ ) | 24.8 |
| All PPR's except $\delta$ | 2.664 | 2.654 | . 010 (8) | 1.2 |
| All PPR's except $\epsilon$ | 2.637 | 2.683 | -. 046 ( $\epsilon$ | -5.4 |
| All PPR's except $\boldsymbol{\eta}$ | 2.639 | 2.680 | -. 041 ( $\boldsymbol{7}$ ) | -4.8 |
| All PPR's except $\theta$ | 2.646 | 2.672 | -. 026 ( $\theta$ ) | -3.0 |
| All PPR's except $\lambda$ | 2.651 | 2.667 | -. 016 ( $\lambda$ ) | -1.9 |
| All PPR's except $\mu$ | 2.653 | 2.664 | -. 011 ( $\mu$ ) | -1.3 |
| All PPR's except $v$ | 2.656 | 2.662 | -. 006 (v) | -0.7 |
| Mean parities (R) | 3.101 | 2.247 | 0.854 (Total effect) | 100.0 |

The data in table 3.13 and the general program (Program 2.3) in chapter 2 can be used to obtain the results in table 3.14 if the following changes are made in Program 2.3:

Lines 2,42: No changes
Lines 3,43: No changes
Lines 18,19: Replace the two lines by equation (3.56), i.e., by

$$
\begin{aligned}
& H=P(1,1)^{*}\left(1 .+P(\mathrm{~J}, 2)^{*}\left(1,+\mathrm{P}(\mathrm{~K}, 3)^{*}\left(1 .+\mathrm{P}(\mathrm{~L}, 4)^{*}\left(1,+\mathrm{P}(\mathrm{M}, 5)^{*}\left(1 .+\mathrm{P}(\mathrm{~N}, 6)^{*}\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.1\left(1 .+\mathrm{P}(1,7)^{*}\left(1 .+\mathrm{P}(\mathrm{JJ}, 8)^{*}\left(1 .+\mathrm{P}(\mathrm{KK}, 9)^{*}(1,+\mathrm{P}(L, 1,10))\right)\right)\right)\right)\right)\right)\right)
\end{aligned}
$$

## Chapter 4. Rate as a Function of Vector-Factors

### 4.1 INTRODUCTION

In many situations, a factor may be represented by several numbers. For example, six age-specific fertility rates together may be considered one factor. Such factors may be called vector-factors (as opposed to scalar-factors). Cho and Retherford (1973), for example, expressed the crude birth rate as a function of three vector-factors, namely, the age-specific marital fertility rates (assuming that no births occur to unmarried women), the proportions of married women among total women in the age groups, and total women in the age groups as proportions of the total population (Example 4.3). Again, Smith and Cutright (1988) expressed the illegitimacy ratio as a function of four vector-factors, namely, the proportional age distribution of women in the childbearing period, the proportions of unmarried women to total women in the childbearing age groups, the age-specific nonmarital fertility rates, and the age-specific marital fertility rates (Example 4.4). The expressions for standardization and decomposition for both scalar- and vector-factors are identical except that we should use different symbols to distinguish between them, as shown in the following sections.

### 4.2 THE CASE OF TWO VECTOR-FACTORS

We express the two vector-factors as

$$
\begin{equation*}
\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n_{1}}\right), \bar{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n_{2}}\right), \tag{4.1}
\end{equation*}
$$

$\mathrm{n}_{1}$ and $\mathrm{n}_{2}$ being the numbers of elements in the two vectors. In many situations, as in the two examples in section 4.1, the numbers $n_{1}$ and $n_{2}$ are equal.

We write the rate R as

$$
\begin{equation*}
R=F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n_{1}}, \beta_{1}, \beta_{2}, \ldots, \beta_{n_{2}}\right)=F(\bar{\alpha}, \bar{\beta}), \tag{4.2}
\end{equation*}
$$

and equations (3.2) for population 1 and population 2 change to

$$
\begin{equation*}
R_{1}=F(\bar{A}, \bar{B}), R_{2}=F(\bar{a}, \bar{b}), \tag{4.3}
\end{equation*}
$$

where

$$
\begin{array}{cl}
\bar{A}=\left(A_{1}, A_{2}, \ldots, A_{n_{1}}\right), & \bar{B}=\left(B_{1}, B_{2}, \ldots, B_{n_{2}}\right),  \tag{4.4}\\
\bar{a}=\left(a_{1}, a_{2}, \ldots, a_{n_{1}}\right), & \bar{b}=\left(b_{1}, b_{2}, \ldots, b_{n_{2}}\right) .
\end{array}
$$

In spite of the fact that $R$ in (4.2) depends on $\left(n_{1}+n_{2}\right)$ scalar numbers, we do not treat this as a $\left(n_{1}+n_{2}\right)$-factor case because we do not allow all these factors to take on values from population 1 and population 2 independently of each other. We impose here the condition that the $n_{1}$ scalars ( $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n_{1}}$ ) must take on either the values $\left(A_{1}, A_{2}, \ldots, A_{n_{1}}\right)$ or the values $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Had we treated this as a $\left(n_{1}+n_{2}\right)$-factor case, it would have been possible to have a set of values such as $\left(A_{1}, a_{2}, a_{3}, \ldots, A_{n_{1}}\right)$ for $\bar{\alpha}$. Similar restrictions apply to the elements of $\bar{\beta}$.

Changing the notation from scalar to vector in (3.3) through (3.8), we obtain

$$
\begin{align*}
\bar{\beta} \text {-standardized rate: in population } 1 & =\frac{F(\bar{A}, \bar{b})+F(\bar{A}, \bar{B})}{2},  \tag{4.5}\\
\text { in population } 2 & =\frac{F(\overline{\mathrm{a}}, \overline{\mathrm{~b}})+F(\overline{\mathrm{a}}, \overline{\mathrm{~B}})}{2}, \tag{4.6}
\end{align*}
$$

$$
\begin{align*}
& \bar{\alpha} \text {-standardized rate: in population } 1=\frac{F(\overline{\mathrm{a}}, \overline{\mathrm{~B}})+\mathrm{F}(\overline{\mathrm{~A}}, \overline{\mathrm{~B}})}{2},  \tag{4.7}\\
& \text { in population } 2=\frac{F(\overline{\mathrm{a}}, \overline{\mathrm{~b}})+\mathrm{F}(\overline{\mathrm{~A}}, \overline{\mathrm{~b}})}{2},  \tag{4.8}\\
& \bar{\alpha} \text {-effect }=\frac{[F(\overline{\mathrm{a}}, \overline{\mathrm{~b}})-\mathrm{F}(\overline{\mathrm{~A}}, \overline{\mathrm{~b}})]+[F(\overline{\mathrm{a}}, \overline{\mathrm{~B}})-F(\overline{\mathrm{~A}}, \overline{\mathrm{~B}})]}{2},  \tag{4.9}\\
& \bar{\beta} \text {-effect }=\frac{[F(\overline{\mathrm{a}}, \overline{\mathrm{~b}})-F(\overline{\mathrm{a}}, \overline{\mathrm{~B}})]+[F(\overline{\mathrm{~A}}, \overline{\mathrm{~b}})-F(\overline{\mathrm{~A}}, \overline{\mathrm{~B}})]}{2} . \tag{4.10}
\end{align*}
$$

## Example 4.1

Keyfitz (1968, p. 189) considered the decomposition of the difference between two intrinsic growth rates into the effects of changes in the age-specific fertility and mortality rates. Table 4.1 gives the stationary populations ${ }_{5} L_{x}$ from the abridged life tables for females and the fertility rates ${ }_{5} \mathrm{~m}_{x}$ for females (based on the female births only) by 5 -year age groups for 1960 and 1965. These two series of data for a year serve as the vector-factors $\bar{\alpha}$ and $\bar{\beta}$ for that year.

For a given set of $\bar{\alpha}, \bar{\beta}$, the female intrinsic growth rate $R=F(\bar{\alpha}, \bar{\beta})$ can be obtained iteratively by the Newton-Raphson Method (Scarborough, 1962, p. 199) as follows:
We compute

$$
\begin{gather*}
\mu_{o}=\sum_{i=1}^{9} \alpha_{i} \beta_{1} / 100000,  \tag{4.11}\\
\mu_{1}=\sum_{i=1}^{9}(5 i+7.5) \alpha_{i} \beta_{i} / 100000 .
\end{gather*}
$$

The first approximation $r_{1}$ is given by

$$
\begin{equation*}
\mathbf{r}_{1}=\left(\log _{\mathrm{e}} \mu_{0}\right) \cdot \mu_{0} / \mu_{1} \tag{4.13}
\end{equation*}
$$

With the above value of $r_{1}$, we compute

$$
\begin{gather*}
N\left(r_{1}\right)=\sum_{i=1}^{9} \exp \left[-r_{1}(5 i+7.5)\right] \alpha_{i} \beta_{i} / 100000  \tag{4.14}\\
D\left(r_{1}\right)=\sum_{i=1}^{9}(5 i+7.5) \exp \left[-r_{1}(5 i+7.5)\right] \alpha_{i} \beta_{i} / 100000 . \tag{4.15}
\end{gather*}
$$

The second approximation $r_{2}$ is

$$
\begin{equation*}
r_{2}=r_{1}-\frac{N\left(r_{1}\right)-1}{D\left(r_{1}\right)} \tag{4.16}
\end{equation*}
$$

This process is continued until

$$
\begin{equation*}
\left|r_{n}-r_{n-1}\right| \leq .0000001 \tag{4.17}
\end{equation*}
$$

and at this point, $r_{n}$ is taken as the intrinsic growth rate $R$.
The intrinsic growth rates $R_{1}=F(\bar{A}, \bar{B})$ and $R_{2}=F(\bar{a}, \bar{b})$ for 1965 and 1960 are, respectively, 12.14 and 20.77 per 1,000 , their difference being 8.63 . Table 4.2 gives the four standardized rates and the two factor effects. For example, the mortality-standardized intrinsic growth rates in 1960 and 1965 are 20.81 and 12.10 ; i.e., if only the fertility varied as it did in 1960 and 1965, and the mortality were the same in the two years, then the intrinsic growth rate would decline from 20.81 to 12.10 in the 5 -year period. This decline of 8.71 is even higher than the actual decline of 8.63 . Therefore, the change (decline) in mortality during 1960-1965 had a slight dampening effect on the total decline in the intrinsic growth rate. Keytitz used the Australian data and, therefore, his decomposition is not directly comparable with our decomposition on the U.S. data.

Table 4.1. Female Intrinsic Growth Rate per Person as a Function of Two Vector-Factors: United States, 1960 and 1965

| Age groups$x \text { to } x+5$ | i | ${ }_{5} L_{x}\left(a_{4}\right)$ |  | ${ }_{5} \mathrm{~m}_{\mathrm{x}}\left(\beta_{1}\right)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} 1965 \\ \text { (population 1) } \end{array}$ | $\begin{array}{r} 1960 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1965 \\ \text { (population 1) } \end{array}$ | $\begin{array}{r} 1960 \\ \text { (population 2) } \end{array}$ |
|  |  | $\mathrm{A}_{1}$ | $\mathrm{a}_{1}$ | $\mathrm{B}_{1}$ | $b_{1}$ |
| 10 to 15. | 1 | 486446 | 485434 | . 00041 | . 00040 |
| 15 to 20. | 2 | 485454 | 484410 | . 03416 | . 04335 |
| 20 to 25. | 3 | 483929 | 492905 | . 09584 | . 12581 |
| 25 to 30. | 4 ......................... | 482046 | 481001 | . 07915 | . 09641 |
| 30 to 35. | 5 | 479522 | 478485 | . 04651 | . 05504 |
| 35 to 40. | 6 | 475844 | 474911 | . 02283 | . 02760 |
| 40 to 45. | 7 | 470419 | 469528 | . 00631 | . 00758 |
| 45 to 50. | 8 | 462351 | 461368 | . 00038 | . 00045 |
| 50 to 55. | 9........................ | 450468 | 449349 | . 00000 | . 00001 |
| Intrinsic growth rate (R) . . . . . . . . . . . . . . . . . . . . . . . . . . |  | $\mathrm{R}_{1}(1965)=.01214$, |  | $\mathrm{R}_{2}(1960)=.02077$ |  |

Source: National Center for Health Statistics (1962, tables 2-13, 5-3; 1963, table 2-1; 1967a, tables 1-48, 4-2; 1967b, table 5-1).

Table 4.2. Standardization and Decomposition of Female Intrinsic Growth Rates per Person in Table 4.1
(For convenience, results obtained from data in table 4.1 are multiplied by 1,000 before presenting them in table 4.2)

| Female intrinsic growth rate | Standardization |  | Decomposition |  |  |
| :--- | ---: | ---: | ---: | ---: | ---: |
|  |  | 1960 <br> (population 2) | 1965 <br> (population 1) | Difference <br> (effects) | Percent <br> distribution <br> of effects |
|  | 16.41 | 16.49 | -.08 | $(\alpha)$ | -0.9 |
| $\bar{\alpha}$ (mortality)-standardized growth rates | 20.81 | 12.10 | 8.71 | $(\bar{\beta})$ | 100.9 |
| Overall intrinsic rates (R) | 20.77 | 12.14 | 8.63 <br> (Total effect) |  |  |

## Program 4.1

The results in table 4.2 can be obtained by using Program 4.1 in which $\mathrm{V}(1, \mathrm{~J}, \mathrm{~K})$ 's in line 2 are the data from table 4.1 corresponding to $I=1,2$ (1965 and 1960); $J=1,2$ (mortality and fertility); and $K=1,9$ (nine age groups). In other words, the data file consists of four lines with the four vectors $\bar{A}, \bar{B}, \bar{a}$, and $\bar{b}$ in table 4.1, each line having nine elements. Equations (4.11) through (4.17) are given in lines 12 through 14 and 18 through 21 of the program. As in Program 3.1, $\mathrm{S}(\mathrm{l}, \mathrm{J})$ 's in line 28 are the four standardized rates and $\mathrm{E}(\mathrm{J})$ 's in line 29 are the two vector-factor effects in table 4.2.

Program 4.1 (Two Factors)


Program 4.2 (Two Factors)
© NNNNNNNNNN


```
吅 \(2 \quad I=1,2\)
2
```



```
    \(\mathrm{H} 1=0\). 0
    \(\mathrm{H} 2=0.0\)
    D0 7 Ki=1.480
```




```
    \(8 \mathrm{H}=\mathrm{H}+50\). *ABS \((V(I, 1, K 1) * V(J, 2, K 1) / H 1-(1,-V(I, 1, K 1)) * V(J, 2, K 1) / H 2)\)
```



```
    \(3 R\binom{\) R }{\(R}=R(1,1)+H\)
    DO \(5 \mathrm{~S}=1,2\)
\(\mathrm{DO} 4=1\)
```




## Example 4.2

Bianchi and Rytina (1986) decomposed the difference between the indices of male-female occupational dissimilarity for 1970 and 1980 in order to eliminate from this difference the effect of the change in the occupational structure during the decade. The index of dissimilarity may be written as

$$
\begin{equation*}
\text { Index }=\frac{1}{2} \sum_{i}\left|\left(M_{i} / M\right) \times 100-\left(F_{i} / F\right) \times 100\right|, \tag{4.18}
\end{equation*}
$$

where $M_{i}$ and $F_{i}$ are the numbers of males and females in occupation $i$, and $M$ and $F$ are the total males and the total females.

Equation (4.18) can also be written in terms of our notation as

$$
\begin{equation*}
R=F(\bar{\alpha}, \bar{\beta})=50 \sum_{i}\left|\frac{\alpha_{i} \beta_{1}}{\sum_{j} \alpha_{j} \beta_{j}}-\frac{\left(1-\alpha_{j}\right) \beta_{1}}{\sum_{1}\left(1-\alpha_{j}\right) \beta_{j}}\right|, \tag{4.19}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha_{i}=M_{i} / T_{i}, \quad \beta_{i}=T_{i} / T, \quad T_{i}=M_{i}+F_{1}, T=M+F . \tag{4.20}
\end{equation*}
$$

Table 4.3 gives a sample of the 480 elements of the vectors $\bar{\alpha}$ and $\bar{\beta}$ for 1970 and 1980. The indices of male-female occupational dissimilarity based on these data are 59.285 and 67.683 for 1980 and 1970, respectively. The standardization of these indices and the decomposition of their difference of 8.398 are shown in table 4.4. It shows, for example, that if the occupational structures in 1970 and 1980 were identical, then the indices of dissimilarity in 1970 and 1980 would be 67.017 and 60.271 , producing a difference of 6.746 . This difference is, obviously, the effect of the change in the occupational sex segregation during the decade. In other words, 80.3 percent of the decline in the index of male-female occupational dissimilarity during 1970-1980 is contributed by the decline in the occupational sex segregation during the decade. The decomposition by Bianchi and Rytina is in agreement with these results except that it included an interaction term. (With a slightly different set of data producing a total effect of 8.5 , their results were 6.4 and 1.4 for the $\bar{\alpha}$ and $\bar{\beta}$ effects and 0.7 for the interaction effect.) The approximate method by Das Gupta (1987) applied to the same set of data produced a slightly different result. Again, arguments in favor of using only the main effects that absorb the interactions are given in chapter 1.

## Program 4.2

The results in table 4.4 can be obtained by using Program 4.2 in which $\mathrm{V}(1, \mathrm{~J}, \mathrm{~K})$ 's in line 2 are the data from table 4.3 corresponding to $I=1,2(1980$ and 1970$) ; J=1,2\left(M_{i} / T_{i} ' s\right.$ and $\left.T_{i} / T ' s\right)$; and $K=1,480$ (480 occupations). The data file consists of 240 lines, each of the four vectors $\bar{A}, \bar{B}, \bar{a}$, and $\bar{b}$ occupying 60 lines in the same order with eight numbers in each line. Equation (4.19) is expressed in the program in line 16. Program 4.2 is basically the same as Program 4.1 except for the fact that in Program 4.1, there are nine elements in a vector-factor, and it uses lines 9 through 21 to compute the rate R (i.e., H in the program) whereas in Program 4.2, there are 480 elements in a vector-factor, and it uses lines 9 through 16 to compute H. Consequently, Program 4.2 is five lines shorter than Program 4.1.

Table 4.3. Index of Male-Female Occupational Dissimilarity as a Function of Two Vector-Factors: United States, 1970 and 1980 (Partial Data)

| i | Occupation | $\left(M_{1} / T_{1}\right)=\alpha_{1}$ |  | $\left(T_{1} / T\right)=\beta_{1}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1980 (population 1) | 1970 (population 2) $a_{1}$ | 1980 (population 1) $B_{1}$ | $\begin{array}{r} 1970 \\ \text { (population 2) } \end{array}$ |
| 1 | Legislators, etc., public administration. | . 7443052 | 1.0000000 | . 0004481 | . 0001251 |
| 2 | Administrators, public administration.. | . 6637712 | . 7826656 | . 0028553 | . 0031344 |
| 3 | Administrators, protective services. | . 9059344 | 1.0000000 | . 0002531 | . 0003277 |
| 4 | Financial Managers. | . 6861586 | . 8058082 | . 0039536 | . 0027667 |
| -- | -........................................... | - | - | -- |  |
| $\cdots$ | - | - | - | -- |  |
| 479 | Wholesale and retail trade. | . 8197265 | . 8040852 | . 0032985 | . 0032290 |
| 480 | All other industries. | . 8203055 | . 8557602 | . 0024285 | . 0022611 |
| Index of dissimilarity (R)........................ |  | $\mathrm{R}_{1}(1980)=59.285$, |  | $\mathrm{R}_{2}(1970)=67.683$ |  |

Source: U.S. Bureau of the Census (1984b), pp. 7-15. Total males (M) and total females (F=T-M) in 1980 are 59,592,657 and $44,069,629$, and those in 1970 are $49,405,944$ and $30,285,210$, respectively (excluding the experienced unemployed not classified by occupation, and the seven occupations with no persons in 1970).

Table 4.4. Standardization and Decomposition of Indices of Male-Female Occupational Dissimilarity in Table 4.3

| Index of male-female occupational dissimilarity | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1970 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1980 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| ```\(\bar{\beta}\) (occupational structure)-standarized index of dissimilarity \(\bar{\alpha}\) (occupational sex segregation)-standardized index of dissimilarity``` | $\begin{aligned} & 67.017 \\ & 64.470 \end{aligned}$ | $\begin{aligned} & 60.271 \\ & 62.818 \end{aligned}$ | $\begin{array}{ll} 6.746 & (\bar{\alpha}) \\ 1.652 & (\bar{\beta}) \end{array}$ | 80.3 19.7 |
| Overall index of dissimilarity (R) | 67.683 | 59.285 | $\begin{gathered} 8.398 \\ \text { (Total effect) } \end{gathered}$ | 100.0 |

### 4.3 THE CASE OF THREE VECTOR-FACTORS

We express the three vector-factors as

$$
\begin{equation*}
\bar{\alpha}=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n_{1}}\right), \bar{\beta}=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{n_{2}}\right), \bar{\gamma}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n_{3}}\right), \tag{4.21}
\end{equation*}
$$

and write the rate R as

$$
\begin{align*}
R & =F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n_{1}}, \beta_{1}, \beta_{2}, \ldots, \beta_{n_{2}}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{n_{3}}\right),  \tag{4.22}\\
& =F(\bar{\alpha}, \bar{\beta}, \bar{\gamma}) .
\end{align*}
$$

Equations (3.11) for population 1 and population 2 in this case change to

$$
\begin{equation*}
R_{1}=F(\bar{A}, \bar{B}, \bar{C}) \quad, R_{2}=F(\overline{\mathrm{a}}, \overline{\mathrm{~b}}, \overline{\mathrm{C}}) . \tag{4.23}
\end{equation*}
$$

Equations (3.12) through (3.23) remain unchanged except that the scalars $\alpha, \beta, \gamma, A, B, C, a, b$, and $c$ in these equations should be replaced by the corresponding vectors $\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{A}, \bar{B}, \bar{C}, \bar{a}, \bar{b}$, and $\overline{\mathrm{c}}$.

## Example 4.3

For East Asian countries, Cho and Retherford (1973) expressed the crude birth rate per 1,000 population as

$$
\begin{equation*}
\frac{1000 B}{P}=\sum_{i} \frac{1000 B_{i}}{M_{i}} \cdot \frac{M_{i}}{W_{i}} \cdot \frac{W_{i}}{P}, \tag{4.24}
\end{equation*}
$$

where $B_{i j} M_{i}$, and $W_{1}$ are, respectively, the number of births, the number of married women, and the number of total women in age group $i$, and $B$ and $P$ are the total number of births and the total population. In terms of our notation, we can write equation (4.24) as

$$
\begin{equation*}
R=F(\bar{\alpha}, \bar{\beta}, \bar{\gamma})=\sum_{i} \alpha_{i} \beta_{i} \gamma_{1}, \tag{4.25}
\end{equation*}
$$

where the vector-factors $\bar{\alpha}, \bar{\beta}$, and $\bar{\gamma}$ represent, respectively, the age-specific marital fertility rates per 1,000 women (it is assumed that all births occur to married women), the proportions of married women arnong total women in the age groups, and total women in the age groups as proportions of the total population.

Table 4.5 gives the three vector-factors for Taiwan for the years 1960 and 1970. The crude birth rates for 1960 and 1970 based on these data are, respectively, 38.77 and 27.20 , the total difference being 11.57. The results in table 4.6 show that if, for example, neither the within-age group marital status structure ( $\bar{\beta}$ ) nor the age-sex structure ( $\bar{\gamma}$ ) was different in 1960 and 1970, but the age-specific marital fertility rates ( $\bar{\alpha}$ ) varied as they did in the two years, then the crude birth rates in 1960 and 1970 would be 36.73 and 29.44, giving a difference of 7.29. The percent contributions of the vector-factors $\bar{\alpha}, \bar{\beta}$, and $\bar{\gamma}$ to the total difference of the two crude birth rates are, respectively, 63.0, 23.5, and 13.5. The decomposition in table 1 of Cho and Retherford agrees closely with these percentages.

It should be noted here that we can also express equation (4.24) as

$$
\begin{equation*}
\frac{1000 B}{P}=\sum_{i} \frac{1000 B_{i}}{M_{i}} \cdot \frac{M_{i}}{M} \cdot \frac{M}{P}, \tag{4.26}
\end{equation*}
$$

where $M$ is the total number of married women in the childbearing ages. $\bar{\beta}$ and $\bar{\gamma}$ in (4.26) represent, respectively, the age-structure of the married women, and the marital status-sex structure. Equations (4.24) and (4.26) are two different "hierarchical" models (Kim and Strobino, 1984; Das Gupta, 1989) and generate two different sets of results. By contrast, chapter 5 (Rate from Cross-Classified Data) deals with "symmetrical" models in which the results do not depend on the order in which the factors are considered.

Table 4.5. Crude Birth Rate per 1,000 as a Function of Three Vector-Factors: Taiwan, 1960 and 1970

| Age groups | 1 | 1970 (population 1) |  |  | 1960 (population 2) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} 1000 B_{1} / M_{i} \\ =A_{i} \end{array}$ | $\begin{array}{r} M_{1} / W_{1} \\ =B_{1} \end{array}$ | $\begin{gathered} W_{1} / P \\ =C_{1} \end{gathered}$ | $\begin{array}{r} 1000 B_{1} / M_{1} \\ =a_{4} \end{array}$ | $\begin{gathered} M_{1} / W_{i} \\ =b_{i} \end{gathered}$ | $\begin{array}{r} W_{1} / P \\ =a_{1} \end{array}$ |
| 15 to 19. | 1 | 488 | . 082 | . 058 | 393 | . 122 | . 043 |
| 20 to 24. | 2 | 452 | . 527 | . 038 | 407 | . 622 | . 041 |
| 25 to 29. | 3 | 338 | . 866 | . 032 | 369 | . 903 | . 036 |
| 30 to 34. | 4 | 156 | . 941 | . 030 | 274 | . 930 | . 032 |
| 35 to 39. | 5 | 63 | . 942 | . 026 | 184 | . 916 | . 026 |
| 40 to 44. | 6 | 22 | . 923 | . 023 | 90 | . 873 | . 020 |
| 45 to 49. | 7 | 3 | . 876 | . 019 | 16 | . 800 | . 018 |
| Crude birth rate (R) $=1000 \mathrm{~B} / \mathrm{P}$. |  | $\mathrm{R}_{1}=27.20$ |  |  | $\mathrm{R}_{2}=38.77$ |  |  |

Source: Cho and Retherford (1973), tables 2, 3, 4.
Table 4.6. Standardization and Decomposition of Crude BIrth Rates in Table 4.5

| Brth rates | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1960 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| $\bar{\beta} \bar{\gamma}$-standardized rates | 36.73 | 29.44 | 7.29 ( $\bar{\alpha}$ ) | 63.0 |
| $\overline{\alpha \gamma}$-standardized rates | 34.47 | 31.75 | 2.72 ( $\bar{\beta}$ ) | 23.5 |
| $\bar{\alpha} \bar{\beta}$-standardized rates | 33.83 | 32.27 | 1.56 ( $\bar{\gamma})$ | 13.5 |
| Crude birth rates (R) | 38.77 | 27.20 | $\begin{aligned} & 11.57 \\ & \text { (Total effect) } \end{aligned}$ | 100.0 |

## Program 4.3

The results in table 4.6 can be obtained by using Program 4.3 in which $\mathrm{V}(1, \mathrm{~J}, \mathrm{~K})$ 's in line 2 are the data from table 4.5 corresponding to $I=1,2$ (1970 and 1960); $J=1,3$ ( $\bar{\alpha}, \bar{\beta}$, and $\bar{\gamma}$ ); and $K=1,7$ (seven age groups). The data file consists of six lines with the six vectors $\bar{A}, \bar{B}, \bar{C}, \bar{a}, \bar{b}$, and $\bar{c}$ in table 4.5 , each line having seven elements. Program 4.3 is basically the same as Program 3.1 for three factors in chapter 3 except that it takes three lines (lines 11 through 13) to compute the rate $R$ (i.e., $H$ in the program) instead of a single line (line 11) used in Program 3.1. Program 4.3 is, therefore, two lines longer than Program 3.1.

### 4.4 THE CASE OF FOUR VECTOR-FACTORS

In this case, the rate R is written as

$$
\begin{equation*}
\mathrm{R}=\mathrm{F}(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}), \tag{4.27}
\end{equation*}
$$

and, therefore, in population 1 and population 2, the rates are

$$
\begin{equation*}
R_{1}=F(\bar{A}, \bar{B}, \bar{C}, \bar{D}), \quad R_{2}=F(\bar{a}, \bar{b}, \bar{c}, \bar{d}) . \tag{4.28}
\end{equation*}
$$

The expressions for the standardized rates and the factor effects are the same as those in equations (3.28) through (3.31) except that the scalars $\alpha, \beta, \gamma, \delta, A, B, C, D, a, b, c$, and $d$ should be replaced by the corresponding vectors $\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, \bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{a}, \overline{\bar{D}}, \overline{\mathrm{C}}$, and $\overline{\mathrm{d}}$.

## Example 4.4

Smith and Cutright (1988) expressed the illegitimacy ratio (the ratio of births to unmarried women to total births) as

$$
\begin{equation*}
\frac{1}{1+L}=\frac{\sum_{i} \frac{W_{1}}{W} \cdot \frac{U_{1}}{W_{1}} \cdot \frac{l_{1}}{U_{i}}}{\sum_{i} \frac{W_{i}}{W} \cdot \frac{U_{1}}{W_{i}} \cdot \frac{I_{1}}{U_{i}}+\sum_{i} \frac{W_{1}}{W} \cdot \frac{M_{1}}{W_{i}} \cdot \frac{L_{i}}{M_{i}}} \tag{4.29}
\end{equation*}
$$

where $U_{i}, M_{i}$, and $W_{i}$ are unmarried, married, and total women in age group $i$, and $I_{i}$ and $L_{i}$ are births to unmarried and married women in age group i . $\mathrm{W}, \mathrm{I}$, and L are the corresponding totals in the childbearing ages 15 to 44.

Using our notation, equation (4.29) can be written as

$$
\begin{equation*}
R=F(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta})=\frac{\sum_{i} \alpha_{i} \beta_{1} \gamma_{i}}{\sum_{i} \alpha_{1} \beta_{1} \gamma_{1}+\sum_{i} \alpha_{i}\left(1-\beta_{1}\right) \delta_{1}} \tag{4.30}
\end{equation*}
$$

where the vector-factors $\bar{\alpha}, \bar{\beta}, \bar{\gamma}$, and $\bar{\delta}$ represent, respectively, the age-structure of the women in the childbearing ages, the marital status structure within childbearing age groups, the age-specific nonmarital fertility rates, and the age-specific marital fertility rates.

Table 4.7 gives the values of the elements of the four vector-factors for White women for 1963 and 1983. The illegitimacy ratios based on these data and their standardization and decomposition are shown in table 4.8. There was an increase of 94.23 in the illegitimacy ratio in the 20 -year period, from 30.95 in 1963 to 125.18 in 1983. This increase would have been only 27.06 ( 28.7 percent of the total increase) if only the age-specific nonmarital fertility rates changed as they did during the two decades but the other three factors were identical. On the other hand, the increase in the illegitimacy ratio would have been as high as 48.66 ( 51.7 percent of the total increase) if only the within-age group marital status structure changed as it did but the other three factors were identical. Thus, although the illegitimacy rates (i.e., the nonmarital fertility rates) by definition do not depend on the marital-status structure of the women in the

## Program 4.3 (Three Factors)

1

1 FORMAT(7F6.0/7F6.3/7F6.3)

2


7
F(I+U+K, $\left.{ }^{L} 1\right) * V(U, 2, L 1) * V(K, 3, L 1)$
IF (I $+U+K \cdot E Q: 6$ ) R2=H
$0 \mathrm{DO}^{3} \mathrm{~L}=1,2$

3

$004 \quad J=1$
4
6
S(I,U)=R(I, U, 1 )/3, $+R(I, U, 2) / 6$.

```
WRITE(6,6) (S{2, J),S(1, J),E(J),J=1,3),R2,R1,T
```


## Program 4.4 (Four Factors)

$$
1
$$

1

2

3

4

6



```
M
M
IF
I
I
I
DO
D
S
E
MIMENSION Y(2.4,6),R{2,4,2),E(4),S{2,4)
= =M M=
EO
*)
    OTA
l
```

    6
    childbearing ages, the significant shift in this latter structure during 1963-1983 in favor of nonmarriage had a tremendous boosting effect on the illegitimacy ratio. In table 4 of Smith and Cutright, the standardization was performed by holding one factor constant at a time, whereas our standardization holds three factors constant simultaneously allowing the fourth factor to vary. The two sets of standardizations are, therefore, not directly comparable. This example will be discussed further with five populations for five years in Example 6.5 (tables 6.9 and 6.10).

Table 4.7. Illegitimacy Ratio as a Function of Four Vector-Factors: United States, Whites, 1963 and 1983

| Age groups | 1 | 1963 (population 1) |  |  |  | 1983 (population 2) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r} W_{1} / W \\ =A_{1} \end{array}$ | $\begin{gathered} U_{i} / W_{i} \\ =B_{i} \end{gathered}$ | $\begin{aligned} & I_{I} / U_{1} \\ & =C_{1} \end{aligned}$ | $\begin{gathered} L_{1} / M_{1} \\ =D_{1} \end{gathered}$ | $\begin{array}{r} W_{1} / W \\ =a_{4} \end{array}$ | $\begin{array}{r} U_{i} / W_{i} \\ =b_{i} \end{array}$ | $\begin{aligned} & I_{1} / U_{1} \\ & =c_{1} \end{aligned}$ | $\begin{gathered} L_{1} / M_{1} \\ =d_{1} \end{gathered}$ |
| 15 to 19. | 1 | . 200 | . 866 | . 007 | . 454 | . 169 | . 931 | . 018 | . 380 |
| 20 to 24. | 2 | . 163 | . 325 | . 021 | . 326 | . 195 | . 563 | . 026 | . 201 |
| 25 to 29. | 3 | . 146 | . 119 | . 023 | . 195 | . 190 | . 311 | . 023 | . 149 |
| 30 to 34. | 4 | . 154 | . 099 | . 015 | . 107 | . 174 | . 216 | . 016 | . 079 |
| 35 to 39. | 5 | . 168 | . 099 | . 008 | . 051 | . 150 | . 199 | . 008 | . 025 |
| 40 to 44. | 6 | . 169 | . 121 | . 002 | . 015 | . 122 | . 191 | . 002 | . 006 |
| Illegitimacy ratio $(\mathrm{R})=1 /(1+\mathrm{L})$ |  | $\mathrm{R}_{1}=.03095$ |  |  |  | $\mathrm{R}_{2}=.12518$ |  |  |  |

Source: Smith and Cutright (1988), tables 2 and 3.

Table 4.8. Standardization and Decomposition of Illegitimacy Ratios in Table 4.7
(For convenience, results obtained from data in table 4.7 are multiplied by 1,000 before presenting them in table 4.8)

| Illegitimacy ratios | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1983 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1963 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| $\bar{\beta} \bar{\gamma} \bar{\delta}$-standardized ratios | 71.51 | 77.71 | -6.20 ( $\overline{\text { a }}$ | -6.6 |
| $\overline{\alpha \gamma} \bar{\delta}$-standardized ratios | 96.08 | 47.42 | 48.66 ( $\bar{\beta}$ ) | 51.7 |
| $\bar{\alpha} \bar{\beta} \bar{\delta}$-standardized ratios | 86.30 | 59.24 | 27.06 ( $\bar{\gamma}$ ) | 28.7 |
| $\bar{\alpha} \bar{\beta} \bar{\gamma}$-standardized ratios | 84.34 | 59.63 | 24.71 ( $\overline{8})$ | 26.2 |
| Overall illegitimacy ratios (R) | 125.18 | 30.95 | $\begin{aligned} & 94.23 \\ & \text { (Total effect) } \end{aligned}$ | 100.0 |

## Program 4.4

The results in table 4.8 can be obtained by using Program 4.4 in which $\mathrm{V}(I, J, K)$ 's in line 2 are the data from table 4.7 corresponding to $I=1,2$ (1963 and 1983); $J=1,4$ ( $\bar{\alpha}, \bar{\beta}, \bar{y}$, and $\bar{\delta}$ ); and $K=1,6$ (six age groups). The data file consists of eight lines with the eight vectors $\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{a}, \bar{b}, \bar{c}$, and $\bar{d}$ in table 4.7 , each line having six elements. Program 4.4 is basically the same as Program 3.2 for four factors in chapter 3 except that it takes six lines (lines 12 through 17) to compute the rate $R$ (i.e., H in the program) instead of a single line (line 12) used in Program 3.2. Program 4.4 is, therefore, five lines longer than Program 3.2.

### 4.5 THE CASE OF FIVE VECTOR-FACTORS

In this case, we can write the rate as

$$
\begin{equation*}
R=F(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, \bar{\epsilon}), \tag{4.31}
\end{equation*}
$$

which assumes the values

$$
\begin{equation*}
R_{1}=F(\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E}), \quad R_{2}=F(\bar{a}, \bar{b}, \bar{c}, \bar{d}, \bar{e}) \tag{4.32}
\end{equation*}
$$

in population 1 and population 2 , respectively.

The standardized rates and the factor effects have the same expressions as those in (3.35) through (3.38) with the scalars $\alpha, \beta, \gamma, \delta, \epsilon, A, B, C, D, E, a, b, c, d$, and $e$ in them replaced by their corresponding vectors.

## Example 4.5

Arriaga (1984) studied changes in life expectations as a result of changes in mortality rates in different age groups. In terms of a complete life table extending to age 109, we can express the expectation of life at birth ${ }^{\circ}{ }_{0}$ as

$$
\begin{equation*}
{\stackrel{\circ}{e_{o}}}^{=} \frac{L_{o}}{100000}+\frac{1-q_{o}}{2}+\sum_{y=1}^{109} \prod_{x=0}^{y}\left(1-q_{x}\right), \tag{4.43}
\end{equation*}
$$

where $L_{o}$ is the stationary population in the age interval $0-1$, and $q_{x}$ is the probability that a person of exact age $x$ will die before reaching the exact age $x+1$.

In table 4.9, $\stackrel{\circ}{e}^{\prime}$ 's for White males for 1940 and 1980 are shown as a function of five vector-factors as follows:

$$
\begin{equation*}
{\stackrel{\circ}{\theta_{0}}}=R=F(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, \bar{\epsilon}), \tag{4.44}
\end{equation*}
$$

where, from the values of $L_{0}$ and $q_{0}$ in the two life tables, $L_{0}$ in (4.33) is expressed as

$$
\begin{equation*}
\mathrm{L}_{\mathrm{o}}=100054-86065 \mathrm{q}_{\mathrm{o}}, \tag{4.35}
\end{equation*}
$$

and

$$
\begin{align*}
& \bar{\alpha}=\left(q_{0}, q_{1}, \ldots, q_{19}\right), \bar{\beta}=\left(q_{20}, q_{21}, \ldots, q_{39}\right), \bar{\gamma}=\left(q_{40}, q_{41}, \ldots, q_{59}\right),  \tag{4.36}\\
& \bar{\delta}=\left(q_{60}, q_{61}, \ldots, q_{79}\right), \bar{\epsilon}=\left(q_{80}, q_{81}, \ldots, q_{109}\right) .
\end{align*}
$$

There was an increase of 8.005 in the expectation of life at birth for White males in the four decades 1940-1980, from 62.812 in 1940 to 70.817 in 1980. The standardization and decomposition in table 4.10 show how this increase in $\stackrel{\circ}{\Theta}_{0}$ can be attributed to the decrease in the mortality rates in the age groups 0 to 20,20 to 40,40 to 60,60 to 80 , and 80 and over. From the last column, we find that, in terms of percentages, the contributions made by these age groups towards the overall increase in ${ }_{0}^{\circ}$ are, respectively, 44.3, 10.3, 22.0, 18.9, and 4.5. Arriaga's decompositions do not include one that corresponds to the data in table 4.9; therefore, we cannot compare our results with his.

Suchindran and Koo (1992) used this formulation to decompose the difference between two mean ages at last birth into the effects of the differences in five factors (which include one scalar factor and four vector-factors), namely, age at first birth, earlier parity progression ratios, later parity progression ratios, earlier birth intervals, and later birth intervals.

Table 4.9. Expectation of Life at Birth $\left(\stackrel{\circ}{\mathrm{e}}_{\mathrm{o}}\right)$ as a Function of Five Vector-Factors: United States, White Males, 1940 and 1980

| 1940 (population 1) |  |  |  |  |  | 1980 (population 2) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Age } \\ & \mathbf{x} \end{aligned}$ | $\mathrm{q}_{\mathrm{x}}$ |  | Age | $q_{x}$ |  | Age $\mid x$ | $\mathrm{q}_{\mathrm{x}}$ |  | Age $x$ | $\mathrm{q}_{\mathrm{x}}$ |  |
| 0. | . 04812 |  | 60 | . 02548 |  |  | . 01231 |  | 60 | . 01762 |  |
| 1 | . 00487 |  | 61 | . 02743 |  |  | . 00092 |  | 61 | . 01933 |  |
| 2 | . 00265 |  | 62 | . 02952 |  |  | . 00066 |  |  | . 02119 |  |
| 3 | . 00190 |  | 63 | . 03177 |  | 3 | . 00053 |  |  | . 02316 |  |
| 4 | . 00153 |  | 64 | . 03420 |  |  | . 00043 |  |  | . 02523 |  |
| 5. | . 00138 |  | 65 | . 03685 |  |  | . 00039 |  |  | . 02738 |  |
| 6. | . 00124 |  | 66 | . 03975 |  |  | . 00037 |  | 66 | . 02968 |  |
| 7. | . 00114 |  | 67 | . 04293 |  |  | . 00034 |  |  | . 03218 |  |
| 8 | . 00106 |  | 68 | . 04643 |  |  | . 00030 |  |  | . 03495 |  |
| 9. | . 00102 | $\bar{A}$ | 69 | . 05028 | $\bar{\square}$ |  | . 00024 | $\overline{\mathrm{a}}$ | 69 | . 03805 | d |
| 10. | . 00100 |  | 70 | . 05454 |  | 10 | . 00019 |  | 70 | . 04148 |  |
| 11. | . 00101 |  | 71 | . 05924 |  | 11 | . 00019 |  |  | . 04516 |  |
| 12. | . 00106 |  | 72 | . 06443 |  | 12 | . 00028 |  | 72 | . 04901 |  |
| 13 | . 00114 |  |  | . 07014 |  | 13 | . 00046 |  |  | . 05295 |  |
| 14. | . 00127 |  | 74 | . 07637 |  | 14 | . 00071 |  |  | . 05703 |  |
| 15. | . 00143 |  | 75 | . 08313 |  | 15 | . 00096 |  |  | . 06146 |  |
| 16. | . 00158 |  | 76 | . 09040 |  | 16 | . 00118 |  | 76 | . 06642 |  |
| 17 | . 00172 |  | 77 | . 09818 |  | 17 | . 00137 |  |  | . 07180 |  |
| 18. | . 00186 |  | 78 | . 10647 |  | 18 | . 00151 |  |  | . 07762 |  |
|  | . 00199 |  |  | . 11530 |  | 19 | . 00163 |  |  | . 08394 |  |
| 20. | . 00212 |  |  | . 12471 |  | 20 | . 00175 |  |  | . 09099 |  |
| 21. | . 00223 |  |  | . 13472 |  | 21. | . 00186 |  | 81 | . 09886 |  |
| 22 | . 00232 |  | 82 | . 14537 |  | 22 | . 00193 |  | 82 | . 10733 |  |
| 23. | . 00238 |  | 83 | . 15668 |  | 23 | . 00193 |  | 83 | . 11613 |  |
| 24. | . 00241 |  | 84 | . 16859 |  | 24 | . 00189 |  | 84 | . 12523 |  |
| 25 | . 00243 |  | 85 | . 18104 |  | 25 | . 00183 |  |  | . 13507 |  |
| 26. | . 00245 |  | 86 | . 19395 |  | 26 | . 00177 |  |  | . 14592 |  |
| 27. | . 00251 |  | 87 | . 20727 |  | 27 | . 00172 |  |  | . 15691 |  |
| 28. | . 00259 |  | 88 | . 22091 |  | 28 | . 00168 |  |  | . 16774 |  |
| 29. | . 00268 | $\bar{B}$ | 89 | . 23482 | $\bar{E}$ | 29 | . 00167 | 万 | 89 | . 17875 | $\bar{e}$ |
| 30. | . 00279 |  | 90 | . 24894 |  | 30 | . 00166 |  | 90 | . 19058 |  |
| 31. | . 00291 |  |  | . 26322 |  | 31 | . 00165 |  | 91 | . 20389 |  |
| 32. | . 00306 |  | 92 | . 27760 |  | 32 | . 00166 |  |  | . 21864 |  |
| 33. | . 00323 |  |  | . 29202 |  | 33 | . 00169 |  |  | . 23453 |  |
| 34. | . 00342 |  |  | . 30642 |  | 34 | . 00175 |  |  | . 25061 |  |
| 35. | . 00363 |  | 95 | . 32076 |  | 35 | . 00184 |  |  | . 26617 |  |
|  | . 00387 |  | 96 | . 33496 |  | 36 | . 00196 |  | 96 | . 28001 |  |
| 37. | . 00414 |  | 97 | . 34898 |  | 37. | . 00209 |  | 97 | . 29311 |  |
| 38. | . 00443 |  | 98 | . 36275 |  | 38. | . 00224 |  | 98 | . 30545 |  |
| 39. | . 00476 |  |  | . 37623 |  |  | . 00240 |  | 99 | . 31703 |  |
|  |  |  | 100. | . 38935 |  |  |  |  | 100 | . 32784 |  |
| 40. | . 00513 |  | 101. | . 40205 |  | 40 | . 00261 |  | 101 | . 33791 |  |
|  | . 00554 |  | 102. | . 41429 |  | 41 | . 00287 |  | 102 | . 34724 |  |
|  | . 00600 |  | 103. | . 42599 |  | 42 | . 00316 |  | 103 | . 35588 |  |
| 43. | . 00650 |  | 104. | . 43712 |  | 43 | . 00348 |  | 104. | . 36384 |  |
|  | . 00706 |  |  | . 44760 |  | 44 | . 00382 |  | 105. | . 37117 |  |
|  | . 00766 |  | 106. | . 45738 |  | 45 | . 00420 |  | 106. | . 37790 |  |
|  | . 00833 |  | 107. | . 46640 |  | 46 | . 00463 |  | 107. | . 38407 |  |
| 47. | . 00904 |  | 108. | . 47462 |  | 47 | . 00514 |  | 108. | . 38971 |  |
| 48. | . 00981 | $\overline{\text { C }}$ | 109. | . 48000 |  | 48 | . 00573 | $\overline{\mathrm{c}}$ | 109. | . 39486 |  |
|  | . 01064 |  |  |  |  |  | . 00639 |  |  |  |  |
|  | . 01155 |  |  |  |  | 50. | . 00706 |  |  |  |  |
|  | . 01253 |  |  |  |  | 51 | . 00775 |  |  |  |  |
|  | . 01360 |  |  | (1940) |  |  | . 00850 |  |  | (1980) |  |
| 53 | . 01476 |  |  |  |  |  | . 00934 |  |  |  |  |
| 54 | . 01602 |  |  |  |  |  | . 01027 |  |  |  |  |
|  | . 01737 |  |  |  |  | 55 | . 01125 |  |  |  |  |
| 56. | . 01881 |  |  |  |  |  | . 01227 |  |  |  |  |
| 57. | . 02034 |  |  |  |  |  | . 01338 |  |  |  |  |
| 58. | . 02195 |  |  | 62.812 |  | 58 | . 01464 |  |  | 70.817 |  |
| 59. | . 02366 |  |  |  |  |  | . 01605 |  |  |  |  |

Source: U.S. Bureau of the Census (1946), table 5; National Center for Health Statistics (1985), table 5.

