**Innovation for Our Energy Future** 

## Significant Fuel Savings and Emission Reductions by Improving Vehicle Air Conditioning

#### John Rugh

National Renewable Energy Laboratory

Valerie Hovland

Mesoscopic Devices

Stephen O. Andersen

U.S. Environmental Protection Agency







15<sup>th</sup> Annual Earth Technologies Forum and Mobile Air Conditioning Summit April 15, 2004



#### **Outline**

- Modeling approach
  - Thermal comfort-based AC fuel use prediction
  - Model updates
- Fuel saved for up to 30% drop in AC power (equal to a 43% increase in COP)
  - Per vehicle (cars, light trucks)
  - By climate
  - Total savings and CO<sub>2</sub> reductions across California, U.S., EU, and Japan







## **Predicting Fuel Used for AC**

- Use Multiple Models/Inputs/Data Sets
  - Environmental Conditions (Temp, RH, W/m²)
  - Thermal Comfort Model
  - Vehicle Simulations (Fuel Economy Reduction with AC)



## **Model Updates**

- Updates to U.S. study, Summer 2003
  - Mean Radiant Temperature varies with vehicle type (car, truck)
    - Therefore usage PPD varies with type
  - Thermal comfort: use one assumption for clothing and soak (MRT)
  - Include demisting
  - AC power consumption = f(type, compressor speed)



**Demist** 

## **Environmental Conditions:** Phoenix, AZ: Temperature





Temperature, humidity, solar radiation

## Mean Radiant Temperature Models

- MRT varies with vehicle type (car, truck)
- Vehicle data used to generate models

- Jeep Grand Cherokee
   Lincoln Navigator
- Ford Crown Victoria
   Ford Explorer (White)
- Plymouth Breeze
   Ford Explorer (Black)

  - Dodge Grand Caravan
- Ward Atkinson Phoenix 2002
- Bill Hill GM Data

#### **Models**

MRT(car, time) = 27°C \* Radiation(t)/1000W/m<sup>2</sup> +  $T_{ambient}(t)$ 

MRT(truck, time) = 24°C \* Radiation(t)/1000W/m<sup>2</sup> + T<sub>ambient</sub> (t)



## Mean Radiant Temperature by City



## Thermal Comfort Model: Percent of People Using AC





## **AC** Usage for Cooling



## **AC** Usage for Demisting

AC used for demist if:

Temperature is between 1.7-12.8°C (35-55°F), and Relative Humidity > 80%



## Vehicle Usage with Time of Day, Month







## Percent of Time AC is On: Cooling + Demist



## Climate during AC Use

**Temperature, Humidity** 



U.S. Average: 25°C

## Climate during AC Use



U.S. Average: 66% RH



## Fuel Economy Impact: Vehicle Simulations





|                      | US Car | US Truck | EU Vehicle |
|----------------------|--------|----------|------------|
| Fuel Economy no AC   | 22.0   | 18.8     | 30.4       |
| Fuel Economy with AC | 18.0   | 16.2     | 27.3       |
| Fuel Economy defrost | 21.1   | 18.1     | 29.0       |

FTP drive cycle

Hot initial

conditions

|                      | US Car | US Truck | EU Vehicle |
|----------------------|--------|----------|------------|
| FE Drop with AC      | 18%    | 14%      | 10%        |
| FE Drop with defrost | 4%     | 4%       | 4%         |

US car and truck based on existing fleet



## **Vehicle Registrations**



## Distance Traveled per Year **EU** and Japan



#### Sources:

- 2002 World Road Statistics from the International Road **Federation**
- International Road Traffic and Accident Database
- Ward's Automotive Yearbook, 2001

#### **U.S.:**

- Car: 11,850 miles (19,070 km)
- Truck: 11,958 miles (19,244 km)

### **National Fuel Used for AC**



- 7.0 billion gallons used for air conditioning annually
- 5.5% total fuel consumption
- 62 billion kg CO<sub>2</sub>
- 9.5% imported ... crude oil



## Total Fuel Use for AC for Cooling and





|       | Totals      |         |         |            |                  |
|-------|-------------|---------|---------|------------|------------------|
|       | Dehumid +   | Billion | Billion | Billion kg | Percent of Total |
|       | Cooling     | Gallons | Liters  | CO2        | Consumption      |
| EU    | 100% Market | 1.8     | 6.9     | 16.0       | 3.2%             |
| Japan | 100% Market | 0.45    | 1.7     | 4.0        | 3.5%             |

