Comparison of Two Mobile A/C LCCP Analyses

John Rugh National Renewable Energy Laboratory

2004 Alternate Refrigerant Systems Symposium June 28-July 1, Scottsdale, Arizona

Objective

- Compare 2 analyses from 2004 MAC Summit
- Identify similarities/differences
- Lay the foundation for a common MAC LCCP analysis approach

A Comparison of R134a, R134a Enhanced, R744 and R744 Enhanced Automotive Refrigerant Systems Based on Life Cycle

Stella Papasavva, General Motors Corporation Bill Hill, General Motors Corporation Greg Major, General Motors Corporation

> MAC Summit 2004 Washington DC, April 13-15, 2004

Life Cycle Climate Performance (LCCP) of Mobile Air-Conditioning Systems with HFC-134a, HFC-152a and R-744

> MOBILE AIR CONDITIONING SUMMIT 2004 Washington D.C.

<u>Armin Hafner</u> and <u>Petter Nekså,</u> SINTEF Energy Research, Trondheim – Norway

Jostein Pettersen Norwegian University of Science and Technology – NTNU Trondheim – Norway

🕥 SINTEF

SINTEF Energy Research

Outline

- Objective
- What is LCCP?
- Overview of Methodologies
- Comparison of Results
- Conclusions

What is Life Cycle Climate Performance?

- CO₂ equivalent global warming impact over the total lifetime of the unit
 - Direct refrigerant release directly to atmosphere
 - Indirect energy consumption over lifetime and recycling
 - Fuel use to power compressor and blower
 - Fuel use to carry around mass of A/C system
 - Manufacturing of refrigerant and A/C components

Direct Emission Calculation

- Regular (e.g. seal & hose leakage)
- Irregular (e.g. accident)
- Service
- End-of-life
- Refrigerant manufacturing

5

GM Indirect Analysis Flow Chart

SINTEF Indirect Analysis Flow Chart

Cases compared

- A/C systems
 - o Enhanced R134a SAE ARCRP 2002
 - Enhanced R744 Pilot Project SAE ARCRP 2002
- Environment
 - o Phoenix
 - o Germany

Phoenix, R134a, CO2 Equivalent Emissions

Germany, R134a, CO2 Equivalent Emissions

Phoenix, R744, CO2 Equivalent Emissions

Germany, R744, CO2 Equivalent Emissions

Indirect Emissions due to Energy Usage of A/C

Major Differences

- Interpretation of Visteon "S" Curve
- R744 in Phoenix, use of ARCRP data
- Method of determining capacity
- Vehicle operation time
- Vehicle distance traveled
- Vehicle speed
- A/C system mass
- Demist
- Blower power
- Engine parameters

Interpretation of the "Visteon S Curve"

GM	SINTEF	
% of vehicle operation time the	% of time the A/C is on if the	
ambient temperature is below x°C	ambient temperature is x°C	
Ambient temperature bin	Ambient temperature bin	
distribution from Visteon	distribution from Oak Ridge data	

European and US Average Mobile A/C Customer

Details on Assumptions

	Phoenix		Germany	
	GM	SINTEF	GM	SINTEF
Hours of vehicle operation (hr/yr)	700	458	509	521
	yes, adjusted NREL %	yes, assumed included in		
A/C usage for demist included?	A/C on data	Visteon S curve		
Condenser air temperature				
assumption at idle	Tamb+15C	75% Tamb,25% Tamb + 15C		
Average speed (kph)	39	48	58	26
A/C system total mass-R134a (kg)	24.1	14.4		
A/C system total mass-R744 (kg)	29.0	16.0		
Distance traveled (km)	22,000	22,000	16,000	13,321
Engine efficiency	0.32	0.27		
Compressor rpm/engine rpm	1.3	1.5		
Yearly average % of time A/C on	61%	68%	23%	40%
Blower power	included	not included		

Conclusions

- Majority of difference can be explained by variation of assumptions
 - Distance traveled
 - Hours of vehicle operation
 - o A/C system mass
- Additional communication between LCCP experts necessary before common MAC LCCP analysis approach defined
 - o A/C on time
 - Power required for R744 system in Phoenix
 - Method for determining capacity
- The next step?

Thank you!

John Rugh (john_rugh@nrel.gov) (303) 275-4413

Acknowledgement:

Bill Hill (william.hill@gm.com) Stella Papasavva (stella.papasavva@gm.com) Armin Hafner (Armin.Hafner@sintef.no)