Table 4.10. Standardization and Decomposition of Expectations of Life at Birth in Table 4.9

| Expectation of life at birth | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1980 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1940 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| $\bar{\beta} \bar{\gamma} \bar{\delta} \bar{\epsilon}$-standardized expectations | 68.463 | 64.917 | 3.546 ( $\bar{\alpha}$ ) | 44.3 |
| $\overline{\alpha \gamma} \bar{\delta} \bar{E}$-standardized expectations | 67.112 | 66.286 | . 826 ( $\bar{\beta}$ ) | 10.3 |
| $\bar{\alpha} \overline{\beta \delta \delta} \bar{E}$-standardized expectations | 67.566 | 65.802 | $1.764(\bar{\gamma})$ | 22.0 |
| $\overline{\boldsymbol{\alpha}} \overline{\boldsymbol{\beta}} \overline{\boldsymbol{\gamma}}$-standardized expectations | 67.433 | 65.925 | 1.508 ( $\bar{\delta})$ | 18.9 |
| $\bar{\alpha} \bar{\beta} \bar{\gamma} \bar{\delta}$-standardized expectations | 66.876 | 66.515 | . 361 ( $\overline{\text { c }}$ | 4.5 |
| Overall expectation of life at birth (R) | 70.817 | 62.812 | $\begin{gathered} 8.005 \\ \text { (Total effect) } \end{gathered}$ | 100.0 |

## Program 4.5

The results in table 4.10 can be obtained by using Program 4.5 in which $\mathrm{V}(1, \mathrm{~J}, \mathrm{~K})$ 's in line 2 are the data from table 4.9 giving $220 q_{x}{ }^{\prime}$ s corresponding to $I=1,2(1940$ and 1980); $J=1,5(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}$, and $\bar{\epsilon}$ ); and $K=1,20$ (20 single-year age groups for the first four vector-factors) or $K=1,30$ ( 30 single-year age groups for the fifth vector-factor). The data file, therefore, consists of 22 lines: lines 1 through 11 are for $110 q_{x}$ values for 1940 and lines 12 through 22 are for $110 q_{x}$ values for 1980 (each of lines 1 through 22 having 10 values), the format being as shown in line 3 of the program. Program 4.5 is basically the same as Program 3.3 for five factors in chapter 3 except that it has 11 additional lines (lines 13 through 23) for the computation of the rate R (i.e., H in the program). Program 4.5 is, therefore, 11 lines longer than Program 3.3.

### 4.6 THE CASE OF SIX VECTOR-FACTORS

When there are six vector-factors so that

$$
\begin{equation*}
\mathrm{R}=\mathrm{F}(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, \bar{\epsilon}, \bar{\eta}), \tag{4.37}
\end{equation*}
$$

and in the two populations,

$$
\begin{equation*}
R_{1}=F(\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E}, \bar{F}), \quad R_{2}=F(\bar{a}, \bar{b}, \bar{c}, \bar{d}, \bar{e}, \overline{\bar{C}}), \tag{4.38}
\end{equation*}
$$

then the standardized rates and the factor effects have the same expressions as those in (3.42) through (3.45) except that the scalars have to be replaced by their corresponding vectors.

## Example 4.6

As in Example 4.5, the changes in life expectations can also be decomposed into the effects of changes in mortality by different causes of death (Pollard, 1988; Myers, 1991). Table 4.11 gives the data from the U.S. total abridged life tables for 1962 and 1987 expressing the expectation of life at birth $\stackrel{\circ}{e}_{0}(=R)$ as

$$
\begin{equation*}
\mathrm{R}=\mathrm{F}(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, \bar{\epsilon}, \bar{\eta}), \tag{4.39}
\end{equation*}
$$

where

$$
\begin{align*}
& \bar{\alpha}=\left(1 q_{0}{ }^{(1)},{ }_{4} q_{1}{ }^{(1)}, \ldots, 5 q_{80}{ }^{(1)}\right), \bar{\beta}=\left(1 q_{0}^{(2)},{ }_{4} q_{1}{ }^{(2)}, \ldots, 5 q_{80}{ }^{(2)}\right), \\
& \bar{\gamma}=\left(1 q_{0}{ }^{(3)},{ }_{4} q_{1}{ }^{(3)}, \ldots, 5 q_{80}{ }^{(3)}\right), \bar{\delta}=\left({ }_{1} q_{0}^{(4)},{ }_{4} q_{1}{ }^{(4)}, \ldots, 5 q_{80}{ }^{(4)}\right),  \tag{4.40}\\
& \bar{\epsilon}=\left(1 q_{0}{ }^{(5)},{ }_{4} q_{1}{ }^{(5)}, \ldots, 5 q_{80}{ }^{(5)}\right), \bar{\eta}=\left(1 q_{0}{ }^{(6)}{ }_{, 4} q_{1}{ }^{(6)}, \ldots, 5 q_{80}{ }^{(6)}\right),
\end{align*}
$$

Program 4.5 (Five Factors)

* $\stackrel{\text { NA }}{\text { A }}$


Program 4.6 (Six Factors)

1

READ $(5,8)(A(K), B(K), K=1,19)$
FORMAT $(2 F 10,4)$

2

| DO |
| :--- |
| DO |
| R |
| 0 |
| 0 |
| 0 |
| D |
| D |
|  |

9
$\mathrm{DO}_{\mathrm{O}}^{\mathrm{O}} \mathrm{V}^{(1)} \mathrm{N} 1=1 \mathrm{~N}_{1}^{18}$

3
$\left.\begin{array}{l}\text { IF } \\ I F \\ I+J+K+L+N . E Q \cdot K 1 . O R \cdot I+U+K+L+N . E Q \cdot K 2 \\ I+J+K+L+M . E Q \cdot K 1 . O R \cdot I+U+K+L+N \text {.EQ.K2 }\end{array}\right\}$
别 $5 \mathrm{~J}=1,6$


6

[^1]and
\[

$$
\begin{equation*}
{ }_{n} q_{x}=\sum_{i=1}^{6} n q_{x}^{(i)} \tag{4.41}
\end{equation*}
$$

\]

i $(=1,2 \ldots, 6)$ being the six categories of causes of death as shown in table 4.11.
The ${ }_{n} q_{x}{ }^{(1)}$-values are obtained from the corresponding ${ }_{n} q_{x}$ of the abridged life table and from the death statistics of the six causes. For example, in the age group 5 to 10 for 1987, ${ }_{5} \mathrm{q}_{5}$ is .001225 and the deaths in the six causes are, respectively, 149, 46, 681, 151, 2, 231, and 1,043, the total number of deaths being 4,301 . We compute

$$
\begin{gather*}
{ }_{5} \mathrm{q}_{5}^{(1)}=.001225 \times(149 / 4301)=.000043,  \tag{4.42}\\
{ }_{59_{5}}{ }^{(2)}=.001225 \times(46 / 4301)=.000013,
\end{gather*}
$$

and so on. These values are shown in table 4.11.
Table 4.11 also shows the values of ${ }_{n} G_{x}$ and ${ }_{n} H_{x}$ where

$$
\begin{align*}
\left({ }_{n} L_{x} / I_{x}\right) & ={ }_{n} G_{x}+{ }_{n} H_{x} \cdot{ }_{n} q_{x}, x=0,1,5 \ldots, 80, \\
\left({ }_{\infty} L_{85} / I_{85}\right) & ={ }_{\infty} G_{85}+{ }_{\infty} H_{85} \cdot{ }_{85} q_{0}, \tag{4.43}
\end{align*}
$$

and where each of the 19 straight lines is fitted from the two points corresponding to the abridged life tables for 1962 and 1987. For example, for age group 5 to $10,{ }_{5} \mathrm{~L}_{5}, \mathrm{I}_{5}$, and ${ }_{5} \mathrm{q}_{5}$ are 484,912, 97100 , and .00225541 for 1962 and 493,611, 98788, and .00122485 for 1987. Therefore,

$$
\begin{align*}
{ }_{5} H_{5} & =[(484912 / 97100)-(493611 / 98788)] /(.00225541-.00122485) \\
& =-2.6444, \tag{4.44}
\end{align*}
$$

and

$$
{ }_{5} G_{5}=(484912 / 97100)+2.6444 \times .00225541=4.9999
$$

Again, for solving the last equation in (4.43), we have ${ }_{{ }^{\circ}} L_{85}, I_{85}$, and ${ }_{85} q_{0}$ equal to $88,325,19101$, and .80899 for 1962 and 183,453, 30220, and .69780 for 1987. Therefore,

$$
\begin{align*}
{ }_{\infty} \mathrm{H}_{85} & =[(88325 / 19101)-(183453 / 30220)] /(.80899-.69780)  \tag{4.45}\\
& =-13.0091,
\end{align*}
$$

and

$$
{ }_{\infty} G_{85}=(88325 / 19101)+13.0091 x .80899=15.1483
$$

It is evident from (4.39) and from the formulas for six vector-factors similar to (3.45) that we need to compute the expectation of life at birth for $2^{6}$ combinations of the vector-factors for the two years. These computations for a particular combination may proceed as follows:

$$
\begin{gather*}
I_{0}=1.0, \\
{ }_{n} q_{x}=\sum_{i=1}^{6} q_{x}{ }^{(1)},{ }_{n} L_{x}=I_{x}\left({ }_{n} G_{x}+{ }_{n} H_{x} \cdot{ }_{n} q_{x}\right), \\
I_{x+n}=I_{x}\left(1-{ }_{n} q_{x}\right), x=0,1,5, \ldots, 80, \\
\infty L_{85}=I_{85}\left[{ }_{\infty} G_{85}+{ }_{\infty} H_{85}\left(1-I_{85}\right)\right],  \tag{4.46}\\
\circ \\
\dot{\theta}_{0}=\sum_{x=0,1,5, \ldots, \ldots 85} n L_{x} .
\end{gather*}
$$

Table 4.11. Expectation of Life at Birth $\left(\stackrel{\circ}{e}_{\mathrm{e}}\right)$ as a Function of Six Vector-Factors: United States, Total, 1962 and 1987


[^2]Source: National Center for Health Statistics (1964, tables 1-23, 5-1; 1990b, tables 1-26, 6-1).

Table 4.12. Standardization and Decomposition of Expectations of Life at Birth in Table 4.11

| Expectation of life at birth | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1987 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1962 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| $\bar{\beta} \bar{\gamma} \bar{\delta} \overline{\bar{\eta}} \eta$-standardized expectations | 73.587 | 71.315 | 2.272 ( $\bar{\alpha}$ ) | 46.1 |
| $\bar{\alpha} \bar{\gamma} \bar{\delta} \bar{\Pi} \eta$-standardized expectations | 72.321 | 72.649 | -. 328 ( $\overline{\boldsymbol{\beta}}$ ) | -6.6 |
| $\bar{\alpha} \overline{\beta \delta} \overline{\bar{\prime}} \bar{\eta}$-standardized expectations | 72.405 | 72.562 | -. 157 ( $\bar{\gamma}$ ) | -3.2 |
| $\bar{\alpha} \bar{\beta} \bar{\gamma} \bar{\eta}$-standardized expectations | 72.530 | 72.427 | .103 ( $\bar{\delta}$ ) | 2. |
| $\bar{\alpha} \bar{\beta} \bar{\gamma} \bar{\delta} \bar{\eta}$-standardized expectations | 72.585 | 72.353 | .232 ( $\overline{\text { ¢ }}$ | 4.7 |
| $\bar{\alpha} \bar{\beta} \bar{\gamma} \bar{\delta} \bar{\epsilon}$-standardized expectations | 73.853 | 71.047 | 2.806 ( $\bar{\eta}$ ) | 56.9 |
| Overall expectation of life at birth (R) | 74.963 | 70.035 | $\begin{gathered} 4.928 \\ \text { (Total effect) } \end{gathered}$ | 100.0 |

The results of the standardization and decomposition of the expectations of life at birth in table 4.11 are shown in table 4.12. The expectations of life at birth were 70.035 in 1962 and 74.963 in 1987, the total increase in $\dot{\ominus}_{o}$ during the 25 -year period being 4.928. If the mortality rates from the diseases of the heart differed as they did in 1962 and 1987, and those from all other causes of death were identical in the two years, then the $\stackrel{\circ}{0}^{\circ}$ 's in 1962 and 1987 would be 71.315 and 73.587 , respectively, showing an increase of 2.272. In other words, 46.1 percent of the increase in the $\stackrel{\circ}{e}_{o}$ during the 25 -year period can be attributed to the decline in the mortality rates from the diseases of the heart. On the other hand, other diseases of the circulatory system and neoplasms had negative effects on the increase in the $\stackrel{\circ}{\circ}_{0}$; i.e., without changes in the other four cause-of-death categories, the ${\stackrel{\circ}{\Theta_{o}}}^{\circ}$ in 1987 would have been lower than that in 1962.

The techniques in Examples 4.5 and 4.6 can be easily combined to handle both age groups and causes of death simultaneously, as Pollard did. His results on the Australian data are not directly comparable with ours.

## Program 4.6

The results in table 4.12 can be obtained by using Program 4.6 in which $\mathrm{V}(I, J, K)$ 's in line 2 are the data from table 4.11 corresponding to $I=1,2$ (1962 and 1987); $J=1,6(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, \bar{\epsilon}$, and $\bar{\eta}$ ); and $K=1,18$ (18 age groups 0 to 1,1 to $5, \ldots, 80$ to 85$)$. $A(K)$ 's and $B(K)$ 's in line 4 of the program are 19 pairs of straight line parameters ${ }_{n} \mathrm{G}_{\mathrm{x}}$ 's and ${ }_{n} \mathrm{H}_{\mathrm{x}}$ 's given in table 4.11. The data file, therefore, consists of 55 lines: lines 1 through 18 are for ${ }_{n} q_{x}{ }^{(1)}$ values for 1962 corresponding to 18 age groups, each line having six such values for six cause-of-death categories; lines 19 through 36 give the same data for 1987; and lines 37 through 55 are for 19 straight line parameters for the 19 age groups, each line having two values. The formats for these data inputs are given in lines 3 and 5 of the program. Program 4.6 is basically the same as Program 3.4 for six factors in chapter 3 except that it has two additional lines (lines 4,5 ) for data input and six additional lines (lines 16 through 21) for the computation of the rate R (i.e., H in the program), as shown in the equations in (4.46). Program 4.6 is, therefore, eight lines longer than Program 3.4.

### 4.7 P VECTOR-FACTORS AND THE GENERAL PROGRAM

When there are $\mathbf{P}$ vector-factors so that

$$
\begin{equation*}
R=F\left(\bar{\alpha}_{1}, \bar{\alpha}_{2}, \ldots, \bar{\alpha}_{\rho}\right), \tag{4.47}
\end{equation*}
$$

and in the two populations,

$$
\begin{equation*}
R_{1}=F\left(\bar{A}_{1}, \bar{A}_{2}, \ldots, \bar{A}_{p}\right), \quad R_{2}=F\left(\bar{a}_{1}, \overline{\mathbf{a}}_{2}, \ldots,, \bar{a}_{p}\right), \tag{4.48}
\end{equation*}
$$

then the standardized rates and the factor effects have the same expressions as those in (3.51) through (3.54) except that the scalars have to be replaced by their corresponding vectors.

The general program for up to 10 factors (Program 2.3) given in section 2.8 can also be used for any number of factors up to 10 for the standardization and decomposition problems in chapter 4 (i.e.; when the rate is a function of vector-factors). The only changes needed in Program 2.3 are in the dimension statement in line 1, the input statement and format in lines 2 and 3 , the output statement and format in lines 42 and 43, and in the expression for the rate in lines 18 and 19. In particular, the computation of the rate may take several lines in the program because of more involved data. We show below the specific changes in Program 2.3 that will be needed to generate the results in tables 4.2, 4.4, 4.6, 4.8, 4.10, and 4.12 corresponding to Examples 4.1 through 4.6 in this chapter. As before, no changes are needed in the data files previously created to be used with the specific programs.

Example 4.1 (two factors)
Line 1: $\quad$ Replace $P(2,10)$ by $V(2,10,500)$
Lines 2,3: Replace by lines 2,3 in Program 4.1
Lines 18,19: Replace by lines $9-21$ in Program 4.1
Lines 42,43: Replace 10 by 2 and 15.3 by 15.5
Example 4.2 (two factors)
Line 1: $\quad$ Replace $\mathrm{P}(2,10)$ by $\mathrm{V}(2,10,500)$
Lines 2,3: Replace by lines 2,3 in Program 4.2
Lines 18,19: Replace by lines 9 -16 in Program 4.2
Lines 42,43: Replace 10 by 2
Example 4.3 (three factors)
Line 1: $\quad$ Replace $P(2,10)$ by $V(2,10,500)$
Lines 2,3: Replace by lines 2,3 in Program 4.3
Lines 18,19: Replace by lines 11-13 in Program 4.3
Lines 42,43: Replace 10 by 3 and 15.3 by 15.2
Example 4.4 (four factors)
Line 1: Replace $P(2,10)$ by $V(2,10,500)$
Lines 2,3: Replace by lines 2,3 in Program 4.4
Lines 18,19: Replace by lines 12-17 in Program 4.4
Lines 42,43 : Replace 10 by 4 and 15.3 by 15.5
Example 4.5 (five factors)
Line 1: $\quad$ Replace $P(2,10)$ by $V(2,10,500)$ and add $Q(110)$
Lines 2,3: Replace by lines 2,3 in Program 4.5
Lines 18,19: Replace by lines 13-24 in Program 4.5
Lines 42,43: Replace 10 by 5
Example 4.6 (six factors)
Line 1: $\quad$ Replace $P(2,10)$ by $V(2,10,500)$ and add $A(19), B(19)$
Lines 2,3: Replace by lines 2-5 in Program 4.6
Lines 18,19: Replace by lines 16-22 in Program 4.6
Lines 42,43: Replace 10 by 6

## Chapter 5. Rate From Cross-Classified Data

### 5.1 INTRODUCTION

Most of the papers on standardization and decomposition published so far deal with the case in which the techniques are performed on cross-classified data involving one or more factors. For example, Liao (1989) decomposed the difference between two crude death rates into the effects of age and race (Example 5.3). Sweet (1984) studied the growth of households as a result of the changes in age and marital status composition (Example 5.6). Again, Wilson (1988) decomposed the difference in the mobility rates in terms of age and education (Example 5.7).

Unlike the situations in the preceding chapters, the decomposition in the case of cross-classified data involves an additional effect, namely, the effect of the differences in the cell-specific rates, called the rate-effect. In other words, if the cross-classification involves, say, three factors, namely, age (I), sex (J), and marital status ( $K$ ), then the decomposition generates four additive effects: the age (l)-effect, the sex $(\mathrm{J})$-effect, the marital status $(\mathrm{K})$-effect, and the rate ( R )-effect. The most crucial part in the development of decomposition technique in this case is expressing the proportion of population in a cell in the cross-classification in terms of the product of a number of symmetrical expressions (equal to the number of factors) that represent the factors involved, as in equation (5.7) for two factors and in equation (5.15) for three factors.

### 5.2 THE CASE OF ONE FACTOR

When there is only one factor $I, N_{1}$ and $T_{1}$ are the number of persons and the rate for the ith category of I in population 1, N. and T. being the corresponding total number of persons and the crude rate. For population 2, analogous symbols are used with lower-case letters n and t .

The crude rates can be expressed as

$$
\begin{equation*}
T .=\sum_{i} \frac{T_{i} N_{i}}{N .}, \quad t .=\sum_{i} \frac{t_{i} n_{i}}{n .} . \tag{5.1}
\end{equation*}
$$

Writing

$$
\begin{equation*}
\frac{N_{i}}{N}=A_{i}, \quad \frac{n_{i}}{n .}=a_{i}, \tag{5.2}
\end{equation*}
$$

it follows from Das Gupta (1991, formula 18) that

$$
\begin{aligned}
\mathrm{t}-\mathrm{T} & =R(\text { rate }) \text {-effect }+ \text { I-effect } \\
& =[R(\bar{t})-R(\bar{T})]+[I(\bar{a})-I(\bar{A})],
\end{aligned}
$$

where
$R(\bar{T})=1$-standardized rate in population 1

$$
\begin{equation*}
=\sum_{i} \frac{\frac{n_{1}}{n_{I}}+\frac{N_{1}}{N_{.}}}{2} T_{1}, \tag{5.3}
\end{equation*}
$$

$I(\bar{A})=$ R-standardized rate in population 1

$$
\begin{equation*}
=\sum_{i} \frac{t_{i}+T_{i}}{2} A_{i} \tag{5.4}
\end{equation*}
$$

and $R(\bar{t})$ and $I(\bar{a})$ have the same expressions as those in (5.3) and (5.4), respectively, with $T_{i}$ in (5.3) replaced by $t_{i}$ and $A_{i}$ in (5.4) replaced by $a_{i}$.

It is clear from the discussions in section 4.2 that the present case can also be treated as a case of two vector-factors, the vectors in (4.4) being

$$
\begin{align*}
& \bar{A}=\left(\frac{N_{1}}{N .}, \frac{N_{2}}{N_{1}}, \ldots\right), \bar{B}=\left(T_{1}, T_{2}, \ldots\right),  \tag{5.5}\\
& \bar{a}=\left(\frac{n_{1}}{n_{.}}, \frac{n_{2}}{n_{0}}, \ldots\right), \bar{b}=\left(t_{1}, t_{2}, \ldots\right),
\end{align*}
$$

so that the rates in (4.3) are

$$
R_{1}=T .=F(\bar{A}, \bar{B}), R_{2}=t .=F(\bar{a}, \bar{b})
$$

## Example 5.1

The data in table 5.1 are taken from Santi (1989) where the percentage distribution of population and household headship rates by age groups are given for 1970 and 1985 for the United States. The headship rates are 44.727 and 47.694 for 1970 and 1985, respectively, the difference between them being 2.967. Table 5.2 shows that if the age-specific headship rates varied as they did in 1970 and 1985, but the age structures of the populations were identical in the two years, then the headship rates in 1970 and 1985 would be, respectively, 45.331 and 47.071, giving a difference of 1.740 . In other words, 41.4 percent of the total difference between the headship rates in 1970 and 1985 is due to the difference in the age structures of the populations in the two years. The remaining 58.6 percent of the difference is the so-called "real" difference (i.e., the effect of the difference in the age-specific headship rates). We will discuss this problem again in Example 6.2 (tables 6.3 and 6.4) to compare Santi's results with ours when four populations for the four years 1970, 1975, 1980, and 1985 are considered simultaneously.

Table 5.1. Population Sizes (Percents) and Household Headshlp Rates per 100 by Age Groups: United States, 1970 and 1985

| Age groups | i |  | 1970 (population 1) |  | 1985 (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Size ${ }^{\text {N }}$ | Rate | $\begin{array}{r} \text { Size } \\ n_{1} \end{array}$ | Rate |
| 15 to 19. | 1 |  | 12.9 | 1.9 | 10.1 | 2.2 |
| 20 to 24. | 2 |  | 10.9 | 25.8 | 11.2 | 24.3 |
| 25 to 29. | 3 |  | 9.5 | 45.7 | 11.6 | 45.8 |
| 30 to 34. | 4 |  | 8.0 | 49.6 | 10.9 | 52.5 |
| 35 to 39. | 5 |  | 7.8 | 51.2 | 9.4 | 56.1 |
| 40 to 44. | 6 |  | 8.4 | 51.6 | 7.7 | 55.6 |
| 45 to 49. | 7 |  | 8.6 | 51.8 | 6.3 | 56.0 |
| 50 to 54. | 8 |  | 7.8 | 54.9 | 6.0 | 57.4 |
| 55 to 59. | 9 |  | 7.0 | 58.7 | 6.3 | 57.2 |
| 60 to 64. | 10 |  | 5.9 | 60.4 | 5.9 | 61.2 |
| 65 to 69. | 11 |  | 4.7 | 62.8 | 5.1 | 63.9 |
| 70 to 74. | 12 |  | 3.6 | 66.6 | 4.0 | 68.6 |
| 75+... | 13 | ....... | 4.9 | 66.8 | 5.5 | 72.2 |
| All ages.. | $i=$. | ................ | 100.0 | 44.727 | 100.0 | 47.694 |

Source: Santi (1989), table 1.

## Program 5.1

The results in table 5.2 can be obtained by using Program 5.1 in which $P(1, J)$ 's are $N_{1}$ 's and $n_{1}$ 's, and $T(l, J)$ 's are $T_{1}$ 's and $t$ 's in table 5.1. In other words, the data file consists of four lines corresponding to the data in the last four columns in table 5.1 in the same order, each line having 13 numbers with the format specified in line 4 of the program. The four standardized rates in table 5.2 are given by ER(J)'s and S(J)'s in lines 17 and 18 of the program. The two effects in table 5.2 are denoted by ERR and $U$ in lines 20 and 21 of the program.

Table 5.2. Standardization and Decomposition of Household Headship Rates in Table 5.1

| Household headship rates | Standardization |  | Decomposition |  |
| :--- | ---: | ---: | ---: | ---: |
|  | 1985 <br> (population 2) | 1970 <br> (population 1) | Difference <br> (effects) | Percent <br> distribution <br> of effects |
| R (rate)-standardized headship rates | 46.815 | 45.588 | 1.227 <br> $(1=$ age) | 41.4 |
| I (age)-standardized headship rates | 47.071 | 45.331 | 1.740 <br> $(R=$ rate) | 58.6 |
| Overall headship rates | 47.694 | 44.727 | 2.967 <br> (Total effect) | 100.0 |

Alternatively, in view of (5.5), we can also use Program 4.2 and the same data file to obtain the results in table 5.1. The only changes needed in Program 4.2 are as follows:
Lines 1,2: Replace 480 by 13
Line 3: Replace 8F10.7 by 13F5. 1
Lines 9-16: Replace by the following three lines:

$$
\begin{aligned}
& H=0.0 \\
& D O>K 1=1,13 \\
& 7 H=H+V(1,1, K 1)^{*} V(J, 2, K 1) / 100 .
\end{aligned}
$$

## Example 5.2

We consider another one-factor data from Clogg and Eliason (1988) in table 5.3 where the percent desiring more children is compared for two groups of women: parity 1 and parity $4+$. The women and the percentage of them desiring more children are given by age groups. The issue here is how to eliminate the effect of the difference in the age structures in the two parity groups from the overall difference in the percents desiring more children. Of the women with parity $1,72.093$ percent desire more children, whereas the corresponding percentage for women with parity $4+$ is only 11.489 , producing a difference of 60.604 in these percentages. Table 5.4 shows that if the age structures of the women in the two groups were held constant and the age-specific percents desiring more children were allowed to vary as they did in the two parity groups, the overall percents desiring more children would be 55.849 and 18.317, giving a difference of 37.532 as the rate effect. In other words, 38.1 percent of the difference in the desires in the two parity groups is explained by the difference in their age structures. This problem will be taken up again in Example 6.3 (tables 6.5 and 6.6 ) to compare our results with those of Clogg and Eliason when four parity groups are treated simultaneously.

We can use Program 5.1 to obtain the results in table 5.4 if the following changes are made in the program:

1. Replace the number of age groups 13 by 5 throughout the program.
2. For the same reason, replace 14 by 6 throughout the program.
3. Replace 13F5.1 in line 4 by 5F8.0/5F8.3 .

The data file, again, should be made in four lines corresponding to the last four columns in table 5.3 in the same order, each line having five numbers with the format for each of the two pairs of lines as specified in (3) above.

## Program 5.1 (One Factor +Rate)

*NNNNNN.


Program 5.2 (Two Factors +Rate)

2

3
as

5


## 13

DO $6 K=1,2$
P
p
P
P







$E R R=E R(2)-E R(1)$
$D O \quad I=1$


14

$8 \begin{gathered}A=P(I, J S, J U) 7 P(I, 3, J U) \\ W=W * A\end{gathered}$
15


DO $12 I=12$
12


STOP
END

Table 5.3. Population Size and Percent Desiring More Children (Rate) by Age Groups for Parity 1 and Parity 4+ Women: 1970 National Fertility Survey

| Age groups | 1 |  | Parity 4+ (population 1) |  | Parity 1 (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Size <br> $\mathrm{N}_{1}$ | Rate | Size $n_{i}$ | Rate |
| 20 to 24..................... | 1 |  | 27 | 37.037 | 363 | 90.083 |
| 25 to 29.......................... | 2 | .. | 152 | 19.079 | 208 | 76.923 |
| 30 to 34....................... | 3 |  | 224 | 15.179 | 96 | 56.250 |
| 35 to 39....................... | 4 |  | 239 | 5.021 | 59 | 20.339 |
| 40 to 44....................... |  | ...................... | 211 | 6.161 | 48 | 10.417 |
| All ages...................... | $1=$. |  | 853 | 11.489 | 774 | 72.093 |

Source: Clogg and Eliason (1988), table 1.

Table 5.4. Standardization and Decomposition of Percents Desiring More Children in Table 5.3

| Percents desiring more children | Standardization |  | Decomposition |  |
| :--- | ---: | ---: | ---: | ---: |
|  | Parity 1 <br> (population 2) | Parity 4+ <br> (population 1) | Difference <br> (effects) | Percent <br> distribution <br> of effects |
|  | 48.619 | 25.547 | 23.072 <br> $(I=$ age) | 38.1 |
| I (age)-standardized percents | 55.849 | 18.317 | 37.532 <br> $(R=$ rate) | 61.9 |
| Overall percents desiring more children | 72.093 | 11.489 | 60.604 <br> (Total effect) | 100.0 |

Alternatively, as in the case of Example 5.1, we can also use Program 4.2 to obtain the results in table 5.4 by making the following changes in Program 4.2:

Line 1: $\quad$ Replace 480 by 5 and add VV(2)
Line 2: $\quad$ Replace 480 by 5
Line 3: $\quad$ Replace 8F10.7 by 5F8.0/5F8.3
Line 6: $\quad$ Add the following two lines for the two totals after line 6:

$$
\begin{aligned}
& V V(1)=853 . \\
& V V(2)=774 .
\end{aligned}
$$

Lines 9-16: Replace by the following three lines:
$\mathrm{H}=0.0$
DO 7 K1 $=1,5$
$7 \mathrm{H}=\mathrm{H}+\mathrm{V}(\mathrm{I}, 1, \mathrm{~K} 1)^{*} \mathrm{~V}(\mathrm{~J}, 2, \mathrm{~K} 1) / \mathrm{VV}(1)$

### 5.3 THE CASE OF TWO FACTORS

When there are two factors $I$ and $J, N_{i j}$ and $T_{i j}$ are the number of persons and the rate for the (i,j)-category in population $1 ; \mathrm{N}_{\mathrm{i}}$ and $\mathrm{T}_{\mathrm{i}}$ are the number of persons and the rate for the ith category of I , and $\mathrm{N}_{\mathrm{j}}$ and $\mathrm{T}_{\mathrm{j}}$ are the corresponding number of persons and the rate for the jth category of J . As before, N . and $\mathrm{T}_{\text {.. }}$ are the total number of persons and the crude rate. Analogous symbols are used for population 2 with lower-case letters n and t .

The crude rates can be expressed as

$$
\begin{equation*}
T_{. .}=\sum_{i, j} \frac{T_{i j} N_{i j}}{N_{. .}}, \quad t . .=\sum_{i, j}^{t_{i j} n_{i I}} n_{n . .} . \tag{5.6}
\end{equation*}
$$

Writing

$$
\begin{align*}
& \frac{N_{i j}}{N_{. .}}=\left(\frac{N_{i l}}{N_{j}} \cdot \frac{N_{i j}}{N}\right)^{\frac{1}{2}} \cdot\left(\frac{N_{i j}}{N_{i .}} \cdot \frac{N_{j}}{N}\right)^{\frac{1}{2}}=A_{i j} B_{i j},  \tag{5.7}\\
& \frac{n_{i j}}{n_{. .}}=\left(\frac{n_{i n}}{n_{j}} \cdot \frac{n_{i j}}{n_{i}}\right)^{\frac{1}{2}} \cdot\left(\frac{n_{i l}}{n_{i j}} \cdot \frac{n_{j}}{n_{n}}\right)^{\frac{1}{2}}=a_{i j} b_{i j},
\end{align*}
$$

we notice that the two ratios in $A_{i j}$ and $a_{i j}$ represent only the l-effect, and the two ratios in $B_{i \|}$ and $b_{i \|}$ represent only the J-effect.

It follows from equations (19) and (21) in Das Gupta (1991) that

$$
\begin{align*}
\text { t.. -T.. } & =\text { R-effect }+ \text { l-effect }+J \text {-effect }  \tag{5.8}\\
& =[R(\bar{t})-R(\bar{T})]+[I(\bar{a})-I(\bar{A})]+[J(\bar{b})-J(\bar{B})],
\end{align*}
$$

where
$R(\bar{T})=(1, J)$-standardized rate in population 1

$$
\begin{equation*}
=\sum_{\mathrm{i}, \mathrm{j}} \frac{\frac{\mathrm{n}_{\mathrm{ij}}}{n_{. .}}+\frac{\mathrm{N}_{\mathrm{ij}}}{N . .}}{2} \mathrm{~T}_{\mathrm{ij}}, \tag{5.9}
\end{equation*}
$$

$I(\bar{A})=(J, R)$-standardized rate in population 1

$$
\begin{equation*}
=\sum_{i, j} \frac{t_{i j}+T_{i j}}{2} \frac{b_{i n}+B_{i j}}{2} A_{i j}, \tag{5.10}
\end{equation*}
$$

$J(\bar{B})=(I, R)$-standardized rate in population 1

$$
\begin{equation*}
=\sum_{i, j} \frac{t_{i j}+T_{i j}}{2} \frac{a_{i j}+A_{i j}}{2} B_{i j}, \tag{5.11}
\end{equation*}
$$

and $R(\bar{t}), I(\bar{a})$, and $J(\bar{b})$ for population 2 have the same expressions as those in (5.9) through (5.11), respectively, with $T_{i j}$ in (5.9) replaced by $t_{i j}, A_{i j}$ in (5.10) replaced by $a_{i j}$, and $B_{i j}$ in (5.11) replaced by $b_{i j}$.

We note here that $I(\bar{A})$ and $J(\bar{B})$ can also be written as

$$
\begin{align*}
& I(\bar{A})=\sum_{i, j} \frac{t_{i j}+T_{i j}}{2} \quad \text { [Expression (2.3) with subscripts ij in each letter] },  \tag{5.12}\\
& J(\bar{B})=\sum_{i, j} \frac{t_{i n}+T_{i j}}{2} \quad \text { [Expression (2.5) with subscripts ij in each letter] } . \tag{5.13}
\end{align*}
$$

Unlike the hlerarchical approaches by Cho and Retherford (1973) and Kim and Strobino (1984), the effects of the factors in the decomposition (5.8) remain unchanged irrespective of which one of the factors is regarded as I and which one as J . In other words, the treatment of the factors I and J is symmetrical in the present approach.

## Example 5.3

Table 5.5 is from Liao (1989), which shows the cross-classification of the population and the death rates by age and race for the United States for the years 1970 and 1985. The standardization and decomposition of the crude death rates from these data are shown in table 5.6. The crude death rate for 1970 was 686 point higher than that for 1985. However, if only the age structures of the populations differed as they did in the two years but the race structures and the age-race-specific death rates were identical in 1970 and 1985, then the overall death rate in 1985 would be 1.522 points higher than that for 1970 . The differences in the age and race structures in 1970 and 1985 dampened the difference between the crude death rates
in these two years. If the rates were standardized with respect to both age (I) and race (J), the difference between the standardized rates would be as high as 2.228. Table 2 in Liao's paper showed four sets of widely different decompositions for these data using the modeling approach, each set involving an interaction term. The results from only the marginal CG method (namely, $-1.57,-0.06$, and 2.23 for the 1 , $J$, and $R$ effects and 0.08 for the interaction effect) are comparable to our decomposition in table 5.6. There is a discussion in chapter 1 that it is unnecessary to complicate the model by including the interaction effects.

Table 5.5. Population (In thousands) and Death Rates (per 1,000 Population) by Age and Race: United States, 1970 and 1985

| Race | Age <br> i | 1985 (population 1) |  | 1970 (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{r\|} \hline \text { Size } \\ \mathbf{N}_{\mathrm{II}} \end{array}$ | Rate $T_{1 I}$ | Size <br> $n_{i f}$ | Rate ${ }_{4}$ |
| 1. | 1 | 3,041 | 9.163 | 2,968 | 18.489 |
| 1 | 2 | 11,577 | 0.462 | 11,484 | 0.751 |
|  | 3 | 27,450 | 0.248 | 34,614 | 0.391 |
|  | 4 | 32,711 | 0.929 | 30,992 | 1.146 |
| 1 | 5 | 35,480 | 1.084 | 21,983 | 1.287 |
| 1 | 6 | 27,411 | 1.810 | 20,314 | 2.672 |
| 1 | 7 | 19,555 | 4.715 | 20,928 | 6.636 |
| 1 | 8 | 19,795 | 12.187 | 16,897 | 15.691 |
| 1. | 9 | 15,254 | 27.728 | 11,339 | 34.723 |
| 1 | 10 | 8,022 | 64.068 | 5,720 | 79.763 |
| 1 | 11 | 2,472 | 157.570 | 1,315 | 176.837 |
| 2. | 1 | 707 | 17.208 | 535 | 36.993 |
| 2 | 2 | 2,692 | 0.738 | 2,162 | 1.352 |
| 2 | 3 | 6,473 | 0.328 | 6,120 | 0.541 |
| 2 | 4 | 6,841 | 1.103 | 4,781 | 2.040 |
| 2. | 5 | 6,547 | 2.045 | 3,096 | 3.523 |
| 2 | 6 | 4,352 | 3.724 | 2,718 | 6.746 |
| 2 | 7 | 3,034 | 8.052 | 2,363 | 12.967 |
| 2 | 8 | 2,540 | 17.812 | 1,767 | 24.471 |
| 2 | 9 | 1,749 | 34.128 | 1,149 | 45.091 |
| 2. | 10 | 804 | 68.276 | +448 | 74.902 |
| 2. | 11 | 236 | 125.161 | 117 | 123.205 |
| j= . | $\mathrm{i}=$. | 238,743 | 8.736 | 203,810 | 9.422 |

Source: Liao (1989), table 1. Age $i=1,2, \ldots, 11$ correspond to less than $1,1-4,5-14,15-24, \ldots, 75-84,85+$. Race $\mathrm{j}=1,2$ correspond to White and non-White.

Table 5.6. Standardization and Decomposition of Crude Death Rates in Table 5.5

| Death rates per 1,000 population | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1970 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1985 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| (J,R)-standardized rates | 8.385 | 9.907 | -1.522 (1) | -221.9 |
| (I,R)-standardized rates | 9.136 | 9.156 | -0.020 (J) | -2.9 |
| (1,J)-standardized rates | 10.258 | 8.030 | 2.228 (R) | 324.8 |
| Crude death rates | 9.422 | 8.736 | $\begin{gathered} 0.686 \\ \text { (Total effect) } \end{gathered}$ | 100.0 |

## Program 5.2

The results in table 5.6 can be obtained by using Program 5.2 in which $P(I, J, K)$ 's are $N_{i f}$ 's and $n_{i f}$ 's, and $T(1, J, K)$ 's are $T_{1 \mid}$ 's and $t_{j \mid}$ 's in table 5.5. The data file consists of eight lines corresponding to the data in the last four columns in table 5.5 in the same order-two lines of 11 numbers for each column-with the format
specified in line 4 of the program. The six standardized rates in table 5.6 are given by $\operatorname{ER}(\mathrm{K})$ 's and $\mathrm{S}(1, \mathrm{~J})$ 's in lines 22 and 51 of the program. The three effects in table 5.6 are denoted by ERR and U(J)'s in lines 24 and 52 of the program.

## Example 5.4

Kitagawa (1955) used the data in table 5.7 to decompose the difference between the job mobility rates (i.e., mean number of jobs held) in Los Angeles and Philadelphia in terms of the effects of time spent in the labor force and migrant status. The overall job mobility rates in Los Angeles and Philadelphia were 3.145 and 2.379 , respectively, producing a difference of .766. Table 5.8 decomposes this total difference into .024 as the 1 (time spent in the labor force)-effect, .330 as the J (migrant status)-effect, and .412 as the R (rate)-effect. Thus, the factors I and J together explain 46.2 percent of the difference between the job mobility rates in Los Angeles and Philadelphia. These results are not very different from the decomposition in table 1 in Kitagawa's paper except that she attributed 7 percent of the total difference to the interaction between I and J (which she called Joint IJ ). This 7 percent is distributed equally between the $I$ and $J$ effects in table 5.8.

We can use Program 5.2 to obtain the results in table 5.8 if the following changes are made in the program:

1. Replace the number of age groups 11 by the number of categories 3 in the time spent in the labor force, throughout the program.
2. For the same reason, replace 12 by 4 throughout the program.
3. Replace the format in line 4 by 6F5.0/6F5.2 .

The data file should be made in four lines corresponding to the last four columns in table 5.7 in the same order, each line having six numbers with the format for each of the two pairs of lines as specified in (3) above.

Table 5.7. Population Size (Percents) and Job Mobility Rates (Mean Number of Jobs Held) by Migrant Status and Time Spent in the Labor Force: Philadelphia and Los Angeles, Men, 1940 to 1949

| Migrant status |  | Philadelphia (population 1) |  | Los Angeles (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| j | labor force i | Size $\mathrm{N}_{\mathrm{H}}$ | Rate $T_{11}$ | $\begin{array}{r\|} \hline \text { Size } \\ n_{i j} \end{array}$ | Rate $t_{41}$ |
| 1. | 1 | 1 | 2.29 | 6 | 2.89 |
| 1. | 2 | 4 | 3.43 | 17 | 4.07 |
| 1 | 3 | 8 | 3.15 | 24 | 3.79 |
| 2. | 1 | 6 | 2.45 | 5 | 2.92 |
| 2 | 2 | 22 | 3.23 | 13 | 3.49 |
| 2. | 3 | 59 | 1.88 | 35 | 2.20 |
| $\mathrm{j}=$. $\quad$. | $i=$ | 100 | 2.379 | 100 | 3.145 |

Source: Kitagawa (1955), table 1. Time in labor force $i=1,2,3$ correspond to less than 5 years, 5 but less than 9.5 years, 9.5 to 10 years. Migrant status $\mathfrak{l}=1,2$ correspond to migrants, nonmigrants.

## Example 5.5

Another two-factor case is presented in tables 5.9 and 5.10 to study the effects of birth weights (I) and age of mother ( J ) on the difference between the neonatal mortality rates for White and non-White live births in 1960. Kim and Strobino (1984) used a different set of data to study the same problem. However, as mentioned earlier in this section, they used a hierarchical approach (as opposed to the symmetrical approach presented here) in the treatment of the two factors. They decomposed the combined effect of the two factors into the effect of age of mother and the effect of birth weight within age of mother. The same hierarchical approach can also be used to decompose the combined effect of the two factors into the effect of birth weight and the effect of age of mother within birth weight. In general, these two

Table 5.8. Standardization and Decomposition of Job Mobility Rates in Table 5.7

| Job mobility rates | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Los Angeles (population 2) | Philadelphia (population 1) | Difference (effects) | Percent distribution of effects |
| ( $\mathrm{J}, \mathrm{R}$ )-standardized rates | 2.749 | 2.725 | . 024 (l) | 3.1 |
| ( $1, R$ )-standardized rates | 2.902 | 2.572 | . 330 (J) | 43.1 |
| ( $1, \mathrm{~J}$ )-standardized rates | 2.940 | 2.528 | .412 (R) | 53.8 |
| Overall jab mobility rates | 3.145 | 2.379 | .766 <br> (Total effect) | 100.0 |

alternative ordering of the two factors will lead to two different sets of results, whereas the symmetrical approach produces a unique set of results. We apply this approach to the data in table 5.9, and the results are shown in table 5.10. The crude neonatal mortality rate for non-Whites is 8.91 points higher than that for Whites. It is interesting to note that when the rates are standardized with respect to both age of mother and birth weight, the White rate becomes higher than the non-White rate by 1.50 points. The effects of birth weight ( I ) and age of mother ( J ) are, respectively, 10.19 and 0.22 , suggesting that unfavorable distribution of birth weight for non-Whites is primarily responsible for the significant difference in the neonatal mortality rates between Whites and non-Whites, and that age of mother is only marginally important in explaining this difference.

We can use Program 5.2 to obtain the results in table 5.10 if the following changes are made in the program:

1. Replace the number of age groups 11 by the number of birth weight categories 10 , throughout the program.
2. For the same reason, replace 12 by 11 throughout the program.
3. Replace the number of race categories 2 by the number of age groups of mother 7 , throughout the program.
4. For the same reason, replace 3 by 8 throughout the program.
5. Replace lines 3 and 4 by the following four lines:
```
    READ (5, 2) ((P(I,J,K), I= 1,10), J=1,7)
    1 READ (5,17) ((T(I,J,K), I=1,10), J=1,7)
    2 FORMAT (10F8.0)
17 FORMAT (10F8.2)
```

6. Replace 15.3 in line 55 by 15.2 .

The data file should be made in 28 lines with the data in the last four columns in table 5.9 in the same order, each column occupying seven lines of 10 numbers. The formats of the numbers should be according to the specifications in (5) above.