## U.S. Fuel Saved & CO<sub>2</sub> Reduced by Reducing AC Consumption



## Fuel Saved per Vehicle by Climate





# Per Vehicle Fuel Saved by Reducing AC Consumption



## U.S. Fuel Savings Taking into Account New Technology Penetration

- Assumptions
  - 15% and 30% reductions in AC power
  - Power reductions begin in 2010
  - Fleet grows through time (DOE's Vision model)
    - 234 million in 2010
    - 293 million in 2050
  - Fleet turnover in 16 years
  - VMT increases over time
    - 13,500 miles in 2010
    - 19,950 miles in 2050



## Per Vehicle Savings from an Improved MAC



# **EU Fuel Saved by Reducing AC Power Consumption**



Japan Fuel Saved by Reducing AC Power Consumption



### **Conclusions**

- MAC fuel use & CO2 emissions are strong functions of:
  - Vehicle design
  - Vehicle use
  - Environment
- Solutions to reduce fuel consumed by MACs
  - Reduce the thermal load improve vehicle design
  - Improve delivery design for occupant thermal comfort
  - Improve equipment
  - Educate consumers on impacts of driver behavior on MAC fuel use

## **Conclusions (cont.)**

Thermal comfort-based AC fuel use prediction

|                               | US   | EU   | Japan |
|-------------------------------|------|------|-------|
| AC Fuel Use, Billion Gallons  | 7.0  | 1.82 | 0.45  |
| AC Fuel Use, Percent of Total |      |      |       |
| Consumption                   | 5.5% | 3.2% | 3.4%  |

- Reducing AC fuel use has the potential to greatly benefit the nation
  - Reduce imported oil
  - Reduce CO<sub>2</sub>
- Per vehicle savings allow calculation of payback time

| 30% Reduction in Power       | Units       | US   | California | EU   | Japan |
|------------------------------|-------------|------|------------|------|-------|
| Savings per Vehicle          | gal/year    | 11.0 | 11.0       | 2.5  | 2.2   |
| Reference Total Consumption  | gal/year    | 30.8 | 30.5       | 8.0  | 7.2   |
| Savings of Total Consumption | %           | 2.0% | -          | 1.0% | 1.0%  |
| Fuel Saved                   | Bil Gallons | 2.5  | 0.26       | 0.56 | 0.14  |
| Fuel Saved                   | Bil Liters  | 9.5  | 1.0        | 2.1  | 0.5   |
| Emissions Reduced            | Bil kG CO2  | 22.1 | 2.3        | 4.9  | 1.2   |

Impact of incremental reduction in AC power: states, nations, world

## Fuel Savings across the World



Billion Gallons: Savings with 30% Drop in AC Power



## CO<sub>2</sub> Reduction across the World



Billion kg CO<sub>2</sub>: Reduction with 30% Drop in AC Power



## Thank you!

- John Rugh
  - Ph: 303-275-4413
  - Email: john\_rugh@nrel.gov
- Valerie Hovland
  - Email: vhovland@mesoscopic.com
- Stephen Andersen
  - Ph: 202-343-9069
  - Email: andersen.stephen@epa.gov



## **Back Up**

## Why So Much Fuel for A/C?



Metabolic Heat Generation

150 Watts

A/C Cooling 3-6 kW<sub>th</sub>!



## **Cities Used from TMY Data Base**



## Car & Truck MRT



- Plymouth Breeze
- July 12
- Golden, CO







- Jeep Grand Cherokee
- July 12
- · Golden, CO



## **Vehicle Modeling in ADVISOR**

- U.S. Car
  - 115 kW SI engine, 1300 kg
- U.S. Truck
  - 144 kW SI, 1924 kg
- EU Vehicle
  - 91 kW compression ignition diesel, 1220 kg
- Fuel economy expressed in gasoline equivalent fuel consumption
- CO<sub>2</sub> emissions determined from fuel consumption
  - 2.33 kg CO<sub>2</sub>/liter fuel



## **AC Modeling**

- HFC-134a
  - U.S. trucks: 210 cc fixed
  - U.S. cars: 180 cc fixed
  - EU vehicle: 125 cc variable displacement
  - Compressor power consumption based on Delphi compressor curves
  - Total power = P<sub>compressor</sub> + P<sub>blower</sub>
    - P<sub>blower</sub> = 120 W
- Engine speed/compressor speed ratio = 0.64



Curves based on work by Forrest at Delphi

Cooling mode: 27°C, 60% RH

• Demist mode: 16°C, 80% RH



## Conservative Estimate of Fuel Used for AC

- Fanger's thermal comfort model excludes:
  - Sun hitting a driver
  - Thermal asymmetry
  - Sitting on a hot seat
  - High humidity impacts
- Model excludes AC use due to
  - Automatic Temperature Control
- EU compressor power



#### Incremental Reduction in AC Power



EU/Japan Per Vehicle Fuel Saved by Reducing AC Consumption

