SAE Improved Mobile Air Conditioning Cooperative Research Program

Improved HFC-134a Refrigerant Systems

Mobile Air Conditioning Summit, Sacramento CA March 15-16, 2005 John Rugh

Improved MAC (I-MAC)

- Announced April 22, 2004
- Financed by \approx \$3 million for 2005/06
- Demonstrate technologies to reduce direct and indirect HFC-134a refrigerant emissions

I-MAC CRP

- \approx \$3 million budget
 - -Project duration 2005 and 2006
 - -Funded by industry and government (TBD May 2005)

Current funding commitments

	Industry	In-Kind Industry
2005	\$540,000	\$900,000
2006	\$500,000	\$900,000

I-MAC CRP Objectives

- Reduce direct and indirect HFC-134a refrigerant emissions from mobile A/C systems
- Demonstrate potential improvements in performance using existing technologies
 - Vehicle and A/C system design
 - Servicing of A/C systems
- Provide a direct comparative engineering evaluation

• Convert best practices and test procedures into SAE standards

Program Goals

Team 4 Reduction of Losses During Service

Team 2 Efficiency Improvement

Demonstration Vehicles 2005/2006

Team 1 Leakage Reduction

March 15-16, 2005

I-MAC CRP

I-MAC CRP Program Details

- Participants include
 - International automobile manufacturers
 - International A/C system manufacturers
 - Component suppliers
 - Service equipment suppliers
- Funding of SAE CRP reduces financial burden to the industry

Current Sponsors

- Arkema (Autofina)
- Behr
- DaimlerChrysler
- Delphi
- Denso
- DuPont
- Ford
- Fujikoki
- General Motors
- Goodyear
- Honeywell

- Ineous Fluor
- Japan Fluor Mfg Assoc
- Nissan
- Parker Hannifin
- Sanden
- Solvay
- TI Automotive
- Toyota
- Viking Plastics
- Visteon

SAE Program Organization

I-MAC CRP Teams

	<u>Team1</u>	<u>Team2</u>	Team3	<u>Team4</u>
Team Name:	Refrigerant Leakage Reduction	A/C System Efficiency Improvement	Vehicle Thermal Load Reduction	Service Refrigerant Loss Reduction
Total Number of Team Members:	24	16	8	18
OEM's:	5	4	3	1
Tier1's:	13	8	1	6
Others:	6	4	4	11
Goals:	Reduction in Leakage	Improved COP	Load Reduction, Improved Comfort	Reduction in refrigerant losses at service

Team 1 - Refrigerant Leakage Reduction

- <u>Goal:</u>
 - Reduce HFC-134a mobile air conditioning system refrigerant direct emissions by 50%

March 15-16, 2005

I-MAC CRP

Progress to Date Team 1

- Identified 4 current production vehicles to baseline for refrigerant leakage rate
 - Dodge Caravan (dual system)
 - Ford F150
 - Toyota Camry
 GM W Car

- New low emissions technologies may be applied to the following components
 - Fittings
 - O-rings
 - Seals
 - Hoses

March 15-16, 2005

Progress to Date Team 1

- Evaluated mini-shed test proposals
 - Procedure selected
 - Testing of baseline vehicles is on-going
- Evaluating procedures to identify high leakage systems during vehicle assembly
 - contamination
 - damage

Deliverables - Team 1

- Develop SAE standard for
 - -Component and system minished test
 - -Reclaim procedure to determine actual vehicle charge level
- Evaluate new low emissions technologies per standards

Team 2 - System Efficiency

• <u>Goal:</u>

 Improve system COP by 30% over the ARCRP Enhanced HFC-134a system and demonstrate equivalent thermal performance in a vehicle

March 15-16, 2005

I-MAC CRP

Progress to Date Team 2

- Obtained vehicles
- Developed a list of potential improvements
 - Heat exchangers
 - Compressor
 - Oil separator
 - Airflow management
 - Improved system control
 - Expansion valve

 Currently selecting which improvements to test

- Funds committed for initial testing
- Test components are currently being installed at the University of Illinois for initial evaluation

Deliverables-Team 2

- Improved system COP
- Evaluation of technologies with laboratory results
- Demonstration vehicles in 2005/06
- A/C test procedures & methods
 - SAE J-standards for measuring HFC-134a component and system performance
- Ranking of cost/benefits for various enabling technologies
- Communication and education materials

Reduction

• Goal:

 Demonstrate vehicle level technologies that reduce the cooling load by 30%

Points to Consider

- From Hyundai/Visteon joint effort (Sonata)
 - Focus on what is *feasible*, not what is *possible*
 - Reduced energy consumption is not sufficient motivation for US market
- Confounding technologies
 - A given technology may reduce thermal load while cruising, increase it while soaking
 - Impact on cold-weather climates
- Technologies are applicable for any refrigerant (HFC-134a, HFC-152a, R744)

Progress to Date

Team 3

- Discussions with suppliers
 - Webasto; power ventilation devices
 - W.E.T; improved comfort seats
 - Exatec; polycarbonate solar reflective glazing
 - BASF & Ferro; solar reflective paint
 - PPG; solar reflective glazing
 - Aerogel; lightweight insulation

- Generated list of target technologies and approximated impact on comfort
- Developing (at NREL) model to estimate a technology's impact on time to comfort and power consumption

Deliverables-Team 3

- Procedure for evaluation of technology
- Evaluation of technologies in laboratory and field
- Demonstration vehicle in 2005 and 2006
- Ranking of approximate cost/benefits for various technologies
- Communication and education materials

Team 4 - Reduction in Refrigerant Loss During Servicing

• <u>Goal:</u>

Reduce refrigerant losses at service and end of life by 50%

March 15-16, 2005

I-MAC CRP

Progress and Plans Team 4

- 1. Leak detection tools & procedures
 - Identified facilities and parameters for testing
 - Determine status of current technology
- 2. Service equipment & procedures
 - Developed test procedures to determine how much of charge is being removed in service recovery
 - Evaluation of different equipment and manufacturers
 - Evaluation of techniques to improve recovery

March 15-16, 2005

I-MAC CRP

Progress and Plans Team 4

- 3. Replacement of flexible coupled hose assemblies in the field
 - Identify and test a specific assembly for leakage
 - Develop a cost-effective means of field evaluation of assemblies
- 4. Determine best A/C system design practices to reduce cost/complexity and minimize emissions during service

- 5. Investigate refrigerant mass imbalance
 - Amount sold ≠ Amount used
- 6. Vehicle end-of-life
 - Established contact with Automotive Recyclers Association and Institute of Scrap Recycling Industries
 - Researched regulations
 - Identified potential problem areas that need to be addressed

Deliverables - Team 4

- Evaluate and recommend improvements for service tools, equipment, and service procedures
 - new or revised standards
- Quantify and address losses from one-way refrigerant containers

 Produce educational materials and conduct outreach to reduce refrigerant emissions

Reasons to be Involved I in the I-MAC CRP

Trac

- Good for national energy security and the environment
- Participate in the development of:
 - New A/C system requirements for North American market
 - New A/C design standards for components and total system
 - New procedures and equipment for identification and containment of refrigerant during service
- Exposure of your component to the community
- Access to results of program

Demonstrate benefits of low emission MACs

Thank you