Two more examples of two-factor decomposition from cross-classified data are the study by Gibson (1976) of the contributions of changes in marital status and marital fertility to the decline in the U.S. fertility during 1961-1975, and the research by Hernandez (1984) on the relationship between the decline in the birth rates in the developing countries and the corresponding changes in age-sex composition and marital status composition.

### 5.4 THE CASE OF THREE FACTORS

Using symbols analogous to those in the preceding sections, we can write the crude rates in population 1 and population 2 as

$$
\begin{equation*}
T_{\ldots}=\sum_{i, j, k} \frac{T_{i j k} N_{i j k}}{N \ldots}, \quad t \ldots=\sum_{i, j, k}^{t_{i j k}} n_{\ldots \ldots k}^{n_{n}} . \tag{5:14}
\end{equation*}
$$

Table 5.9. Single Live Births and Neonatal Mortality Rates (per 1,000 Live Births), by Age of Mother and Birth Weight: White and Non-White, 1960

| Age of mother J | Birth weight i | White (population 1) |  | Non-White (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Live births $\mathrm{N}_{\mathrm{ij}}$ | Rate $T_{i j}$ | Live births $n_{i l}$ | Rate tit tr |
| 1 | 1 | 2258 | 899.47 | 1494 | 852.07 |
| 1 | 2 | 3065 | 607.50 | 1851 | 463.53 |
| 1 | 3 | 6626 | 232.87 | 3666 | 131.48 |
| 1 | 4 | 22769 | 44.36 | 13043 | 27.22 |
| 1. | 5 | 86436 | 8.73 | 39304 | 8.98 |
| 1. | 6 | 184474 | 3.74 | 49181 | 6.28 |
| 1. | 7 | 119071 | 3.43 | 18679 | 7.71 |
| 1. | 8 | 26892 | 3.53 | 3225 | 12.71 |
| 1 | 9 | 3351 | 6.86 | 637 | 6.28 |
|  | 10 | 244 | 20.49 | 62 | 64.52 |
| 2. |  | 4461 | 899.57 | 1732 | 886.84 |
| 2 | 2 | 5383 | 576.63 | 1948 | 448.67 |
| 2 | 3 | 11793 | 228.19 | 4096 | 149.90 |
| 2 | 4 | 47905 | 46.30 | 15477 | 29.20 |
| 2 | 5 | 212061 | 9.15 | 53818 | 7.66 |
| 2 | 6 | 481385 | 3.93 | 79255 | 5.61 |
| 2 | 7 | 337526 | 2.88 | 36723 | 4.96 |
| 2 | 8 | 85994 | 3.37 | 7701 | 7.66 |
| 2 | 9 | 12802 | 5.62 | 1397 | 15.03 |
| 2 | 10 | 1180 | 13.56 | 157 | 31.85 |
| 3. | 1 | 3500 | 944.86 | 1215 | 889.71 |
| 3. | 2 | 3674 | 553.35 | 1302 | 413.21 |
| 3. | 3 | 8033 | 217.23 | 2551 | 132.50 |
| 3 | 4 | 34133 | 47.46 | 9778 | 32.62 |
| 3 | 5 | 152928 | 10.09 | 34454 | 8.65 |
| 3 | 6 | 355446 | 4.16 | 56245 | 6.26 |
| 3 | 7 | 271301 | 2.99 | 31039 | 5.12 |
| 3 | 8 | 78027 | 3.11 | 7739 | 9.05 |
| 3 | 9 | 14134 | 5.80 | 1648 | 10.92 |
| 3 | 10 | 1728 | 15.05 | 223 | 35.87 |
| 4.... | 1 | 2493 | 911.75 | 825 | 876.36 |
| 4 | 2 | 2444 | 545.42 | 826 | 406.78 |
| 4 | 3 | 5586 | 200.32 | 1795 | 132.59 |
| 4. | 4 | 22080 | 49.68 | 6431 | 35.45 |
| 4. | 5 | 91004 | 11.65 | 20650 | 11.23 |
| 4. | 6 | 209931 | 4.91 | 35030 | 6.88 |
| 4. | 7 | 171323 | 3.49 | 21873 | 8.14 |
| 4. | 8 | 55454 | 3.50 | 6333 | 10.26 |
| 4 | 9. | 11603 | 6.98 | 1633 | 10.41 |
| 4. | 10 | 1606 | 21.79 | 312 | 41.67 |
| 5.... |  | 1293 | 936.58 | 368 | 855.98 |
|  | 2 | 1469 | 492.85 | 410 | 431.71 |
| 5. | 3 | 3360 | 192.26 | 952 | 138.66 |
| 5. | 4 | 12309 | 55.89 | 3327 | 38.17 |
| 5 | 5 | 45476 | 12.69 | 10399 | 14.23 |
| 5 | 6 | 104558 | 5.83 | 17520 | 8.22 |
| 5. | 7 | 90093 | 4.14 | 12045 | 9.88 |
| 5. | 8 | 31815 | 4.71 | 3849 | 13.51 |
| 5. | 9 | 7295 | 6.72 | 1242 | 16.91 |
| 5. | 10 | 1194 | 22.61 | 222 | 40.54 |
| 6. | 1 | 316 | 936.71 | 71 | 915.49 |
| 6. | 2 | 423 | 468.09 | 100 | 400.00 |
| 6. | 3 | 959 | 212.72 | 252 | 146.83 |
| 6. | 4 | 3539 | 64.42 | 878 | 56.95 |
| 6. | 5 | 11570 | 17.46 | 2656 | 19.20 |
| 6. | 6 | 25515 | 9.05 | 4294 | 12.34 |
| 6. | 7 | 22477 | 6.32 | 3253 | 10.45 |
| 6 | 8 | 8829 | 6.68 | 1164 | 13.75 |
| 6 | 9 | 2183 | 9.16 | 419 | 16.71 |
| 6 | 10 | 419 | 16.71 | 87 | 45.98 |

Table 5.9. Single Live Births and Neonatal Mortality Rates (per 1,000 Live Births), by Age of Mother and Birth Weight: White and Non-White, 1960-Continued

| Age of mother | Birth weight <br> i | White (population 1) |  | Non-White (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Live births $\mathrm{N}_{\mathrm{g}}$ | Rate $T_{i i}$ | Live births $n_{11}$ | $\begin{array}{r}\text { Rate } \\ \text { t } \\ \hline\end{array}$ |
| 7. | 1 | 24 | 708.33 | 4 | 1000.00 |
| 7 | 2 | 30 | 533.33 | 12 | 333.33 |
| 7. | 3 | 69 | 246.38 | 20 | . 00 |
| 7 | 4 | 221 | 117.65 | 81 | 74.07 |
| 7. | 5 | 590 | 32.20 | 181 | 27.62 |
| 7 | 6 | 1414 | 12.02 | 293 | 10.24 |
| 7. | 7 | 1204 | 9.14 | 226 | 13.27 |
| 7. | 8 | 477 | 6.29 | 90 | 22.22 |
| 7 | 9 | 113 | . 00 | 35 | 28.57 |
| 7 | 10 | 24 | . 00 | 6 | . 00 |
| $1=$. | $i=$ | 3,531,362 | 15.32 | 639,804 | 24.23 |

Source: National Center for Health Statistics (1972), tables 5 and 6 . Birth weight $i=1,2,3, \ldots, 9,10$ correspond to (in grams) 1000 and less, $1001-1500,1501-2000, \ldots, 4501-5000,5001$ and above. Age of mother j $=1,2, \ldots, 6,7$ correspond to under 20, 20-24, $\ldots$, 40-44, 45 and over.

Table 5.10. Standardization and Decomposition of Neonatal Mortality Rates in Table 5.9

| Neonatal mortality rates | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Non-White (population 2) | White (population 1) | Difference (effects) | Percent distribution of effects |
| (J,R)-standardized rates | 25.56 | 15.37 | 10.19 (l) | 114.4 |
| ( $1, \mathrm{R}$ )-standardized rates | 20.57 | 20.35 | 0.22 (J) | 2.5 |
| ( $1, J$ )-standardized rates | 19.76 | 21.26 | -1.50 (R) | -16.9 |
| Overall neonatal mortality rates | 24.23 | 15.32 | 8.91 (Total effect) | 100.0 |

As shown in equation (22) in Das Gupta (1991), we express the cell proportions as

$$
\begin{equation*}
\frac{N_{i j k}}{N_{\ldots .}}=A_{j j k} B_{i j k} C_{i j k}, \tag{5.15}
\end{equation*}
$$

where

$$
\begin{align*}
& A_{i j k}=\left(\frac{N_{i j k}}{N_{j k}}\right)^{\frac{1}{3}} \cdot\left(\frac{N_{j .}}{N_{J}} \cdot \frac{N_{L . k}}{N_{. k}}\right)^{\frac{1}{6}} \cdot\left(\frac{N_{i .}}{N_{\ldots}}\right)^{\frac{1}{3}} \text {, } \\
& B_{i j k}=\left(\frac{N_{i j k}}{N_{\text {l. }}}\right)^{\frac{1}{3}} \cdot\left(\frac{N_{H}}{N_{\mathrm{L} .}} \cdot \frac{N_{\mathrm{jk}}}{N_{\mathrm{k}}}\right)^{\frac{1}{6}} \cdot\left(\frac{N_{\mathrm{j}}}{N_{N}}\right)^{\frac{1}{3}} \text {, }  \tag{5.16}\\
& C_{i j k}=\left(\frac{N_{i j k}}{N_{i j}}\right)^{\frac{1}{3}} \cdot\left(\frac{N_{\text {l.k }}}{N_{i . .}} \cdot \frac{N_{j k}}{N_{j}}\right)^{\frac{1}{6}} \cdot\left(\frac{N_{. k}}{N_{N}}\right)^{\frac{1}{3}} .
\end{align*}
$$

Equations (5.16) are derived in section A. 3 in appendix A. $n_{i j k} / n_{\text {... }}$ is similarly expressed in terms of lower-case letters $a, b, c$, and $n$.

As in (5.8) through (5.13), we can write

$$
\begin{align*}
\mathrm{t} . . .-T . . . & =R \text {-effect }+1 \text {-effect }+J \text {-effect }+K \text {-effect }  \tag{5.17}\\
& =[R(\bar{t})-R(\bar{T})]+[I(\bar{a})-I(\bar{A})]+[J(\bar{B})-J(\bar{B})]+[K(\overline{\mathbf{c}})-K(\overline{\mathrm{C}})],
\end{align*}
$$

where
$R(\bar{T})=(1, J, K)$-standardized rate in population 1

$$
\begin{equation*}
=\sum_{i, j, k} \frac{\frac{n_{i j k}}{n}+\frac{N_{i j k}}{N \ldots}}{2} T_{i j k}, \tag{5.18}
\end{equation*}
$$

$I(\bar{A})=(J, K, R)$-standardized rate in population 1

$$
\begin{align*}
& =\sum_{i, j, k} \frac{t_{i k}+T_{i k k}}{2}\left[\frac{b_{i j k} c_{i j k}+B_{i j k} C_{i j k}}{3}+\frac{b_{i j k} C_{i j k}+B_{i j k} C_{i j k}}{6}\right] A_{i j k} \\
& =\sum_{i, j, k} \frac{t_{i j k}+T_{i j k}}{2} \text { [Expression (2.13) with subscripts ijk in each letter], } \tag{5.19}
\end{align*}
$$

$J(\bar{B})=(I, K, R)$-standardized rate in population 1

$$
\begin{align*}
& =\sum_{i, j, k} \frac{t_{i k}+T_{i j k}}{2}\left[\frac{a_{j \mid k} c_{i j k}+A_{i j k} C_{i j k}}{3}+\frac{a_{i j k} C_{i j k}+A_{i j k} c_{i k k}}{6}\right] B_{i j k} \\
& =\sum_{i, j, k} \frac{t_{i k}+T_{i j k}}{2}[\text { Expression (2.15) with subscripts ijk in each letter], } \tag{5.20}
\end{align*}
$$

$K(\bar{C})=(1, J, R)$-standardized rate in population 1

$$
\begin{align*}
& =\sum_{i, j, k} \frac{t_{i j}+T_{i j k}}{2}\left[\frac{a_{i j k} b_{j \mid k}+A_{j j k} B_{i j k}}{3}+\frac{a_{i j k} B_{i j k}+A_{i j k} b_{i j k}}{6}\right] C_{i j k} \\
& =\sum_{i, j, k} \frac{t_{i j k}+T_{i j k}}{2}[\text { Expression (2.17) with subscripts ijk in each letter]. } \tag{5.21}
\end{align*}
$$

$R(\bar{t}), I(\bar{a}), J(\bar{b})$, and $K(\bar{c})$ for population 2 have the same expressions as those in (5.18) through (5.21), respectively, with $T_{i j k}$ in (5.18) replaced by $t_{i j k}, A_{i j k}$ in (5.19) replaced by $a_{i j k}, B_{i j k}$ in (5.20) replaced by $b_{i j k}$ : and $\mathrm{C}_{\mathrm{ijk}}$ in (5.21) replaced by $\mathrm{c}_{\mathrm{ijk}}$.

## Example 5.6

Table 5.11 shows a three-factor cross-classification of the population and the household headship rates by age (I), marital status (J), and sex (K) for the United States, 1970 and 1980. Sweet (1984) considered similar data to study the components of change in the number of househoids during the decade. Since our present example deals with the change in the household headship rate, ${ }^{1}$ the two sets of results are not comparable. The overall headship rate increased by 4.39 points during 1970-1980. However, as shown in table 5.12, if the age-marital status-sex distributions were identical in the two years, this increase would have been 3.81. The headship rate in 1980 would be only .49 point ${ }^{2}$ higher than that in 1970 if the age structures differed as they did in 1970 and 1980 but if everything else (namely, marital status, sex, and the cell-specific headship rates) were identical in the two years. The differences in age, marital status, and sex structures explain only 13.2 percent of the difference in the household headship rates in 1970 and 1980.

[^3]Table 5.11. Population and Household Headship Rates per 100 Persons, by Age, Sex, and Marital Status: United States, 1970 and 1980
(Population in thousands)

| Sex k | Marital status j | Age$i$ | 1970 (population 1) |  | 1980 (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Size } \\ N_{1 / k} \end{gathered}$ | Rate <br> $T_{1 / k}$ | $\begin{aligned} & \text { Size } \\ & n_{1 j k} \end{aligned}$ | Rate $t_{1 \mid k}$ |
| 1. | 1. | 1. | 3239 | 92.50 | 2950 | 90.07 |
|  | 1. | 2. | 9710 | 98.47 | 11374 | 95.23 |
| 1. | 1. | 3. | 9661 | 99.31 | 9943 | 96.40 |
| 1. | 1. | 4. | 9501 | 99.32 | 8979 | 96.46 |
| 1. | 1. | 5. | 7225 | 99.39 | 8130 | 95.76 |
| 1. | 1. | 6. | 3979 | 99.04 | 5200 | 95.79 |
| 1. | 1. | 7 | 1742 | 97.70 | 2190 | 93.52 |
| 1. | 2. | 1. | 206 | 18.45 | 241 | 32.37 |
| 1. | 2. | 2. | 351 | 30.48 | 586 | 59.56 |
| 1. | 2. | 3. | 377 | 45.09 | 415 | 70.84 |
| 1. | 2. | 4. | 294 | 45.58 | 368 | 65.49 |
| 1. | 2. | 5. | 233 | 68.24 | 284 | 63.03 |
| 1. | 2. | 6. | 159 | 50.94 | 146 | 76.03 |
| 1. | 2. | 7 | 122 | 35.25 | 54 | 83.33 |
| 1. | 3. |  | 1 | 100.00 | 2 | 100.00 |
| 1. | 3. | 2. | 13 | 61.54 | 19 | 68.42 |
| 1. | 3. | 3. | 66 | 77.27 | 45 | 80.00 |
| 1. | 3. | 4. | 183 | 68.85 | 176 | 68.75 |
| 1. | 3. | 5. | 336 | 73.51 | 397 | 73.55 |
| 1. | 3. | 6. | 588 | 67.69 | 557 | 83.30 |
| 1. | 3. | 7. | 922 | 60.09 | 776 | 80.03 |
| 1. | 4. |  | 81 | 22.22 | 160 | 47.50 |
| 1. | 4. | 2. | 313 | 45.69 | 1130 | 63.36 |
| 1. | 4. | 3. | 324 | 59.26 | 989 | 72.50 |
| 1. | 4. | 4. | 403 | 65.76 | 740 | 69.05 |
| 1. | 4. | 5. | 257 | 72.37 | 495 | 73.74 |
| 1. | 4. | 6. | 155 | 61.94 | 290 | 67.93 |
| 1. | 4. |  | 44 | 68.18 | 71 | 77.46 |
| 1. | 5. | 1. | 14959 | 2.89 | 16607 | 9.32 |
| 1. | 5. | 2. | 1846 | 27.63 | 4238 | 43.13 |
| 1. | 5. | 3. | 812 | 34.48 | 904 | 49.89 |
| 1. | 5. |  | 855 | 37.08 | 699 | 51.36 |
| 1. | 5. | 5. | 659 | 43.40 | 565 | 53.81 |
| 1. | 5. | 6. | 452 | 44.91 | 357 | 63.87 |
| 1. | 5........ |  | 201 | 52.74 | 142 | 69.72 |
| 2. | 1. |  | 5605 | . 00 | 5058 | 3.44 |
| 2. | 1. | 2. | 10290 | . 00 | 12303 | 3.46 |
| 2. | 1. | 3. | 9756 | . 00 | 9939 | 2.98 |
| 2. | 1. | 4. | 9397 | . 00 | 8749 | 3.07 |
| 2. |  | 5. | 6181 | . 00 | 7404 | 3.32 |
| 2. |  | 6. | 2952 | . 00 | 4114 | 4.08 |
| 2. | 1. | 7. | 872 | . 00 | 1197 | 4.26 |
| 2. | 2. | 1. | 613 | 38.50 | 510 | 42.16 |
| 2. | 2. | 2. | 611 | 71.69 | 976 | 78.07 |
| 2. | 2. | 3. | 483 | 80.75 | 673 | 84.84 |
| 2. | 2. | 4. | 498 | 78.92 | 473 | 86.05 |
| 2. | 2 | 5. | 352 | 71.31 | 309 | 76.38 |
| 2. | 2. | 6. | 110 | 67.27 | 168 | 86.31 |
| 2. | 2. |  | 90 | 33.33 | 67 | 79.10 |
| 2. | 3. |  | 29 | 58.62 | 26 | 84.62 |
| 2. | 3. | 2. | 66 | 86.36 | 135 | 88.15 |
| 2. | 3. | 3. | 295 | 91.19 | 292 | 89.73 |
| 2. | 3. | 4. | 983 | 85.76 | 821 | 90.74 |
| 2. | 3. | 5. | 2071 | 82.04 | 2082 | 88.18 |
| 2. | 3. | 6. | 2948 | 78.22 | 3444 | 88.39 |
| 2. | 3. |  | 3248 | 62.75 | 3677 | 78.38 |

Table 5.11. Population and Household Headship Rates per 100 Persons, by Age, Sex, and Marital Status: United States, 1970 and 1980-Continued
(Population in thousands)

| Sex <br> k | Marital status I | $\begin{aligned} & \text { Age } \\ & 1 \end{aligned}$ | 1970 (population 1) |  | 1980 (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Size } \\ \mathbf{N}_{1!k} \end{gathered}$ | Rate $T_{1 j k}$ | Size <br> $n_{\text {ljk }}$ | Rate $\mathbf{t}_{\mathrm{jlk}}$ |
| 2. | 4 | 1 | 207 | 39.13 | 401 | 52.37 |
| 2. | 4 | 2 | 563 | 75.67 | 1746 | 77.61 |
| 2. | 4 | 3 | 633 | 81.83 | 1411 | 89.23 |
| 2. | 4 | 4 | 591 | 81.39 | 1074 | 88.55 |
| 2. | 4 | 5 | 440 | 83.86 | 735 | 84.90 |
| 2. | 4 | 6 | 201 | 69.65 | 342 | 81.87 |
| 2. | 4 | 7 | 58 | 68.97 | 126 | 82.54 |
| 2. | 5 | 1 | 13222 | 3.68 | 14360 | 9.85 |
| 2. | 5 | 2 | 1098 | 36.89 | 2757 | 54.48 |
| 2. | 5 | 3 | 614 | 36.32 | 727 | 59.42 |
| 2. | 5 | 4 | 594 | 40.74 | 552 | 56.88 |
| 2. | 5 | 5 | 659 | 55.08 | 504 | 60.91 |
| 2. | 5 | 6 | 530 | 57.36 | 480 | 66.25 |
| 2. | 5 | 7 | 341 | 48.97 | 344 | 74.13 |
| $k=$. | $\mathrm{j}=$ | $\mathrm{i}=$. | 147,470 | 42.64 | 168,195 | 47.03 |

Source: U.S. Bureau of the Census (1971, table 6; 1981, table 6). Age i = 1, 2, ..., 7 correspond to 15-24 (14-24 for 1970), 25-34, $\ldots, 75+$. Marital status $\mathrm{j}=1,2, \ldots, 5$ correspond to married (spouse present), married (spouse absent), widowed, divorced, single. Sex $k=1,2$ correspond to male and female. A married woman (husband present) could not be the head in 1970.

Table 5.12. Standardization and Decomposition of Household Headship Rates in Table 5.11

| Household headship rates | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | $\begin{array}{r} 1980 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 1) } \end{array}$ | Difference (effects) | Percent distribution of effects |
| (J,K,R)-standardized rates | 44.93 | 44.44 | .49 (I) | 11.2 |
| ( $1, K, R$ )-standardized rates | 44.78 | 44.60 | . 18 (J) | 4.1 |
| ( $1, \mathrm{~J}, \mathrm{R}$ )-standardized rates | 44.66 | 44.75 | -. 09 (K) | -2.1 |
| ( $1, \mathrm{~J}, \mathrm{~K}$ )-standardized rates | 46.64 | 42.83 | *3.81 (R) | 86.8 |
| Overall headship rates | 47.03 | 42.64 | $\begin{gathered} 4.39 \\ \text { (Total effect) } \end{gathered}$ | 100.0 |

*Significant at 90 -percent level.

## Program 5.3

The results in table 5.12 can be obtained by using Program 5.3 in which $P(I, J, K, L)$ 's are N's and n's, and $T(l, J, K, L)$ 's are T's and t's in table 5.11. The data file consists of 40 lines corresponding to the data in the last four columns in table 5.11 in the same order-10 lines of seven numbers for each column-with the format specified in lines 6 and 7 of the program. The eight standardized rates in table 5.12 are given by ER(L)'s and S( $1, \mathrm{~J}$ )'s in lines 33 and 79 of the program. The four effects in table 5.12 are denoted by ERR and U(J)'s in lines 35 and 80 of the program.

The decomposition of the difference between the AIDS rates in racial groups into the effects of age, sex, and region by del Pinal (1989) is another example of a three-factor case. Also, the work by Spencer (1980) explaining the racial and ethnic differences in American fertility in terms of childlessness, nonmarriage, and age can be looked upon as a decomposition problem dealing with three factors.

## Program 5.3 (Three Factors + Rate)

man mon


### 5.5 THE CASE OF FOUR FACTORS

We express the crude rates $T_{\ldots}$... and $t \ldots$ in population 1 and population 2 in terms of similar notation and also express the cell proportions in population 1 as
where (Das Gupta, 1991, equation 23)

$$
\begin{equation*}
\frac{N_{i j k 1}}{N_{\ldots} \ldots .}=A_{i j k l} B_{i j k} C_{i k k} D_{i k k 1}, \tag{5.22}
\end{equation*}
$$

$\mathrm{B}_{\mathrm{ijkl},} \mathrm{C}_{\mathrm{ijk} \mid}$, and $\mathrm{D}_{\mathrm{ijk} /}$ are obtained from (5.23) by interchanging, respectively, i and $\mathrm{j}, \mathrm{i}$ and k , and i and I . For example, $N_{j . k \mathrm{k}}$ in (5.23) changes to $\mathrm{N}_{\mathrm{i} . \mathrm{k} \mid}$ in the expression for $\mathrm{B}_{\mathrm{jkk}}$. The ratio $\mathrm{n}_{\mathrm{jkk}} / \mathrm{n}_{\ldots}$... is similarly expressed by using lower-case letters $a, b, c, d$, and $n$.

As in (5.17) through (5.21), the difference $t . . . T_{\text {.... can }}$ be expressed as the sum of five effects: R-effect, I-effect, J-effect, K-effect, and L-effect. Each effect, again, is the difference between two standardized rates, which are given by
$R(\bar{T})=(I, J, K, L)$-standardized rate in population 1
$I(\bar{A})=(J, K, L, R)$-standardized rate in population 1

$$
=\sum_{\mathrm{i}, \mathrm{k}, \mathrm{k}, \mathrm{l}} \frac{\mathrm{t}_{\mathrm{ijk}}+\mathrm{T}_{\mathrm{ijk} \mathrm{l}}}{2} \quad \begin{array}{r}
{[\text { Expression (2.26), i.e., (2.29) } \times \mathrm{A}}  \tag{5.25}\\
\text { with subscripts } \mathrm{j} \mathrm{jkl} \text { in each letter] }
\end{array}
$$

The standardized rates $R(\bar{t})$ and $I(\bar{a})$ for population 2 are obtained, respectively, from (5.24) and (5.25) by replacing $T_{i k k}$ in (5.24) by $t_{j|k|}$ and $A_{i k k}$ in (5.25) by $a_{j|k|}$ Other standardized rates $J(\bar{B}), J(\overline{\mathrm{~B}}), K(\overline{\mathrm{C}})$, $K(\overline{\mathrm{c}}), \mathrm{L}(\overline{\mathrm{D}})$, and $\mathrm{L}(\overline{\mathrm{d}})$ are obtained from (5.25) by interchanging the letters.

## Example 5.7

Table 5.13 presents the data for the population and the mobility rates cross-classified by four factors: education, residence, age, and sex, for the United States, 1975-1976 and 1986-1987. Wilson (1988) studied similar data for the period 1935-1980 for decomposing the difference in the mobility rates by age and education. The mobility rate increased from 17.790 in 1975-1976 to 18.136 in 1986-1987, producing a difference of $.346^{3}$ for the 11 -year period. As table 5.14 shows, this difference would have been .591 had the distributions of population by education, residence, age, and sex been identical in the two years. On the other hand, the age effect is -.575 , which means that if the age structures differed as they did in the two years but all other factors and the cell-specific mobility rates were identical, then the overall mobility rate in 1975-1976 would be .575 point higher than that in 1986-1987. The factor sex appears to have played a negligible role in explaining the difference between the mobility rates in the two years.

## Program 5.4

The results in table 5.14 can be obtained by using Program 5.4 in which $P(I, J, K, L, M)$ 's are N's and n's, and $T(I, J, K, L, M)$ 's are $T$ 's and t's in table 5.13. The data file consists of 96 lines corresponding to the data in the last four columns in table 5.13 in the same order-24 lines of six numbers for each column- with the format specified in lines 7 and 8 of the program. The 10 standardized rates in table 5.14 are given by ER(M)'s and S(I,J)'s in lines 44 and 101 of the program. The five effects in table 5.14 are denoted by ERR and $U(J)$ 's in lines 46 and 102 of the program.

[^4]Table 5.13. Population and Mobility Rates per 100 Persons, by Age, Sex, Years of School Completed, and Residence: United States, 1975-1976 and 1986-1987
(Population in thousands)

| Sex I | $\begin{aligned} & \text { Age } \\ & \text { k } \end{aligned}$ | Residence I | Education i | $\begin{gathered} \text { 1975-1976 } \\ \text { (Popululation 1) } \end{gathered}$ |  | 1986-1987 <br> (Population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{gathered} \text { Size } \\ \mathbf{N}_{\text {likl }} \end{gathered}$ | Rate <br> $\mathrm{T}_{\mathrm{ljk} \mid}$ | $\begin{gathered} \text { Size } \\ n_{i k k} \\ \hline \end{gathered}$ | Rate <br> $t_{\text {l\|kl }}$ |
|  | 1 | 1. | 1. | 269 | 40.149 | 460 | 41.957 |
| 1. | 1. | 1. |  | 1664 | 30.108 | 1957 | 27.951 |
| 1. | 1. | 1. |  | 3838 | 32.387 | 4226 | 30.549 |
| 1. | 1 | 1. | 4. | 2495 | 29.780 | 2872 | 27.751 |
| 1. | 1 | 1. | 5. | 630 | 40.952 | 704 | 35.938 |
| 1. | 1 | 1. | 6. | 157 | 38.854 | 120 | 40.833 |
| 1. | 1. | 2. | 1. | 202 | 37.129 | 108 | 29.630 |
| 1. | 1 | 2. | 2. | 902 | 30.266 | 688 | 24.273 |
|  | 1 | 2. | 3. | 1911 | 33.072 | 1221 | 26.863 |
|  | 1 | 2. |  | 865 | 31.445 | 574 | 24.216 |
|  | 1 | 2. |  | 181 | 41.989 | 79 | 45.570 |
| 1. | 1 | 2. |  | 43 | 53.488 | 20 | 35.000 |
|  | 2 |  |  | 239 | 33.473 | 352 | 37.216 |
| 1. | 2 | 1. | 2. | 481 | 36.798 | 800 | 38.125 |
| 1. | 2 | 1. | 3. | 1952 | 32.941 | 3448 | 30.365 |
| 1. | 2 | 1. | 4....... | 1441 | 38.723 | 1849 | 33.207 |
|  | 2 | 1. |  | 1083 | 38.135 | 1442 | 41.609 |
| 1. | 2 | 1. |  | 670 | 38.209 | 688 | 40.407 |
|  | 2 | 2. |  | 173 | 34.682 | 105 | 37.143 |
| 1. | 2 | 2 | 2. | 292 | 36.986 | 293 | 36.519 |
| 1. | 2 | 2. | 3....... | 1088 | 31.526 | 1091 | 26.673 |
| 1. | 2 | 2. | 4....... | 469 | 33.689 | 367 | 30.518 |
|  | 2 | 2. | 5....... | 381 | $39.370$ | 177 | 35.028 |
|  | 2 | 2. | 6. | 195 | 40.513 | 82 | 52.439 |
| 1. | 3 |  |  | 230 | 22.609 | 368 | 34.511 |
| 1. | 3 | 1 |  | 513 | 24.366 | 692 | 28.468 |
| 1. | 3 | 1. |  | 1745 | 22.751 | 2990 | 23.177 |
| 1. | 3 | 1. | 4. | 912 | 21.272 | 1804 | 24.279 |
| 1. | 3 |  | 5. | 684 | 23.538 | 1528 | 27.029 |
|  | 3 | 1. |  | 689 | 24.238 | 973 | 24.460 |
| $1 .$ | 3 | 2. |  | 216 | 20.833 | 95 | 26.316 |
|  | 3 | 2. |  | 280 | 24.643 | 245 | 30.612 |
| 1. | 3 | 2. | 3. | 887 | 20.857 | 1014 | 17.456 |
| 1. | 3 | 2. | 4. | 260 | 19.231 | 364 | $17.582$ |
| 1. | 3 | 2. |  | 188 | $26.064$ | 232 | 21.552 |
|  | 3 | 2. | 6. | 196 | 32.143 | 142 | 26.056 |
|  | 4 |  |  | 770 | 20.000 | 702 | 21.937 |
|  | 4 | 1 |  | 1024 | 15.527 | 930 | 20.215 |
|  | 4 |  |  | 2704 | 14.090 | 4217 | 17.240 |
|  | 4 | 1. | 4. | 1233 | 13.706 | 2771 | 19.271 |
|  | 4 | 1. |  | 983 | 16.887 | 2245 | $20.312$ |
|  | 4 |  |  | 956 | 16.736 | 2186 | 19.350 |
| 1. | 4 | 2. |  | 683 | 17.570 | 276 | 17.029 |
|  | 4 | 2. |  | 530 | 23.396 | 393 | 10.941 |
| 1. | 4 | 2. | 3....... | 1362 | 9.692 | 1459 | 14.531 |
| 1. | 4 | 2. |  | 390 | 17.179 | 651 | $17.512$ |
|  | 4 | 2. | $5 .$ | 222 | $18.018$ | 372 | 19.624 |
|  | 4 | 2. | 6. | 250 | 16.800 | 327 | 19.572 |
| 1. | 5 | 1 |  | 2830 | 9.187 | 2107 | 12.150 |
|  | 5 | 1. |  | 2325 | 7.097 | 2090 | 9.713 |
| 1. | 5 | 1. | 3....... | 4746 | 6.321 | 5591 | 8.871 |
| 1. | 5 |  | 4....... | 1781 | 11.005 | 2506 | 10.455 |
| 1. | 5. | 1. | $5 \text {. . . . . . }$ | 1347 | 7.869 | 1949 | 9.800 |
| 1. | 5. |  | 6....... | 1080 | 9.722 | 2148 | 9.264 |
| 1. | 5 | 2. | $1 \ldots .$ | 2201 | 8.950 | 1072 | 9.795 |
| 1. | 5 | 2. | $2 \ldots \ldots$ | 1149 | 9.661 | 754 | 7.294 |
| 1. | 5 | 2. | 3...... | 2000 | 7.450 | 1986 | 8.006 |
| 1. | 5 | 2. | $4 \ldots \ldots$ | 548 | 9.854 | 542 | 9.041 |
|  | 5 |  |  | 324 | 11.420 | 312 | 11.538 |
|  | 5 | 2. | 6.... | 284 | 11.268 | 372 | 8.065 |

Table 5.13. Population and Mobility Rates per 100 Persons, by Age, Sex, Years of School Completed, and Residence: United States, 1975-1976 and 1986-1987-Continued
(Population in thousands)

| Sex1 | Age k | Residence J | Education <br> $i$ | $\begin{gathered} \text { 1975-1976 } \\ \text { (Popululation 1) } \end{gathered}$ |  | $\begin{aligned} & \text { 1986-1987 } \\ & \text { (Population 2) } \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\begin{aligned} & \text { Size } \\ & \mathbf{N}_{\text {Wkx }} \end{aligned}$ | Rate $T_{\text {ikk }}$ | $\begin{gathered} \text { Size } \\ n_{\text {ikk }} \end{gathered}$ | Rate $t_{\text {tikl }}$ |
| $1 .$. | 6 | 1 | 1 | 2582 | 5.190 | 2538 | 4.925 |
| 1. | 6 | 1 | 2 | 792 | 4.419 | 1256 | 4.618 |
| 1. | 6 | 1 | 3 | 1018 | 4.715 | 2439 | 5.371 |
| 1. | 6 | 1 | 4 | 471 | 8.917 | 981 | 6.728 |
| 1. | 6 | 1 | 5 | 384 | 7.031 | 669 | 6.577 |
| 1. | 6 | 1 | 6 | 259 | 5.792 | 545 | 7.523 |
| 1. | 6 | 2 | 1 | 1908 | 5.398 | 1439 | 5.003 |
| 1. | 6 | 2 | 2 | 538 | 5.948 | 454 | 5.727 |
| 1. | 6 | 2 | 3 | 547 | 6.581 | 763 | 3.539 |
| 1. | 6 | 2 | 4 | 194 | 3.093 | 227 | 4.405 |
| 1. | 6 | 2 | 5 | 131 | 6.870 | 118 | . 847 |
|  | 6 | 2 | 6 | 89 | 6.742 | 149 | 5.369 |
| 2.. | 1 | 1 | 1 | 290 | 41.724 | 326 | 41.718 |
| 2. | 1 | 1 | 2 | 1567 | 37.205 | 1647 | 35.762 |
| 2. | 1 | 1 | 3 | 4452 | 36.568 | 4618 | 35.167 |
| 2. | 1 | 1 | 4 | 2398 | 33.736 | 3147 | 31.045 |
| 2. | 1 | 1 | 5 | 676 | 50.148 | 833 | 49.220 |
| 2. | 1 | 1 | 6 | 102 | 52.941 | 110 | 40.909 |
| 2. | 1 | 2 | 1 | 221 | 37.557 | 99 | 36.364 |
| 2. | 1 | 2 | 2 | 814 | 41.523 | 562 | 33.630 |
| 2. | 1 | 2 | 3 | 2184 | 37.775 | 1286 | 32.271 |
| 2. | 1 | 2 | 4 | 842 | 28.147 | 694 | 28.242 |
| 2. | 1 | 2 | 5 | 210 | 52.381 | 104 | 42.308 |
| 2. | 1 | 2 | 6 | 24 | 33.333 | 8 | 87.500 |
| 2. | 2 | 1 | 1 | 277 | 27.798 | 351 | 36.182 |
| 2. | 2 | 1 | 2 | 640 | 36.406 | 792 | 35.732 |
| 2. | 2 | 1 | 3 | 2697 | 28.068 | 3540 | 29.096 |
| 2. | 2 | 1 | 4 | 1259 | 33.519 | 2021 | 30.233 |
| 2. | 2 | 1 | 5 | 916 | 35.590 | 1560 | 36.795 |
| 2. | 2 | 1 | 6 | 435 | 35.632 | 533 | 38.086 |
| 2. | 2 | 2 | 1 | 156 | 26.282 | 88 | 39.773 |
| 2. | 2 | 2 | 2 | 375 | 36.267 | 254 | 40.945 |
| 2. | 2 | 2 | 3 | 1251 | 26.938 | 1098 | 23.133 |
| 2. | 2 | 2 | 4 | 340 | 31.765 | 420 | 30.000 |
| 2. | 2 | 2 | 5 | 337 | 34.421 | 232 | 34.914 |
| 2. | 2 | 2 | 6 | 71 | 46.479 | 55 | 30.909 |
| 2. | 3 | 1 | 1 | 282 | 26.950 | 322 | 26.398 |
| 2. | 3 | 1 | 2 | 650 | 21.538 | 689 | 24.383 |
| 2. | 3 | 1 | 3 | 2274 | 17.942 | 3306 | 21.385 |
| 2. | 3 | 1 | 4 | 864 | 16.088 | 1901 | 23.567 |
| 2. | 3 | 1 | 5 | 638 | 18.495 | 1478 | 23.816 |
| 2. | 3 | 1 | 6 | 318 | 22.013 | 748 | 26.337 |
| 2. | 3 | 2 | 1 | 181 | 29.282 | 69 | 27.536 |
| 2. | 3 | 2 | 2 | 389 | 20.566 | 230 | 33.478 |
| 2. | 3 | 2 | 3 | 1026 | 17.057 | 1051 | 18.363 |
| 2. | 3 | 2 | 4 | 268 | 14.925 | 432 | 17.130 |
| 2. | 3 | 2 | 5 | 159 | 23.899 | 213 | 16.432 |
| 2. | 3 | 2 | 6 | 80 | 30.000 | 113 | 29.204 |
| 2. | 4 | 1 | 1 | 737 | 19.674 | 722 | 23.130 |
| 2. | 4 | 1 | 2 | 1288 | 14.286 | 1073 | 20.503 |
| 2. | 4 | 1 | 3 | 3792 | 10.443 | 5618 | 13.403 |
| 2. | 4 | 1 | 4 | 1195 | 12.050 | 2851 | 16.485 |
| 2. | 4 | 1 | 5 | 653 | 8.423 | 1744 | 15.310 |
| 2. | 4 | 1 | 6 | 417 | 11.751 | 1438 | 16.759 |
| 2. | 4 | 2 | 1 | 514 | 16.732 | 226 | 15.929 |
| 2. | 4 | 2 | 2 | 740 | 16.081 | 422 | 16.825 |
| 2. | 4 | 2 | 3 | 1666 | 11.465 | 1847 | 13.481 |
| 2. | 4 | 2 | 4 | 393 | 9.669 | 562 | 14.235 |
| 2. | 4 | 2 | 5 | 202 | 15.842 | 342 | 16.082 |
| 2. | 4 | 2 | 6 | 115 | 13.043 | 256 | 21.094 |

Table 5.13. Population and Mobility Rates per 100 Persons, by Age, Sex, Years of School Completed, and Residence: United States, 1975-1976 and 1986-1987-Continued
(Population in thousands)

| $\begin{aligned} & \text { Sex } \\ & 1 \end{aligned}$ | $\begin{aligned} & \text { Age } \\ & \mathrm{k} \end{aligned}$ | Residence j | Education <br> i | 1975-1976 <br> (Popululation 1) |  | $\begin{gathered} \text { 1986-1987 } \\ \text { (Population 2) } \end{gathered}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Size $\mathbf{N}_{\mathrm{ljk}]}$ | Rate $\mathrm{T}_{\mathrm{ijk} \mid}$ | $\begin{gathered} \text { Size } \\ n_{\mathbb{I k} 1} \end{gathered}$ | Rate $t_{\text {ikk }}$ |
| 2. | 5 | 1 | 1 | 2827 | 8.100 | 2043 | 10.328 |
| 2. | 5 | 1 | 2 | 2758 | 8.412 | 2399 | 10.880 |
| 2. | 5 | 1 | 3 | 6692 | 7.038 | 8202 | 8.400 |
| 2. | 5 | 1 | 4 | 1731 | 8.319 | 2791 | 8.886 |
| 2. | 5 | 1 | 5 | 888 | 6.982 | 1431 | 9.085 |
| 2. | 5 | 1 | 6 | 514 | 6.420 | 1073 | 11.184 |
| 2. | 5 | 2 | 1 | 1930 | 8.031 | 860 | 9.651 |
| 2. | 5 | 2 | 2 | 1355 | 8.487 | 886 | 7.336 |
| 2. | 5 | 2 | 3 | 2783 | 7.905 | 2603 | 7.030 |
| 2. | 5 | 2 | 4 | 658 | 6.079 | 722 | 7.202 |
| 2. | 5 | 2 | 5 | 299 | 8.696 | 273 | 6.960 |
| 2. | 5 | 2 | 6 | 169 | 10.059 | 191 | 5.759 |
| 2. | 6 | 1 | 1 | 3515 | 5.434 | 3606 | 5.435 |
| 2. | 6 | 1 | 2 | 1385 | 4.332 | 2034 | 6.735 |
| 2. | 6 | 1 | 3 | 2037 | 5.646 | 4188 | 5.301 |
| 2. | 6 | 1 | 4 | 677 | 8.272 | 1327 | 6.179 |
| 2. | 6 | 1 | 5 | 399 | 7.519 | 667 | 8.096 |
| 2. | 6 | 1 | 6 | 199 | 8.040 | 365 | 5.479 |
| 2. | 6 | 2 | 1 | 2259 | 6.153 | 1603 | 5.490 |
| 2. | 6 | 2 | 2 | 703 | 5.832 | 729 | 6.996 |
| 2. | 6 | 2 | 3 | 891 | 6.173 | 1217 | 4.437 |
| 2. | 6 | 2 | 4 | 397 | 4.786 | 391 | 3.325 |
| 2. | 6 | 2 | 5 | 180 | 6.111 | 185 | 2.703 |
| 2. | 6 | 2 | 6 | 108 | 1.852 | 86 | 4.651 |
| $1=$. | $k=$. | $\mathrm{j}=$. | $i=$ | 145,785 | 17.790 | 175,609 | 18.136 |

Source: U.S. Bureau of the Census (1977, table 19; 1989, table 22). Education $I=1,2, \ldots, 6$ correspond to elementary ( $0-8$ ), high school ( $1-3,4$ ), college ( $1-3,4,5+$ ). Residence $~ i=1,2$ correspond to MSA's, outside MSA's. Age $k=1,2, \ldots, 6$ correspond to 18-24, $25-29,30-34,35-44,45-64,65+$. Sex I = 1, 2 correspond to male and female.

Table 5.14. Standardization and Decomposition of Mobility Rates in Table 5.13

| Mobility rates | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 1986-1987 (population 2) | 1975-1976 (population 1) | Difference (effects) | Percent distribution of effects |
| (J,K,L,R)-standardized rates | 17.928 | 17.724 | . 204 (I) | 59.0 |
| ( (I,K,L,R)-standardized rates | 17.894 | 17.766 | . 128 (J) | 37.0 |
| ( $1, \mathrm{~J}, \mathrm{~L}, \mathrm{R}$ )-standardized rates | 17.537 | 18.112 | - -.575 (K) | -166.2 |
| ( (1,J,K,R)-standardized rates | 17.832 | 17.834 | -. 002 (L) | -0.6 |
| (I,J,K,L)-standardized rates | 18.163 | 17.572 | *. 591 (R) | 170.8 |
| Overall. mobility rates | 18.136 | 17.790 | .346 (Total effect) | 100.0 |

*Significant at 90 -percent level.
Technically, the four-factor decomposition problem in Example 5.7 is not different from the decomposition by Ruggles (1988) of the changes in unrelated individuals into the effects of changes in four factors, namely, age, sex and marital status, occupation, and mobility, besides the rate effect. A similar four-factor decomposition was also performed by Bachu (1981) in her study of the effects of age, age at marriage, education, and religion on the difference between the rural and urban fertility rates in India based on the 1971 census.

Program 5.4 (Four Factors +Rate)


| 1 |
| :--- |
| 2 |

( DIMENSION $P(7,3,7,3,2), T(6,2,6,2,2), R(2,4,2), U(4), S(2,4), E T(2)$, 1 ERRBLE PRECISION P,R,U,S,ET,ER,Q,H,A,W1, W2

3

4

5
${ }_{8} 6$

7

10

| D |
| :--- |
| GO |
| A |
| G |
| I |
| I |
| A |
|  |

17

18

## 8 I

19
14
13
12

11
21
20

WRITE G 2
$22^{1}$
FOR
STO
END

### 5.6 THE CASE OF FIVE FACTORS

Using analogous symbols, we can express

$$
\begin{equation*}
\frac{N_{i k k \mid m}}{N_{\ldots} \ldots . .}=A_{i j k \mid m} B_{i k k m} C_{i k k m} D_{i j k \mid m} E_{i k k \mid m}, \tag{5.26}
\end{equation*}
$$

where (Das Gupta, 1991, equation 24)
and $B, C, D$, and $E$ are obtained from (5.27) by interchanging the subscripts.
The difference $t \ldots . .$. - ..... can be expressed as the sum of six effects (including the rate effect). Each effect is the difference between two standardized rates, the two typical of them being
$R(\bar{T})=(I, J, K, L, M)$-standardized rate in population 1

$$
\begin{equation*}
=\sum_{1, j, k, 1, m} \frac{\frac{n_{i k k \mid m}}{n_{1} \ldots . .}+\frac{N_{\text {ikklm }}}{N_{\ldots} \ldots .}}{2} T_{i j k \mid m ~} \tag{5.28}
\end{equation*}
$$

$l(\bar{A})=(J, K, L, M, R)$-standardized rate in population 1

$$
\begin{equation*}
=\sum_{i, k, k, 1, m} \frac{t_{i k k m}+T_{i j k / m}}{2} \quad[\text { Expression (2.33), i.e., (2.36) } \times A \tag{5.29}
\end{equation*}
$$

The remaining 10 standardized rates may be obtained from (5.28) and (5.29) by interchanging the letters.

## Example 5.8

Table 5.15 presents the population size and the mean annual earnings of Whites, and Asian and Pacific Islanders (API's) by four occupations, three age groups, three education groups, sex, and work status, as described in the footnote of the table, for the 1980 census. Das Gupta (1989) used similar data from the same source to study the race-sex inequalities in earnings. The mean earnings of Whites and API's are, respectively, $\$ 30,998$ and $\$ 30,433$, giving a difference of $\$ 565$ in favor of Whites. As table 5.16 shows, this difference would have been $\$ 2,813$ had the distributions of populations by occupation, age, education, sex, and work status been identical in the two groups. In other words, if we assume that, ideally, the mean earnings should depend only on these five factors, this difference of $\$ 2,813$ measures the inequity in mean earnings between Whites and APl's. If everything else including the cell-specific mean earnings were the same for the two groups, only the difference in education structures would make the mean earnings of API's $\$ 1,582$ higher than those for Whites. Similarly, only the difference in occupation structures would produce a difference of $\$ 1,991$ in mean earnings in favor of APl's. On the other hand, the differences in the other three factors, namely, age, sex, and work status, in the two groups tend to produce higher mean earnings for Whites. If there were no inequity in earnings, the rate effect $(\mathrm{R})$ in table 5.16 would be 0 and the total difference would be $\$-2,248$. This implies that in the absence of inequity, the mean earnings of API's would be $\$ 2,248$ higher than those for Whites.

Table 5.15. Civilian Labor Force With Earnings in 1979 and Mean Annual Earnings, by Occupation, Age, Education, Sex, and Work Status: Asian and Pacific Islander, and White, 1980
(Rate is mean annual earnings in doliars)

| Work status m | $\left\lvert\, \begin{aligned} & \text { Sex } \\ & 1 \end{aligned}\right.$ | Education <br> k | $\begin{aligned} & \text { Age } \\ & \text { j } \end{aligned}$ | Occupation <br> i | Asian and Pacific Islander (population 1) |  | White (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { Size } \\ \mathbf{N}_{\text {ijklm }} \end{gathered}$ | $\begin{aligned} & \text { Rate } \\ & \mathrm{T}_{\text {fiklm }} \end{aligned}$ | $\begin{gathered} \hline \text { Size } \\ \mathbf{n}_{1 \mathrm{lkjm}} \end{gathered}$ | Rate <br> $\mathbf{t}_{\text {lkkm }}$ |
| 1 | 1 |  | 1 | 1 | 6306 | 20552.15 | 347389 | 23293.16 |
| 1 | 1 | 1 | 1 | 2 | 4899 | 21570.24 | 132196 | 22496.84 |
| 1 | 1 | 1 | 1 | 3 | 222 | 29108.74 | 4142 | 28504.84 |
| 1 | 1 | 1 | 1 | 4 | 1275 | 20138.09 | 93503 | 23610.01 |
| 1 | 1 | 1 | 2 |  | 6967 | 30446.95 | 292235 | 35928.09 |
| 1 | 1 | 1 | 2 |  | 3754 | 25386.35 | 81308 | 28764.83 |
| 1 | 1 | 1 | 2 |  | 296 | 41404.85 | 3169 | 49227.33 |
|  | 1 | 1 | 2 |  | 845 | 27496.49 | 63562 | 35899.38 |
|  | 1 | 1 | 3 |  | 3686 | 35049.83 | 252218 | 42633.10 |
| 1 | 1 | 1 | 3 |  | 2749 | 28243.55 | 89491 | 32475.30 |
| 1 | 1 | 1 | 3 |  | 125 | 48238.76 | 3044 | 50080.75 |
| 1 | 1 | 1 | 3 |  | 553 | 29329.05 | 53094 | 37501.52 |
| 1 |  | 2 | 1 |  | 3348 | 22017.03 | 166014 | 24854.07 |
| 1 |  | 2 | 1 |  | 7159 | 22462.81 | 95481 | 23434.66 |
| 1 | 1 | 2 | 1 | 3 | 1238 | 29735.58 | 7964 | 30445.42 |
| 1 | 1 | 2 | 1 | 4 | 606 | 25036.89 | 30210 | 26888.48 |
| 1 | 1 | 2 | 2 |  | 4155 | 30156.48 | 189982 | 36453.98 |
|  | 1 | 2 | 2 | 2 | 7700 | 26775.74 | 69167 | 31130.81 |
| 1 | 1 | 2 | 2 | 3 | 1495 | 56310.06 | 6881 | 48133.87 |
| 1 | 1 | 2 | 2 | 4 | 480 | 26541.35 | 26501 | 38175.68 |
| 1 | 1 | 2 | 3 | 1 | 1935 | 34665.08 | 133608 | 42693.57 |
| 1 | 1 | 2 | 3 | 2 | 2214 | 31988.64 | 53838 | 34883.26 |
| 1 |  | 2 | 3 | 3 | 445 | 64515.67 | 7525 | 49889.73 |
| 1 |  | 2 | 3 | 4 | 270 | 30393.07 | 17349 | 38340.14 |
|  | 1 | 3 | 1 |  | 2369 | 24322.07 | 48174 | 25888.75 |
|  | 1 | 3 | 1 | 2 | 5768 | 24410.36 | 24191 | 23837.90 |
|  | 1 | 3 | 1 | 3 | 6393 | 32904.94 | 91556 | 35288.20 |
| 1. | 1 | 3 | 1 |  | 330 | 24066.62 | 6830 | 28476.43 |
|  | 1 | 3 | 2 | 1 | 4153 | 32712.66 | 92193 | 36057.86 |
|  | 1 | 3 | 2 | 2 | 8121 | 28991.28 | 28840 | 32059.44 |
|  | 1 | 3 | 2 | 3 | 9732 | 64519.72 | 87882 | 68222.38 |
|  | 1 | 3 | 2 | 4 | 310 | 26471.85 | 8657 | 35407.87 |
|  | 1 | 3 | 3 |  | 1642 | 35102.54 | 67843 | 41605.08 |
| 1 | 1 | 3 | 3 | 2 | 1867 | 32160.77 | 16471 | 36384.68 |
| 1. | 1 | 3 | 3 | 3 | 3919 | 64245.75 | 68250 | 71961.60 |
| 1. |  | 3 | 3 |  | 163 | 37806.38 | 6006 | 35885.50 |
|  |  |  |  |  | 1973 | 14724.19 | 87369 | 15444.64 |
| 1 | 2 | 1 | 1 | 2 | 299 | 19156.99 | 5633 | 18231.18 |
| 1 | 2 | 1 | 1 | 3 | 77 | 15996.17 | 1194 | 17699.53 |
| 1 | 2 | 1 | 1 |  | 676 | 15173.48 | 24038 | 15569.57 |
| 1 | 2 | 1 | 2 |  | 1354 | 15509.48 | 31914 | 18950.33 |
| 1 | 2 | 1 | 2 |  | 145 | 18561.83 | 1053 | 20208.55 |
|  | 2 | 1 | 2 |  | 95 | 19613.68 | 362 | 35656.55 |
|  | 2 | 1 | 2 | 4 | 240 | 16413.38 | 9087 | 18442.76 |
|  | 2 | 1 | 3 |  | 655 | 16470.11 | 22063 | 18759.59 |
|  | 2 | 1 | 3 |  | 66 | 17051.06 | 723 | 20645.65 |
|  | 2 | 1 | 3 | 3 | 49 | 27837.65 | 393 | 34205.83 |
|  | 2 |  |  |  | 159 | 16364.37 | 6935 | 18116.46 |
| 1. | 2 | 2 |  |  | 1451 | 16425.70 | 40764 | 17186.57 |
| 1 | 2 | 2 |  | 2 | 394 | 18695.69 | 3843 | 19722.91 |
| 1. | 2 | 2 | 1 | 3 | 429 | 29189.21 | 1233 | 22062.73 |
| 1 | 2 | 2 | 1 |  | 154 | 16274.48 | 6720 | 17002.31 |
| 1. | 2 | 2 | 2 |  | 650 | 20683.15 | 22720 | 19825.88 |
| 1 | 2 | 2 | 2 | 2 | 156 | 20571.44 | 1001 | 22073.44 |
| 1 | 2 | 2 | 2 | 3 | 366 | 40819.64 | 623 | 27111.00 |
| 1 | 2 | 2 | 2 | 4 | 241 | 24412.66 | 3681 | 19625.39 |
|  | 2 | 2 |  |  | 298 | 20627.06 | 14084 | 20487.98 |

Table 5.15. Civilian Labor Force With Earnings in 1979 and Mean Annual Earnings, by Occupation, Age, Education, Sex, and Work Status: Aslan and Pacific Islander, and White, 1980-Continued
(Rate is mean annual earnings in dollars)

| Work status m | Sex <br> 1 | Education <br> k | $\begin{aligned} & \text { Age } \\ & \text { I } \end{aligned}$ | Occupation <br> i | Asian and Pacific Islander (population 1) |  | White (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{gathered} \text { Size } \\ \mathbf{N}_{\mathrm{ijk} / \mathrm{m}} \end{gathered}$ | $\begin{aligned} & \text { Rate } \\ & \mathrm{T}_{\mathrm{ijklm}} \end{aligned}$ | $\begin{aligned} & \hline \text { Size } \\ & n_{1 \mathrm{jk} \mathrm{l} /} \\ & \hline \end{aligned}$ | Rate <br> $t_{\text {tjkim }}$ |
| 1. | 2 | 2 | 3 | 2 | 42 | 19770.24 | 611 | 22686.30 |
| 1. | 2 | 2 | 3 | 3 | 181 | 39430.30 | 481 | 32101.23 |
| 1. | 2 | 2 | 3 | 4 | 24 | 31349.17 | 2284 | 18513.86 |
| 1 | 2 | 3 | 1 | 1 | 362 | 15958.55 | 10151 | 18578.88 |
| 1 | 2 | 3 | 1 | 2 | 198 | 22682.50 | 1342 | 22755.94 |
| 1 | 2 | 3 | 1 | 3 | 2301 | 25325.56 | 9787 | 22506.49 |
| 1 | 2 | 3 | 1 | 4 | 25 | 9363.40 | 1107 | 18602.58 |
| 1........ | 2 | 3 | 2 | 1 | 436 | 19968.83 | 10938 | 21785.26 |
| 1. | 2 | 3 | 2 | 2 | 78 | 25682.24 | 473 | 22740.22 |
| 1 | 2 | 3 | 2 | 3 | 2796 | 43896.64 | 4858 | 40368.71 |
| 1 | 2 | 3 | 2 | 4 | 81 | 27204.26 | 986 | 20834.79 |
| 1 | 2 | 3 | 3 | 1 | 221 | 28769.00 | 7722 | 23092.75 |
| 1 | 2 | 3 | 3 | 2 | 38 | 24458.16 | 220 | 23961.32 |
| 1 | 2 | 3 | 3 | 3 | 852 | 42882.22 | 2964 | 47513.34 |
|  | 2 | 3 | 3 | 4 | 31 | 26834.03 | 634 | 19383.53 |
| 2. | 1 | 1 | 1 | 1 | 1987 | 13413.28 | 42099 | 14653.07 |
| 2. | 1 | 1 | 1 | 2 | 1511 | 12432.07 | 16273 | 14750.60 |
| 2 | 1 | 1 | 1 | 3 | 73 | 13939.23 | 1488 | 19063.69 |
| 2 | 1 | 1 | 1 | 4 | 540 | 16377.65 | 20437 | 17074.84 |
| 2 | 1 | 1 | 2 | 1 | 1669 | 20181.60 | 22153 | 27098.18 |
| 2 | 1 | 1 | 2 | 2 | 556 | 19703.82 | 5412 | 23016.99 |
| 2 | 1 | 1 | 2 | 3 | 51 | 40952.32 | 850 | 45744.51 |
| 2 | 1 | 1 | 2 | 4 | 290 | 18786.30 | 10019 | 30637.37 |
| 2 | 1 | 1 | 3 | 1 | 731 | 18473.15 | 18694 | 31839.66 |
| 2 | 1 | 1 | 3 | 2 | 281 | 22111.09 | 6123 | 25484.38 |
| 2....... | 1 | 1 | 3 | 3 | 72 | 46188.54 | 1090 | 45535.32 |
| 2. | 1 | 1 | 3 | 4 | 142 | 19507.48 | 9005 | 29173.63 |
| 2........ | 1 | 2 | 1 | 1 | 1165 | 11754.58 | 26966 | 14685.16 |
| 2..... | 1 | 2 | 1 | 2 | 1891 | 14022.91 | 12256 | 14753.29 |
| 2. | 1 | 2 | 1 | 3 | 565 | 23891.12 | 2915 | 22727.08 |
| 2 | 1 | 2 | 1 | 4 | 230 | 11581.25 | 7972 | 17636.10 |
| 2 | 1 | 2 | 2 | 1 | 692 | 20360.49 | 22703 | 24958.99 |
| 2. | 1 | 2 | 2 | 2 | 836 | 21723.88 | 4974 | 23023.14 |
| 2. | 1 | 2 | 2 | 3 | 666 | 60133.12 | 2284 | 47865.35 |
| 2. | 1 | 2 | 2 | 4 | 247 | 15632.82 | 5201 | 28061.94 |
| 2. | 1 | 2 | 3 | 1 | 288 | 20753.97 | 18630 | 27919.21 |
|  | 1 | 2 | 3 | 2 | 201 | 24802.15 | 3956 | 26644.25 |
| 2. | 1 | 2 | 3 | 3 | 215 | 65647.89 | 2718 | 46108.45 |
| 2.......... | 1 | 2 | 3 | 4 | 60 | 14218.34 | 3685 | 28842.36 |
| 2.......... | 1 | 3 | 1 | 1 | 823 | 12653.70 | 11762 | 14008.25 |
| 2. | 1 | 3 | 1 | 2 | 1565 | 14024.68 | 4677 | 12913.80 |
| 2. | 1 | 3 | 1 | 3 | 2376 | 27815.49 | 36092 | 24057.25 |
| 2. | 1 | 3 | 1 | 4 | 72 | 15763.87 | 1953 | 17011.58 |
| 2. | 1 | 3 | 2 | 1 | 683 | 19825.25 | 13921 | 24752.96 |
| 2. | 1 | 3 | 2 | 2 | 980 | 20661.36 | 2694 | 23091.57 |
| 2. | 1 | 3 | 2 | 3 | 3722 | 64740.15 | 23019 | 62417.03 |
| 2. | 1 | 3 | 2 | 4 | 205 | 21343.28 | 2160 | 33559.61 |
| 2. | 1 | 3 | 3 | 1 | 287 | 24727.82 | 10132 | 29638.24 |
| 2. | 1 | 3 | 3 | 2 | 187 | 24564.70 | 1452 | 27095.94 |
| 2. | 1 | 3 | 3 | 3 | 1435 | 72847.97 | 20843 | 65177.10 |
| 2.......... | 1 | 3 | 3 | 4 | 65 | 22511.47 | 1602 | 22434.63 |
| 2....,.... | 2 | 1 |  | 1 | 845 | 9992.65 | 31676 | 8463.99 |
| , | 2 | 1 | 1 | 2 | 114 | 7872.89 | 1743 | 10061.72 |
| 2............ | 2 | 1 | 1 | 3 | 33 | 26490.14 | 902 | 10730.86 |
|  | 2 | 1 | 1 | 4 | 482 | 12030.86 | 14072 | 8437.87 |
| 2......... | 2 | 1 | 2 | 1 | 560 | 9155.62 | 15754 | 8386.64 |
| 2. | 2 | 1 | 2 | 2 | 41 | 20344.25 | 427 | 9209.83 |

Table 5.15. Clvilian Labor Force With Earnings in 1979 and Mean Annual Earnings, by Occupation, Age, Education, Sex, and Work Status: Asian and Pacific Islander, and White, 1980-Continued
(Rate is mean annual earnings in dollars)

| Work status m | $\left\lvert\, \begin{aligned} & \text { Sex } \\ & 1 \end{aligned}\right.$ | Education <br> k | $\begin{aligned} & \text { Age } \\ & \text { I } \end{aligned}$ | Occupation i | Asian and Pacific Islander (population 1) |  | White (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Size <br> $\mathrm{N}_{\text {ikklm }}$ | $\begin{aligned} & \text { Rate } \\ & \mathrm{T}_{\mathrm{iljk} \mathrm{k}} \end{aligned}$ | $\begin{gathered} \text { Size } \\ n_{\text {ikikm }} \end{gathered}$ | Rate <br> $t_{\text {tiklm }}$ |
| 2. | 2 | 1 | 2 | 3 | 49 | 28832.97 | 368 | 16203.06 |
| 2 | 2 | 1 | 2 | 4 | 251 | 8024.56 | 10942 | 9128.05 |
| 2 | 2 | 1 | 3 | 1 | 255 | 11924.00 | 9966 | 9533.53 |
| 2 | 2 | 1 | 3 | 2 | 8 | 23640.02 | 201 | 12317.19 |
| 2 | 2 | 1 | 3 | 3 | 20 | 22605.00 | 229 | 18437.26 |
| 2 | 2 | 1 | 3 | 4 | 112 | 11460.63 | 7309 | 8550.02 |
| 2 | 2 | 2 | 1 | 1 | 500 | 8611.16 | 19376 | 9596.07 |
| 2 | 2 | 2 | 1 | 2 | 250 | 11390.69 | 1661 | 10123.12 |
| 2 | 2 | 2 | 1 | 3 | 377 | 13681.88 | 1205 | 11192.69 |
| 2 | 2 | 2 | 1 | 4 | 226 | 8561.37 | 4894 | 9713.37 |
| 2 | 2 | 2 | 2 | 1 | 276 | 12312.71 | 12204 | 11858.49 |
| 2 | 2 | 2 | 2 | 2 | 38 | 12010.27 | 379 | 10003.39 |
| 2 | 2 | 2 | 2 | 3 | 235 | 33734.46 | 523 | 16094.54 |
| 2 | 2 | 2 | 2 | 4 | 141 | 15655.46 | 4170 | 9641.37 |
| 2 | 2 | 2 | 3 | 1 | 164 | 29692.09 | 7862 | 14204.76 |
| 2 | 2 | 2 | 3 | 2 | 9 | 20991.63 | 297 | 10874.84 |
| 2 | 2 | 2 | 3 | 3 | 66 | 33692.83 | 237 | 23101.27 |
| 2 | 2 | 2 | 3 | 4 | 12 | 8864.98 | 2487 | 8845.77 |
| 2. | 2 | 3 | 1 | 1 | 277 | 9240.31 | 5821 | 10491.60 |
| 2 | 2 | 3 | 1 | 2 | 88 | 14716.03 | 774 | 8689.08 |
| 2 | 2 | 3 | 1 | 3 | 1705 | 19828.81 | 7107 | 13448.46 |
| 2 | 2 | 3 | 1 | 4 | 76 | 5480.27 | 924 | 10567.47 |
| 2 | 2 | 3 | 2 | 1 | 185 | 12951.80 | 5703 | 14099.41 |
| 2 | 2 | 3 | 2 | 2 | 41 | 11492.82 | 253 | 9873.61 |
| 2 | 2 | 3 | 2 | 3 | 1674 | 33889.79 | 2849 | 25738.88 |
| 2 | 2 | 3 | 2 | 4 | 50 | 8773.19 | 781 | 10048.33 |
| 2 | 2 | 3 | 3 | 1 | 114 | 19177.33 | 4312 | 17249.20 |
| 2. | 2 | 3 | 3 | 2 | 13 | 13420.39 | 92 | 10892.76 |
| 2. | 2 | 3 | 3 | 3 | 304 | 30910.62 | 1873 | 31360.83 |
| 2........ | 2 | 3 | 3 | 4 | 58 | 13317.32 | 535 | 8998.24 |
| $\mathrm{m}=$. | $1=$ | $k=$. | $\mathrm{j}=$. | $1=$. | 162,090 | 30,433 | 3,684,673 | 30,998 |

Source: U.S. Bureau of the Census (1984c, tables 3, and 6; unpublished data for breakdown of college 5+ years into 5-6 and 7+ years and for earnings correct to cents). Occupation $i=1,2,3,4$ (executive and administrative occupations; engineers, architects, and surveyors; health diagnosing occupations; sales representatives, finance, and business services). Age $\mathrm{j}=1,2,3$ (age groups 25-34, 35-44, and 45-54). Education $k=1,2,3$ (college 4, 5-6, and $7+$ years). Sex $1=1,2$ (male and female). Work status $m=1$, 2 (worked year-round full-time in 1979 and others who worked in 1979).

Table 5.16. Standardization and Decomposition of Mean Annual Earnings in Table 5.15

| Mean annual earnings (dollars) | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | White* (population 2) | Asian (population 1) | Difference (effects) | Percent distribution of effects |
| (J,K,L,M,R)-standardized mean earnings | 28,745 | 30,736 | -1,991 (l) | -352.4 |
| ( $1, K, L, M, R)$-standardized mean earnings | 29,980 | 29,806 | 174 (J) | 30.8 |
| (I,J,L,M,R)-standardized mean earnings | 28,976 | 30,558 | -1,582 (K) | -280.0 |
| ( $1, J, \mathrm{~K}, \mathrm{M}, \mathrm{R}$ )-standardized mean earnings | 30,210 | 29,603 | 607 (L) | 107.4 |
| ( $1, \mathrm{~J}, \mathrm{~K}, \mathrm{~L}, \mathrm{R}$ )-standardized mean earnings | 30,168 | 29,624 | 544 (M) | 96.3 |
| ( $1, J, K, L, M$ )-standardized mean earnings | 31,744 | 28,931 | 2,813 (R) | 497.9 |
| Overall mean annual earnings | 30,998 | 30,433 | 565 (Total effect) | 100.0 |

*Whites include Whites of Hispanic origin. The mean earnings for non-Hispanic Whites are higher than those shown for Whites in tables 5.15 and 5.16.

## Program 5.5

The results in table 5.16 can be obtained by using Program 5.5 in which P's in line 5 denote N's and n's in table 5.15, and T's in line 6 denote $T$ 's and t's in the same table. The data file consists of 144 lines corresponding to the data in the last four columns in table 5.15 in the same order-36 lines of four numbers for each column-with the format specified in lines 7 and 8 of the program. The 12 standardized rates in table 5.16 are given by $\operatorname{ER}(\mathrm{N})$ 's and $S(1, J)$ 's in lines 56 and 125 of the program. The six effects in table 5.16 are denoted by ERR and U(J)'s in lines 58 and 126 of the program.

### 5.7 THE CASE OF SIX FACTORS

In this case, we write
where
and $B, C, D, E$, and $F$ are obtained from (5.31) by interchanging the subscripts.
The two typical standardized rates, similar to (5.28) and (5.29), are given by $R(\bar{T})=(I, J, K, L, M, N)$-standardized rate in population 1

Program 5.5 (Five Factors +Rate)
m,

```
    DIMENSION P(5,4 (2, 3, 3
    OOUBLESPRESTSION'P,R,U,S,ET,ER,Q,H,A,W1,W2,W3
1
3
4
    l
    4 P(I,4,K,L MM,N)=P(I,4,K,L,M,N)+P(I,U,K,L,M,N)
    5
6
    l
    CONTUNUEL
    DD7N=1,
    7
    ET(N)=0.0
    ER(N)=0:O
    5 P
                L,M,N)=P(5,J,K,L,M,N)+P(I,U,K,L,M,N)
    OD 4 i=1,5
        L
    PD(I, U 4, L,M,N)=P(I, N,4,L,M,N)+P(I,U,K,L,M,N)
```

```
    l
    D
    Q
        OO
```




```
[
```

```ER(N
```

```
    OD
        0}7\textrm{L=1;2
```

11

## Program 5.5 (continued)



15
DO $20 \quad N L=1,5$
$G O \quad(15,16,17,18,19), N L$
$A=P(I S, U, K, L, M, I I) / P(5, U, K, L, M, I I)$
16
GO
$I F$
$I F$
$I \quad I 1 . E Q .1)$
$I=I S$
$I$
$I F(I 1 . E Q .2) I=5$
$A=P(I, J S, K, L, M, J J) / P(I, 4, K, L, M, U J)$
$G D(T)$
17

GO TO, 21 KS,L,M,KK)/P(I,J,4,L,M,KK)
18


$I F\{I 4, E Q, 2) L=3$
$A=P(I, J, K, M S, M M) / P(I, U, K, L, 3, M M)$
21
0 IF I5.EQ.5.OR.IS.EQ.7 $\begin{aligned} & \text { IF } 2=W 2 * A \\ & W 3=W 3 * A\end{aligned}$
14

$\mathrm{N} 1=\mathrm{NN}+3$
$N 2=12-N_{1}$
NF (JJ+KK+LL+MM.EQ.N1.OR. UJ+KK+LL+MM.EO.N2) R(II 1
$\left\{\begin{array}{l}U U+K K+L L+M M . E Q \cdot N 1 . O R \cdot U J+K K+L L+M M . E Q . N 2 \\ I T\end{array}\right.$
13

$R(I I, 1, N N)=R(I I, 1, N N)+H$
$\begin{array}{ll}\text { IF } & 11+\cup U+K K \\ D O & J=1.5 \\ D O & 23=1.2\end{array}$

22 URITE $=(6,24), S(1, J), J), S(1, J), U(J), J=1,5), E R(2), E R(1), E R R$.

STOP
END
$I(\bar{A})=(J, K, L, M, N, R)$-standardized rate in population 1

$$
=\sum_{\text {i, }, \mathrm{k}, \mathrm{l}, \mathrm{~m}, \mathrm{n}} \frac{\mathrm{t}_{\mathrm{ykk} \mid m n}+\mathrm{T}_{\mathrm{jkk} \mid m n}}{2} \quad \begin{align*}
& {[\text { Expression (2.41), i.e., (2.44) } \times \mathrm{A}}  \tag{5.33}\\
& \text { with subscripts ijklmn in each letter] }
\end{align*}
$$

Other standardized rates and the effects are easily obtained from (5.32) and (5.33).

## Example 5.9

Table 5.17 is from the 1970 U.S. Census where the women and the average number of children ever born to them are cross-classified by six factors: family income, husband's education, husband's occupation, wife's labor force status, wife's age at marriage, and race, for two education groups of women, namely, not a high school graduate and high school, 4 years (no college). Janowitz (1976) used the same data source to do similar analysis, but since she considered only wife's age at marriage and wife's labor force status as the explaining variables, her results cannot be directly compared with ours. The average number of children ever born is 3.428 for women who were not high school graduates and 3.005 for women who had 4 years of high school, the difference in these two averages being .423 child. The six-factor decomposition in table 5.18 (along with the rates as a factor) shows that each of the seven factors contributes positively towards explaining the difference of .423 in the average number of children in the two groups of women. The differences in family income, husband's education, husband's occupation, wife's labor force status, wife's age at marriage, and race explain, respectively, 1.9, 15.4, 8.7, 3.3, 13.0, and 9.0 percents of the total difference between the average number of children in the two groups of women. In other words, 48.7 percent of the total difference in the fertility between the high school graduates and non-high school graduates still remains unexplained even after standardization with respect to the six factors simultaneously. Obviously, of the six factors, husband's education plays the most important role in explaining the difference, wife's age at marriage being the next in importance. Virtually identical results were obtained by Das Gupta (1984, table 3) when a more complicated method was applied to the same set of data. This example will be discussed again in Example 6.1 (tables 6.1 and 6.2) in the context of simultaneous consideration of three populations.

## Program 5.6

The results in table 5.18 can be obtained by using Program 5.6. P's in line 5 of the program denote N's and n's in table 5.17, and T's in line 7 denote T's and t's in the same table. The data file consists of 192 lines corresponding to the data in the last four columns in table 5.17 in the same order. Each column takes 48 lines, each line having seven numbers with the format specified in lines 9 and 10 of the program. The 14 standardized rates in table 5.18 are given by ER(N1)'s and S(I,J)'s in lines 74 and 154 of the program. The seven effects in table 5.18 are denoted by ERR and U(J)'s in lines 76 and 155 of the program.

### 5.8 THE CASE OF P FACTORS

As in (5.30) and (5.31), we express

$$
\begin{equation*}
\frac{N_{i, t o i_{p}}}{N_{1} \ldots . . .}=A_{1 i_{1} \text { to } i_{p}} A_{2 i_{1} \text { to }} \ldots . . . . A_{p i_{1} \text { to }} \tag{5.34}
\end{equation*}
$$

where

$$
\begin{align*}
& =\prod_{r=0}^{P-1}(Z)^{\frac{1}{P^{\left({ }^{( }-1\right)}}} \text {, } \tag{5.35}
\end{align*}
$$

## Table 5.17. Wives 35 to 44 Years Old and Average Number of Children Ever Born (Rate) by Family Income, Husband's Education, Husband's Occupation, Wife's Labor Force Status, Wife's Age at Marriage, and Race: Wives High School 4 Years and Wives Not a High School Graduate, United States, 1970

| Race <br> n | Wife's age at marriage m | Wife's labor force status 1 | Husband's occupation k | Husband's education j | Family income i | Wives, high school 4 years (population 1) |  | Wives, not a high school graduate (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{array}{r} \text { Size } \\ \mathbf{N}_{\text {Ijkimn }} \end{array}$ | Rate <br> $T_{\text {Ijklmn }}$ | $\begin{array}{r} \text { Size } \\ \mathrm{n}_{\mathrm{iklmn}} \\ \hline \end{array}$ | $\begin{aligned} & \text { Rate } \\ & \mathrm{T}_{\text {Ijklmn }} \end{aligned}$ |
| 1 | 1 |  |  |  | 1 | 1908 | 3.578 | 4197 | 3.496 |
| 1 | 1 | 1 |  |  |  | 3231 | 2.972 | 8257 | 3.573 |
| 1 | 1 | 1 |  |  |  | 3100 | 3.300 | 5519 | 3.394 |
| 1 | 1 | 1 |  |  |  | 17395 | 3.176 | 25046 | 3.423 |
| 1 | 1 | 1 |  |  |  | 25425 | 3.430 | 31399 | 3.574 |
| 1 | 1 | 1 |  |  |  | 10612 | 3.511 | 11859 | 3.597 |
| 1 | 1 | 1 |  |  |  | 9009 | 3.377 | 9269 | 3.540 |
| 1 |  |  |  |  |  | 4221 | 3.065 | 1525 | 2.814 |
| 1 |  |  |  | 2 |  | 5154 | 3.234 | 2551 | 3.397 |
|  |  | 1 | 1 | 2 | 3 | 5884 | 3.121 | 2496 | 3.370 |
| 1 | 1 | 1 |  | 2 |  | 42696 | 3.194 | 15638 | 3.309 |
| 1 | 1 | 1......... |  |  |  | 84344 | 3.305 | 26130 | 3.408 |
| 1 | 1 | 1......... |  |  |  | 40242 | 3.392 | 10816 | 3.426 |
| 1 | 1 | 1 |  |  |  | 34088 | 3.315 | 7537 | 3.649 |
| 1 | 1 | 1 |  | 3 |  | 3457 | 3.092 | 977 | 3.209 |
| 1 |  | 1 |  | 3 |  | 3086 | 3.287 | 1028 | 3.116 |
| 1 | 1 | 1 |  | 3 |  | 2999 | 3.263 | 1084 | 3.123 |
| 1 | 1 |  |  | 3 |  | 21630 | 3.215 | 6571 | 3.374 |
| 1 | 1 |  |  |  |  | 78263 | 3.284 | 14867 | 3.565 |
| 1 |  |  |  | 3 |  | 65609 | 3.366 | 10286 | 3.420 |
| 1 |  |  |  |  |  | 72352 | 3.452 | 8669 | 3.540 |
| 1 |  |  |  |  |  | 6851 | 3.415 | 32827 | 4.439 |
| 1 | 1 |  |  |  |  | 13914 | 3.326 | 55962 | 4.119 |
| 1 | 1 |  | 2 ......... |  |  | 14127 | 3.321 | 40422 | 3.912 |
|  |  |  |  |  |  | 67259 | 3.419 | 143027 | 3.841 |
| 1 | 1 |  |  | 1 |  | 83649 | 3.556 | 151472 | 3.826 |
| 1 | 1 | 1 |  | 1 |  | 24032 | 3.830 | 40710 | 3.986 |
| 1 | 1 |  |  | 1 |  | 10198 | 3.813 | 14493 | 4.279 |
| 1 | 1 |  |  | 2 |  | 5842 | 3.351 | 4390 | 3.536 |
| 1 | 1 | 1 | 2 | 2 | 2 | 9842 | 3.187 | 7258 | 3.508 |
| 1 | 1 | 1 |  | 2......... |  | 11074 | 3.185 | 6891 | 3.514 |
|  | 1 |  |  |  |  | 70305 | 3.245 | 34323 | 3.420 |
| 1 | 1 |  |  |  |  | 120211 | 3.445 | 50758 | 3.518 |
| 1 | 1 |  |  | 2 .......... |  | 38270 | 3.618 | 14515 | 3.796 |
| 1 | 1 | 1 |  |  |  | 13535 | 3.785 | 6314 | 3.848 |
| 1 | 1 |  |  |  |  | 1276 | 3.139 | 439 | 3.784 |
| 1 | 1 |  |  |  |  | 1180 | 3.503 | 980 | 3.131 |
| 1 | 1 | 1 | $2 \ldots . .$. |  |  | 1529 | 3.534 | 535 | 3.875 |
|  | 1 | 1 | 2 .......... |  |  | 9577 | 3.250 | 4391 | 3.557 |
| 1 | 1 |  | 2 | 3 |  | 21541 | 3.403 | 7689 | 3.620 |
| , | 1 |  | 2 | 3 | 6 | 9016 | 3.700 | 2834 | 3.849 |
|  | 1 |  |  |  |  | 4601 | 3.531 | 1091 | 3.894 |
|  |  |  |  |  |  | 1087 | 3.015 | 1759 | 3.437 |
|  | 1 | 2 |  | 1 | 2 | 1726 | 2.939 | 3623 | 3.155 |
| 1 | 1 | 2 | 1 | 1 | 3 | 2012 | 3.235 | 2893 | 3.287 |
|  | 1 | 2 | 1 |  |  | 11647 | 3.069 | 15523 | 3.082 |
| 1. | 1 | 2 | 1 | 1 |  | 33752 | 2.821 | 34998 | 2.945 |
|  | 1 | $2 \ldots . .$. |  | 1 |  | 19770 | 2.889 | 15942 | 2.999 |
| 1 | 1 |  |  | 1 ......... |  | 10830 | 2.915 | 9188 | 3.135 |
| 1 | 1 | $2 \ldots . .$. |  | 2 .......... |  | 1838 | 2.835 | 505 | 2.790 |
| 1 | 1 | 2 .......... |  | 2 ......... |  | 3395 | 2.935 | 1111 | 2.877 |
| 1. | 1 | 2 |  | 2 ......... |  | 2702 | 2.839 | 1012 | 2.718 |
| , | 1 | 2 | 1 | 2 |  | 23040 | 2.877 | 6528 | 3.016 |
|  | 1 | 2 | 1 | $2 \ldots . .$. | 5 | 88101 | 2.866 | 21925 | 2.956 |
|  | 1 | 2 |  | 2 |  | 60315 | 2.783 | 13225 | 3.010 |
| 1. | 1 | 2 |  | 2 | 7 | 32550 | 2.815 | 6656 | 3.121 |
| 1. | 1 | 2 |  | 3 |  | 1544 | 3.071 | 332 | 4.244 |
| 1 | 1 | 2 |  | 3 |  | 1627 | 3.033 | 701 | 2.642 |
|  |  | 2 |  | 3 |  | 1675 | 2.704 | 444 | 3.011 |

Table 5.17. Wives 35 to 44 Years Old and Average Number of Chlldren Ever Born (Rate) by Family Income, Husband's Education, Husband's Occupation, Wife's Labor Force Status, Wife's Age at Marriage, and Race: Wives High School 4 Years and Wives Not a High School Graduate, United States, 1970-Continued

| $\begin{aligned} & \text { Race } \\ & \mathrm{n} \end{aligned}$ | Wife's age at marriage m | Wife's labor force status 1 | Husband's occupation k | Husband's education j | Family income | Wives, high school 4 years (population 1) |  | Wives, not a high school graduate (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{gathered} \text { Size } \\ \mathbf{N}_{i\|k\| i m n} \end{gathered}$ | $\begin{gathered} \text { Rate } \\ T_{\text {Tyk\|rn }} \end{gathered}$ | $\begin{gathered} \text { Size } \\ n_{\text {ijkimn }} \end{gathered}$ |  |
| 1.... | 1 | 2 | 1 | 3 | 4 | 10937 | 3.076 | 2933 | 2.993 |
| 1. | 1 | 2 | 1 | 3 | 5 | 54525 | 2.987 | 10732 | 3.025 |
|  | 1 | 2 | 1 | 3 | 6 | 52225 | 2.865 | 7865 | 2.960 |
| 1.... | 1 | 2 | 1 | 3 | 7 | 40354 | 2.933 | 5064 | 2.970 |
| 1.... | 1 | 2 | 2 | 1 | 1 | 2891 | 3.080 | 9300 | 3.516 |
| 1. | 1 | 2 | 2 | 1 | 2 | 6612 | 3.145 | 19812 | 3.619 |
| 1. | 1 | 2 | 2 | 1 | 3 | 7450 | 3.003 | 16471 | 3.611 |
| 1. | 1 | 2 | 2 | 1 | 4 | 46792 | 2.995 | 86584 | 3.336 |
| 1. | 1 | 2 | 2 | 1 | 5 | 120053 | 3.033 | 172363 | 3.220 |
| 1. | 1 | 2 | 2 | 1 | 6 | 55956 | 3.024 | 67635 | 3.324 |
| 1. | 1 | 2 | 2 | 1 | 7 | 18456 | 3.208 | 22088 | 3.403 |
|  | , | 2 | 2 | 2 | 1 | 2495 | 3.066 | 1294 | 2.931 |
| 1. | 1 | 2 | 2 | 2 | 2 | 4499 | 3.099 | 2574 | 3.168 |
| 1. | 1 | 2 | 2 | 2 | 3 | 4430 | 3.290 | 2795 | 3.455 |
| 1. | 1 | 2 | 2 | 2 | 4 | 37267 | 3.049 | 17642 | 3.249 |
| 1 | 1 | 2 | 2 | 2 | 5 | 127053 | 2.975 | 42958 | 3.178 |
| 1... | 1 | 2 | 2 | 2 | 6 | 71281 | 2.924 | 20828 | 3.256 |
| 1... | 1 | 2 | 2 | 2 | 7 | 24152 | 3.000 | 6780 | 3.367 |
| 1... | 1 | 2 | 2 | 3 | 1 | 414 | 2.734 | 249 | 4.406 |
| 1. | 1 | 2 | 2 | 3 | 2 | 624 | 3.002 | 490 | 2.986 |
| 1. | 1 | 2 | 2 | 3 | 3 | 618 | 3.620 | 403 | 2.628 |
| 1. | 1 | 2 | 2 | 3 | 4 | 4230 | 2.955 | 2511 | 3.185 |
| 1. | 1 | 2 | 2 | 3 | 5 | 19241 | 3.121 | 5948 | 3.251 |
| 1. | 1 | 2 | 2 | 3 | 6 | 13224 | 2.962 | 3517 | 3.090 |
| 1. | 1 | 2 | 2 | 3 | 7 | 5297 | 3.042 | 1205 | 3.232 |
| 1.... | 2 | 1 | 1 | 1 | 1 | 1139 | 2.487 | 2166 | 2.640 |
| $1 .$. | 2 | 1 | 1 | 1 | 2 | 1735 | 2.479 | 2825 | 2.384 |
| $1 .$. | 2 | 1 | 1 | 1 | 3 | 1887 | 2.868 | 2275 | 2.507 |
| $1 .$. | 2 | 1 | 1 | 1 | 4 | 9490 | 2.523 | 8721 | 2.772 |
| 1. | 2 | 1 | 1 | 1 | 5 | 11898 | 2.769 | 9249 | 2.674 |
| 1... | 2 | 1 | 1 | 1 | 6 | 3915 | 2.837 | 3269 | 2.941 |
| $1 .$. | 2 | 1 | 1 | 1 | 7 | 3365 | 2.912 | 2501 | 2.924 |
| 1. | 2 | 1 | 1 | 2 | 1 | 2389 | 2.634 | 1114 | 2.066 |
| $1 .$. | 2 | 1 | 1 | 2 | 2 | 2975 | 2.527 | 1824 | 2.265 |
| $1 .$. | 2 | 1 | 1 | 2 | 3 | 4627 | 2.823 | 1195 | 2.542 |
| $1 .$. | 2 | 1 | 1 | 2 | 4 | 31012 | 2.695 | 8207 | 2.575 |
| $1 .$. | 2 | 1 | 1 | 2 | 5 | 50437 | 2.779 | 9969 | 2.789 |
| 1. | 2 | 1 | 1 | 2 | 6 | 19248 | 2.930 | 3206 | 2.925 |
| 1.... | 2 | 1 | 1 | 2 | 7 | 15680 | 2.890 | 2161 | 2.556 |
| $1 .$. | 2 | 1 | 1 | 3 | 1 | 3031 | 2.788 | 498 | 2.430 |
| 1. | 2 | 1 | 1 | 3 | 2 | 2656 | 2.689 | 583 | 2.340 |
| 1. | 2 | 1 | 1 | 3 | 3 | 2508 | 2.687 | 656 | 2.422 |
| 1. | 2 | 1 | 1 | 3 | 4 | 22334 | 2.694 | 5179 | 2.558 |
| 1. | 2 | 1 | 1 | 3 | 5 | 74947 | 2.851 | 11183 | 2.573 |
| $1 .$. | 2 | 1 | 1 | 3 | 6 | 59232 | 2.995 | 6251 | 2.756 |
| 1. | 2 | 1 | 1 | 3 | 7 | 57384 | 3.100 | 4961 | 2.695 |
| $1 .$. | 2 | 1 | 2 | 1 | 1 | 4661 | 2.554 | 17604 | 3.125 |
| 1. | 2 | 1 | 2 | 1 | 2 | 8893 | 2.784 | 24869 | 2.895 |
| 1. | 2 | 1 | 2 | 1 | 3 | 8380 | 2.633 | 18317 | 2.838 |
| 1. | 2 | 1 | 2 | 1 | 4 | 37558 | 2.793 | 56166 | 2.819 |
| 1. | 2 | 1 | 2 | 1 | 5 | 36917 | 2.945 | 45001 | 2.922 |
| 1. | 2 | 1 | 2 | 1 | 6 | 7949 | 2.946 | 7868 | 3.134 |
| 1. | 2 | 1 | 2 | 1 | 7 | 2929 | 3.265 | 2900 | 3.387 |
| 1. | 2 | 1 | 2 | 2 | 1 | 3896 | 2.784 | 1910 | 2.294 |
| 1. | 2 | 1 | 2 | 2 | 2 | 7434 | 2.466 | 3990 | 2.725 |
| 1. | 2 | 1 | 2 | 2 | 3 | 8038 | 2.670 | 4783 | 2.751 |
| 1 | 2 | 1 | 2 | 2 | 4 | 46512 | 2.703 | 17903 | 2.796 |
| 1. | 2 | 1 | 2 | 2 | 5 | 69189 | 2.928 | 19873 | 2.837 |

Table 5.17. Wives 35 to 44 Years Old and Average Number of Children Ever Born (Rate) by Family Income, Husband's Education, Husband's Occupation, Wife's Labor Force Status, Wife's Age at Marriage, and Race: Wives High School 4 Years and Wives Not a High School Graduate, United States, 1970-Continued

| Race <br> n | Wife's age at marriage m | Wife's labor force status | Husband's occupation k | Husband's education 1 | Family income i | Wives, high school 4 years (population 1) |  | Wives, not a high school graduate (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{array}{r} \text { Size } \\ \mathbf{N}_{\text {Ijkimn }} \end{array}$ | Rate <br> $\mathrm{T}_{\text {ijkimn }}$ | $\begin{gathered} \text { Size } \\ n_{\text {ipklmn }} \end{gathered}$ | $\begin{gathered} \text { Rate } \\ \mathrm{T}_{\text {Ilkdmn }} \end{gathered}$ |
| 1.... | 2 | 1 | 2 | 2 | 6 | 15325 | 3.089 | 3840 | 3.250 |
| $1 .$. | 2 | 1 | 2 | 2 | 7 | 4857 | 3.049 | 1537 | 3.082 |
| $1 .$. | 2 | 1 | 2 | 3 | 1 | 858 | 2.618 | 537 | 2.780 |
| 1... | 2 | 1 | 2 | 3 | 2 | 1448 | 2.680 | 719 | 2.983 |
| 1.... | 2 | 1 | 2 | 3 | 3 | 976 | 2.703 | 384 | 2.458 |
| $1 .$. | 2 | 1 | 2 | 3 | 4 | 7473 | 2.630 | 2732 | 2.675 |
| $1 .$. | 2 | 1 | 2 | 3 | 5 | 16470 | 3.082 | 3669 | 2.906 |
| 1. | 2 | 1 | 2 | 3 | 6 | 5101 | 3.094 | 1275 | 3.057 |
| 1. | 2 | 1 | 2 | 3 | 7 | 2564 | 3.125 | 374 | 2.594 |
| 1.... | 2 | 2 | 1 | 1 | 1 | 377 | 1.332 | 808 | 1.749 |
| 1.... | 2 | 2 | 1 | 1 | 2 | 849 | 1.984 | 1016 | 2.401 |
| 1.... | 2 | 2 | 1 | 1 | 3 | 507 | 3.018 | 1086 | 2.606 |
| $1 . .$. | 2 | 2 | 1 | 1 | 4 | 4882 | 2.385 | 4582 | 2.095 |
| $1 .$. | 2 | 2 | 1 | 1 | 5 | 12688 | 2.105 | 9462 | 2.160 |
| 1. | 2 | 2 | 1 | 1 | 6 | 6543 | 2.158 | 3734 | 2.094 |
| 1. | 2 | 2 | 1 | 1 | 7 | 3636 | 2.023 | 2015 | 1.932 |
| 1. | 2 | 2 | 1 | 2 | 1 | 728 | 1.882 | 376 | 1.213 |
| $1 .$. | 2 | 2 | 1 | 2 | 2 | 1190 | 2.241 | 619 | 2.360 |
| $1 .$. | 2 | 2 | 1 | 2 | 3 | 1123 | 2.346 | 330 | 2.245 |
| 1. | 2 | 2 | 1 | 2 | 4 | 11013 | 2.381 | 2797 | 2.279 |
| 1. | 2 | 2 | 1 | 2 | 5 | 38594 | 2.270 | 7268 | 2.105 |
| $1 .$. | 2 | 2 | 1 | 2 | 6 | 21122 | 2.127 | 3146 | 2.093 |
| $1 . .$. | 2 | 2 | 1 | 2 | 7 | 10385 | 2.114 | 1798 | 2.058 |
| $1 .$. | 2 | 2 | 1 | 3 | 1 | 711 | 2.533 | 168 | 1.917 |
| 1... | 2 | 2 | 1 | 3 | 2 | 941 | 2.491 | 272 | 2.246 |
| 1. | 2 | 2 | 1 | 3 | 3 | 920 | 2.375 | 226 | 1.934 |
| 1. | 2 | 2 | 1 | 3 | 4 | 8026 | 2.418 | 1606 | 2.300 |
| 1. | 2 | 2 | 1 | 3 | 5 | 33809 | 2.379 | 4756 | 2.088 |
| 1. | 2 | 2 | 1 | 3 | 6 | 29500 | 2.315 | 3451 | 2.132 |
| 1. | 2 | 2 | 1 | 3 | 7 | 22082 | 2.248 | 2269 | 2.345 |
| 1 | 2 | 2 | 2 | 1 | 1 | 1419 | 2.107 | 4066 | 2.388 |
| 1... | 2 | 2 | 2 | 1 | 2 | 2834 | 2.319 | 7252 | 2.555 |
| 1. | 2 | 2 | 2 | 1 | 3 | 3073 | 2.167 | 6237 | 2.553 |
| 1 | 2 | 2 | 2 | 1 | 4 | 18965 | 2.243 | 29953 | 2.386 |
| 1 | 2 | 2 | 2 | 1 | 5 | 42400 | 2.231 | 46051 | 2.216 |
| 1 | 2 | 2 | 2 | 1 | 6 | 17053 | 2.192 | 13535 | 2.226 |
| 1. | 2 | 2 | 2 | 1 | 7 | 4937 | 2.149 | 3829 | 2.589 |
| 1 | 2 | 2 | 2 | 2 | 1 | 996 | 2.213 | 575 | 2.172 |
| 1 | 2 | 2 | 2 | 2 | 2 | 2071 | 2.242 | 1093 | 2.161 |
| 1 | 2 | 2 | 2 | 2 | 3 | 2075 | 2.339 | 1233 | 2.798 |
| 1 | 2 | 2 | 2 | 2 | 4 | 17509 | 2.328 | 6965 | 2.445 |
| 1. | 2 | 2 | 2 | 2 | 5 | 53190 | 2.281 | 14511 | 2.146 |
| 1. | 2 | 2 | 2 | 2 | 6 | 24465 | 2.162 | 5434 | 2.198 |
| 1. | 2 | 2 | 2 | 2 | 7 | 7020 | 2.202 | 1629 | 2.535 |
| $1 .$. | 2 | 2 | 2 | 3 | 1 | 117 | 2.675 | 208 | 2.159 |
| $1 \ldots$ | 2 | 2 | 2 | 3 | 2 | 461 | 2.269 | 198 | 1.742 |
| 1.... | 2 | 2 | 2 | 3 | 3 | 375 | 1.973 | 271 | 1.900 |
| 1. | 2 | 2 | 2 | 3 | 4 | 2876 | 2.556 | 1405 | 2.510 |
| 1. | 2 | 2 | 2 | 3 | 5 | 9021 | 2.569 | 2568 | 2.428 |
| 1. | 2 | 2 | 2 | 3 | 6 | 6083 | 2.191 | 1331 | 2.574 |
| 1.... | 2 | 2 | 2 | 3 | 7 | 1967 | 2.161 | 425 | 2.059 |
| 2... | 1 | 1 | 1 | 1 | 1 | 70 | 2.500 | 829 | 4.290 |
| 2. | 1 | 1 | 1 | 1 | 2 | 287 | 4.662 | 1101 | 4.621 |
| 2. | 1 | 1 | 1 | 1 | 3 | 114 | 3.447 | 462 | 5.097 |
| 2. | 1 | 1 | 1 | 1 | 4 | 619 | 4.042 | 1566 | 4.473 |
| 2. | 1 | 1 | 1 | 1 | 5 | 460 | 4.117 | 1084 | 4.785 |
| 2. | 1 | 1 | 1 | 1 | 6 | 152 | 4.020 | 433 | 6.109 |
| 2..... | 1 | 1 | 1 | 1 | 7 | 20 | 2.000 | 64 | 6.000 |

Table 5.17. Wives 35 to 44 Years Old and Average Number of Children Ever Born (Rate) by Family Income, Husband's Education, Husband's Occupation, Wife's Labor Force Status, Wife's Age at Marriage, and Race: Wives High School 4 Years and Wives Not a High School Graduate, United States, 1970-Continued

| Race <br> n | Wife's age at marriage m | Wite's labor force status 1 | Husband's occupation k | Husband's education I | Family income <br> i | Wives, high school 4 years (population 1) |  | Wives, not a high school graduate (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{gathered} \text { Size } \\ \mathbf{N}_{1\|k\| k \mid m n} \end{gathered}$ | $\begin{aligned} & \text { Rate } \\ & \mathrm{T}_{\text {ijk/mn }} \end{aligned}$ | $\begin{gathered} \text { Size } \\ n_{\mathrm{ijk} \mid m n} \end{gathered}$ | $\begin{aligned} & \text { Rate } \\ & \mathrm{T}_{\text {Ijkimn }} \end{aligned}$ |
| 2. | 1 | 1 | 1 | 2 | 1 | 77 | 4.974 | 180 | 6.889 |
| 2. | 1 | 1 | 1 | 2 | 2 | 312 | 4.426 | 197 | 4.401 |
| 2. | 1 | 1 | 1 | 2 | 3 | 342 | 2.877 | 280 | 3.111 |
| 2. | 1 | 1 | 1 | 2 | 4 | 983 | 3.169 | 909 | 4.824 |
| 2. | 1 | 1 | 1 | 2 | 5 | 925 | 3.675 | 834 | 3.893 |
| 2. | 1 | 1 | 1 | 2 | 6 | 337 | 4.080 | 271 | 2.919 |
| 2. | 1 | 1 | 1 | 2 | 7 | 22 | 4.000 | 23 | 4.000 |
| 2. | 1 | 1 | 1 | 3 | 1 | 94 | 3.851 | 44 | 6.864 |
| 2. | 1 | 1 | 1 | 3 | 2 | 45 | 2.467 | 161 | 4.851 |
| 2. | 1 | 1 | 1 | 3 | 3 | 160 | 3.662 | 48 | 5.000 |
| 2. | 1 | 1 | 1 | 3 | 4 | 680 | 3.438 | 291 | 3.182 |
| 2. | 1 | 1 | 1 | 3 | 5 | 864 | 4.225 | 198 | 3.944 |
| 2. | 1 | 1 | 1 | 3 | 6 | 361 | 3.925 | 120 | 3.583 |
| 2. | 1 | 1 | 1 | 3 | 7 | 163 | 4.350 | 13 | 3.000 |
| 2.... | 1 | 1 | 2 | 1 | 1 | 1802 | 4.935 | 11893 | 6.083 |
| 2. | 1 | 1 | 2 | 1 | 2 | 2498 | 4.631 | 15641 | 5.513 |
| 2. | 1 | 1 | 2 | 1 | 3 | 1765 | 4.015 | 7522 | 5.222 |
| $2 .$. | 1 | 1 | 2 | 1 | 4 | 4951 | 4.243 | 18163 | 5.336 |
| 2. | 1 | 1 | 2 | 1 | 5 | 3354 | 4.654 | 9962 | 5.643 |
| 2. | 1 | 1 | 2 | 1 | 6 | 886 | 3.763 | 2415 | 6.059 |
| $2 .$. | 1 | 1 | 2 | 1 | 7 | 182 | 3.571 | 1029 | 6.412 |
| 2.... | 1 | 1 | 2 | 2 | 1 | 608 | 4.414 | 956 | 5.112 |
| 2. | 1 | 1 | 2 | 2 | 2 | 1322 | 3.575 | 1329 | 4.937 |
| $2 .$. | 1 | 1 | 2 | 2 | 3 | 1339 | 3.235 | 956 | 4.812 |
| 2.... | 1 | 1 | 2 | 2 | 4 | 3787 | 3.648 | 3147 | 4.362 |
| 2.... | 1 | 1 | 2 | 2 | 5 | 2709 | 4.042 | 1726 | 4.301 |
| 2. | 1 | 1 | 2 | 2 | 6 | 627 | 3.191 | 567 | 5.552 |
| 2. | 1 | 1 | 2 | 2 | 7 | 132 | 5.545 | 250 | 4.580 |
| 2. | 1 | 1 | 2 | 3 | 1 | 108 | 5.750 | 84 | 1.786 |
| 2. | 1 | 1 | 2 | 3 | 2 | 310 | 5.545 | 224 | 7.188 |
| 2. | 1 | 1 | 2 | 3 | 3 | 103 | 5.146 | 240 | 5.275 |
| 2. | 1 | 1 | 2 | 3 | 4 | 446 | 3.090 | 241 | 6.469 |
| $2 .$. | 1 | 1 | 2 | 3 | 5 | 469 | 3.578 | 308 | 4.029 |
| $2 .$. | 1 | 1 | 2 | 3 | 6 | 59 | 2.051 | 116 | 4.362 |
| 2.... | 1 | 1 | 2 | 3 | 7 | 61 | 3.180 | 47 | 3.489 |
| 2.... | 1 | 2 | 1 | 1 | 1 | 113 | 3.850 | 424 | 3.976 |
| 2.... | 1 | 2 | 1 | 1 | 2 | 185 | 2.703 | 631 | 4.174 |
| $2 .$. | 1 | 2 | 1 | 1 | 3 | 148 | 4.142 | 481 | 4.534 |
| $2 .$. | 1 | 2 | 1 | 1 | 4 | 861 | 4.416 | 1460 | 3.903 |
| 2. | 1 | 2 | 1 | 1 | 5 | 1312 | 3.091 | 2374 | 4.214 |
| 2. | 1 | 2 | 1 | 1 | 6 | 543 | 3.169 | 714 | 3.922 |
| 2. | 1 | 2 | 1 | 1 | 7 | 314 | 2.815 | 347 | 3.689 |
| 2. | 1 | 2 | 1 | 2 | 1 | 75 | 1.573 | 45 | 1.533 |
| 2. | 1 | 2 | 1 | 2 | 2 | 265 | 4.083 | 109 | 2.248 |
| 2. | 1 | 2 | 1 | 2 | 3 | 132 | 5.591 | 65 | 3.800 |
| 2. | 1 | 2 | 1 | 2 | 4 | 865 | 3.816 | 473 | 4.404 |
| 2. | 1 | 2 | 1 | 2 | 5 | 2162 | 3.230 | 1112 | 3.987 |
| 2. | 1 | 2 | 1 | 2 | 6 | 1375 | 3.231 | 251 | 2.920 |
| 2. | 1 | 2 | 1 | 2 | 7 | 581 | 3.372 | 156 | 4.199 |
| 2. | 1 | 2 | 1 | 3 | 1 | 24 | 4.000 | 62 | 2.048 |
| 2. | 1 | 2 | 1 | 3 | 2 | 57 | 3.965 | 101 | 3.604 |
| 2. | 1 | 2 | 1 | 3 | 3 | 77 | 5.649 | 97 | 3.216 |
| 2 | 1 | 2 | 1 | 3 | 4 | 549 | 3.109 | 288 | 3.073 |
| 2. | 1 | 2 | 1 | 3 | 5 | 1414 | 3.071 | 561 | 3.961 |
| 2 | 1 | 2 | 1 | 3 | 6 | 1003 | 3.518 | 342 | 3.687 |
| 2. | 1 | 2 | 1 | 3 | 7 | 525 | 2.497 | 219 | 2.411 |
| 2 | 1 | 2 | 2 | 1 | 1 | 1048 | 4.256 | 6796 | 5.257 |
| 2 | 1 | 2 | 2 | 1 | 2 | 2376 | 4.559 | 12424 | 4.972 |

Table 5.17. Wives 35 to 44 Years Old and Average Number of Children Ever Born (Rate) by Family Income, Husband's Education, Husband's Occupation, Wife's Labor Force Status, Wife's Age at Marriage, and Race: Wives High School 4 Years and Wives Not a High School Graduate, Únited States, 1970 -CContinued

|  | Wife's age at marriage | Wife's labor force status |  |  | Family income | Wives, high school 4 years (population 1) |  | Wives, not a high school graduate (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Race n | marriage <br> m | status <br> 1 | occupation k | education j |  | $\begin{array}{r} \text { Size } \\ \mathbf{N}_{\text {ijklmn }} \end{array}$ | Rate <br> $\mathrm{T}_{\text {jkkmn }}$ | $\begin{array}{r} \text { Size } \\ \mathrm{n}_{\text {ijklmn }} \end{array}$ |  |
| 2... | 1 | 2 | 2 | 1 | 3 | 1963 | 4.090 | 7475 | 5.181 |
| 2. | 1 | 2 | 2 | 1 | 4 | 7153 | 4.035 | 21673 | 4.838 |
| 2. | 1 | 2 | 2 | 1 | 5 | 9809 | 3.942 | 20226 | 4.838 |
| 2. | 1 | 2 | 2 | 1 | 6 | 4197 | 3.729 | 6336 | 4.925 |
| 2.... | 1 | 2 | 2 | 1 | 7 | 1139 | 3.258 | 2336 | 5.321 |
| 2.... | 1 | 2 | 2 | 2 | 1 | 347 | 3.787 | 301 | 4.704 |
| 2. | 1 | 2 | 2 | 2 | 2 | 1059 | 2.589 | 881 | 4.328 |
| 2. | 1 | 2 | 2 | 2 | 3 | 624 | 3.316 | 564 | 5.394 |
| 2 | 1 | 2 | 2 | 2 | 4 | 3186 | 3.724 | 2075 | 4.470 |
| 2 | 1 | 2 | 2 | 2 | 5 | 5840 | 3.613 | 3411 | 3.944 |
| 2 | 1 | 2 | 2 | 2 | 6 | 2752 | 3.629 | 1162 | 4.731 |
| 2. | 1 | 2 | 2 | 2 | 7 | 1064 | 3.570 | 308 | 4.263 |
| 2.... | 1 | 2 | 2 | 3 | 1 | 115 | 2.826 | 96 | 4.094 |
| 2.... | 1 | 2 | 2 | 3 | 2 | 213 | 4.784 | 137 | . 4.664 |
| 2.... | 1 | 2 | 2 | 3 | 3 | 137 | 3.584 | 36 | 2.000 |
| $2 .$. | 1 | 2 | 2 | 3 | 4 | 573 | 3.590 | 408 | 3.990 |
| 2. | 1 | 2 | 2 | 3 | 5 | 1364 | 3.488 | 633 | 3.444 |
| 2. | 1 | 2 | 2 | 3 | 6 | 679 | 3.110 | 199 | 3.935 |
| 2.... | 1 | 2 | 2 | 3 | 7 | 192 | 3.781 | 139 | 3.842 |
| 2.... | 2 | 1 | 1 | 1 | 1 | 122 | 2.041 | 334 | 3.150 |
| 2... | 2 | 1 | 1 | 1 | 2 | 138 | 2.188 | 662 | 2.636 |
| $2 .$. | 2 | 1 | 1 | 1 | 3 | 194 | 2.454 | 435 | 2.430 |
| 2. | 2 | 1 | 1 | 1 | 4 | 544 | 2.364 | 959 | 4.092 |
| 2. | 2 | 1 | 1 | 1 | 5 | 337 | 2.407 | 378 | 3.418 |
| 2... | 2 | 1 | 1 | 1 | 6 | 63 | 4.365 | 81 | 1.580 |
| 2... | 2 | 1 | 1 | 1 | 7 | 27 | 3.000 | 23 | 4.000 |
| $2 .$. | 2 | 1 | 1 | 2 | 1 | 35 | 2.629 | 79 | 1.519 |
| 2. | 2 | 1 | 1 | 2 | 2 | 144 | 2.201 | 144 | 2.542 |
| 2. | 2 | 1 | 1 | 2 | 3 | 214 | 2.542 | 229 | 1.520 |
| 2. | 2 | 1 | 1 | 2 | 4 | 1023 | 2.382 | 523 | 2.790 |
| 2. | 2 | 1 | 1 | 2 | 5 | 809 | 2.447 | 165 | 1.485 |
| 2. | 2 | 1 | 1 | 2 | 6 | 170 | 3.429 | 55 | 3.673 |
| 2 | 2 | 1 | 1 | 2 | 7 | 72 | 2.389 | 0 | . 000 |
| 2. | 2 |  | 1 | 3 | 1 | 41 | 1.000 | 0 | . 000 |
| 2... | 2 | 1 | 1 | 3 | 2 | 233 | 3.129 | 79 | 4.570 |
| $2 .$. | 2 | 1 | 1 | 3 | 3 | 161 | 3.584 | 61 | 3.541 |
| $2 .$. | 2 | 1 | 1 | 3 | 4 | 635 | 2.551 | 240 | 3.162 |
| $2 .$. | 2 | 1 | 1 | 3 | 5 | 829 | 2.752 | 384 | 2.836 |
| $2 .$. | 2 | 1 | 1 | 3 | 6 | 322 | 2.416 | 60 | 2.550 |
| $2 .$. | 2 | 1 | 1 | 3 | 7 | 151 | 2.722 | 62 | 6.532 |
| 2... | 2 | 1 | 2 | 1 | - 1 | 1495 | 3.418 | 7519 | 4.006 |
| $2 .$. | 2 | 1 | 2 | 1 | 2 | 2377 | 3.109 | 9172 | 3.592 |
| 2.... | 2 | 1 | 2 | 1 | 3 | 1583 | 3.683 | 4260 | 3.714 |
| $2 .$. | 2 | 1 | 2 | 1 | 4 | 3212 | 3.030 | 8614 | 3.793 |
| $2 .$. | 2 | 1 | 2 | 1 | 5 | 2095 | 3.261 | 4363 | 3.736 |
| 2... | 2 | 1 | 2 | 1 | 6 | 212 | 3.745 | 781 | 4.303 |
| $2 .$. | 2 | 1 | 2 | 1 | 7 | 186 | 3.656 | 239 | 3.393 |
| $2 .$. | 2 | 1 | 2 | 2 | 1 | 690 | 3.346 | 760 | 4.068 |
| 2. | 2 | 1 | 2 | 2 | 2 | 1314 | 2.874 | 1263 | 3.121 |
| $2 .:$ | 2 | 1 | 2 | 2 | 3 | 842 | 2.350 | 957 | 3.304 |
| 2. | 2 | 1 | 2 | 2 | 4 | 2435 | 2.623 | 1771 | 3.267 |
| 2..... | 2 | 1 | 2 | 2 | 5 | 1531 | 2.830 | 1006 | 3.547 |
| 2..... | 2 | 1 | 2 | 2 | 6 | 349 | 3.559 | 119 | 2.437 |
| 2..... | 2 | 1 | 2 | 2 | 7 | 124 | 4.573 | 83 | 6.301 |
| $2 \ldots$ | 2 | 1 | 2 | 3 | 1 | 80 | 2.762 | 192 | 4.141 |
| 2. | 2 | 1 | 2 | 3 | 2 | 82 | 4.171 | 225 | 5.436 |
| 2. | 2 | 1 | 2 | 3 | 3 | 118 | 3.551 | 95 | 1.221 |
| 2. | 2 | 1 | 2 | 3 | 4 | 628 | 2.279 | 397 | 3.053 |
| $2 .$. | 2 | 1 | 2 | 3 | 5 | 305 | 3.469 | 184 | 2.668 |

Table 5.17. Wives 35 to 44 Years Old and Average Number of Children Ever Born (Rate) by Family Income, Husband's Education, Husband's Occupation, Wite's Labor Force Status, Wife's Age at Marriage, and Race: Wives High School 4 Years and Wives Not a High School Graduate, United States, 1970-Continued

| Race | Wife's age at marriage <br> m | Wife's labor force status 1 | Husband's occupation k | Husband's education 1 | Family income i | Wives, high school 4 years (population 1) |  | Wives, not a high school graduate (population 2) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{gathered} \text { Size } \\ \mathbf{N}_{\text {I\|k\|lın }} \end{gathered}$ | $\begin{aligned} & \text { Rate } \\ & \mathrm{T}_{\mathrm{ilk} \mathrm{k} / \mathrm{m}} \end{aligned}$ | $\begin{gathered} \text { Size } \\ \mathbf{n}_{\mathrm{yjkmn}} \end{gathered}$ | $\begin{aligned} & \text { Rate } \\ & \mathbf{T}_{\mathrm{i}\|\mathrm{k}\| m n} \end{aligned}$ |
| 2... | 2 | 1 | 2 | 3 | 6 | 182 | 4.363 | 15 | 4.000 |
| 2. | 2 | 1 | 2 | 3 | 7 | 53 | 2.000 | 0 | . 000 |
| 2... | 2 | 2 | 1 | 1 | 1 | 153 | 2.340 | 309 | 2.460 |
| 2. | 2 | 2 | 1 | 1 | 2 | 228 | 2.706 | 339 | 3.634 |
| 2 | 2 | 2 | 1 | 1 | 3 | 164 | . 927 | 264 | 3.114 |
| 2 | 2 | 2 | 1 | 1 | 4 | 645 | 2.505 | 939 | 2.440 |
| 2. | 2 | 2 | 1 | 1 | 5 | 998 | 2.462 | 1273 | 2.684 |
| 2. | 2 | 2 | 1 | 1 | 6 | 373 | 2.429 | 471 | 3.369 |
| 2. | 2 | 2 | 1 | 1 | 7 | 84 | 1.679 | 110 | 3.100 |
| $2 .$. | 2 | 2 | 1 | 2 | 1 | 103 | 2.330 | 61 | . 754 |
| 2... | 2 | 2 | 1 | 2 | 2 | 42 | 3.095 | 146 | 2.247 |
| 2. | 2 | 2 | 1 | 2 | 3 | 67 | 1.657 | 100 | 3.040 |
| 2... | 2 | 2 | 1 | 2 | 4 | 596 | 2.250 | 340 | 1.771 |
| 2. | 2 | 2 | 1 | 2 | 5 | 2125 | 2.157 | 549 | 2.638 |
| 2. | 2 | 2 | 1 | 2 | 6 | 1083 | 2.435 | 248 | 3.931 |
| 2. | 2 | 2 | 1 | 2 | 7 | 231 | 1.476 | 137 | 1.803 |
| 2. | 2 | 2 | 1 | 3 | 1 | 24 | . 000 | 0 | . 000 |
| 2. | 2 | 2 | 1 | 3 | 2 | 81 | 1.198 | 60 | 1.050 |
| 2. | 2 | 2 | 1 | 3 | 3 | 53 | 2.604 | 42 | 4.429 |
| 2 | 2 | 2 | 1 | 3 | 4 | 458 | 3.015 | 168 | 2.292 |
| 2. | 2 | 2 | 1 | 3 | 5 | 1210 | 2.093 | 524 | 2.842 |
| 2. | 2 | 2 | 1 | 3 | 6 | 756 | 1.907 | 169 | 2.734 |
| 2.... | 2 | 2 | 1 | 3 | 7 | 636 | 2.074 | 110 | 1.800 |
| 2.... | 2 | 2 | 2 | 1 | 1 | 1213 | 2.607 | 4391 | 3.465 |
| 2.... | 2 | 2 | 2 | 1 | 2 | 2093 | 2.972 | 7044 | 3.185 |
| 2. | 2 | 2 | 2 | 1 | 3 | 1175 | 2.698 | 4206 | 2.743 |
| 2. | 2 | 2 | 2 | 1 | 4 | 5254 | 2.670 | 10954 | 3.145 |
| 2. | 2 | 2 | 2 | 1 | 5 | 6804 | 2.544 | 8990 | 3.145 |
| 2. | 2 | 2 | 2 | 1 | 6 | 2121 | 2.429 | 2543 | 2.917 |
| 2. | 2 | 2 | 2 | 1 | 7 | 458 | 2.880 | 649 | 3.743 |
| 2. | 2 | 2 | 2 | 2 | 1 | 382 | 2.927 | 343 | 2.525 |
| $2 .$. | 2 | 2 | 2 | 2 | 2 | 730 | 2.138 | 759 | 2.809 |
| 2. | 2 | 2 | 2 | 2 | 3 | 341 | 1.710 | 529 | 3.110 |
| 2. | 2 | 2 | 2 | 2 | 4 | 2454 | 2.395 | 1844 | 3.292 |
| 2. | 2 | 2 | 2 | 2 | 5 | 4531 | 2.089 | 2374 | 2.714 |
| 2. | 2 | 2 | 2 | 2 | 6 | 1612 | 2.441 | 621 | 3.150 |
| 2. | 2 | 2 | 2 | 2 | 7 | 324 | 1.812 | 184 | 1.304 |
| $2 .$. | 2 | 2 | 2 | 3 | 1 | 23 | . 000 | 17 | 7.000 |
| 2. | 2 | 2 | 2 | 3 | 2 | 33 | 1.000 | 138 | 3.312 |
| 2. | 2 | 2 | 2 | 3 | 3 | 21 | 2.000 | 140 | 1.843 |
| 2. | 2 | 2 | 2 | 3 | 4 | 411 | 3.333 | 305 | 2.639 |
| 2. | 2 | 2 | 2 | 3 | 5 | 1070 | 2.271 | 393 | 2.852 |
| 2. | 2 | 2 | 2 | 3 | 6 | 369 | 3.363 | 117 | 2.462 |
| 2. | 2 | 2 | 2 | 3 | 7 | 80 | 3.137 | 64 | 1.016 |
| $\mathrm{n}=$. | $\mathrm{m}=$. | $1=$. | $k=$ 。 | $j=$ 。 | $\mathrm{i}=$. | 3,369,852 | 3.005 | 2,302,030 | 3.428 |

Source: U.S. Bureau of the Census (1973), Table $57 . i=1,2, . . ., 7$ (family income): less than $\$ 4,000, \$ 4,000-\$ 5,999, \$ 6,000-\$ 7,999$, $\$ 8,000-\$ 9,999, \$ 10,000-\$ 14,999, \$ 15,000-\$ 19,999$, greater than or equal to $\$ 20,000 . j=1,2,3$ (husband's education): not a high school graduate, high school 4 years, college 1 year or more. $k=1,2$ (husband's occupation): white collar worker, blue collar or service worker. $1=1,2$ (wife's labor force status): not in labor force, in labor force. $m=1,2$ (wife's age at marriage): 14 to 21, 22 and over. $n=1,2$ (race): White, Black.

## Program 5.6 (Six Factors +Rate)

mom


$1_{1} \operatorname{READ}(5,2) \quad\left(()_{( }\left(\begin{array}{l}P(I, J, K, L, M, N, N 1), I=1,7), U=1,3), K=1,2), L=1,2) \text {, }, ~\end{array}\right.\right.$

12
FORMAT (FF 10.0
FORMAT 7F10.3
DO 10 N $1=1,2$

3

$$
\left.\dot{L}^{2}, M, N, N 1\right)=0.0
$$

$\left.L_{,} M, N, N 1\right)=P(8, U, K, L, M, N, N 1)+P(I, U, K, L, M, N, N 1)$

Do
Do
Do
品
Do
0

4
$P\left(I, 4, K, L_{3}^{2} M, N, N 1\right)=0.0$
4 P


5 DO $5 \quad I=1$
DO $5 \quad J=1$
DO $5 \quad 1=1$
DO $5 M=1$
DO $N=1$


6


7

DO
DO
DO
DO


10
DO $9 N 1=1.0^{2}$
$E T(N 1)=0.0^{2}$


## DO DO DO DO DO DO


${ }^{Q} Q=(P(I, J, K, L, M, N, 1) / P(8,4,3,3,3,3,1)+$
9 ER(N1):ER(N1)+Q*+(I,J,K,L,M,N,Ni),

13



R

$\mathrm{J}=1,6$
$k=1,3$
$k=6.0$

DO
DO
$\mathrm{J}=1,2$
$K K=1 ; 2$
$L L=1 ; 2$
$M M=1,2$
$\mathrm{H}=0.0$

## Program 5.6 (continued)

$$
\begin{aligned}
& 12+13 \\
& E Q .1 \\
& E Q .2
\end{aligned}
$$

21
DO
DO
DO
DO
DO
DO
$W 1$
$W 2$
$W 3$
DO
$D O$
$D O$
DO
DO
IG
IF
DO
GO

## $$
1
$$

22
 $i \quad 11=1,2$
1
$12=1,2$
1
$13=1,2$
1
$15=1,2$



$$
\begin{aligned}
& E Q, 2) I=8 \\
& J S, K, L, M, N, U J \\
& 2 O, 1), J=J S
\end{aligned}
$$

## 期

IF
GO
GO
A=
GO
IF

| 1.6 |
| :--- |
| 2 |
| 2 |

$2,23,24,25,26), N L$

$$
\begin{aligned}
& J=U S \\
& J=4
\end{aligned}
$$

$$
\begin{aligned}
& E Q, 2), U=4 \\
& U, K S, L, M, N K) / P(I, U, 3, L, M, N, K K)
\end{aligned}
$$

$$
20^{n u}
$$

$$
\text { 1) } \begin{aligned}
& K=K S \\
& K=3
\end{aligned}
$$

$$
26
$$

$$
\left.\begin{array}{l}
20.1) M=M S \\
E Q .2
\end{array}\right) \quad M=3
$$

$$
\begin{aligned}
& \text { IF } \\
& \text { IF IG.EQ.G.OR.IG.EQ. } \\
& \text { CONTINUE } \\
& \text { COR.OR.IG.EQ. } 8 \text { W }
\end{aligned}
$$

$K 2=15-K 1$
$I T=I T+J U+$ $I T=I I+U U+K K+\frac{L}{L}+M M+N N$ NN
II.EQ.K2

1515

$$
\begin{aligned}
& \text { IF(IT-NN:EQ. } \\
& D O 17 J=1,6 \\
& D 016, I=1,2
\end{aligned}
$$

$$
\begin{aligned}
& \text { R }(I I,\{, K L) \\
& R(J U, 2, K L \\
& R(K K, 3, K L \\
& R(G L ; 4, K L \\
& R \\
& R(N N, G, K L \\
& R(N L
\end{aligned}
$$



18

$$
\begin{aligned}
& \text { WRITE } 6 \text { 18) (S (2, J) } \\
& 8 \text { EORMAT ET (4OX, 3F } 15.3 \text { ) } \\
& \text { STOP }
\end{aligned}
$$ STOP

END

Table 5.18. Standardization and Decomposition of Average Number of Children Ever Born in Table 5.17

| Average number of children ever born | Standardization |  | Decomposition |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Not a high school graduate (population 2) | $\begin{aligned} & \text { High school } \\ & 4 \text { years } \end{aligned}$ (population 1) | Difference (effects) | Percent distribution of effects |
| ( $\mathrm{J}, \mathrm{K}, \mathrm{L}, \mathrm{M}, \mathrm{N}, \mathrm{R}$ )-standardized average | 3.141 | 3.133 | . 008 (l) | 1.9 |
| ( $1, K, L, M, N, R$ )-standardized average | 3.163 | 3.098 | . 065 (J) | 15.4 |
| (I,J,L,M,N,R)-standardized average | 3.153 | 3.116 | . 037 (K) | 8.7 |
| ( $1, J, K, M, M, N, R$ )-standardized average | 3.149 | 3.135 | . 014 (L) | 3.3 |
| ( (I,J,K,L,N,R)-standardized average | 3.169 | 3.114 | . 055 (M) | 13.0 |
| ( $1, J, K, L, M, R, R$ )-standardized average | 3.159 | 3.121 | . 038 (N) | 9.0 |
| ( $1, \mathrm{~J}, \mathrm{~K}, \mathrm{~L}, \mathrm{M}, \mathrm{N}$ )-standardized average | 3.279 | 3.073 | . 206 (R) | 48.7 |
| Overall average numbers | 3.428 | 3.005 | $\begin{gathered} .423 \\ \text { (Total effect) } \end{gathered}$ | 100.0 |

where
$Z=$ Product of all ratios with numerators having $i_{1}$ and $r$ dots among the subscripts $\mathrm{i}_{2}$ to $\mathrm{i}_{\mathrm{p}}$, and the corresponding denominators the same as the numerators except for a dot for $i_{1}$.

Again, as in (5.32) and (5.33),
$R(\bar{T})=\left(I_{1}, l_{2}, \ldots, l_{p}\right)$-standardized rate in population 1

$$
\begin{equation*}
=\sum_{h_{1}, l_{2} \ldots, l_{p}} \frac{\frac{n_{l_{1}, \text { to }} i_{p}}{n \ldots \ldots .}+\frac{N_{l_{1} \text { to } i_{p}}^{N}}{N} \ldots \ldots . .}{2} T_{h_{1} \text { to } i_{p}}, \tag{5.38}
\end{equation*}
$$

$l(\bar{A})=\left(I_{2}, I_{3}, \ldots, I_{0}, R\right)$-standardized rate in population 1

$$
=\sum_{i_{1}, i_{2}, \ldots, i_{p}} \frac{t_{1}, \text { to } i_{p}+T_{i_{1}} \text { to } i_{p}}{2} \quad \begin{gather*}
\text { Expression (2.47), i.e.,(2.50) } \times A_{1} \text { with }  \tag{5.39}\\
\text { additional subscripts } i_{1} \text { to } i_{p} \text { in each letter]. }
\end{gather*}
$$

### 5.9 THE GENERAL PROGRAM

From Programs 5.1 through 5.6 corresponding to one through six factors (+ rate), a FORTRAN program can be developed for any number of factors higher than six. However, it is not necessary to use different programs for data involving different numbers of factors. A program written for, say, six-factor crossclassified data can be used for any number of factors not exceeding six by changing basically the input and output statements. No changes are necessary in the data files previously created to be used with the specific programs.

Assuming that no one is expected to deal with more than six cross-classified factors, we provide below a program (Program 5.7) for six factors that can be used as a general program for any number of factors up to six. This general program is basically the same as the specific six-factor program (Program 5.6) used for Example 5.9, except that the general program has 12 additional lines (lines 4 through 15) specifying the numbers of categories of the factors and the numbers that denote the marginal totals (i.e., the dots) of the factors. We show below the specific changes in Program 5.7 that will be needed to generate the results corresponding to Examples 5.1 through 5.9 in this chapter with the same data files used before:

Example 5.1 (one factor + rate)
Line 1: $\quad$ Replace 9,8 and 8,7 in $P$ and $T$ by 14,5 and 13,4
Lines 4-9: Replace 8,7,6,5,4,2 by 13,1,1,1,1,1
Lines 21,22: Replace 8F10.0 and 8F10.3 by 13F5.1 and 13F5.1
Line 168: Replace $\mathrm{J}=1,6$ by $\mathrm{J}=1,1$
Example 5.2 (one factor + rate)
Lines 4-9: Replace 8,7,6,5,4,2 by 5,1,1,1,1,1
Lines 21,22: Replace 8F10.0 and 8F10.3 by 5F8.0 and 5F8.3
Line 168: Replace $\mathrm{J}=1,6$ by $\mathrm{J}=1,1$
Example 5.3 (two factors + rate)
Line 1: $\quad$ Replace 9,8 and 8,7 in $P$ and $T$ by 12,6 and 11,5
Lines 4-9: Replace $8,7,6,5,4,2$ by $11,2,1,1,1,1$
Lines 21,22: Replace 8F10.0 and 8F10.3 by 11F7.0 and 11F7.3
Line 168: Replace $J=1,6$ by $J=1,2$
Example 5.4 (two factors + rate)
Lines 4-9: Replace 8,7,6,5,4,2 by 3,2,1,1,1,1
Lines 21,22: Replace 8F10.0 and 8F10.3 by 6F5.0 and 6F5.2
Line 168: Replace $\mathrm{J}=1,6$ by $\mathrm{J}=1,2$
Example 5.5 (two factors + rate)
Line 1: $\quad$ Replace 9,7 and 8,6 in $P$ and $T$ by 11,6 and 10,5
Lines 4-9: Replace 8,7,6,5,4,2 by 10,7,1,1,1,1
Lines 21,22: Replace 8F10.0 and 8F10.3 by 10F8.0 and 10F8.2
Line 168: Replace $\mathrm{J}=1,6$ by $\mathrm{J}=1,2$
Line 170: Replace 15.3 by 15.2
Example 5.6 (three factors + rate)
Lines 4-9: Replace 8,7,6,5,4,2 by 7,5,2,1,1,1
Lines 21,22: Replace 8F10.0 and 8F10.3 by 7F10.0 and 7F10.2
Line 168: Replace $\mathrm{J}=1,6$ by $\mathrm{J}=1,3$
Line 170: Replace 15.3 by 15.2
Example 5.7 (four factors + rate)
Lines 4-9: Replace 8,7,6,5,4,2 by 6,2,6,2,1,1
Lines 21,22: Replace 8F10.0 and 8F10.3 by 6F10.0 and 6F10.3
Line 168: Replace $\mathrm{J}=1,6$ by $\mathrm{J}=1,4$
Example 5.8 (five factors + rate)
Lines 4-9: Replace 8,7,6,5,4,2 by 4,3,3,2,2,1
Lines 21,22: Replace 8F10.0 and 8F10.3 by 4F10.0 and 4F10.2
Line 168: Replace $\mathrm{J}=1,6$ by $\mathrm{J}=1,5$
Line 170: Replace 15.3 by 15.0
Example 5.9 (six factors + rate)
Lines 4-9: Replace 8,7,6,5,4,2 by 7,3,2,2,2,2
Lines 21,22: Replace 8F10.0 and 8F10.3 by 7F10.0 and 7F10.3

The dimensions of P and T in line 1 of the general program (Program 5.7) are not made arbitrarily high in order to keep the total load within the capacity of the computer. It is, therefore, sometimes necessary to adjust the numbers depending on the categories of the factors in a particular example, as we did in Examples 5.1, 5.3, and 5.5 above. When the number of factors is less than six, the categories of the nonexistent factors are assumed to be 1 in lines 4 through 9 of the general program, as shown above. Instead of making the numbers of categories of the factors part of the program in lines 4 through 9 , they can also be included in the data file to be read in the program.

The standardization and decomposition techniques described in this chapter for rates from crossclassified data can be conveniently used to obtain more formally the results in the two studies, The Impact of Demographic, Social, and Economic Change on the Distribution of Income, and Factors Affecting Black-White Income Differentials: A Decomposition, by Gordon Green, Paul Ryscavage, and Edward Welniak (U.S. Bureau of the Census, 1992), based on the March CPS (Current Population Survey) data for 1970, 1980, and 1990. A similar formal approach is possible for the study entitled The Level and Trend of Poverty in the United States, 1939-1979, by Ross, Danziger, and Smolensky (1987).

Program 5.7 (General Program for
up to Six Factors +Rate)


```
    DIMENSION P(9,8,7,6,5,3,2),T(8,7,6,5,4.2,2).
    DOUBLE, PRECISION P,R,U,S,ET,ER,Q,H,A,W1,W2,W3
    IA=8
    JA=7
    KA=6
    LA=5
    MA=4
    IB=IA+1
    JB=jA+1
    KB=KA+1
    LB=LA+1
    LB=LA+1
    MB=MA+1
    NB=NA+1 
    READ(5,2),2(()(((P)I,U,K,L,M,N,N1),I=1,IA ), U=1,UA),K=1,KA),L=1,LA )
    1 'READ(5,12) (M={(MA)N=1,NA
    2 FORMAT (8F1O:O)
    FORMAT (8F1O;3
    DO 10 N N=1 2 2
    Do 3 K=1;KA
    DO
    3
    4
    DO 3, = =1;IA M,N,N1)=0.0
    OD 4, I= K',I'M,
    DO 4 K=1,KA
    P(II,UB,K,LAM,N,N1)=0.0
    ODI,UB=K,LAM,
```



```
    I,U,KB,L,M,N,N1)=0.0
    5 P(ITU,KB,L,M,N,N1)=P(I,U,KB,L,M,N,N1)+P(I,U,K,L,M,N,N1)
```



```
    D
    6 P(I, LK, LRA,M,N,N1)=P(I,U,K,LB,M,N,N1)+P(I,U,K,L,M,N,N1)
    Do 7 i=1,IBM,
    80
    P(I,N,K,L,MB,N,N1)=0.0
    7 P(ITUK, M=1,MA,N,N1)=P(I,U,K,L,MB,N,N1)+P(I,U,K,L,M,N,N1)
```



```
    DO 8 J=1,jB
    DO
    DO 8 L=1,LM
    P(IGU,K,LM,NB,N1)=0.0
    8 P(I,U,K,L,M,NB,N1)=P(I,U,K,L,M,NB,N,I)+P(I,U,K,L,M,N,N1)
10 CONTINUE
        DO 9NNE=1,2
        ER(N1)=0.0
        LRN1)=0:0
        0,
        OO 9
        DO M M=1'MA
        ET(N1)=E\dagger(N1)+P{I,J,K,L,M,N,N1)*T(I,N,K,L,M,N,N1)
```




```
    9 ER(N1)=NR(N1)+O*T(I,U,K,L,M,N,N1)
        ETT=ET(2)
```



```
        DO 13 J=1,6
    13 R(I.U.K)=0.O
```

Program 5.7 (continued)


## Chapter 6. Three Or More Populations

### 6.1 INTRODUCTION

The standardization and decomposition discussed in the preceding chapters involve only two populations. In many situations, however, we are interested in comparing three or more populations simultaneously. Clogg and Eliason (1988), for example, considered four parity groups of women and eliminated the effects of their age compositions to obtain the adjusted percentages desiring more children in those groups (Example 6.3). Santi (1989) compared the household headship rates for four years after eliminating the effects of age composition from these rates (Example 6.2). Again, Smith and Cutright (1988) dealt with the problem of standardizing illegitimacy ratios in the United States for five years (Example 6.5).

When there are more than two populations to be compared, we can carry out the same computations more than once by taking two populations at a time. For example, if there are three populations 1, 2, and 3 , we can compute three sets of results-between 1 and 2 , between 2 and 3 , and between 1 and 3 . Unfortunately, these three sets of results are not necessarily internally consistent (Das Gupta, 1991).

In order to illustrate the problem of internal inconsistency, let us again consider Example 5.9 discussed in tables 5.17 and 5.18. Let us add one more population, namely, college 1 year or more (say, population 1), to the two existing groups, high school 4 years (population 2) and not a high school graduate (population 3). The three pairwise comparisons, similar to the one in table 5.18, are presented in table 6.1 (which, obviously, includes the results in table 5.18).

Considering the first row in table 6.1, which represents the (J,K,L,M,N,R)-standardized rates and l-effects, we immediately notice two problems as follows:

1. For each population, there are two standardized rates. For example, for population 2, the standardized rates are 2.871 and 3.133 . We would like to have only one standardized rate for a population when standardization is done with respect to the same factor or the same set of factors.
2. The l-effect in the comparisons of populations 1 and 2 and populations 2 and 3 are, respectively, 001 and .008. These two numbers add up to .009, which is different from the l-effect .035 in the comparisons of populations 1 and 3 . For consistency, we would like to see that these two numbers are identical.

Table 6.1. Standardization and Decomposition of Average Number of Children Ever Born Using 2 Populations at a Time
(See Example 5.9 and tables 5.17-5.18 for the description of the factors and the interpretation of the numbers)

| Standardized rates |  | Decomposition | Standardized rates |  | Decomposition | Standardized rates |  | Decomposition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} \text { High school } \\ 4 \text { years } \\ \text { (population 2) } \end{array}$ | College <br> 1 year or more (population 1) | Difference (effects) | Not a high school graduate (population 3) | College 1 year or more (population 1) | Difference (effects) | Not a <br> high school graduate (population 3) | $\begin{array}{r} \text { High school } \\ 4 \text { years } \\ \text { (population 2) } \end{array}$ | Difference (effects) |
| 2.871 | 2.870 | . 001 | 2.901 | 2.866 | . 035 | 3.141 | 3.133 | . 008 |
| 2.846 | 2.869 | -. 023 | 2.869 | 2.827 | . 042 | 3.163 | 3.098 | . 065 |
| 2.868 | 2.854 | . 014 | 2.893 | 2.819 | . 074 | 3.153 | 3.116 | . 037 |
| 2.887 | 2.865 | . 022 | 2.919 | 2.883 | . 036 | 3.149 | 3.135 | . 014 |
| 2.925 | 2.826 | . 099 | 2.992 | 2.809 | . 183 | 3.169 | 3.114 | . 055 |
| 2.877 | 2.877 | . 000 | 2.906 | 2.893 | . 013 | 3.159 | 3.121 | . 038 |
| 2.948 | 2.903 | . 045 | 3.154 | 2.956 | . 198 | 3.279 | 3.073 | . 206 |
| 3.005 | 2.847 | . 168 | 3.428 | 2.847 | . 581 | 3.428 | 3.005 | . 423 |

Table 6.2. Standardization and Decomposition of Average Number of Children Ever Born Using 3 Populations Simultaneously
(Based on the standardized rates in table 6.1 as data)

| Standardized rates |  |  | Decomposition (effects) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Not a high school graduate (population 3) | High school 4 years (population 2) | College 1 year or more (population 1) | (population 2) <br> -(population 1) | (population 3) <br> -(population 1) | $\begin{array}{r} \text { (population 3) } \\ \text {-(population 2) } \end{array}$ |
| 2.978 | 2.961 | 2.952 | . 009 | . 026 | . 017 |
| 2.981 | 2.916 | 2.939 | -. 023 | . 042 | . 065 |
| 2.987 | 2.943 | 2.921 | . 022 | . 066 | . 044 |
| 2.990 | 2.976 | 2.954 | . 022 | . 036 | . 014 |
| 3.052 | 2.987 | 2.878 | . 109 | . 174 | . 065 |
| 2.989 | 2.960 | 2.968 | -. 008 | . 021 | . 029 |
| 3.187 | 2.998 | 2.971 | . 027 | . 216 | . 189 |
| 3.428 | 3.005 | 2.847 | . 158 | . 581 | . 423 |

In order to resolve the above two problems for any number of populations $\mathbf{N}$, let us gradually develop formulas starting with three populations. We have used $\mathrm{I}, \mathrm{J}, \mathrm{K}, \ldots$. to denote the factors in case of cross-classified data, and $\alpha, \beta, \gamma, \ldots$ to denote them in other situations. From now on, in all cases, we will use $\alpha, \beta, \gamma, \ldots$ to denote the factors as well as the factor effects. For cross-classified data, the rate effect will be treated as the effect of one of the factors, so that for a six-factor case, for example, we will have seven factor effects.

### 6.2 THE CASE OF THREE POPULATIONS

Regardless of how many factors are involved, let us consider only the factor $\alpha$, since the formulas for other factors will be exactly the same.

Let $\alpha_{x y}$ denote the factor effect of $\alpha$ and $\alpha_{x, y}$ denote the standardized rate in population $x$ controlled for all other factors except $\alpha$, when only populations $x$ and $y$ are compared. Let $\alpha_{x y . z}$ and $\alpha_{x y z}$ denote the corresponding numbers when populations $x$ and $y$ are compared in the presence of a third population: population $z\left(\alpha_{x y}=-\alpha_{y x}, \alpha_{x y . z}=-\alpha_{y x . z}, \alpha_{x . y z}=\alpha_{x . z y}\right)$.

We already know how to compute the factor effects and the standardized rates when we compare two populations at a time. Therefore, for populations 1,2 , and 3 , we can obtain the values of the nine quantities involved in the following three identities:

$$
\begin{equation*}
\alpha_{12}=\alpha_{2.1}-\alpha_{1.2}, \quad \alpha_{13}=\alpha_{3.1}-\alpha_{1.3}, \quad \alpha_{23}=\alpha_{3.2}-\alpha_{2.3} . \tag{6.1}
\end{equation*}
$$

In order to have one standardized rate for each population and also internally consistent numbers, we want to replace the nine numbers in (6.1) by six numbers that will satisfy the following three identities:

$$
\begin{equation*}
\alpha_{12.3}=\alpha_{2.13}-\alpha_{1.23}, \quad \alpha_{13.2}=\alpha_{3.12}-\alpha_{1.23}, \quad \alpha_{23.1}=\alpha_{3.12}-\alpha_{2.13} . \tag{6.2}
\end{equation*}
$$

One way of achieving this is to substitute

$$
\begin{gather*}
\alpha_{12.3}=\alpha_{12}, \quad \alpha_{13.2}=\alpha_{13}, \quad \alpha_{23.1}=\alpha_{13}-\alpha_{12} \\
\alpha_{1.23}=\alpha_{1.2}, \quad \alpha_{2.13}=\alpha_{2.1}, \quad \alpha_{3.12}=\alpha_{1.2}+\left(\alpha_{3.1}-\alpha_{1.3}\right) . \tag{6.3}
\end{gather*}
$$

There are, in fact, six possible ways we can revise the values in (6.1) in order to remove the two limitations inherent in these numbers. These six sets of numbers are shown in section A. 4 in appendix A. Taking the average over the six sets, we finally obtain the standardized rate $\alpha_{1.23}$ and the factor effect $\alpha_{12.3}$ as

$$
\begin{gather*}
\alpha_{1.23}=\frac{\alpha_{1.2}+\alpha_{1.3}}{2}+\frac{\left(\alpha_{2.3}-\alpha_{2.1}\right)+\left(\alpha_{3.2}-\alpha_{3.1}\right)}{6},  \tag{6.4}\\
\alpha_{12.3}=\alpha_{12}-\frac{\alpha_{12}+\alpha_{23}-\alpha_{13}}{3} \tag{6.5}
\end{gather*}
$$

Other standardized rates and factor effects can be obtained from (6.4) and (6.5) by interchanging the subscripts and/or replacing a by other factors. Equation (6.5) was given in Das Gupta (1991, equation 28).

## Example 6.1

Let us again consider the expanded version of Example 5.9 presented in table 6.1. Obviously, this is a case of three populations and seven factors. We have already demonstrated in section 6.1 that the numbers in table 6.1 are not internally consistent. In order to obtain a consistent set of standardized rates and factor effects from the numbers in table 6.1, we use the formulas in (6.4) and (6.5), and present the computed values in table 6.2. For example, using the first line in table 6.1 corresponding to the factor $\alpha$, we have

$$
\begin{align*}
& \alpha_{1.23}=\frac{2.870+2.866}{2}+\frac{(3.133-2.871)+(3.141-2.901)}{6}=2.952, \\
& a_{12.3}=.001-\frac{.001+.008-.035}{3}=.009 . \tag{6.6}
\end{align*}
$$

Obviously, the numbers in table 6.2 do not have the two limitations mentioned in section 6.1. First, each population has now only one set of standardized rates, instead of two sets shown in table 6.1. Also, for any of the factors, the effects corresponding to populations $(1,2)$ and populations $(2,3)$ now add up to the effect corresponding to populations (1,3), unlike the situation in table 6.1. For example, for the factor $\alpha$ in table $6.2, .009+.017=.026$. We should also note that the revised numbers in table 6.2 based on the simultaneous treatment of the three populations preserve by and large the patterns and the characteristics of the unrevised numbers in table 6.1. For example, for unrevised numbers in table 6.1, the factor effects in the comparison of populations 1 and 3 are, in order of their magnitude, . 198, .183, .074, .042, .036, .035, and .013 . For the revised numbers in table 6.2, the corresponding values are $.216, .174, .066, .042, .036$, .026, and . 021 .

## Program 6.1

The results in table 6.2 can be obtained by using Program 6.1 in which $\mathrm{S}(I, J, K)$ 's are the standardized rates and $R(J)$ 's are the crude rates in table 6.1. In other words, the data file consists of seven lines. The first six lines are the six sets of standardized rates in table 6.1 in the same order, each line having seven numbers with the format specified in line 8 of the program. The last line of the data file consists of three numbers corresponding to the average numbers of children ever born in populations 1, 2, and 3, respectively, with the same format in line $8 . \mathrm{M}$ and N in lines 2 and 3 of the program are, respectively, the number of factors (including the rate) and the number of populations in this particular example. Program 6.1, when run with the data file described above, will generate the six columns of results shown in table 6.2.

### 6.3 THE CASE OF FOUR POPULATIONS

Using analogous notation, for a particular factor, there are 48 different ways the unrevised 12 standardized rates and six factor effects can be replaced to form a revised consistent set of four standardized rates and six effects. These 48 sets of consistent numbers are shown in section A. 5 in appendix A. The averages over the 48 sets give us the following expressions for the standardized rate $\alpha_{1.234}$ and the factor effect $\alpha_{12.34}$ :

$$
\begin{gather*}
\alpha_{1.234}=\frac{\alpha_{1.2}+\alpha_{1.3}+\alpha_{1.4}}{3}+\frac{\left(\alpha_{2.3}+\alpha_{2.4}-2 \alpha_{2.1}\right)+\left(\alpha_{3.2}+\alpha_{3.4}-2 \alpha_{3.1}\right)+\left(\alpha_{4.2}+\alpha_{4.3}-2 \alpha_{4.1}\right)}{12},  \tag{6.7}\\
\alpha_{12.34}=\alpha_{12}-\frac{\left(\alpha_{12}+\alpha_{23}-\alpha_{13}\right)+\left(\alpha_{12}+\alpha_{24}-\alpha_{14}\right)}{4} . \tag{6.8}
\end{gather*}
$$

Equation (6.8) was given in Das Gupta (1991, equation 30).

Program 6.1 (More than Two Populations)
$\operatorname{DIMENSION}_{\substack{ \\M=7}}(20,20,20), \operatorname{R}(20), \operatorname{DT}(20,20,20), \operatorname{DR}(20,20), T(20,20)$
$\mathrm{M}=7$
$\mathrm{~N}=3$
$\mathrm{Z}=\mathrm{N}$
$\begin{array}{lll}\text { DO } & 1 & K=1, N-1 \\ D O & 1 & J=K+1, N\end{array}$
1
$\operatorname{DO} 1 \quad J=K+1, N$
$\operatorname{READ}(5,2)(S(I, J, K), I=1, M),(S(I, K, U), I=1, M)$
$\operatorname{RERAD}(5,7) 8,3$
$\operatorname{REA}(J), U=1, N)$
READ $(5,2)(R(U), U=1, N)$
DO $5 \quad \mathrm{I}=1, \mathrm{M}$
$A A=0.0$
$B B=0.0$
$\mathrm{BB}=0.0$
$\mathrm{CC}=0.0$
OO


IF (UN.EQ U.OR.K.EQ.J.OR.K.EQ.JJ) GO TO 4
4 CONTINUE
4 Continue





WRITE 6,8 )
8 FORMAT $1 / \%$ )

9 forma
END
Program 6.2 (Combined Program for Example 6.5)
DIMENSION W
1 $(5,4,6), V(5,4,6), R(2,4,2), 5(4,5,5), U(5), D T(4,5,5)$,
DO 10 KK $=1,4$
DO 10 UJ=KK+1,5
DO $20 \quad J=1,4$
20 V $(1, J, K)=W(K K, J, K)$

$\mathrm{H}=\mathrm{H} 1 /(\mathrm{H} 1+\mathrm{H} 2)$
IF $\left\{\begin{array}{l}I+J+K+L \cdot E Q .4 \\ I\end{array}\right) U(K K)=H$



3



10
DO 5 I=
$\begin{array}{lll}D O & I & I=1,4 \\ D O & J=1,5 \\ A A=0 & 0\end{array}$
$A A=0$.
$\mathrm{BB}=0$.
$\mathrm{CC}=0$
$C C=0.0$
$D O$
IF (K, EQ U ${ }^{5}$ GO TO 30

IF (JJ.EQ.J'OR.K.EQ.J.OR.K.EQ.JU) GO TO 40
40
$C N(J)=A A / 4,+(B B-C C) / 20$.
$D O G=14$
Dd $6 K=1,4$
$D 0$
$D R(U, K)=U(J)-U(K)$


8 WRITE 6,8 )

9 FORMAT ( $10 \mathrm{X}, 10 \mathrm{~F} 10.5$ )
STOP
END

## Example 6.2

Let us again consider Example 5.1 (tables 5.1 and 5.2) based on the data from Santi (1989) using four populations corresponding to the years 1970, 1975, 1980, and 1985 simultaneously. The six sets of standardized rates and factor effects from pairwise comparisons are presented in table 6.3. Table 6.4 gives the corresponding revised numbers obtained by using formulas (6.7) and (6.8). For example, the age-standardized headship rates for $1970,1975,1980$, and 1985 are, respectively, 44.955, 46.300, 47.307, and 47.645. Santi provided two sets of these adjusted rates in table 5 of his paper. The CG-Purged rates are 44.728, 46.357, 47.526, and 46.726, and the CD-Purged rates are 46.294, 47.930, 49.103, and 48.300. All three sets of adjusted rates have very similar patterns. It is interesting to note that although the crude headship rate for 1985 is higher than that for 1980, the adjusted rate for 1980 is the highest in each of the three sets.

Table 6.3. Standardization and Decomposition of Household Headship Rates Using 2 Populatlons at a Time
(See Example 5.1 and tables 5.1-5.2 for the description of the factors and the interpretation of the numbers)

| Standardized rates |  | Decomposition | Standardized rates |  | Decomposition |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 1975 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 1) } \end{array}$ | Difference (effects) | $\begin{array}{r} 1980 \\ \text { (population 3) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 1) } \end{array}$ | $\begin{aligned} & \text { Difference } \\ & \text { (effects) } \end{aligned}$ |
| $\begin{aligned} & 45.007 \\ & 45.846 \end{aligned}$ | $\begin{aligned} & 45.372 \\ & 44.534 \end{aligned}$ | $\begin{array}{r} -.375 \\ 1.312 \end{array}$ | $\begin{aligned} & 45.977 \\ & 47.097 \end{aligned}$ | $\begin{aligned} & 45.883 \\ & 44.762 \end{aligned}$ | $\begin{array}{r} .094 \\ 2.335 \end{array}$ |
| 45.674 | 44.727 | . 947 | 47.156 | 44.727 | 2.429 |
| $\begin{array}{r} 1985 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 1) } \end{array}$ | Difference (effects) | $\begin{array}{r} 1980 \\ \text { (population } 3 \text { ) } \end{array}$ | 1975 (population 2) | Difference (effects) |
| $\begin{aligned} & 46.815 \\ & 47.071 \end{aligned}$ | $\begin{aligned} & 45.588 \\ & 45.331 \end{aligned}$ | $\begin{aligned} & 1.227 \\ & 1.740 \end{aligned}$ | $\begin{aligned} & 46.658 \\ & 46.903 \end{aligned}$ | $\begin{aligned} & 46.162 \\ & 45.917 \end{aligned}$ | $\begin{array}{r} .496 \\ .986 \end{array}$ |
| 47.694 | 44.727 | 2.967 | 47.156 | 45.674 | 1.482 |
| $\begin{array}{r} 1985 \\ \text { (population 4) } \\ \hline \end{array}$ | $\begin{array}{r} 1975 \\ \text { (population 2) } \end{array}$ | $\begin{aligned} & \text { Difference } \\ & \text { (effects) } \end{aligned}$ | $\begin{array}{r} 1985 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1980 \\ \text { (population 3) } \end{array}$ | Difference (effects) |
| $\begin{aligned} & 47.507 \\ & 46.829 \end{aligned}$ | $\begin{aligned} & 45.819 \\ & 46.497 \end{aligned}$ | $\begin{array}{r} 1.688 \\ .332 \end{array}$ | $\begin{aligned} & 48.034 \\ & 47.066 \end{aligned}$ | $\begin{aligned} & 46.797 \\ & 47.765 \end{aligned}$ | $\begin{aligned} & 1.237 \\ & -699 \end{aligned}$ |
| 47.694 | 45.674 | 2.020 | 47.694 | 47.156 | . 538 |

Table 6.4. Standardization and Decomposition of Household Headshlp Rates Using 4 Populations Simultaneously
(Based on the standardized rates in table 6.3 as data)

| Standardized rates |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 1985 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1980 \\ \text { (population } 3 \text { ) } \end{array}$ | $\begin{array}{r} 1975 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 1) } \end{array}$ |  |  |
| $\begin{aligned} & 47.340 \\ & 46.645 \end{aligned}$ | $\begin{aligned} & 46.140 \\ & 47.307 \end{aligned}$ | $\begin{aligned} & 45.665 \\ & 46.300 \end{aligned}$ | $\begin{aligned} & 46.063 \\ & 44.955 \end{aligned}$ |  |  |
| 47.694 | 47.156 | 45.674 | 44.727 |  |  |
| Decomposition (effects) |  |  |  |  |  |
| $\begin{aligned} & \text { (population 2) } \\ & \text {-(population 1) } \end{aligned}$ | (population 3) -(population 1) | $\begin{array}{r} \text { (population 4) } \\ \text {-(population 1) } \end{array}$ | $\begin{array}{r} \text { (population 3) } \\ \text {-(population 2) } \end{array}$ | $\begin{array}{r} \text { (population 4) } \\ \text {-(population 2) } \end{array}$ | $\begin{array}{r} \text { (population 4) } \\ \text {-(population 3) } \end{array}$ |
| $\begin{gathered} -.398 \\ 1.345 \end{gathered}$ | $\begin{array}{r} .077 \\ 2.352 \end{array}$ | $\begin{aligned} & 1.277 \\ & 1.690 \end{aligned}$ | $\begin{array}{r} .475 \\ 1.007 \end{array}$ | $\begin{array}{r} 1.675 \\ .345 \end{array}$ | $\begin{aligned} & 1.200 \\ & -.662 \end{aligned}$ |
| . 947 | 2.429 | 2.967 | 1.482 | 2.020 | . 538 |

The results in table 6.4 can be obtained by using Program 6.1 by making the following changes in the program:

1. Replace $M=7$ and $N=3$ in lines 2 and 3 by $M=2$ and $N=4$
2. Replace 7F8.3, 3F8.3, and $3 F 8.3$ in lines 8,30 , and 35 by, respectively, 4F8.3, 4F8.3, and 6F8.3 .

The data file consists of seven lines of which the first six lines are the six sets of four standardized rates in table 6.3. For example, line 1 has the four numbers $45.007,45.846,45.372$, and 44.534 in this order. The last line of the data file consists of four numbers corresponding to the household headship rates for 1970, 1975, 1980, and 1985.

## Example 6.3

We now consider an expanded version of Example 5.2 (tables 5.3 and 5.4) based on the data from Clogg and Eliason (1988) for four parity groups 1, 2, 3, and 4+ (designated as populations 4, 3, 2, and 1, respectively). The unrevised six sets of standardized rates and factor effects using two populations at a time are presented in table 6.5. The corresponding revised numbers obtained by using the four populations simultaneously are given in table 6.6. The age-standardized percents desiring more children for the parity groups 1, 2, 3, and 4+ are, respectively, 57.805, 23.460, 18.993, and 18.512. Table 3 of the paper by Clogg and Eliason gave these adjusted numbers as $57.7,20.1,18.2$, and 16.9 , respectively. These two sets of adjusted rates are in good agreement particularly when the corresponding crude percentages are as widely different as 72.093, 26.065, 16.431, and 11.489.

The results in table 6.6 can be obtained by using Program 6.1 by making the following changes in the program (which are the same as the changes in the case of Example 6.2):

1. Replace $M=7$ and $N=3$ in lines 2 and 3 by $M=2$ and $N=4$
2. Replace 7F8.3, 3F8.3, and 3F8.3 in lines 8, 30, and 35 by, respectively, 4F8.3, 4F8.3, and 6F8.3 .

Again, the data file consists of seven lines of which the first six lines are the six sets of four standardized rates in table 6.5. For example, line 1 has the four numbers 15.418, 14.747, 12.276, and 12.947 in this order. The last line of the data file consists of four numbers corresponding to the percents desiring more children for parity groups 4+, 3, 2, and 1.

## Example 6.4

Yet another example of the case of four populations is the expanded version of Example 3.5 (tables 3.9 and 3.10) based on the data from Wojtkiewicz, McLanhan, and Garfinkel (1990) for the four years 1950, 1960, 1970, and 1980. The unrevised six sets of standardized rates and factor effects using two populations at a time are presented in table 6.7. The corresponding revised numbers obtained by using the four populations simultaneously are given in table 6.8. Obviously, these numbers are internally consistent. For example, in the first line of the effects, $3.62,2.88$, and 1.97 add up to 8.47 , as they should. Also the revised numbers display the same patterns as do the unrevised numbers based on pairwise comparisons. For example, the unrevised factor effects in the comparison of 1950 and 1980 are 8.72, 22.78, -0.58, -1.46, 0.34 , and 2.52 , which change to $8.47,24.11,-1.37,-1.64,0.19$, and 2.56 in the revised set, the total for each set of numbers being 32.32.

The results in table 6.8 can be obtained by using Program 6.1 by making the following changes in the program:

1. Replace $M=7$ and $N=3$ in lines 2 and 3 by $M=6$ and $N=4$
2. Replace 7F8.3, 3F8.3, and 3F8.3 in lines 8, 30, and 35 by, respectively, 12F6.2, 4F8.2, and 6F8.2 .

The data file consists of seven lines of which the first six lines are the six sets of 12 standardized rates in table 6.7. For example, line 1 consists of the 12 standardized rates in the first two columns (corresponding to 1960 and 1950) in table 6.7. The last line of the data file has four numbers that are the family headship rates for 1950, 1960, 1970, and 1980, respectively.

Table 6.5. Standardization and Decomposition of Percents Desiring More Children Using
2 Populations at a Time
(See Example 5.2 and tables 5.3-5.4 for the description of the factors and the interpretation of the numbers)

| Standardized rates |  | Decomposition | Standardized rates |  |
| ---: | ---: | ---: | ---: | ---: |
| Parity 3 <br> (population 2) | Parity 4+ <br> (population 1) | Difference <br> (effects) | Parity 2 <br> (population 3) | Parity 4+ <br> (population 1) |
| 15.418 |  |  |  |  |
| 14.747 |  |  |  |  |

Table 6.6. Standardization and Decomposition of Percents Desiring More Children Using 4 Populations Simultaneously
(Based on the standardized rates in table 6.5 as data)

| Standardized rates |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Parity 1 (population 4) | Parity 2 (population 3) | Parity 3 (population 2) | Parity 4+ (population 1) |  |  |
| $\begin{aligned} & 42.154 \\ & 57.805 \end{aligned}$ | $\begin{aligned} & 30.471 \\ & 23.460 \end{aligned}$ | $\begin{aligned} & \hline 25.304 \\ & 18.993 \end{aligned}$ | $\begin{aligned} & 20.843 \\ & 18.512 \end{aligned}$ |  |  |
| 72.093 | 26.065 | 16.431 | 11.489 |  |  |
| Decomposition (effects) |  |  |  |  |  |
| $\begin{array}{r} \text { (population 2) } \\ \text {-(population 1) } \end{array}$ | $\begin{array}{r} \text { (population 3) } \\ - \text { (population 1) } \end{array}$ | $\begin{array}{r} \text { (population 4) } \\ \text {-(population 1) } \end{array}$ | $\begin{array}{r} \text { (population 3) } \\ \text {-(population 2) } \end{array}$ | $\begin{array}{r} \text { (population 4) } \\ \text {-(population 2) } \end{array}$ | $\begin{array}{r} \text { (population 4) } \\ \text {-(population 3) } \end{array}$ |
| $\begin{array}{r} 4.461 \\ .481 \end{array}$ | $\begin{aligned} & 9.628 \\ & 4.948 \end{aligned}$ | $\begin{aligned} & 21.311 \\ & 39.293 \end{aligned}$ | $\begin{aligned} & 5.167 \\ & 4.467 \end{aligned}$ | $\begin{aligned} & 16.850 \\ & 38.812 \end{aligned}$ | $\begin{aligned} & 11.683 \\ & 34.345 \end{aligned}$ |
| 4.942 | 14.576 | 60.604 | 9.634 | 55.662 | 46.028 |

Table 6.7. Standardization and Decomposition of Family Headship Rates Using 2 Populations
(See Example 3.5 and tables 3.9-3.10 for the description of the factors and the interpretation of the numbers)

| Standardized rates |  | Decomposition | Standardized rates |  | Decomposition | Standardized rates |  | Decomposition |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 1960 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1950 \\ \text { (population 1) } \end{array}$ | $\begin{array}{r} \text { Differ- } \\ \text { ence } \\ \text { (effects) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 3) } \end{array}$ | $\begin{array}{r} 1950 \\ \text { (population 1) } \end{array}$ |  | $\begin{array}{r} 1980 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1950 \\ \text { (population 1) } \end{array}$ | $\begin{array}{r} \text { Differ- } \\ \text { ence } \\ \text { (effects) } \end{array}$ |
| 28.88 | 25.42 | 3.46 | 35.38 | 28.98 | 6.40 | 42.03 | 33.31 | 8.72 |
| 28.13 | 26.20 | 1.93 | 37.55 | 26.76 | 10.79 | 49.14 | 26.36 | 22.78 |
| 28.69 | 25.60 | 3.09 | 33.43 | 31.15 | 2.28 | 37.84 | 38.42 | -0.58 |
| 27.53 | 26.85 | 0.68 | 32.29 | 32.51 | -0.22 | 37.43 | 38.89 | -1.46 |
| 27.28 | 27.14 | 0.14 | 32.45 | 32.31 | 0.14 | 38.21 | 37.87 | 0.34 |
| 27.25 | 27.17 | 0.08 | 32.97 | 31.79 | 1.18 | 39.25 | 36.73 | 2.52 |
| 32.08 | 22.70 | 9.38 | 43.27 | 22.70 | 20.57 | 55.02 | 22.70 | 32.32 |
| $\begin{array}{r} 1970 \\ \text { (population 3) } \end{array}$ | $\begin{array}{r} 1960 \\ \text { (population 2) } \end{array}$ |  | $\begin{array}{r} 1980 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1960 \\ \text { (population 2) } \end{array}$ |  | $\begin{array}{r} 1980 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 3) } \end{array}$ | $\begin{array}{r} \text { Differ- } \\ \text { ence } \\ \text { (effects) } \end{array}$ |
| 39.06 | 36.27 | 2.79 | 46.19 | 41.40 | 4.79 | 50.19 | 48.40 | 1.79 |
| 42.76 | 32.67 | 10.09 | 56.09 | 32.16 | 23.93 | 56.54 | 42.32 | 14.22 |
| 36.96 | 38.54 | -1.58 | 41.44 | 46.99 | -5.55 | 47.35 | 51.49 | -4.14 |
| 37.18 | 38.27 | -1.09 | 42.72 | 45.30 | -2.58 | 48.58 | 50.09 | -1.51 |
| 37.62 | 37.85 | -0.23 | 43.82 | 44.15 | -0.33 | 49.37 | 49.25 | 0.12 |
| 38.32 | 37.11 | 1.21 | 45.22 | 42.54 | 2.68 | 49.93 | 48.66 | 1.27 |
| 43.27 | 32.08 | 11.19 | 55.02 | 32.08 | 22.94 | 55.02 | 43.27 | 11.75 |

Table 6.8. Standardization and Decomposition of Family Headship Rates Using 4 Populations Simultaneously
(Based on the standardized rates in table 6.7 as data)

| Standardized rates |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 1980 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1970 \\ \text { (population 3) } \end{array}$ | $\begin{array}{r} 1960 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1950 \\ \text { (population 1) } \end{array}$ |  |  |
| 41.78 | 39.81 | 36.93 | 33.31 |  |  |
| 53.29 | 39.72 | 30.03 | 29.18 |  |  |
| 35.59 | 39.37 | 40.71 | 36.96 |  |  |
| 36.75 | 38.19 | 39.23 | 38.39 |  |  |
| 38.14 | 38.05 | 38.28 | 37.95 |  |  |
| 39.69 | 38.35 | 37.12 | 37.13 |  |  |
| 55.02 | 43.27 | 32.08 | 22.70 |  |  |
| Decomposition (effects) |  |  |  |  |  |
| (population 2) <br> -(population 1) | (population 3) <br> -(population 1) | (population 4) <br> -(population 1) | (population 3) <br> -(population 2) | (population 4) <br> -(population 2) | $\begin{aligned} & \text { (population 4) } \\ & \text {-(population 3) } \end{aligned}$ |
| 3.62 | 6.50 | 8.47 | 2.88 | 4.85 | 1.97 |
| 0.85 | 10.54 | 24.11 | 9.69 | 23.26 | 13.57 |
| 3.75 | 2.41 | -. 37 | -1.34 | -5.12 | -3.78 |
| 0.84 | -0.20 | -1.64 | -1.04 | -2.48 | -. 44 |
| 0.33 | 0.10 | 0.19 | -0.23 | -0.14 | 0.09 |
| -0.01 | 1.22 | 2.56 | 1.23 | 2.57 | 1.34 |
| 9.38 | 20.57 | 32.32 | 11.19 | 22.94 | 11.75 |

### 6.4 THE CASE OF FIVE POPULATIONS

Using analogous notation and proceeding as in sections A. 4 and A. 5 in the appendix, it is easy to show that the standardized rate $\alpha_{1.2345}$ and the factor effect $\alpha_{12.345}$ in five populations have the expressions

$$
\begin{gather*}
\alpha_{1.2345}=\frac{\sum_{i=2}^{5} \alpha_{1.1}}{4}+\frac{\sum_{j=2}^{5}\left[\sum_{j \neq 1,1}^{5} \alpha_{1.1}-3 \alpha_{1.1}\right]}{20},  \tag{6.9}\\
\alpha_{12.345}=\alpha_{12}-\frac{\sum_{j=3}^{5}\left(\alpha_{12}+\alpha_{2 j}-\alpha_{11}\right)}{5} . \tag{6.10}
\end{gather*}
$$

## Example 6.5

Let us again consider Example 4.4 (tables 4.7 and 4.8) based on the data for illegitimacy ratios from Smith and Cutright (1988) using five populations corresponding to the years 1963, 1968, 1973, 1978, and 1983 simultaneously. The 10 sets of standardized rates and factor effects from pairwise comparisons are presented in table 6.9. Table 6.10 gives the corresponding revised numbers obtained by using formulas (6.9) and (6.10). These numbers are self-explanatory. It may be noted that the factor effects of -6.20, 48.66, 27.06, and 24.71 in table 4.8 for a comparison between 1963 and 1983 are now replaced by -8.18, 51.11, 32.00, and 19.30, respectively, in table 6.10, the total difference between the illegitimacy ratios in 1963 and 1983 being 94.23.

The results in table 6.10 can be obtained by using Program 6.1 by making the following changes in the program:

1. Replace $M=7$ and $N=3$ in lines 2 and 3 by $M=4$ and $N=5$
2. Replace 7F8.3, 3F8.3, and 3 F8.3 in lines 8,30 , and 35 by, respectively, 8F7.2, 5F8.2, and 10F8.2 .

The data file consists of 11 lines of which the first 10 lines are the 10 sets of eight standardized rates in table 6.9. For example, line 1 consists of the eight standardized rates in the first two columns (corresponding to 1968 and 1963) in table 6.9. The last line of the data file has five numbers that are the illegitimacy ratios for $1963,1968,1973,1978$, and 1983, respectively.

### 6.5 THE COMBINED PROGRAM

In Examples 6.1 through 6.5, the final results are obtained in two steps by using two separate computer programs. In the first step, the basic data for several years are used as input to compute the standardized rates and the factor effects for all possible pairwise comparisons. In the second step, the computed standardized rates in the first step are used as input to finally obtain the revised set of standardized rates and factor effects. In Example 6.5, for example, the data for five years (1963, 1968, 1973, 1978, and 1983), similar to those given in table 4.7 for 1963 and 1983, are used as input in Program 4.4 to obtain 10 sets of standardized rates in table 6.9, similar to the set in table 4.8. These 10 sets of standardized rates are then used as input in Program 6.1 (for $M=4$ and $N=5$ ) to obtain the final results in table 6.10.

For any particular example, the two computer programs for the two steps can be easily combined into one so that the final results can be obtained directly by using the basic data as the input, without the explicit feeding of the second set of input data. For Example 6.5, Program 6.2 is such a combined program, which, obviously, is the combination of Programs 4.4 and 6.1. Program 6.2, when used with the data file created from the data for five years given in table 6.11, will generate results identical with those in table 6.10 (except that the standardized illegitimacy ratios will now be for each birth, instead of 1,000 births). The data file, based on table 6.11, consists of 20 lines, each year occupying four lines corresponding to four columns of six numbers.

### 6.6 THE GENERAL CASE OF N POPULATIONS (INCLUDING TIME SERIES)

It is obvious from equations (6.4) through (6.10) that the standardized rate and the factor effect for N populations can be written as

Table 6.9. Standardization and Decomposition of Illegitimacy Ratios Using 2 Populations at a Time
(See Example 4.4 and tables 4.7-4.8 for the description of the factors and the interpretation of the numbers)

| Standardized rates |  | Decomposition | Standardized rates |  | Decomposition |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 1968 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1963 \\ \text { (population 1) } \end{array}$ | Difference (effects) | $\begin{array}{r} 1973 \\ \text { (population 3) } \end{array}$ | $\begin{array}{r} 1963 \\ \text { (population } 1 \text { ) } \end{array}$ | Difference (effects) |
| 41.84 | 40.87 | 0.97 | 46.61 | 46.44 | 0.17 |
| 43.74 | 38.71 | 5.03 | 50.26 | 42.29 | 7.97 |
| 44.77 | 37.65 | 7.12 | 47.52 | 45.63 | 1.89 |
| 45.75 | 36.60 | 9.15 | 57.14 | 35.15 | 21.99 |
| 53.22 | 30.95 | 22.27 | 62.97 | 30.95 | 32.02 |
| $\begin{array}{r} 1978 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1963 \\ \text { (population 1) } \end{array}$ | Difference (effects) | $\begin{array}{r} 1983 \\ \text { (population 5) } \end{array}$ | $\begin{array}{r} 1963 \\ \text { (population 1) } \end{array}$ | Difference (effects) |
| 56.80 | 58.37 | -1.57 | 71.51 | 77.71 | -6.20 |
| 69.27 | 44.02 | 25.25 | 96.08 | 47.42 | 48.66 |
| 61.41 | 53.38 | 8.03 | 86.30 | 59.24 | 27.06 |
| 68.46 | 44.23 | 24.23 | 84.34 | 59.63 | 24.71 |
| 86.89 | 30.95 | 55.94 | 125.18 | 30.95 | 94.23 |
| $\begin{array}{r} 1973 \\ \text { (population 3) } \end{array}$ | $\begin{array}{r} 1968 \\ \text { (population 2) } \end{array}$ | Difference (effects) | $\begin{array}{r} 1978 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1968 \\ \text { (population 2) } \end{array}$ | Difference (effects) |
| 58.05 | 59.09 | -1.04 | 68.81 | 72.57 | -3.76 |
| 60.00 | 57.08 | 2.92 | 81.86 | 58.99 | 22.87 |
| 55.09 | 62.48 | -7.39 | 70.76 | 71.06 | -0.30 |
| 66.28 | 51.02 | 15.26 | 77.63 | 62.77 | 14.86 |
| 62.97 | 53.22 | 9.75 | 86.89 | 53.22 | 33.67 |
| $\begin{array}{r} 1983 \\ \text { (population 5) } \end{array}$ | $\begin{array}{r} 1968 \\ \text { (population 2) } \end{array}$ | Difference (effects) | $\begin{array}{r} 1978 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1973 \\ \text { (population 3) } \end{array}$ | Difference (effects) |
| 84.10 | 94.37 | -10.27 | 73.82 | 76.64 | -2.82 |
| 112.35 | 62.94 | 49.41 | 85.18 | 65.10 | 20.08 |
| 99.04 | 77.30 | 21.74 | 80.12 | 70.13 | 9.99 |
| 93.47 | 82.39 | 11.08 | 73.57 | 76.90 | -3.33 |
| 125.18 | 53.22 | 71.96 | 86.89 | 62.97 | 23.92 |
| $\begin{array}{r} 1983 \\ \text { (population 5) } \end{array}$ | $\begin{array}{r} 1973 \\ \text { (population 3) } \end{array}$ | Difference (effects) | $\begin{array}{r} 1983 \\ \text { (population } 5 \text { ) } \end{array}$ | $\begin{array}{r} 1978 \\ \text { (population 4) } \end{array}$ | Difference (effects) |
| 89.61 | 99.62 | -10.01 | 102.16 | 109.89 | -7.73 |
| 116.71 | 70.21 | 46.50 | 117.57 | 93.53 | 24.04 |
| 112.00 | 74.90 | 37.10 | 120.58 | 90.58 | 30.00 |
| 89.05 | 100.43 | -11.38 | 102.08 | 110.10 | -8.02 |
| 125.18 | 62.97 | 62.21 | 125.18 | 86.89 | 38.29 |

$$
\begin{gather*}
\alpha_{1.23 . . N}=\frac{\sum_{i=2}^{N} \alpha_{1 . j}}{N-1}+\frac{\sum_{l=2}^{N}\left[\sum_{j \neq 1, i}^{N} \alpha_{i . j}-(N-2) \alpha_{i .1}\right]}{N(N-1)},  \tag{6.11}\\
a_{12.34 \ldots . N}=\alpha_{12}-\frac{\sum_{j=3}^{N}\left(\alpha_{12}+\alpha_{2!}-\alpha_{1 j}\right)}{N} \tag{6.12}
\end{gather*}
$$

Equation (6.12) was given in Das Gupta (1991, equation 31).
The above general formulas in (6.11) and (6.12) can be conveniently used to handle the problems of standardization and decomposition when time-series data are involved. The following two examples deal with the revision of age-sex-adjusted birth rates and age-adjusted death rates for the period 1940-1990 provided by the National Center for Health Statistics (1990a, table 1-3; 1990b, table 1-3). Curtin, Maurer,

Table 6.10. Standardization and Decomposition of Illegitimacy Ratios Using 5 Populations Simultaneously
(Based on the standardized rates in table 6.9 as data)

| Standardized rates |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{r} 1983 \\ \text { (population } 5 \text { ) } \end{array}$ | $\begin{array}{r} 1978 \\ \text { (population 4) } \end{array}$ | $\begin{array}{r} 1973 \\ \text { (population 3) } \end{array}$ | $\begin{array}{r} 1968 \\ \text { (population 2) } \end{array}$ | $\begin{array}{r} 1963 \\ \text { (population 1) } \end{array}$ |
| 64.59 | 71.35 | 73.83 | 74.65 | 72.77 |
| 104.39 | 79.50 | 59.53 | 56.63 | 53.28 |
| 94.18 | 68.54 | 60.48 | 69.61 | 62.18 |
| 74.13 | 79.61 | 81.24 | 64.44 | 54.83 |
| 125.18 | 86.89 | 62.97 | 53.22 | 30.95 |
| Decomposition (effects) |  |  |  |  |
| $\begin{array}{r} \text { (population 2) } \\ - \text { (population 1) } \end{array}$ | (population 3) -(population 1) <br> -(population 1) | (population 4) <br> -(population 1) | (population 5) <br> -(population 1) | (population 3) <br> -(population 2) |
| 1.88 | 1.06 | -1.42 | -8.18 | -0.82 |
| 3.35 | 6.25 | 26.22 | 51.11 | 2.90 |
| 7.43 | -1.70 | 6.36 | 32.00 | -9.13 |
| 9.61 | 26.41 | 24.78 | 19.30 | 16.80 |
| 22.27 | 32.02 | 55.94 | 94,23 | 9.75 |
| (population 4) -(population 2) | $\begin{array}{r} \text { (population 5) } \\ - \text { (population 2) } \end{array}$ | $\begin{array}{r} \text { (population 4) } \\ \text {-(population 3) } \end{array}$ | $\begin{array}{r} \text { (population 5) } \\ - \text { (population 3) } \end{array}$ | (population 5) <br> -(population 4) |
| -3.30 | -10.06 | -2.48 | -9.24 | $-6.76$ |
| 22.87 | 47.76 | 19.97 | 44.86 | 24.89 |
| -1.07 | 24.57 | 8.06 | 33.70 | 25.64 |
| 15.17 | 9.69 | -1.63 | -7.11 | -5.48 |
| 33.67 | 71.96 | 23.92 | 62.21 | 38.29 |

and Rosenberg (1980); Johansen (1990); and many authors have thoroughly examined whether the National Center for Health Statistics (NCHS) should continue to use the 1940 U.S. population as the standard for the computation of age-sex-adjusted birth rates and age-adjusted death rates, or replace it by the U.S. population of a more recent year. Although they have made specific recommendations on this issue, the theoretical question of the validity of the standardized rates (as computed presently by using one of the real populations as the standard) as measures of composition-controlled relative rates has not been adequately addressed.

In computing the age-adjusted death rates, for example, the age-specific death rate-adjusted death rates should also be considered side by side, and we should make sure that these two sets of adjusted death rates are internally consistent from the point of view of the decomposition of the difference between the crude death rates for any two years into the age effect and the rate effect, as explained in section 2.1 (internal inconsistencies of the type indicated in section 6.1 do not arise when there is only one age-adjusted death rate and only one rate-adjusted death rate for any year). A simple direct standardization by using a single population (say, for 1940 or for 1990) as the standard will not pass this test. The answer lies in formula ( 6.11 ) where the final standardized number is a composite of the standardized rates based on all possible pairwise comparisons of the given populations, as demonstrated in the following two examples.

## Example 6.6

Table 6.12 gives the populations in thousands and the corresponding birth rates per 1,000 population in nine age-sex-groups for the 51 years 1940-1990 for the United States. The rate-adjusted birth rates and the age-sex-adjusted birth rates for these years, based on formula (6.11), are shown, along with the crude birth rates, in columns (2) through (4) of table 6.13.

The age-sex-adjusted birth rates in column (4) of table 6.13 are uniformly lower than the corresponding adjusted rates for all 51 years provided by the NCHS based on the 1940 population as the standard (figure 1). Since we study the relative magnitudes of the adjusted rates rather than their absolute magnitudes, the

Table 6.11. Illegitimacy Ratio as a Function of Four Vector-Factors: United States, Whites, 1963, 1968, 1973, 1978, and 1983
(For explanation of notation and source of data, see Example 4.4 and Table 4.7)

fact that the NCHS rates are always higher than the present rates per se does not provide any justification for treating either of the sets more favorably than the other. However, the NCHS rates do not satisfy the criteria of internal consistencies, whereas the present rates in table 6.13 are internally consistent for any two years.

To illustrate this point, let us choose any two years, say, 1941 and 1957. From the birth rates in table 6.13, the age effect is -5.2 (the difference between the rate-adjusted rates) and the rate effect is 10.1 (the difference between the age-sex-adjusted rates), and these two effects add up to 4.9 , which is the same as the difference between the crude birth rates in 1941 and 1957. On the other hand, using the 1940 population as the standard, the rate-adjusted rates in 1941 and 1957 are 19.4 and 15.5 (so that the age effect is -3.9), and the age-sex-adjusted rates are 20.3 and 32.2 (so that the rate effect is 11.9). In this case, the two effects add up to 8.0 , which is different from the difference between the two crude birth rates, namely, 4.9. It is easy to show that this inconsistency will still exist if the population for 1990 or for any other

Table 6.12. Population and Birth Rates by Nine Age-Sex Groups: United States, 1940 to 1990

| Year | Female |  |  |  |  |  |  |  | Remainder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 to 14 | 15 to 19 | 20 to 24 | 25 to 29 | 30 to 34 | 35 to 39 | 40 to 44 | 45 to 49 |  |
|  | Population in thousands |  |  |  |  |  |  |  |  |
| 1940. | 5777 | 6145 | 5907 | 5665 | 5192 | 4823 | 4387 | 4057 | 90169 |
| 1941. | 5699 | 6107 | 5943 | 5731 | 5270 | 4908 | 4463 | 4119 | 91162 |
| 1942. | 5608 | 6059 | 5972 | 5788 | 5340 | 4986 | 4536 | 4185 | 92386 |
| 1943. | 5507 | 6000 | 5990 | 5839 | 5407 | 5061 | 4609 | 4252 | 94074 |
| 1944. | 5395 | 5930 | 5999 | 5887 | 5472 | 5137 | 4681 | 4318 | 95578 |
| 1945. | 5294 | 5844 | 5995 | 5938 | 5539 | 5218 | 4756 | 4382 | 96962 |
| 1946. | 5260 | 5735 | 5999 | 6004 | 5609 | 5306 | 4831 | 4432 | 98213 |
| 1947. | 5252 | 5616 | 5985 | 6080 | 5683 | 5410 | 4908 | 4468 | 100724 |
| 1948. | 5308 | 5497 | 5957 | 6157 | 5761 | 5524 | 4989 | 4497 | 102941 |
| 1949. | 5388 | 5382 | 5917 | 6227 | 5838 | 5641 | 5073 | 4528 | 105194 |
| 1950. | 5506 | 5294 | 5886 | 6291 | 5942 | 5762 | 5169 | 4576 | 107845 |
| 1951. | 5650 | 5240 | 5800 | 6248 | 6053 | 5819 | 5260 | 4670 | 110138 |
| 1952. | 5872 | 5235 | 5692 | 6187 | 6167 | 5873 | 5353 | 4790 | 112384 |
| 1953. | 6218 | 5307 | 5547 | 6148 | 6221 | 5919 | 5443 | 4902 | 114479 |
| 1954. | 6475 | 5410 | 5425 | 6064 | 6294 | 5961 | 5522 | 5019 | 116856 |
| 1955. | 6694 | 5482 | 5363 | 5977 | 6337 | 6023 | 5596 | 5131 | 119328 |
| 1956. | 6833 | 5628 | 5317 | 5907 | 6309 | 6132 | 5672 | 5220 | 121885 |
| 1957. | 7387 | 5843 | 5312 | 5812 | 6257 | 6243 | 5744 | 5309 | 124077 |
| 1958. | 7636 | 6186 | 5384 | 5679 | 6231 | 6296 | 5810 | 5397 | 126263 |
| 1959. | 7971 | 6436 | 5483 | 5563 | 6155 | 6365 | 5871 | 5473 | 128513 |
| 1960. | 8323 | 6639 | 5564 | 5512 | 6078 | 6402 | 5946 | 5535 | 129980 |
| 1961. | 8771 | 6794 | 5737 | 5476 | 5985 | 6400 | 6043 | 5585 | 132201 |
| 1962. | 8749 | 7376 | 5973 | 5468 | 5876 | 6362 | 6152 | 5631 | 134184 |
| 1963. | 8911 | 7647 | 6345 | 5533 | 5767 | 6297 | 6256 | 5683 | 136044 |
| 1964. | 9114 | 8008 | 6618 | 5637 | 5658 | 6212 | 6332 | 5747 | 137815 |
| 1965. | 9357 | 8386 | 6846 | 5727 | 5607 | 6121 | 6368 | 5827 | 139287 |
| 1966. | 9565 | 8842 | 6993 | 5889 | 5579 | 6030 | 6373 | 5925 | 140380 |
| 1967. | 9800 | 8836 | 7581 | 6106 | 5585 | 5933 | 6347 | 6038 | 141232 |
| 1968. | 9990 | 9013 | 7847 | 6455 | 5659 | 5829 | 6294 | 6148 | 142164 |
| 1969. | 10128 | 9234 | 8187 | 6696 | 5768 | 5725 | 6222 | 6230 | 143195 |
| 1970. | 10230 | 9517 | 8544 | 6914 | 5871 | 5679 | 6148 | 6277 | 144804 |
| 1971. | 10346 | 9740 | 9027 | 7061 | 6036 | 5665 | 6062 | 6280 | 146610 |
| 1972. | 10347 | 9988 | 9021 | 7652 | 6268 | 5688 | 5971 | 6223 | 148126 |
| 1973. | 10310 | 10193 | 9198 | 7918 | 6652 | 5744 | 5885 | 6178 | 149279 |
| 1974. | 10243 | 10349 | 9415 | 8282 | 6929 | 5836 | 5797 | 6114 | 150377 |
| 1975. | 10112 | 10465 | 9677 | 8660 | 7173 | 5931 | 5700 | 6072 | 151675 |
| 1976. | 9837 | 10582 | 9901 | 9157 | 7317 | 6075 | 5689 | 5994 | 153011 |
| 1977. | 9650 | 10581 | 10152 | 9157 | 7928 | 6283 | 5713 | 5910 | 154486 |
| 1978. | 9262 | 10555 | 10373 | 9357 | 8205 | 6651 | 5780 | 5838 | 156074 |
| 1979. | 9031 | 10498 | 10541 | 9597 | 8579 | 6918 | 5883 | 5766 | 157754 |
|  | 8923 | 10377 | 10680 | 9896 | 8974 | 7159 | 5988 | 5677 |  |
| 1981. | 8953 | 10080 | 10790 | 10132 | 9481 | 7310 | 6136 | 5643 | 161112 |
| 1982. | 8877 | 9779 | 10781 | 10396 | 9482 | 7918 | 6354 | 5656 | 162753 |
| 1983. | 8747 | 9471 | 10729 | 10607 | 9672 | 8201 | 6699 | 5754 | 164404 |
| 1984. | 8544 | 9231 | 10642 | 10763 | 9900 | 8584 | 6942 | 5874 | 165997 |
| 1985. | 8339 | 9106 | 10482 | 10869 | 10172 | 8967 | 7167 | 5968 | 167666 |
| 1986. | 8078 | 9128 | 10183 | 10982 | 10407 | 9467 | 7316 | 6110 | 169436 |
| 1987. | 8035 | 9047 | 9877 | 10971 | 10674 | 9466 | 7929 | 6325 | 171103 |
| 1988. | 8102 | 8923 | 9576 | 10924 | 10895 | 9660 | 8210 | 6868 | 172847 |
| 1989. | 8260 | 8721 | 9335 | 10837 | 11059 | 9890 | 8589 | 6920 | 174648 |
| 1990. | 8447 | 8525 | 9223 | 10691 | 11175 | 10167 | 8987 | 7150 | 176648 |

Table 6.12. Population and Birth Rates by Nine Age-Sex Groups: United States, 1940 to 1990-Continued

| Year | Female |  |  |  |  |  |  |  | Remainder |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 10 to 14 | 15 to 19 | 20 to 24 | 25 to 29 | 30 to 34 | 35 to 39 | 40 to 44 | 45 to 49 |  |
|  | Birth rates per 1,000 population |  |  |  |  |  |  |  |  |
| 1940. | . 7 | 54.1 | 135.6 | 122.8 | 83.4 | 46.3 | 15.6 | 1.9 | . 0 |
| 1941. | . 7 | 56.9 | 145.4 | 128.7 | 85.3 | 46.1 | 15.0 | 1.7 | . 0 |
| 1942. | . 7 | 61.1 | 165.1 | 142.7 | 91.8 | 47.9 | 14.7 | 1.6 | . 0 |
| 1943. | . 8 | 61.7 | 164.0 | 147.8 | 99.5 | 52.8 | 15.7 | 1.5 | . 0 |
| 1944. | . 8 | 54.3 | 151.8 | 136.5 | 98.1 | 54.6 | 16.1 | 1.4 | . 0 |
| 1945. | . 8 | 51.1 | 138.9 | 132.2 | 100.2 | 56.9 | 16.6 | 1.6 | . 0 |
| 1946. | . 7 | 59.3 | 181.8 | 161.2 | 108.9 | 58.7 | 16.5 | 1.5 | . 0 |
| 1947. | . 9 | 79.3 | 209.7 | 176.0 | 111.9 | 58.9 | 16.6 | 1.4 | . 0 |
| 1948. | 1.0 | 81.8 | 200.3 | 163.4 | 103.7 | 54.5 | 15.7 | 1.3 | . 0 |
| 1949. | 1.0 | 83.4 | 200.1 | 165.4 | 102.1 | 53.5 | 15.3 | 1.3 | . 0 |
| 1950. | 1.0 | 81.6 | 196.6 | 166.1 | 103.7 | 52.9 | 15.1 | 1.2 | . 0 |
| 1951. | . 9 | 87.6 | 211.6 | 175.3 | 107.9 | 54.1 | 15.4 | 1.1 | . 0 |
| 1952. | . 9 | 86.1 | 217.6 | 182.0 | 112.6 | 55.8 | 15.5 | 1.3 | . 0 |
| 1953. | 1.0 | 88.2 | 224.6 | 184.1 | 113.4 | 56.6 | 15.8 | 1.0 | . 0 |
| 1954. | . 9 | 90.6 | 236.2 | 188.4 | 116.9 | 57.9 | 16.2 | 1.0 | . 0 |
| 1955. | . 9 | 90.5 | 242.0 | 190.5 | 116.2 | 58.7 | 16.1 | 1.0 | . 0 |
| 1956. | 1.0 | 94.6 | 253.7 | 194.7 | 117.3 | 59.3 | 16.3 | 1.0 | . 0 |
| 1957. | 1.0 | 96.3 | 260.6 | 199.4 | 118.9 | 59.9 | 16.3 | 1.1 | . 0 |
| 1958. | . 9 | 91.4 | 258.2 | 198.3 | 116.2 | 58.3 | 15.7 | . 9 | . 0 |
| 1959. | . 9 | 90.4 | 260.1 | 200.5 | 115.6 | 58.2 | 15.5 | 1.1 | . 0 |
| 1960. | . 8 | 89.1 | 258.1 | 197.4 | 112.7 | 56.2 | 15.5 | . 9 | . 0 |
| 1961. | . 9 | 88.6 | 251.9 | 197.5 | 113.2 | 55.6 | 15.6 | . 9 | . 0 |
| 1962. | . 8 | 81.4 | 241.9 | 191.1 | 108.6 | 52.6 | 14.9 | . 9 | . 0 |
| 1963. | . 9 | 76.7 | 229.1 | 185.1 | 105.8 | 51.2 | 14.2 | . 9 | . 0 |
| 1964. | . 9 | 73.1 | 217.5 | 178.7 | 103.4 | 49.9 | 13.8 | . 8 | . 0 |
| 1965. | . 8 | 70.5 | 195.3 | 161.6 | 94.4 | 46.2 | 12.8 | . 8 | . 0 |
| 1966. | . 8 | 70.3 | 185.6 | 148.2 | 85.1 | 41.9 | 11.7 | . 7 | . 0 |
| 1967. | . 9 | 67.5 | 172.9 | 142.1 | 78.7 | 38.3 | 10.6 | .7 | . 0 |
| 1968. | 1.0 | 65.6 | 166.5 | 140.0 | 74.2 | 35.4 | 9.6 | . 6 | . 0 |
| 1969. | 1.0 | 65.5 | 165.7 | 143.0 | 73.5 | 33.1 | 8.8 | . 5 | . 0 |
| 1970. | 1.2 | 68.3 | 167.8 | 145.1 | 73.3 | 31.7 |  | . 5 |  |
| 1971. | 1.1 | 64.5 | 150.1 | 134.1 | 67.3 | 28.7 | 7.1 | . 4 | . 0 |
| 1972. | 1.2 | 61.7 | 130.2 | 117.7 | 59.8 | 24.8 | 6.2 | . 4 | . 0 |
| 1973. | 1.2 | 59.3 | 119.7 | 112.2 | 55.6 | 22.1 | 5.4 | . 3 | . 0 |
| 1974. | 1.2 | 57.5 | 117.7 | 111.5 | 53.8 | 20.2 | 4.8 | . 3 | . 0 |
| 1975. | 1.3 | 55.6 | 113.0 | 108.2 | 52.3 | 19.5 | 4.6 | . 3 | . 0 |
| 1976. | 1.2 | 52.8 | 110.3 | 106.2 | 53.6 | 19.0 | 4.3 | . 2 | . 0 |
| 1977. | 1.2 | 52.8 | 112.9 | 111.0 | 56.4 | 19.2 | 4.2 | . 2 | . 0 |
| 1978. | 1.2 | 51.5 | 109.9 | 108.5 | 57.8 | 19.0 | 3.9 | . 2 | . 0 |
| 1979. | 1.2 | 52.3 | 112.8 | 111.4 | 60.3 | 19.5 | 3.9 | . 2 | . 0 |
| 1980. | 1.1 | 53.0 | 115.1 | 112.9 | 61.9 | 19.8 | 3.9 | . 2 | . 0 |
| 1981. | 1.1 | 52.7 | 111.8 | 112.0 | 61.4 | 20.0 | 3.8 | 2 | . 0 |
| 1982. | 1.1 | 52.9 | 111.3 | 111.0 | 64.2 | 21.1 | 3.9 | . 2 | . 0 |
| 1983. | 1.1 | 51.7 | 108.3 | 108.7 | 64.6 | 22.1 | 3.8 | . 2 | . 0 |
| 1984. | 1.2 | 50.9 | 107.3 | 108.3 | 66.5 | 22.8 | 3.9 | . 2 | . 0 |
| 1985. | 1.2 | 51.3 | 108.9 | 110.5 | 68.5 | 23.9 | 4.0 | . 2 | . 0 |
| 1986. | 1.3 | 50.6 | 108.2 | 109.2 | 69.3 | 24.3 | 4.1 | . 2 | . 0 |
| 1987. | 1.3 | 51.1 | 108.9 | 110.8 | 71.3 | 26.2 | 4.4 | . 2 | . 0 |
| 1988. | 1.3 | 53.6 | 111.5 | 113.4 | 73.7 | 27.9 | 4.8 | . 2 | . 0 |
| 1989. | 1.4 | 58.1 | 115.4 | 116.6 | 76.2 | 29.7 | 5.2 | . 2 | . 0 |
| 1990. | 1.5 | 60.7 | 120.6 | 121.8 | 79.6 | 31.0 | 5.4 | . 2 | . 0 |

Source: For population, U.S. Bureau of the Census (1965; 1974, table 2; 1982, table 2; 1990a, table 2; 1990b, table 2; Unpublished data for 1987-1990). For rates, National Center for Health Statistics (1967a, table 1-6; 1984, table 1-6; 1991a, table B; 1991b, table 4).year is used as the standard. Thus, the present method not only removes the internal inconsistencies in the adjusted rates, but also uses a computational formula (6.11) which puts an end to the debate as to which one of the actual populations should be used as the standard.

Table 6.13. Crude Birth Rates and Crude Death Rates per 1,000 Population and the Corresponding Adjusted (Standardized) Rates: United States, 1940 to 1990

| Year <br> (1) | Birth rates |  |  | Death rates |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Crude <br> (2) | Rate adjusted | Age-sex adjusted | Crude <br> (5) | Rate adjusted | Age adjusted <br> (7) |
| 1940. | 19.4 | 22.1 | 17.4 | 10.8 | 6.9 | 13.3 |
| 1941. | 20.3 | 22.1 | 18.3 | 10.5 | 7.2 | 12.8 |
| 1942. | 22.2 | 22.1 | 20.2 | 10.3 | 7.4 | 12.4 |
| 1943. | 22.7 | 22.0 | 20.8 | 10.7 | 7.5 | 12.8 |
| 1944. | 21.2 | 21.8 | 19.6 | 10.3 | 7.6 | 12.2 |
| 1945. | 20.4 | 21.6 | 19.0 | 10.2 | 7.7 | 11.9 |
| 1946. | 24.1 | 21.6 | 22.6 | 9.9 | 7.8 | 11.6 |
| 1947. | 26.5 | 21.3 | 25.3 | 10.0 | 8.1 | 11.4 |
| 1948. | 24.8 | 20.9 | 24.0 | 9.9 | 8.1 | 11.2 |
| 1949. | 24.5 | 20.6 | 24.0 | 9.7 | 8.2 | 10.9 |
| 1950. | 23.9 | 20.3 | 23.8 | 9.6 | 8.3 | 10.8 |
| 1951. | 24.8 | 19.8 | 25.1 | 9.6 | 8.4 | 10.7 |
| 1952. | 25.0 | 19.3 | 25.8 | 9.5 | 8.5 | 10.5 |
| 1953. | 24.9 | 18.8 | 26.2 | 9.5 | 8.6 | 10.4 |
| 1954. | 25.1 | 18.3 | 27.0 | 9.1 | 8.7 | 9.9 |
| 1955. | 24.9 | 17.8 | 27.2 | 9.2 | 8.8 | 9.9 |
| 1956. | 25.1 | 17.3 | 27.9 | 9.3 | 8.9 | 9.9 |
| 1957. | 25.2 | 16.9 | 28.4 | 9.5 | 8.9 | 10.1 |
| 1958. | 24.4 | 16.7 | 27.9 | 9.4 | 9.0 | 10.0 |
| 1959. | 24.2 | 16.4 | 27.9 | 9.3 | 9.0 | 9.8 |
| 1960. | 23.7 | 16.3 | 27.5 | 9.6 | 9.1 | 10.0 |
| 1961. | 23.3 | 16.2 | 27.3 | 9.3 | 9.2 | 9.6 |
| 1962. | 22.4 | 16.4 | 26.1 | 9.4 | 9.2 | 9.8 |
| 1963. | 21.7 | 16.7 | 25.2 | 9.6 | 9.2 | 9.9 |
| 1964. | 21.1 | 16.9 | 24.2 | 9.4 | 9.2 | 9.7 |
| 1965. | 19.4 | 17.3 | 22.3 | 9.4 | 9.3 | 9.7 |
| 1966. | 18.4 | 17.6 | 21.0 | 9.5 | 9.3 | 9.7 |
| 1967. | 17.8 | 18.2 | 19.8 | 9.4 | 9.4 | 9.5 |
| 1968. | 17.6 | 18.6 | 19.1 | 9.7 | 9.5 | 9.7 |
| 1969. | 17.9 | 18.9 | 19.1 | 9.5 | 9.6 | 9.5 |
| 1970. | 18.4 | 19.3 | 19.3 | 9.4 | 9.7 | 9.2 |
| 1971. | 17.2 | 19.7 | 17.7 | 9.3 | 9.8 | 9.1 |
| 1972. | 15.6 | 20.0 | 15.7 | 9.4 | 9.8 | 9.1 |
| 1973. | 14.8 | 20.3 | 14.6 | 9.3 | 9.9 | 9.0 |
| 1974. | 14.8 | 20.7 | 14.2 | 9.1 | 10.0 | 8.6 |
| 1975. | 14.6 | 21.0 | 13.7 | 8.8 | 10.1 | 8.2 |
| 1976. | 14.6 | 21.4 | 13.3 | 8.8 | 10.3 | 8.0 |
| 1977. | 15.1 | 21.6 | 13.7 | 8.6 | 10.4 | 7.8 |
| 1978. | 15.0 | 21.7 | 13.4 | 8.7 | 10.5 | 7.7 |
| 1979. | 15.6 | 21.9 | 13.7 | 8.5 | 10.6 | 7.4 |
| 1980. | 16.0 | 22.1 | 14.0 | 8.8 | 10.7 | 7.6 |
| 1981. | 15.8 | 22.2 | 13.7 | 8.6 | 10.8 | 7.3 |
| 1982. | 15.9 | 22.2 | 13.8 | 8.5 | 10.9 | 7.1 |
| 1983. | 15.6 | 22.1 | 13.6 | 8.6 | 11.0 | 7.1 |
| 1984. | 15.5 | 22.0 | 13.6 | 8.6 | 11.1 | 7.0 |
| 1985. | 15.8 | 21.9 | 13.9 | 8.7 | 11.2 | 7.1 |
| 1986. | 15.6 | 21.8 | 13.9 | 8.7 | 11.3 | 7.0 |
| 1987. | 15.6 | 21.5 | 14.2 | 8.7 | 11.4 | 6.9 |
| 1988. | 15.9 | 21.2 | 14.8 | 8.8 | 11.4 | 6.9 |
| 1989. | 16.3 | 20.9 | 15.5 | 8.7 | 11.5 | 6.7 |
| 1990. | 16.7 | 20.6 | 16.2 | 8.6 | 11.6 | 6.6 |

Figure 1.
Crude Birth Rates, and Age-Sex-Adjusted Birth Rates by Three Methods:
United States,1940 to 1990


Figure 2.
Crude Death Rates, and Age-Adjusted Death Rates by Three Methods:
United States, 1940 to 1990

year is used as the standard. Thus, the present method not only removes the internal inconsistencies in the adjusted rates, but also uses a computational formula (6.11) which puts an end to the debate as to which one of the actual populations should be used as the standard.

## Program 6.3

The results in columns (1) through (4) of table 6.13 can be obtained by using Program 6.3 in which L and N in lines 2 and 3 are the number of age-sex groups and the number of years, respectively. $\mathrm{P}(1, \mathrm{~J})$ 's and $U(I, J)$ 's in line 6 are, respectively, the populations in thousands and the birth rates per 1,000 population given in table 6.12. The data file consists of 102 lines, one pair of lines for each of the 51 years. The first and second lines, for example, give, respectively, the nine populations by age-sex groups for 1940, and the nine birth rates by age-sex groups for 1940, the formats being as shown in line 7 of the program. This data file when fed to Program 6.3 will generate an output that is identical to the first four columns in table 6.13 .

As more and more years are added to the time series, the adjusted rates for earlier years will not necessarily remain the same. However, as long as Program 6.3 is available, the computation of a revised set of adjusted rates is very easy. If, for example, we want to add the year 1991 to the present time series 1940-1990, all we have to do is to add two lines to the data file giving the populations and birth rates for 1991, and run the program (Program 6.3) again with $N=52$ in line 3.

## Example 6.7

This example is very similar to Example 6.6 except that here we adjust the death rates, instead of birth rates. Table 6.14 gives the populations in thousands and the corresponding death rates per 1,000 population in 11 age groups for the 51 years 1940-1990 for the United States. The rate-adjusted death rates and the age-adjusted death rates for these years, based on formula (6.11), and the crude death rates are shown in columns (5) through (7) of table 6.13.

The age-adjusted death rates in column (7) of table 6.13 are uniformly higher than the corresponding adjusted rates for all 51 years provided by the NCHS based on the 1940 population as the standard (figure 2). Here, again, the NCHS rates, unlike the rates in table 6.13, are not internally consistent, as we see from the rates of any two years, say, 1941 and 1957, again. From the death rates in table 6.13, the age effect is 1.7 (i.e., $8.9-7.2$ ) and the rate effect is -2.7 (i.e., 10.1-12.8), and these two effects add up to -1.0 , which is the same as the difference between the crude death rates in 1941 and 1957. On the other hand, using the 1940 population as the standard, the rate-adjusted rates in 1941 and 1957 are 10.9 and 13.1 (so that the age effect is 2.2), and the age-adjusted rates are 10.3 and 7.8 (so that the rate effect is -2.5). In this case, the two effects add up to -0.3 , which is different from the difference of -1.0 between the two crude death rates. Again, the use of 1990 population or any other population as the standard will produce similar inconsistencies.

The results in columns (5) through (7) of table 6.13 can, again, be obtained by using Program 6.3 by making the following changes in the program:

1. Replace $L=9$ in line 2 by $L=11$
2. Replace 9F8.0/9F8.1 in line 7 by 11F7.0/11F7.1 .

The data file, again, consists of 102 lines, one pair of lines for each of the 51 years. The first and second lines, for example, give, respectively, the 11 populations by age groups for 1940, and the 11 death rates by age groups for 1940, the formats being as in line 7 with the change mentioned above. This data file when used with the revised Program 6.3 will generate columns (1) and (5) through (7) of table 6.13 as the output.

As in the case of adjusted birth rates, data for more years can be added to the data file, and the program, with a revised $\mathbf{N}$ in line $\mathbf{3}$, can be run again to obtain a new set of adjusted death rates.

Program 6.3 (Time Series: Birth and Death Rates)

1
2
ÓIMENSION P(20,80), U(20,80),R(80),T(2,80),S(2,80,80)
$\mathrm{L}=9$
$\mathrm{~N}=51$
$\mathrm{Z}=\mathrm{N}$


3
p $(4+1, j)=0.0$

$R(U)=0=1, N$
4

5




S
SO



5

$A A=0.0$
$A A=0$.
$B B=0$.
$\mathrm{CC}=0.0$
$\mathrm{DO}=7.0$
$\mathrm{~K}=1, N$

6
IF (UUJEO.N.OR.K.EQ.J.OR.K.EQ.JU) GO TO 7
BB=BB+S.
CONTINUE
, UJ,
7
$T(I, U)=A A /(Z-1)+.(B B-C C) /(Z *(Z-1)$.
$D C$
UJ= ${ }^{+193 S^{N}}$
10
 FORMA
STOP
END STOP
END

Table 6.14. Population and Death Rates by 11 Age Groups: United States, 1940 to 1990

| Year | $\begin{aligned} & \text { Less } \\ & \text { than } 1 \end{aligned}$ | $\begin{array}{r} 1 \text { to } \\ 4 \end{array}$ | $\begin{array}{r} 5 \text { to } \\ 14 \end{array}$ | 15 to 24 | $\begin{array}{r} 25 \text { to } \\ 34 \end{array}$ | 35 to 44 | $\begin{array}{r} 45 \text { to } \\ 54 \end{array}$ | $\begin{array}{r} 55 \text { to } \\ 64 \end{array}$ | $\begin{array}{r} 65 \text { to } \\ 74 \end{array}$ | $\begin{array}{r} 75 \text { to } \\ 84 \end{array}$ | 85+ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Population in thousands |  |  |  |  |  |  |  |  |  |  |
| 1940 | 2025 | 8554 | 22363 | 24033 | 21446 | 18422 | 15555 | 10694 | 6367 | 2294 | 370 |
| 1941. | 2167 | 8683 | 22089 | 24074 | 21691 | 18692 | 15759 | 10959 | 6546 | 2357 | 385 |
| 1942. | 2325 | 8976 | 21823 | 24093 | 21911 | 18950 | 15976 | 11220 | 6745 | 2437 | 402 |
| 1943. | 2693 | 9323 | 21699 | 24065 | 22194 | 19226 | 16199 | 11472 | 6941 | 2509 | 417 |
| 1944. | 2516 | 10008 | 21573 | 23999 | 22511 | 19505 | 16419 | 11719 | 7136 | 2581 | 430 |
| 1945. | 2464 | 10515 | 21599 | 23705 | 22734 | 19787 | 16642 | 11988 | 7359 | 2683 | 452 |
| 1946. | 2401 | 10843 | 21844 | 23382 | 22954 | 20073 | 16820 | 12244 | 7566 | 2792 | 470 |
| 1947. | 3452 | 10954 | 22257 | 23122 | 23236 | 20421 | 16970 | 12528 | 7776 | 2917 | 492 |
| 1948. | 3169 | 11750 | 23089 | 22866 | 23494 | 20794 | 17107 | 12824 | 7978 | 3043 | 517 |
| 1949 | 3170 | 12437 | 23770 | 22570 | 23729 | 21187 | 17260 | 13145 | 8194 | 3178 | 549 |
| 1950. | 3163 | 13247 | 24588 | 22355 | 24036 | 21637 | 17453 | 13396 | 8493 | 3314 | 590 |
| 1951. | 3315 | 14018 | 25168 | 22109 | 24190 | 21913 | 17677 | 13685 | 8742 | 3433 | 628 |
| 1952. | 3429 | 13883 | 26773 | 21885 | 24301 | 22193 | 17935 | 13949 | 8990 | 3548 | 665 |
| 1953. | 3546 | 14092 | 28003 | 21746 | 24340 | 22446 | 18227 | 14166 | 9248 | 3668 | 701 |
| 1954. | 3671 | 14386 | 29223 | 21726 | 24340 | 22662 | 18559 | 14382 | 9536 | 3802 | 738 |
| 1955. | 3777 | 14789 | 30387 | 21753 | 24283 | 22912 | 18885 | 14622 | 9808 | 3943 | 776 |
| 1956. | 3860 | 15143 | 31570 | 21956 | 24122 | 23258 | 19206 | 14852 | 10053 | 4080 | 804 |
| 1957. | 4035 | 15459 | 32669 | 22401 | 23844 | 23597 | 19579 | 15012 | 10319 | 4231 | 837 |
| 1958 | 4073 | 15814 | 33487 | 23257 | 23538 | 23798 | 19927 | 15182 | 10576 | 4365 | 864 |
| 1959. | 4097 | 16078 | 34564 | 23988 | 23169 | 24023 | 20262 | 15401 | 10819 | 4528 | 901 |
| 1960. | 4094 | 16247 | 35735 | 24194 | 22728 | 24120 | 20560 | 15624 | 11053 | 4681 | 940 |
| 1961. | 4173 | 16349 | 37031 | 24865 | 22494 | 24289 | 20856 | 15847 | 11269 | 4856 | 964 |
| 1962. | 4084 | 16385 | 37435 | 26483 | 22287 | 24413 | 21099 | 16129 | 11457 | 5017 | 982 |
| 1963. | 4013 | 16329 | 38124 | 27803 | 22196 | 24484 | 21322 | 16435 | 11611 | 5163 | 1003 |
| 1964. | 3947 | 16218 | 38783 | 29096 | 22195 | 24463 | 21556 | 16757 | 11759 | 5328 | 1040 |
| 1965. | 3770 | 16054 | 39427 | 30326 | 22266 | 24343 | 21813 | 17076 | 11887 | 5483 | 1082 |
| 1966. | 3555 | 15653 | 40051 | 31428 | 22483 | 24151 | 22095 | 17407 | 11989 | 5638 | 1128 |
| 1967 | 3450 | 15113 | 40496 | 32357 | 22896 | 23908 | 22416 | 17751 | 12082 | 5803 | 1186 |
| 1968 | 3366 | 14547 | 40771 | 33245 | 23700 | 23589 | 22728 | 18087 | 12179 | 5946 | 1241 |
| 196 | 3413 | 13963 | 40884 | 34389 | 24406 | 23243 | 23019 | 18389 | 12301 | 6072 | 1307 |
| 1970. | 3508 | 13658 | 40772 | 35810 | 25109 | 23040 | 23299 | 18682 | 12493 | 6183 | 1430 |
| 1971. | 3601 | 13643 | 40490 | 37418 | 25769 | 22878 | 23503 | 18961 | 12684 | 6390 | 1487 |
| 1972. | 3306 | 13795 | 39946 | 38089 | 27463 | 22780 | 23675 | 19210 | 12922 | 6555 | 1542 |
| 1973. | 3128 | 13723 | 39309 | 38919 | 28788 | 22740 | 23799 | 19428 | 13247 | 6671 | 1607 |
| 1974. | 3065 | 13422 | 38716 | 39736 | 30072 | 22755 | 23800 | 19713 | 13574 | 6781 | 1706 |
| 1975 | 3152 | 12969 | 38240 | 40540 | 31314 | 22760 | 23749 | 20045 | 13917 | 6958 | 1821 |
| 1976. | 3115 | 12502 | 37759 | 41272 | 32605 | 23030 | 23615 | 20386 | 14237 | 7145 | 1896 |
| 1977 | 3279 | 12285 | 37034 | 41788 | 33841 | 23500 | 23363 | 20779 | 14638 | 7262 | 1992 |
| 1978. | 3326 | 12409 | 36220 | 42183 | 34803 | 24373 | 23166 | 21112 | 14996 | 7412 | 2095 |
| 1979 | 3426 | 12637 | 35392 | 42444 | 36038 | 25114 | 22936 | 21448 | 15338 | 7599 | 2197 |
| 1980. | 3561 | 12897 | 34845 | 42484 | 37451 | 25806 | 22746 | 21761 | 15653 | 7782 | 2269 |
| 1981. | 3620 | 13311 | 34405 | 42115 | 38986 | 26400 | 22608 | 21955 | 15915 | 7971 | 2350 |
| 1982. | 3666 | 13632 | 34193 | 41474 | 39561 | 28050 | 22482 | 22114 | 16198 | 8183 | 2444 |
| 1983. | 3684 | 13967 | 34059 | 40763 | 40413 | 29300 | 22439 | 22233 | 16495 | 8399 | 2531 |
| 1984. | 3617 | 14213 | 33975 | 40114 | 41231 | 30546 | 22495 | 22316 | 16740 | 8616 | 2615 |
| 1985. | 3736 | 14268 | 33923 | 39552 | 42027 | 31764 | 22589 | 22337 | 17010 | 8836 | 2695 |
| 1986. | 3770 | 14384 | 33860 | 39021 | 42778 | 33070 | 22815 | 22235 | 17334 | 9062 | 2778 |
| 1987. | 3785 | 14482 | 34147 | 38250 | 43312 | 34307 | 23277 | 22025 | 17674 | 9302 | 2865 |
| 1988. | 3852 | 14585 | 34654 | 37396 | 43670 | 35265 | 24164 | 21834 | 17915 | 9532 | 2938 |
| 1989 | 3947 | 14812 | 35163 | 36515 | 43836 | 36503 | 24897 | 21598 | 18193 | 9767 | 3027 |
| 1990. | 4137 | 15018 | 35724 | 35925 | 43771 | 37875 | 25529 | 21442 | 18469 | 9993 | 3131 |



## Example 6.8

Table 6.15 gives the populations and the corresponding census undercount rates in six race-sex groups for the United states, 50 States, and the District of Columbia for 1990. Treating race and sex as two separate factors, it is possible to compute, in addition to the crude undercount rates, the three standardized undercount rates adjusted for sex and rate, race and rate, and race and sex, for the 52 geographical areas, by using formula (6.11). These four rates for each area are shown in table 6.16.

In table 6.16, the difference between two sex-rate-adjusted rates gives the race effect. Similarly, the difference between two race-rate-adjusted rates gives the sex effect, and that between two race-sexadjusted rates gives the rate effect (i.e., the effect of the race-sex-specific undercount rates). The rates in table 6.16 are internally consistent because, for any two geographical areas, the race effect, the sex effect, and the rate effect add up to the total difference between the crude undercount rates.

It is evident from the race-rate-adjusted rates in table 6.16 that sex does not play a significant role in explaining the differences in the undercount rates in the States. The results in table 6.16 have some implications for the synthetic method of census adjustment, which assumes that undercount rates are constant within subgroups of people with given demographic characteristics across geographical areas. If these characteristics are race and sex, then, in order for the synthetic method to work at the State level, we should expect the race-sex-adjusted undercount rates in column (5) of table 6.16 to be approximately equal. Obviously, our results indicate that the synthetic method based on race and sex is not expected to generate satisfactory undercount rates at the State level. Further research is needed to include variables that are symptomatic of coverage differences, such as house tenure (owner/non-owner), since the 1990 PES data showed consistently higher undercount rates for non-owners (Robinson and Ahmed, 1992; Hogan, 1992).

## Program 6.4

The results in columns (2) through (5) of table 6.16 can be obtained by using Program 6.4. This program is basically a combination of Program 5.2 (Two Factors + Rate) when the factors I (race) and $J$ (sex) have, respectively, three and two categories, and Program 6.3 (Time Series: Birth and Death Rates) when the number of factors (including rate) is three and the number of populations is $52 . \mathrm{V}(1, \mathrm{~J}, \mathrm{~K})$ 's and $\mathrm{U}(\mathrm{l}, \mathrm{J}, \mathrm{K})$ 's in line 4 are; respectively, the populations and the undercount rates given in table 6.15. The data file consists of 104 lines, one pair of lines for each of the 52 geographical areas. The first and second lines, for example, give, respectively, the six populations by race-sex groups for Alabama, and the six undercount rates by race-sex groups for Alabama, the formats being as shown in line 5 of the program. This data file when fed to Program 6.4 will generate an output that is identical to the five columns in table 6.16, except that the geographical areas in column (1) are represented by serial numbers.

Table 6.15. Population and Census Undercount Rates by Race and Sex: United States, 50 States, and the District of Columbla, 1990

| States | Male |  |  | Female |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Black | Hispanic | Other | Black | Hispanic | Other |
|  | Population |  |  |  |  |  |
| ALABAMA. | 487928 | 13421 | 1473118 | 567679 | 12492 | 1558481 |
| ALASKA | 12784 | 10044 | 273895 | 10468 | 8507 | 245558 |
| ARIZONA | 62324 | 364575 | 1437701 | 57237 | 355742 | 1476718 |
| ARKANSAS | 180713 | 11235 | 963411 | 206625 | 9940 | 1020367 |
| CALIFORNIA | 1191106 | 4228042 | 9988230 | 1199183 | 3855319 | 10132658 |
| COLORADO. | 74226 | 223983 | 1374980 | 70500 | 220357 | 1399311 |
| CONNECTICUT | 137710 | 111885 | 1359258 | 151856 | 112724 | 1434875 |
| DELAWARE | 55665 | 8969 | 264580 | 61326 | 7928 | 279904 |
| DISTRICT OF COLU | 192468 | 18288 | 85266 | 223636 | 17092 | 91559 |
| FLORIDA. | 881497 | 827151 | 4695711 | 951357 | 834646 | 5006492 |
| GEORGIA | 853639 | 66442 | 2300583 | 961370 | 50543 | 2386252 |
| HAWAll. | 17957 | 43574 | 518156 | 11594 | 41351 | 496530 |
| IDAHO. | 2093 | 31154 | 480852 | 1396 | 25588 | 488130 |
| ILLINOIS | 824978 | 492074 | 4305368 | 932089 | 437185 | 4552739 |
| Indiana | 210877 | 51265 | 2446150 | 235900 | 49572 | 2578476 |
| IOWA. | 25035 | 17489 | 1312205 | 24893 | 16360 | 1392396 |
| KANSAS | 74527 | 51206 | 1101043 | 73763 | 45727 | 1148496 |
| KENTUCKY | 130540 | 12282 | 1673926 | 141998 | 10881 | 1776034 |
| LOUISIANA. | 632984 | 48816 | 1398996 | 717069 | 49232 | 1466420 |
| MAINE | 3219 | 3649 | 597526 | 2108 | 3575 | 627048 |
| MARYLAND | 591508 | 67941 | 1715877 | 649555 | 65161 | 1792282 |
| MASSACHUSETTS. | 154365 | 152203 | 2607897 | 165778 | 151993 | 2812926 |
| MICHIGAN | 625852 | 104320 | 3823749 | 709891 | 102683 | 3994835 |
| MINNESOTA | 51583 | 28536 | 2079287 | 48161 | 26721 | 2160392 |
| MISSISSIPPI. | 440448 | 8288 | 810679 | 508192 | 8454 | 852838 |
| MISSOURI | 264384 | 31870 | 2189658 | 302897 | 31128 | 2329115 |
| MONTANA | 1475 | 6681 | 398880 | 992 | 6202 | 404075 |
| NEBRASKA | 29243 | 19958 | 727788 | 30573 | 18421 | 762714 |
| NEVADA. | 43769 | 70235 | 516298 | 41908 | 60728 | 497736 |
| NEW HAMPSHIRE | 4163 | 6229 | 539783 | 3297 | 5718 | 559420 |
| NEW JERSEY | 517491 | 395798 | 2858177 | 578607 | 382638 | 3041700 |
| NEW MEXICO | 16869 | 297679 | 456742 | 15152 | 304530 | 472151 |
| NEW YORK | 1404308 | 1156964 | 6237215 | 1640611 | 1193071 | 6629785 |
| NORTH CAROLINA | 708238 | 46819 | 2525805 | 798243 | 35184 | 2638886 |
| NORTH DAKOTA | 2171 | 2544 | 316773 | 1497 | 2397 | 317661 |
| OHIO | 560730 | 71786 | 4642245 | 635577 | 71952 | 4939635 |
| OKLAHOMA. | 119162 | 48150 | 1393713 | 124134 | 43476 | 1474095 |
| OREGON ... | 26037 | 66916 | 1338090 | 23972 | 53149 | 1387983 |
| PENNSYLVANIA | 530366 | 123841 | 5074421 | 610553 | 119196 | 5458253 |
| RHODE ISLAND | 20763 | 24366 | 439395 | 20777 | 23973 | 475538 |
| SOUTH CAROLINA | 505355 | 17368 | 1203284 | 572764 | 15027 | 1245120 |
| SOUTH DAKOTA | 2046 | 2804 | 342424 | 1336 | 2766 | 351501 |
| TENNESSEE | 378539 | 18145 | 1998011 | 430552 | 16496 | 2121943 |
| TEXAS. | 1020663 | 2317674 | 5292263 | 1084083 | 2267517 | 5487048 |
| UTAH. | 7447 | 45519 | 820996 | 5158 | 43121 | 830880 |
| VERMONT | 1168 | 1965 | 276693 | 862 | 1930 | 286473 |
| VIRGINIA. | 582343 | 90742 | 2428295 | 626725 | 80899 | 2504616 |
| WASHINGTON. | 87077 | 122813 | 2262094 | 75554 | 105472 | 2304977 |
| WEST VIRGINIA | 27199 | 4480 | 843363 | 30731 | 4474 | 908757 |
| WISCONSIN. | 121790 | 50441 | 2241991 | 134375 | 46477 | 2326923 |
| WYOMING | 2047 | 13624 | 217189 | 1676 | 13227 | 215806 |
| UNITED STATES. . | 14900869 | 12052243 | 96670030 | 16476230 | 11468942 | 101144508 |

Table 6.15. Population and Census Undercount Rates by Race and Sex: United States, 50 States, and the District of Columbla, 1990-Continued


Source: Unpublished data in the Bureau of the Census. Populations are Post Enumeration Survey (PES) estimates. Undercount rates are defined: $100 \times$ (PES pop. - Census pop.)/PES pop. Other is obtained by subtracting Black and Hispanic from Total. The race categories are approximate because of some overlap betweeen Black and Hispanic.

Table 6.16. Crude Undercount Rates and the Corresponding Three Adjusted (Standardized) Rates: United States, 50 States, and the District of Columbla, 1990

| States <br> (1) | Undercount rates |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Crude <br> (2) | Sex-rate adjusted <br> (3) | Race-rate adjusted <br> (4) | Race-sex adjusted |
| ALABAMA. | 1.763 | 1.815 | 1.543 | 1.535 |
| ALASKA. | 1.998 | 1.334 | 1.571 | 2.222 |
| ARIZONA | 2.372 | 1.669 | 1.551 | 2.282 |
| ARKANSAS. | 1.738 | 1.529 | 1.544 | 1.794 |
| CALIFORNIA | 2.727 | 2.213 | 1.557 | 2.088 |
| COLORADO | 2.051 | 1.512 | 1.552 | 2.117 |
| CONNECTICUT | . 641 | 1.538 | 1.544 | . 688 |
| DELAWARE | 1.799 | 1.641 | 1.546 | 1.741 |
| DISTRICT OF COLUN | 3.407 | 3.349 | 1.530 | 1.658 |
| FLORIDA. | 1.962 | 1.969 | 1.544 | 1.579 |
| GEORGIA | 2.125 | 1.903 | 1.547 | 1.806 |
| HAWAII | 1.854 | 1.221 | 1.571 | 2.192 |
| IDAHO. | 2.183 | 1.308 | 1.554 | 2.450 |
| ILLINOIS | . 986 | 1.809 | 1.545 | . 762 |
| INDIANA | . 504 | 1.376 | 1.545 | . 713 |
| IOWA | . 417 | 1.106 | 1.545 | . 896 |
| KANSAS | . 689 | 1.355 | 1.548 | . 916 |
| KENTUCKY. | 1.612 | 1.289 | 1.545 | 1.907 |
| LOUISIANA. | 2.169 | 2.074 | 1.544 | 1.681 |
| MAINE . | . 744 | 1.024 | 1.546 | 1.303 |
| MARYLAND | 2.066 | 1.935 | 1.545 | 1.716 |
| MASSACHUSETTS. | . 475 | 1.273 | 1.541 | . 791 |
| MICHIGAN ....... | . 705 | 1.588 | 1.546 | . 702 |
| MINNESOTA. | . 446 | 1.098 | 1.548 | . 929 |
| MISSISSIPPI. | 2.118 | 2.138 | 1.543 | 1.566 |
| MISSOURI. | . 621 | 1.460 | 1.543 | . 747 |
| MONTANA | 2.352 | 1.180 | 1.552 | 2.749 |
| NEBRASKA. | . 649 | 1.210 | 1.547 | 1.023 |
| NEVADA. | 2.343 | 1.567 | 1.566 | 2.340 |
| NEW HAMPSHIRE | . 837 | 1.068 | 1.549 | 1.349 |
| NEW JERSEY | . 569 | 1.957 | 1.544 | . 198 |
| NEW MEXICO | 3.074 | 2.144 | 1.549 | 2.511 |
| NEW YORK | 1.487 | 2.241 | 1.541 | . 835 |
| NORTH CAROLINA | 1.844 | 1.707 | 1.547 | 1.720 |
| NORTH DAKOTA | . 660 | 1.006 | 1.553 | 1.230 |
| OHIO | . 685 | 1.446 | 1.543 | . 826 |
| OKLAHOMA | 1.784 | 1.367 | 1.546 | 2.000 |
| OREGON. . | 1.859 | 1.074 | 1.551 | 2.363 |
| PENNSYLVANIA | . 294 | 1.373 | 1.542 | . 509 |
| RHODE ISLAND | . 134 | 1.187 | 1.541 | . 537 |
| SOUTH CAROLINA. | 2.029 | 1.957 | 1.546 | 1.656 |
| SOUTH DAKOTA. | . 978 | 1.036 | 1.549 | 1.523 |
| TENNESSEE | 1.743 | 1.550 | 1.544 | 1.779 |
| TEXAS. | 2.763 | 2.428 | 1.548 | 1.917 |
| UTAH. | 1.727 | 1.039 | 1.552 | 2.267 |
| VERMONT | 1.113 | 1.024 | 1.549 | 1.670 |
| VIRGINIA. | 1.999 | 1.700 | 1.548 | 1.881 |
| WASHINGTON. | 1.842 | 1.154 | 1.554 | 2.264 |
| WEST VIRGINIA | 1.403 | 1.186 | 1.543 | 1.804 |
| WISCONSIN | . 615 | 1.223 | 1.547 | . 974 |
| WYOMING | 2.153 | 1.347 | 1.555 | 2.381 |
| UNITED STATES. | 1.584 | 1.789 | 1.546 | 1.379 |

## Program 6.4 (Census Undercount Rates for States)

DIMENSTON $Y(4,5,52), P(4,3,52), U(3,2,52), T(3,2,52), \operatorname{ET}(52), E R(52)$,
$\left.1 \operatorname{READ}(5,2)^{52}(V(I, U, K), I=1,3), U=1,2\right),((U(I, U, K), I=1,3), U=1,2)$
$2 \operatorname{FORAT}(G F 12.0 / G F 12,3)$
2 FORMAT $6 F 12$

3
$\left.\mathrm{DO}_{3} \mathrm{H}_{\mathrm{I}}=1\right)^{\prime}=0$.



4
CONTINUE
DO $5=152$
$E T(K)=0.8^{52}$

5 E



16

17

DO $18=1.2$
$E R(K)=0.0$
$0018 \quad I=1,3$
00
$0=(P \quad J=1,2$
18
$\}_{k}^{2} / P(4)^{3}$
$7 R(I, U)=0.2$
ROI, U $=0.0$
DO II I $=1.2$
DO 11 J $=1.2$
$H=0.0$
$\begin{array}{ll}D 0 & 10 \\ D 0 & I O \\ W=1.3 \\ & =1.2\end{array}$

$\mathrm{J}=\mathrm{J} S$
$\mathrm{~J}=3$

## 13


14
$G O(T 0.8$
$I F(I 1 . E Q .1)$
$I F(I=I S$
$A=P(I, J S, J J)$
$I=4$
8
10


12
CONTINUE

S $(3, K 1 ; J 13=E R(1)$
CONTUN K
COE
CONTINUE
DO $19 \mathrm{I}=1,3$
DO $19 \mathrm{~J}=1,52$
DO 19
$A A=0.0$
$A A=0.0$
$B B=0.0$
CC=0.0
DO $20 K=1,52$

21 CO=CC+50.*S(I,K,J)
BB (UN.EQ.J. OR.K.EQ.J.OR.K.EQ.JJ) GO TO 20
20
19
9 CONTINUE
22



## Appendix A. Derivation and Summary of Formulas

## A. 1 DERIVATION OF FORMULAS (3.18) THROUGH (3.20)

$$
R=F(\alpha, \beta, \gamma)
$$

$\alpha, \beta$, and $\gamma$ assume values $A, B, C$ in population 1 and $a, b, c$ in population 2 , so that the difference $R_{2}-R_{1}$ is

$$
\begin{equation*}
F(a, b, c)-F(A, B, C)=\alpha \text {-effect }+\beta \text {-effect }+\gamma \text {-effect . } \tag{A1}
\end{equation*}
$$

We write the three effects as

$$
\begin{align*}
a \text {-effect } & =w[F(a, b, c)-F(A, b, c)]+x[F(a, b, C)-F(A, b, C)] \\
& +y[F(a, B, c)-F(A, B, c)]+z[F(a, B, C)-F(A, B, C)],  \tag{A2}\\
\beta \text {-effect } & =w[F(a, b, c)-F(a, B, c)]+x[F(a, b, C)-F(a, B, C)] \\
& +y[F(A, b, c)-F(A, B, c)]+z[F(A, b, C)-F(A, B, C)],  \tag{A3}\\
\gamma \text {-effect } & =w[F(a, b, c)-F(a, b, C)]+x[F(A, b, c)-F(A, b, C)] \\
& +y[F(a, B, c)-F(a, B, C)]+z[F(A, B, c)-F(A, B, C)], \tag{A4}
\end{align*}
$$

where $w, x, y, z$ are suitably chosen constants.
Substituting (A2) through (A4) on the right-hand side of (A1) and then equating the coefficients from both sides, we have

$$
w=z=1 / 3, \quad x=y=1 / 6
$$

Substituting these values in (A2) through (A4), we obtain the formulas in (3.18) through (3.20).

## A. 2 THREE FACTORS WITH INTERACTIONS

$$
\begin{equation*}
\mathrm{F}(\alpha, \beta, \gamma)=\mathrm{K}+\mathrm{E}_{\alpha}+\mathrm{E}_{\beta}+\mathrm{E}_{\gamma}+\mathrm{E}_{\alpha \beta}+\mathrm{E}_{\alpha \gamma}+\mathrm{E}_{\beta \gamma}+\mathrm{E}_{\alpha \beta \gamma} \tag{A5}
\end{equation*}
$$

where

$$
\begin{gather*}
\sum_{\alpha} \mathrm{E}_{\alpha}=\sum_{\beta} \mathrm{E}_{\beta}=\sum_{\gamma} \mathrm{E}_{\gamma}=0,  \tag{A6}\\
\sum_{a} \mathrm{E}_{\alpha \beta}=\sum_{\beta} \mathrm{E}_{\alpha \beta}=\sum_{a} \mathrm{E}_{\alpha \gamma}=\sum_{\gamma} \mathrm{E}_{\alpha \gamma}=\sum_{\beta} \mathrm{E}_{\beta \gamma}=\sum_{\gamma} \mathrm{E}_{\beta \gamma}=0,  \tag{A7}\\
\sum_{\alpha} \mathrm{E}_{\alpha \beta \gamma}=\sum_{\beta} \mathrm{E}_{\alpha \beta \gamma}=\sum_{\gamma} \mathrm{E}_{\alpha \beta \gamma}=0 . \tag{AB}
\end{gather*}
$$

There are 27 unknowns in (A5), which can be solved from 27 independent equations ( 8 in $A 5,3$ in $A 6$, 9 in A7, and 7 in A8). Using these solutions, we have

$$
\begin{gathered}
F(\mathrm{a}, \mathrm{~b}, \mathrm{c})-\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\left(\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{A}}\right)+\left(\mathrm{E}_{\mathrm{b}}-\mathrm{E}_{\mathrm{B}}\right)+\left(\mathrm{E}_{\mathrm{c}}-\mathrm{E}_{\mathrm{C}}\right)+\left(\mathrm{E}_{\mathrm{abc}}-\mathrm{E}_{\mathrm{ABC}}\right) \\
\text {-effect }+\beta \text {-effect }+\boldsymbol{\gamma} \text {-effect }+\alpha \beta \boldsymbol{\gamma} \text {-interaction effect },
\end{gathered}
$$

where

$$
\begin{aligned}
& \alpha \text {-effect }=\frac{\begin{array}{l}
{[F(\mathrm{a}, \mathrm{~b}, \mathrm{c})-\mathrm{F}(\mathrm{~A}, \mathrm{~b}, \mathrm{c})]+[\mathrm{F}(\mathrm{a}, \mathrm{~B}, \mathrm{C})-\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})]} \\
+[\mathrm{F}(\mathrm{a}, \mathrm{~b}, \mathrm{C})-\mathrm{F}(\mathrm{~A}, \mathrm{~b}, \mathrm{C})]+[\mathrm{F}(\mathrm{a}, \mathrm{~B}, \mathrm{c})-\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{c})]
\end{array}}{4}, \\
& {[F(a, b, c)-F(A, b, c)]+[F(a, B, C)-F(A, B, C)]} \\
& \alpha \beta \gamma \text {-interaction effect }=\frac{-[F(a, b, C)-F(A, b, C)]-[F(a, B, c)-F(A, B, c)]}{4}
\end{aligned}
$$

$\beta$-effect and $\gamma$-effect have expressions similar to that for $\alpha$-effect. If we distribute the $\alpha \beta \gamma$-interaction effect equally among the three main effects, we obtain the formulas in (3.18) through (3.20). All three two-factor interaction effects in the difference $\mathrm{R}_{2}-\mathrm{R}_{1}$ corresponding to the model (A5) turn out to be zero.

For any number of factors, the difference $F(a, b, c, \ldots)-F(A, B, C, \ldots)$ involves two-factor interaction effects such as ( $\mathrm{E}_{\mathrm{ab}}-\mathrm{E}_{\mathrm{AB}}$ ), each of which vanishes because of the conditions similar to those in (A7). For example, the two equations $\mathrm{E}_{\mathrm{AB}}+\mathrm{E}_{\mathrm{aB}}=0$ and $\mathrm{E}_{\mathrm{aB}}+\mathrm{E}_{\mathrm{ab}}=0$ together give $\mathrm{E}_{\mathrm{AB}}=\mathrm{E}_{\mathrm{ab}}$. Thus, the two-factor interaction effects are always zero regardless of the number of factors involved. This provides a justification for writing the difference $R_{2}-R_{1}$ in terms of only the main effects, as in (A1) above.

## A. 3 DERIVATION OF FORMULAS IN (5.16)

$$
\begin{equation*}
\frac{N_{i j k}}{N_{\ldots . .}}=A_{i j k} B_{i j k} C_{i j k}, \tag{A9}
\end{equation*}
$$

where $A_{i j k}, B_{i j k}$, and $C_{i j k}$ involve ratios which represent, respectively, the l-effect, the J-effect, and the K-effect.

We write these three quantities as
where $\mathrm{x}, \mathrm{y}, \mathrm{z}$ are suitably chosen exponents corresponding to the ratios with 0,1 , and 2 dots in the numerators, respectively.

Substituting (A10) through (A12) on the right-hand side of (A9) and then equating the exponents from both sides, we have

$$
x=z=1 / 3, \quad y=1 / 6
$$

Substituting these values in (A10) through (A12), we obtain the formulas in (5.16).

## A. 4 DERIVATION OF FORMULAS (6.4) AND (6.5)

Six Consistent Sets for Three Populations

| Set no. | Effects of factor a |  |  | Standardized rates controiled for all factors except $\alpha$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\alpha_{12.3}$ | $\alpha_{13,2}$ | $\alpha_{23.1}$ | $\alpha_{1.23}$ | $a_{2.13}$ | $\alpha_{3.12}$ |
| 1....... | $\alpha_{12}$ | $\alpha_{13}$ | $\alpha_{13}-\alpha_{12}$ | $\alpha_{1.2}$ | $\alpha_{2.1}$ | $\alpha_{1.2}+\left(\alpha_{3.1}-\dot{\alpha}_{1.3}\right)$ |
| 2...... |  |  |  | $\alpha_{1.3}$ | $\alpha_{1,3}+\left(\alpha_{2.1}-\alpha_{1,2}\right)$ | $a_{3.1}$ |
| 3....... | $\alpha_{12}$ | $\alpha_{12}+\alpha_{23}$ | $\alpha_{23}$ | $\alpha_{1.2}$ | $\alpha_{2,1}$ | $\alpha_{2.1}+\left(\alpha_{3.2}-\alpha_{2.3}\right)$ |
| 4....... |  |  |  | $\alpha_{2,3}-\left(\alpha_{2.1}-\alpha_{1,2}\right)$ | $\alpha_{2.3}$ | $\alpha_{3.2}$ |
| 5...... | $a_{13}-a_{23}$ | $a_{13}$ | $\alpha_{23}$ | $\alpha_{1.3}$ | $\alpha_{3.1}\left(\alpha_{3,2}-\alpha_{2,3}\right)$ | $\alpha_{3.1}$ |
| 6....... |  |  |  | $\alpha_{3.2}\left(\alpha_{3.1}-\alpha_{1,3}\right)$ | $\alpha_{2.3}$ | $\alpha_{3.2}$ |

A. 5 DERIVATION OF FORMULAS (6.7) AND (6.8)
Forty-Elght Consistent Sets for Four Populations

| ${ }_{\text {sod }}^{\text {sod }}$ | Etrects of factor $\alpha$ |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | as | asam | arase | *an14 | $\alpha_{\text {a }} \times 13$ | anal2 |  | $x_{21}$ | $\omega_{0.110}$ | ances |
| $\begin{aligned} & 1 \ldots \\ & 2 \ldots \\ & 2 \ldots \\ & 3 \ldots \end{aligned}$ | $0 / 2$ | as | 04 | $a_{15} a_{12}$ | $\mathrm{arccoc}_{12}$ | arcas | $\begin{gathered} c_{12} \\ 0 \\ c_{21} \\ c_{12} \end{gathered}$ |  |  | $a_{12}+\left(a_{1},-a_{1}\right)$ $\alpha_{13}+1 a_{4 . r} \alpha_{4.1}$ |
| $\left.\begin{array}{c\|c\|} \hline 4 \cdots \\ 8 & \cdots \\ 8 \ldots \end{array} \right\rvert\,$ | $\boldsymbol{a}_{12}$ | $\alpha_{n}$ | $\alpha_{2}$ | $a_{10} a_{12}$ | $\alpha_{4}$ | $a_{12}+a_{2 x} \cdot a_{13}$ | $\alpha_{20}\left(\alpha_{2} \cdot a_{12} a_{3}\right.$ | $\left\|\begin{array}{c} \alpha_{21} \\ \alpha_{13}+1+\alpha_{21}-a_{2} \\ \alpha_{2} \\ \alpha_{2} \end{array}\right\|$ | $\left.a_{2 N}-a_{21}-a_{12}\right)+\left(a_{a_{11}}-a_{21}\right.$ |  |
| $\begin{aligned} & 7 \ldots \\ & 8 \ldots \\ & 8 \ldots \end{aligned}$ | ans | $\alpha_{10}$ | $a_{3}+a_{n}$ | $\alpha_{15} 0_{12}$ | $\alpha_{33}+\alpha_{5 c} a_{12}$ | as | $\sigma_{a n}\left(\alpha_{a 1}-\alpha_{13} \alpha_{13}\right.$ |  |  |  $\mathrm{O}_{0}+\mathrm{H} \mathrm{O}_{4} \mathrm{Ca}$ |
| $\begin{aligned} & 10 . . \\ & 11 \\ & 12 \\ & 12 \end{aligned} . . .$ | $4{ }_{12}$ | $\alpha_{18}+\alpha_{z}$ | $a_{14}$ | $\alpha_{23}$ | $a_{48} a_{18}$ | $a_{16} C_{47} \alpha_{8}$ | $\left.\begin{gathered} \alpha_{12} \\ a_{2 n} \\ \alpha_{25}\left(\alpha_{2} r\right. \\ \alpha_{12} \end{gathered} \right\rvert\,$ | $\left\|\begin{array}{cc} a_{1}+1 & a_{21}-a_{21} \\ a_{2} \\ \alpha_{23} \end{array}\right\|$ |  | $\operatorname{arc} \cos _{4}$ <br>  |
| $\begin{aligned} & 13 . . \\ & 14 \\ & 14 . . . \end{aligned}$ | ars | $a_{0 x} a_{x}$ | 044 | $\alpha_{16}-a_{17} \alpha_{04}$ | 0460 | ** |  |  |  |  |
| $\begin{aligned} & 18 . . \\ & 17 \\ & 18 \\ & 18 \end{aligned}$ | $\alpha_{12}$ | $a_{1+1}+\infty_{0}$ | $4 x_{1}+a_{x}$ | $\alpha_{s}$ | $\alpha_{0}$ | $\omega_{2 r} \alpha_{s}$ |  |  |  | $a_{21}+\left(a_{i s} a_{2}\right)$ $\alpha_{2 a t}\left(a_{4} a_{0} \alpha_{2}\right)$ 04 |
| $\begin{array}{ll} 18 & . . \\ 20 \\ 20 \\ 21 & . . \end{array}$ | $\alpha_{12}$ | $\alpha_{14}+\alpha_{x}$ | $a_{12}+a_{2 x}+a_{04}$ | $\infty$ | $\alpha_{2}+\infty_{*}$ | $\alpha_{n}$ |  |  |  | $\alpha_{21}+\left(\alpha_{01} \alpha_{23}\right)+\left(\alpha_{45} \alpha_{30}\right)$ <br>  |
|  | $\alpha_{12}$ | $\alpha_{18}+\alpha_{3 x} \alpha_{4}$ | $\alpha_{12}+\alpha_{2 x}$ | ${ }^{+04}$ | $\omega_{2}$ | as |  | $\left.\begin{array}{rr} \alpha_{21} \\ \alpha_{20} \\ \alpha_{01}\left(\alpha_{4}\right. & \alpha_{21} \\ \alpha_{21} \end{array} \right\rvert\,$ |  |  |
| $\begin{aligned} & 25 \quad .0 \\ & 28 \\ & 28 \\ & 28 \end{aligned}$ | $\alpha_{s c} \alpha_{s}$ | $*_{4}$ | 044 | $\alpha_{4}$ |  | arcoms |  |  |  |  |
| $\begin{aligned} & 28 . . \\ & 29 \\ & 30 .: . \end{aligned}$ | $a_{10} a_{\infty}$ | 0 | $a_{4}$ | $\alpha_{13}+\alpha_{2 x}-\alpha_{14}$ | $a_{x}$ | $\alpha_{15} \alpha_{13}$ | $\left.\begin{array}{r} a_{13} \\ a_{13} \\ a_{4 x}\left(a_{4}+a_{14} A\right. \end{array}\right)$ |  |  |  |
| $\begin{aligned} & 31 . . \\ & 32 \\ & 33 \\ & 33 \end{aligned}$ | $\alpha_{1} \alpha_{x}$ | 013 | ${ }^{*}$ | $\alpha_{23}$ | $\alpha_{20}$ | $\alpha_{2 r} \alpha_{0}$ |  |  | $\left.\begin{array}{r} \alpha_{a_{1}} \\ \alpha_{21} \\ \alpha_{21}+\left(\alpha_{02}\right. \\ \alpha_{32} \end{array} \right\rvert\,$ |  |
| $\begin{aligned} & 34 . . \\ & 35 . \\ & 38 . . \end{aligned}$ | $\alpha_{15} \alpha_{x}$ | $\alpha_{43}$ | $a_{n s t}+a_{4}$ | $\alpha_{*}$ | $\alpha_{4}+\alpha_{s c}$ | $\omega_{0}$ |  | vart (oarar $\left.a_{22}\right)$ <br>  |  |  |
| $\begin{aligned} & 37 . . \\ & { }_{39}^{38} \because . \\ & 39 \end{aligned}$ | $a_{13}+\alpha_{s c} \sigma_{\text {cex }}$ | ${ }_{4}$ | antas | $a_{\text {ax }} \mathrm{Cax}^{\text {a }}$ | $\omega_{0 x}$ | as | $\alpha_{42}\left(\alpha_{43} \alpha_{3 i n}-\left(\alpha_{0.3}-\alpha_{13}\right)\right.$ $\alpha_{a}{ }^{-1}\left(\alpha_{a_{1}-1} \alpha_{13}\right.$ | $\omega_{0.1}+\left(\alpha_{45}-\omega_{3}\right)-\left(\alpha_{42}-\omega_{2 A}\right)$ $\operatorname{costr}_{4}\left(a_{42} \alpha_{2 A} \alpha_{2 A}\right.$ |  | $\alpha_{0.1}+\begin{gathered}\alpha_{45} \\ a_{0} \\ \alpha_{0} \\ \alpha_{4} \\ \alpha_{4}\end{gathered}$ |

Forty-Elght Consistent Sets for Four Populations-Continued

| Sod | Elfects of faction $\alpha$ |  |  |  |  |  | Stendurdizod rates oontrolbd for all factors excopet a |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | a 123 | Q120 | aines | $\alpha_{1214}$ | $\alpha_{2,13}$ | $\alpha_{0 \times 12}$ | 0,20 | $\alpha_{214}$ | © 0.12 | anls |
| $40 .$. | $\alpha_{x} \alpha_{x}$ | $\alpha_{14}+\alpha_{x}-\alpha_{x}$ | $0 / 14$ | $\alpha_{\infty}$ | $\alpha_{2 x}$ | $\infty$ | $\alpha_{23}+a_{4} a_{2} a_{2}\left(a_{4} \cdot a_{1} a_{1}\right.$ | $\left[\begin{array}{cc} a_{4}+\left(\begin{array}{c} 045 \\ \alpha_{2 N} \\ \\ \alpha_{23} \end{array}\right] \end{array}\right.$ |  | $a_{23}+a_{4 i r} a_{0} a_{21}$ |
| 44.0 | $a_{15} a_{s c} \alpha^{\text {a }}$ | $\alpha_{1} \alpha_{0}$ | 0.4 | $w_{2}$ | $\alpha_{2 x}+\alpha_{4}$ | $\omega_{0}$ |  |  | $\alpha_{\alpha_{1}+1} \alpha_{45} \alpha_{\alpha_{0}}$ | $\alpha_{021} a_{4 s}-a_{a n}$ |
| $\begin{aligned} & 46 . \\ & { }_{40} \\ & 48 \end{aligned}$ | $a_{x} \cdot \alpha_{x}$ | $\alpha_{n} \alpha_{\infty}$ | and | $\alpha_{2 x} \alpha_{n}$ | $\omega_{*}$ | $\infty$ |  |  |  |  |

## A. 6 SUMMARY OF FORMULAS IN CHAPTER 2

$\alpha, \beta, \gamma, \ldots$ are the factors that assume values $A, B, C, \ldots$ in population 1 and $a, b, c, \ldots$ in population 2. The rate $R=\alpha \beta \gamma \ldots$, so that in population 1 and population $2, R_{1}=A B C$... and $R_{2}=a b c$... . We define Q corresponding to the number of factors $2,3,4,5$, and 6 , respectively, as

$$
\begin{gathered}
Q=\frac{b+B}{2}, \\
Q=\frac{b c+B C}{3}+\frac{b C+B c}{6}, \\
Q=\frac{b c d+B C D}{4}+\frac{b c D+b C d+B c d+B C d+B c D+b C D}{12}, \\
Q=\frac{b c d e+B C D E}{5}+\frac{b c d E+b C D E}{20} \\
+\frac{b c d e f+B C D E F}{6} \\
Q=\frac{b c d e F+b C D E F}{30} \\
+\frac{b c d E F+b C d e f}{} \\
+\frac{B C D e f+B c D E F}{60} .
\end{gathered}
$$

The $\beta$-standardized rate, $\beta \gamma$-standardized rate, $\beta \gamma \delta$-standardized rate, $\beta \gamma \delta \epsilon$-standardized rate, and $\beta \gamma \delta \epsilon \eta$-standardized rate in population 1 corresponding to, respectively, 2, 3, 4, 5, and 6 factors are given by QA, when the appropriate $Q$ is chosen from the above. The corresponding standardized rates in population 2 are Qa . The numbers in the denominators of the above expressions are $\mathrm{P}, \mathrm{P}\binom{\mathrm{P}-1}{1}$, $P\binom{P-1}{2}, \ldots$, where $P$ is the number of factors.

## A. 7 SUMMARY OF FORMULAS IN CHAPTER 3

Using notation as in section $A .6$, the rate $R=F(\alpha, \beta, \gamma, \ldots)$, so that $R_{1}=F(A, B, C, \ldots)$, and $R_{2}=F(a, b, c, \ldots)$. We define $Q(A)$ corresponding to the number of factors $2,3,4,5$, and 6 , respectively, as

$$
\begin{gathered}
Q(A)=\frac{F(A, b)+F(A, B)}{2}, \\
Q(A)=\frac{F(A, b, c)+F(A, B, C)}{3}+\frac{F(A, b, C)+F(A, B, c)}{6}, \\
Q(A)=\frac{F(A, b, c, d)+F(A, B, C, D)}{4} \\
+\frac{F(A, b, c, D)+F(A, b, C, D)}{12}, \\
Q(A)=\frac{F(A, b, c, d, e)+F(A, B, C, D, E)}{5} \\
+\frac{\begin{array}{l}
F(A, b, c, d, E)+F(A, b, c, D, e)+F(A, b, C, d, e)+F(A, B, c, d, e) \\
+F(A, B, C, D, e)+F(A, B, C, d, E)+F(A, B, C, D, E)+F(A, b, C, D, E)
\end{array} 20}{20}
\end{gathered}
$$

$$
\begin{aligned}
& +\frac{\begin{array}{l}
F(A, b, c, D, E)+F(A, b, C, d, E)+F(A, b, C, D, e) \\
+F(A, B, C, d, e)+F(A, B, c, D, e)+F(A, B, c, d, E)
\end{array}}{30}, \\
& Q(A)=\frac{F(A, b, c, d, e, f)+F(A, B, C, D, E, F)}{6} \\
& F(A, b, c, d, e, F)+F(A, B, c, d, e, f) \\
& +F(A, B, C, D, E, f)+F(A, b, C, D, E, F) \\
& +\longrightarrow 30 \\
& F(A, b, c, d, E, F)+F(A, b, C, d, E, f) \\
& +F(A, b, C, D, e, f)+F(A, B, C, d, e, f) \\
& +F(A, B, C, D, e, f)+F(A, B, c, D, e, F) \\
& +\frac{+F(A, B, c, d, E, F)+F(A, b, c, D, E, F)}{60} .
\end{aligned}
$$

The $\beta$-standardized rate, $\beta \gamma$-standardized rate, $\beta \gamma \delta$-standardized rate, $\beta \gamma \delta \epsilon$-standardized rate, and $\beta \gamma \delta \in \eta$-standardized rate in population 1 corresponding to, respectively, $2,3,4,5$, and 6 factors are given by $Q(A)$, when the appropriate $Q(A)$ is chosen from the above. The corresponding standardized rates in population 2 are $Q(a)$. Obviously, the formulas in section A. 6 can be derived as special cases of those in this section by substituting $\alpha \beta \gamma \ldots$ for $F(\alpha, \beta, \gamma, \ldots)$.

## A. 8 SUMMARY OF FORMULAS IN CHAPTER 4

Using the vector notation for the scalars in section A.7, the rate $R=F(\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \ldots)$, so that $R_{1}=$ $F(\bar{A}, \bar{B}, \bar{C}, \ldots .$.$) , and R_{2}=F(\bar{a}, \bar{b}, \bar{c}, \ldots)$. We define $Q(\bar{A})$ corresponding to the number of factors $2,3,4,5$, and 6 exactly the same way as in section A. 7 except that the scalars A, B, C, D, E, F, a, b, c, d, e, and $f$ in the equations are now replaced by the corresponding vectors $\bar{A}, \bar{B}, \bar{C}, \bar{D}, \bar{E}, \bar{F}, \bar{a}, \bar{b}, \bar{c}, \bar{d}, \bar{e}$, and $\bar{f}$. As shown in section A.7, the standardized rates in population 1 are given by $Q(\bar{A})$ 's and those in population 2 are given by $Q(\bar{a})$ 's.

## A. 9 SUMMARY OF FORMULAS IN CHAPTER 5

When there is only one factor $I, N_{1}$ and $T_{i}$ are the number of persons and the rate for the ith category of I , and N and T . are the total number of persons and the crude rate, in population 1. When there are two factors I and $\mathrm{J}, \mathrm{N}_{\mathrm{ij}}$ and $\mathrm{T}_{\mathrm{ij}}$ are the number of persons and the rate for the $(\mathrm{i}, \mathrm{j})$-category of I and $\mathrm{J}, \mathrm{N}_{\mathrm{i}}$ and $T_{1 .}$ are the number of persons and the rate for the ith category of $I, N_{j}$ and $T_{j, ~}$ are the number of persons and the rate for the jth category of J , and $\mathrm{N}_{\text {.. }}$ and $\mathrm{T}_{\text {.. are }}$ a the total number of persons and the crude rate, in population 1. Analogous symbols are used for population 2 with lower-case letters $n$ and $t$. For higher number of factors $I, J, K, L, \ldots .$. , the symbols are extended along the same lines.

For number of factors $1,2,3,4,5$, and 6 , the $A$ 's are defined, respectively, as follows:

$$
\begin{aligned}
& A_{i}=\frac{N_{i}}{N}, \\
& A_{i j}=\left(\frac{N_{i j}}{N_{j}} \cdot \frac{N_{i j}}{N}\right)^{\frac{1}{2}}, \\
& A_{i j k}=\left(\frac{N_{i k}}{N_{j, k}}\right)^{\frac{1}{3}} \cdot\left(\frac{N_{i . k}}{N_{j .}} \cdot \frac{N_{i . k}}{N_{. k}}\right)^{\frac{1}{6}} \cdot\left(\frac{N_{i .}}{N_{K}}\right)^{\frac{1}{3}},
\end{aligned}
$$

Like the numbers in the denominators in the expressions in sections A. 6 and A.7, the exponents in the above expressions are the reciprocals of $P, P\left(P_{1}^{-1}\right), P\left(P^{2}\right), \ldots$, where $P$ is the number of factors. Similar expressions for B's, C's, D's, .... are obtained from those for A's above by interchanging, respectively, i and $\mathrm{j}, \mathrm{i}$ and k , i and $\mathrm{I}, \ldots .$. . a's, b's, c's, d's, .... are obtained from A's, B's, C's, D's, .... by using n's in place of N's.

The l-standardized rate, ( $1, \mathrm{~J}$ )-standardized rate, ( $1, \mathrm{~J}, \mathrm{~K}$ )-standardized rate, ( $\mathrm{I}, \mathrm{J}, \mathrm{K}, \mathrm{L}$ )-standardized rate, ( $I, J, K, L, M$ )-standardized rate, and (I,J,K,L,M,N)-standardized rate in population 1 corresponding to $1,2,3$, 4,5 , and 6 factors are denoted by $R(\bar{T})$ which are, respectively,

$$
\begin{aligned}
& R(\bar{T})=\sum_{i} \frac{\frac{n_{i}}{n_{.}}+\frac{N_{i}}{N_{.}}}{2} T_{i}, \\
& R(\bar{T})=\sum_{i, j} \frac{\frac{n_{i l}}{n_{n}}+\frac{N_{i n}}{N_{. j}}}{2} T_{i l}, \\
& R(\bar{T})=\sum_{i, j, k} \frac{\frac{n_{i j k}}{n_{\ldots}}+\frac{N_{i j k}}{N_{\ldots} \ldots}}{2} T_{i j k}, \\
& R(\bar{T})=\sum_{i, k, k_{1}} \frac{\frac{n_{|k|}}{n_{n} \ldots}+\frac{N_{[|k|}}{N \ldots}}{2} T_{[|k|}, \\
& R(\bar{T})=\sum_{i, j, k, m} \frac{\frac{n_{i j k l m}}{n_{n} \ldots . .}+\frac{N_{\text {IkkIm }}}{N}}{2} T_{\text {ijklm }}, \\
& R(\bar{T})=\sum_{i, j, k, 1, m, n} \frac{\frac{n_{\mathrm{ijk} / m \mathrm{n}}}{n_{n} \ldots . .}+\frac{N_{\mathrm{ikj} / m n}}{N}}{2} \mathrm{~T}_{\mathrm{ijk} / \mathrm{mn} n} .
\end{aligned}
$$

The corresponding standardized rates in population 2 are $R(\overline{\mathrm{t}})$, which are obtained from the above expressions by replacing T's by the corresponding t's.

The R-standardized rate, (J,R)-standardized rate, (J,K,R)-standardized rate, (J,K,L,R)-standardized rate, ( $J, K, L, M, R$ )-standardized rate, and ( $J, K, L, M, N, R$ )-standardized rate in population 1 corresponding to 1,2 , $3,4,5$, and 6 factors are denoted by $\mathrm{I}(\overline{\mathrm{A}})$ which are, respectively,
$I(\bar{A})=\sum_{i} \frac{t_{i}+T_{i}}{2} A_{i}$,
$I(\bar{A})=\sum_{i, j} \frac{t_{i j}+T_{i j}}{2}$ [QA for 2 factors in section A. 6 with subscripts ij in each letter],
$I(\bar{A})=\sum_{\mathrm{L}_{\mathrm{j}, \mathrm{k}}} \frac{\mathrm{t}_{\mathrm{j} k}+\mathrm{T}_{\mathrm{ijk}}}{2}$ [QA for 3 factors in section A. 6 with subscripts ijk in each letter],
$I(\bar{A})=\sum_{i, k, k, 1} \frac{t_{i k k}+T_{i j k \mid}}{2}$ [QA for 4 factors in section A. 6 with subscripts ijkl in each letter],
$I(\bar{A})=\sum_{\mathrm{l}_{1, \mathrm{k}, \mathrm{l}, \mathrm{m}}} \frac{\mathrm{t}_{\mathrm{ikk} \mathrm{m}}+\mathrm{T}_{\mathrm{iklm}}}{2}$ [QA for 5 factors in section A .6 with subscripts ijklm in each letter],

The corresponding standardized rates in population 2 are $1(\overline{\mathrm{a}})$, which are obtained from the above expressions by replacing A's by the corresponding a's.

## A. 10 SUMMARY OF FORMULAS IN CHAPTER 6

When there are two populations 1 and $2, \alpha_{12}$ denotes the factor effect of $\alpha$ and $\alpha_{1.2}$ denotes the standardized rate in population 1 controlled for all other factors except $\alpha$. When there are three populations 1,2 , and $3, \alpha_{12.3}$ and $\alpha_{1.23}$ denote the corresponding numbers when populations 1 and 2 are compared (in the presence of population 3). For four and higher number of populations, analogous symbols are used.

The standardized rates in population 1 controlled for all other factors except $\alpha$ in 3, 4, 5, and $\mathbf{N}$ populations are, respectively, given by

$$
\begin{gathered}
\alpha_{1.23}=\frac{\sum_{i=2}^{3} \alpha_{1.1}}{2}+\frac{\sum_{i=2}^{3}\left[\sum_{l \neq 1,1}^{3} \alpha_{1.1}-\alpha_{1.1}\right]}{6}, \\
\alpha_{1.234}=\frac{\sum_{i=2}^{4} \alpha_{1.1}}{3}+\frac{\sum_{i=2}^{4}\left[\sum_{j \neq 1,1}^{4} \alpha_{1.1}-2 \alpha_{1.1}\right]}{12}, \\
\alpha_{1.2345}=\frac{\sum_{i=2}^{5} \alpha_{1.1}}{4}+\frac{\sum_{i=2}^{5}\left[\sum_{\mid \neq 1,1}^{5} \alpha_{1.1}-3 \alpha_{1.1}\right]}{20}, \\
\alpha_{1.23 . . . N}=\frac{\sum_{i=2}^{N} \alpha_{1.1}}{N-1}+\frac{\sum_{i=2}^{N}\left[\sum_{j \neq 1,1}^{N} \alpha_{1.1}-(N-2) \alpha_{1.1}\right]}{N(N-1)} .
\end{gathered}
$$

When there are 3, 4, 5, and N populations, the factor effects of $\alpha$ in the comparison of populations 1 and 2 are, respectively, given by

$$
\begin{aligned}
& \alpha_{12.3}=\alpha_{12}-\frac{\sum_{j=3}^{3}\left(\alpha_{12}+\alpha_{2 j}-\alpha_{11}\right)}{3}, \\
& \alpha_{12.34}=\alpha_{12}-\frac{\sum_{j=3}^{4}\left(\alpha_{12}+\alpha_{2 j}-\alpha_{11}\right)}{4},
\end{aligned}
$$

$$
\begin{aligned}
& \alpha_{12345}=\alpha_{12}-\frac{\sum_{j=3}^{5}\left(\alpha_{12}+\alpha_{2 j}-\alpha_{11}\right)}{5} \\
& \alpha_{1234 \ldots . . N}=\alpha_{12}-\frac{\sum_{j=3}^{N}\left(\alpha_{12}+\alpha_{2 j}-\alpha_{11}\right)}{N}
\end{aligned}
$$

## Appendix B. References

Arriaga, Eduardo E. 1984. "Measuring and Explaining the Change in Life Expectancies." Demography 21(1): 83-96.

Bachu, Amara. 1981. Urban and Rural Differentials in Fertility in India. Ph.D. Dissertation, Howard University, Washington, D.C.

Bianchi, Suzanne M. and Nancy Rytina. 1986. "The Decline in Occupational Sex Segregation During the 1970s: Census and CPS Comparisons." Demography 23(1): 79-86.

Blake, Judith and Prithwis Das Gupta. 1976. "Components of the Decline in American Marital Fertility Between 1960 and 1970." Manuscript, University of California: Berkeley.

Bongaarts, John. 1978. "A Framework for Analyzing the Proximate Determinants of Fertility." Population and Development Review 4(1): 105-132.
Cho, Lee-Jay and Robert D. Retherford. 1973. "Comparative Analysis of Recent Fertility Trends in East Asia." Proceedings of IUSSP International Population Conference 2: 163-181.
Clogg, Clifford C. 1978. "Adjustment of Rates Using Multiplicative Models." Demography 15(4): 523-539.
Clogg, Clifford C. and Scott R. Eliason. 1988. "A Flexible Procedure for Adjusting Rates and Proportions, Including Statistical Methods for Group Comparisons." American Sociological Review 53: 267-283.
Curtin, Lester R., Jeffrey D. Maurer, and Harry M. Rosenberg. 1980. "On the Selection of a Standard Population for Computing Age-Adjusted Death Rates." Proceedings of the Social Statistics Section, American Statistical Association: 218-223.

Das Gupta, Prithwis. 1978. "A General Method of Decomposing a Difference Between Two Rates into Several Components." Demography 15(1): 99-112.
$\qquad$ . 1984. "Contributions of Other Socio-Economic Factors to the Fertility Differentials of Women by Education: A Multivariate Approach." Genus 40(3-4): 117-127.
$\qquad$ 1987. "Comment on Bianchi and Rytina's 'The Decline in Occupational Sex Segregation During the 1970s: Census and CPS Comparisons." Demography 24(2): 291-295.
$\qquad$ . 1988. "Methods of Decomposing the Difference Between Two Rates with Applications to the Study of Race-Sex Inequality in Earnings in the U.S." Paper presented at the 1988 Joint Statistical Meetings in New Orleans, Louisiana.
$\qquad$ . 1989. "Methods of Decomposing the Difference Between Two Rates with Applications to Race-Sex Inequality in Earnings." Mathematical Population Studies 2(1): 15-36.
$\qquad$ . 1990. "Decomposition of the Difference Between Two Rates When the Factors Are Nonmultiplicative with Applications to the U.S. Life Tables." Paper presented at the 1990 Annual Meeting of the Population Association of America in Toronto, Canada.
$\qquad$ . 1991. "Decomposition of the Difference Between Two Rates and Its Consistency When More than Two Populations are Involved." Mathematical Population Studies 3(2): 105-125.
$\qquad$ . 1992. "The Links Between Standardization of Rates and Decomposition of Rate Differences." Paper presented at the 1992 Joint Statistical Meetings in Boston, Massachusetts.
del Pinal, Jorge. 1989. "AIDS, Blacks and Hispanics: What is the Connection?" Paper presented at the 1989 Public Health Conference on Records and Statistics: National Center for Health Statistics.

Gibson, Campbell. 1976. "The U.S. Fertility Decline 1961-1975: The Contribution of Changes in Marital Status and Marital Fertility." Family Planning Perspectives 8: 249-252.
Hernandez, Donald J. 1984. Success or Failure? Family Planning Programs in the Third World. Westport, Connecticut: Greenwood Press.
Hoem, Jan M. 1987. "Statistical Analysis of a Multiplicative Model and Its Application to the Standardization of Vital Rates: A Review." International Statistical Review 55: 119-152.

Hogan, Howard. 1992. "The 1990 Post-Enumeration Survey: Operations and New Estimates." Paper presented at the 1992 Joint Statistical Meetings in Boston, Massachusetts.
Janowitz, Barbara S. 1976. "An Analysis of the Impact of Education on Family Size." Demography 13(2): 189-198.

Johansen, Robert J. 1990. "Proposed New Standard Population." Proceedings of the Social Statistics Section, American Statistical Association: 176-181.
Keyfitz, Nathan. 1968. Introduction to the Mathematics of Population. Reading, MA: Addison-Wesley.
Kim, Young J. and Donna M. Strobino. 1984. "Decomposition of the Difference Between Two Rates with Hierarchical Factors." Demography 21(3): 361-372.
Kitagawa, Evelyn M. 1955. "Components of a Difference Between Two Rates." Journal of the American Statistical Association 50(272): 1168-1194.
$\qquad$ . 1964. "Standardized Comparisons in Population Research." Demography 1: 296-315.
Kuczynski, Robert R. 1935. The measurement of Population Growth: Methods and Results. New York: Gordon and Breach.

Liao, Tim Futing. 1989. "A Flexible Approach for the Decomposition of Rate Differences." Demography 26(4): 717-726.
Little, R.J.A. and T.W. Pullum. 1979. "The General Linear Model and Direct Standardization: A Comparison." Sociological Methods and Research 7: 475-501
Moreno, Lorenzo. 1991. "An Alternative Model of the Impact of the Proximate Determinants on Fertility Change: Evidence from Latin America." Population Studies 45(2): 313-337.
Myers, George C. 1991. Presentation at the Annual Meeting of the Southern Demographic Association in Jacksonville, Florida.
Nathanson, Constance A. and Young J. Kim. 1989. "Components of Change in Adolescent Fertility, 1971-1979." Demography 26(1): 85-98.
National Center for Health Statistics. 1962. Vital Statistics of the United States, 1960, Vol. I-Natality.
$\qquad$ . 1963. Vital Statistics of the United States, 1960, Vol. II-Mortality, Part A: Washington.
$\qquad$ . 1964. Vital Statistics of the United States, 1962, Vol. II-Mortality, Part A. Washington.
$\qquad$ . 1967a. Vital Statistics of the United States, 1965, Vol. I-Natality: Washington.
$\qquad$ . 1967b. Vital Statistics of the United States, 1965, Vol. II-Mortality, Part A: Washington.
T_ . 1972. A Study of Infant Mortality from Linked Records: Comparison of Neonatal Mortality from Two Cohort Studies, United States, January-March, 1950 and 1960, Series 20, No. 13: Rockville, Maryland.
$\qquad$ . 1982. Monthly Vital Statistics Report: Advance Report of Final Mortality Statistics, 1979, Vol. 31, No. 6, Supplement: Hyattsville, Maryland.
$\qquad$ . 1984. Vital Statistics of the United States, 1980, Vol. I-Natality: Hyattsville, Maryland.
_ . 1985. U.S. Decennial Life Tables for 1979-81, Vol. I, No. 1, United States Life Tables: Hyattsville, Maryland.
$\qquad$ . 1987. Vital Statistics of the United States, 1983, Vol. II-Mortality, Part A: Hyattsville, Maryland.
$\qquad$ . 1990a. Vital Statistics of the United States, 1988, Vol. I-Natality: Hyattsville, Maryland.
___ 1990b. Vital Statistics of the United States, 1987, Vol. II-Mortality, Part A: Hyattsville, Maryland.
_. 1991a. Monthly Vital Statistics Report: Annual Summary of Births, Marriages, Divorces, and
Deaths: United States, 1990 (Provisional Data), Vol. 39, No. 13: Hyattsville, Maryland.
. 1991b. Monthly Vital Statistics Report: Advance Report of Final Natality Statistics, 1989, Vol. 40,
No. 8, Supplement: Hyattsville, Maryland.
_ 1992. Monthly Vital Statistics Report: Advance Report of Final Mortality Statistics, 1989, Vol. 40, No. 8, Supplement 2: Hyattsville, Maryland.
National Office of Vital Statistics. 1956. Vital Statistics of the United States, 1954, Vol. I: Washington.
Pollard, J.H. 1988. "On the Decomposition of Changes in Expectation of Life and Differentials in Life Expectancy." Demography 25(2): 265-276.
Pullum, Thomas W., Lucky M. Tedrow, and Jerald R. Herting. 1989. "Measuring Change and Continuity in Parity Distributions." Demography 26(3): 485-498.
Robinson, J. Gregory and Bashir Ahmed. 1992. "Utility of Synthetic Estimates of Census Coverage for States Based on National Demographic Analysis Estimates." Paper presented at the 1992 Annual Meeting of the Population Association of America, Denver.

Ross, Christine, Sheldon Danziger, and Eugene Smolensky. 1987. "The Level and Trend of Poverty in the United States, 1939-1979." Demography 24(4): 587-600.
Ruggles, Steven. 1988. "The Demography of the Unrelated Individual: 1900-1950." Demography 25(4): 521-536.

Santi, Lawrence L. 1989. "Partialling and Purging: Equivalencies Between Log-Linear Analysis and the Purging Method of Rate Adjustment." Sociological Methods and Research 17(4): 376-397.
Scarborough, James B. 1962. Numerical Mathematical Analysis. Baltimore: The Johns Hopkins Press.
Smith, Herbert L. and Phillips Cutright. 1988. "Thinking About Change in Illegitimacy Ratios: United States, 1963-1983." Demography 25(2): 235-247.
Spencer, Gregory. 1980. "The Contributions of Childessness and Non-marriage to Racial and Ethnic Differences in American Fertility." Paper presented at the 1980 Annual Meeting of the Population Association of America, Denver.
Spiegelman, M. and H.H. Marks. 1966. "Empirical Testing of Standards for the Age-Adjustment of Death Rates by the Direct Method." Human Biology 38: 280-292.
Suchindran, C.M. and Helen P. Koo. 1992. "Age at Last Birth and Its Components." Demography 29(2): 227-245.
Sweet, James A. 1984. "Components of Change in the Number of Households: 1970-1980." Demography 21(2): 129-140.
United Nations. 1988. Demographic Yearbook 1986, Department of International Economic and Social Affairs, Statistical Office: New York.
$\qquad$ . 1989. Demographic Yearbook 1987, Department of International Economic and Social Affairs, Statistical Office: New York.
U.S. Bureau of the Census. 1946. United States Life Tables and Actuarial Tables, 1939-1941: Washington.
_ . 1965. Estimates of the Population of the United States, by Single Years of Age, Color, and Sex, 1900 to 1959, P-25, No. 311: Washington, D.C.
$\qquad$ . 1971. Marital Status and Family Status: March 1970, P-20, No. 212: Washington, D.C.

[^5]$\qquad$ . 1974. Estimates of the Population of the United States, by Age, Sex, and Race: April 1, 1960 to July 1, 1973, P-25, No. 519: Washington, D.C.

___ 1977. Geographical Mobility: March 1975 to March 1976, P-20, No. 305: Washington, D.C.

___ 1981. Marital Status and Living Arrangements: March 1980, P-20, No. 365: Washington, D.C.
1982. Preliminary Estimates of the Population of the United States, by Age, Sex, and Race: 1970
to 1981, P-25, No. 917: Washington, D.C.
. 1984a. 1980 Census of Population: Detailed Population Characteristics, United States Summary, PC80-1-D1-A: Washington, D.C.
$\qquad$ . 1984b. Detailed Occupation of the Experienced Civilian Labor Force by Sex for the United States and Regions: 1980 and 1970, Supplementary Report PC80-S1-15: Washington, D.C.
$\qquad$ . 1984c. Earnings by Occupation and Education, 1980 Census of Population, Subject Report PC80-2-8B: Washington, D.C.
$\qquad$ . 1989. Geographical Mobility: March 1986 to March 1987, P-20, No. 430: Washington, D.C.
_ 1990a. United States Population Estimates, by Age, Sex, Race, and Hispanic Origin: 1980 to 1988, P-25, No. 1045: Washington, D.C.
__ . 1990b. U.S. Population Estimates, by Age, Sex, Race, and Hispanic Origin: 1989, P-25, No. 1057: Washington, D.C.
_ . 1992. Studies in the Distribution of Income, P-60, No. 183: Washington, D.C.
Wilson, Franklin D. 1988. "Components of Change in Migration and Destination-Propensity Rates for Metropolitan and Nonmetropolitan Areas: 1935-1980." Demography 25(1): 129-139.

Wojtkiewicz, Roger A., Sara S. McLanahan, and Irwin Garfinkel. 1990. "The Growth of Families Headed by Women: 1950-1980." Demography 27(1): 19-30.

Woolsey, T.D. 1959. "Adjusted Death Rates and Other Indices of Mortality," Chapter 4 in Vital Statistics Rates in the United States, 1900-1940. Washington, D.C.: Government Printing Office.
Xie, Yu. 1989. "An Alternative Purging Method: Controlling the Composition-Dependent Interaction in an Analysis of Rates." Demography 26(4): 711-716.

## Appendix C. Author Index

Ahmed, B., 117
Arriaga, E.E., 1,47
Bachu, A., 73
Bianchi, S.M., 41
Blake, J., 1
Bongaarts, J., 1,5,13,14
Cho, L.J., 1,37,42,43,60
Clogg, C.C., 1,2,57,59,97,102
Curtin, L.R., 1,106
Cutright, P., 2,22,37,44,46,97,105
Danziger, S., 93
Das Gupta, P., 1,2,5,6,8,10,13,15,19,21,24,26,29,32,41,43,55,60,65,70,75,82,97,99,106
del Pinal, J., 68
Eliason, S.R., 2,57,59,97,102
Garfinkel, l., 19,29,30,102
Gibson, C., 63
Green, G., 93
Hernandez, D.J., 63
Herting, J.R., 1,2,19,33,34
Hoem, J.M., 1
Hogan, H., 117
Janowitz, B.S., 82
Johansen, R.J., 1,107
Keyfitz, N., 38,39
Kim, Y.J., 1,5,10,11,31,43,60,62
Kitagawa, E.M., 1,2,3,62
Koo, H.P., 47
Kuczynski, R.R., 1
Liao, T.F., 2,55,60,61
Little, R.J.A., 1
Marks, H.H., 1
Maurer, J.D., 1,106
McLanahan, S.S., 19,29,30,102
Moreno, L., 13
Myers, G.C., 49
Nathanson, C.A., 1,5,10,11,31
Pollard, J.H., 1,49,53
Pullum, T.W., 1,2,19,33,34
Retherford, R.D., 1,37,42,43,60
Robinson, J.G., 117

Rosenberg, H.M., 1,107
Ross, C., 93
Ruggles, S., 73
Ryscavage, P., 93
Rytina, N., 41
Santi, L.L., 2,56,97,101
Scarborough, J.B., 38
Smith, H.L., 2,22,37,44,46,97,105
Smolensky, E., 93
Spencer, G., 68
Spiegelman, M., 1
Strobino, D.M., 1,43,60,62
Suchindran, C.M., 47
Sweet, J.A., 55,66
Tedrow, L.M., 1,2,19,33,34
Welniak, E., 93
Wilson, F.D., 55,70
Wojtkiewicz, R.A., 19,29,30,102
Woolsey, T.D., 1
Xie, Y., 2


[^0]:    
    

[^1]:    STOP END

[^2]:    ${ }^{1}$ Codes 390-398, 402, 404-429.

[^3]:    ${ }^{\text {TBeginning with the }} 1980 \mathrm{CPS}$, the Bureau of the Census discontinued the use of the term "head of household" and started using the term "househoider," instead.
    ${ }^{2}$ Not significant at 90 -percent level.

[^4]:    ${ }^{3}$ Not significant at 90 -percent level.

[^5]:    . 1973. Women by Number of Children Ever Born, Census of Population 1970, Subject Report PC(2)-3A: Washington, D.C.

