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ABSTRACT 

How much fuel does vehicle air conditioning actually 
use? This study attempts to answer that question to 
determine the national and state-by-state fuel use impact 
seen by using air conditioning in light duty gasoline 
vehicles. The study used data from US cities, 
representative of averages over the past 30 years, 

1X—see Definitions, the Toyota Prius, the Honda Insight, 
a 3X Hybrid, and a Fuel Cell Hybrid) with a varying 
auxiliary load. For a conventional 1X vehicle, using the 
AC increases fuel consumption by 35% (or drops fuel 
economy by 26%). For the Honda Insight, using the AC 
increases fuel consumption 46%. For a 3X Hybrid, using 
the AC increases fuel consumption 128%. 

whose temperature, incident radiation, and humidity 
varied through time of day and day of year. National 
surveys estimated when people drive their vehicles 
during the day and throughout the year. A simple thermal 
comfort model based on Fanger’s heat balance 
equations determined the percentage of time that a 
driver would use the air conditioning based on the 
premise that if a person were dissatisfied with the 
thermal environment, they would turn on the air 
conditioning.  Vehicle simulations for typical US cars and 
trucks determined the fuel economy reduction seen with 
AC use. Combining these statistics and models with 
vehicle and truck registrations and vehicle miles traveled 
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Figure 1: Percent Vehicle Energy Uses/Losses in a 
Conventional 27-mpg (8.7-l/100km) Vehicle 

resulted in a state-by-state estimate of fuel used for air 100 
conditioning in vehicles. The study showed that the US 
uses 7.1 billion gallons (27 billion liters) of gasoline every 
year for air conditioning vehicles, equivalent to 6% of 
domestic petroleum consumption, or 10% of US 
imported crude oil. 

INTRODUCTION 

Vehicle air conditioning loads are the most significant 
auxiliary loads present in vehicles today. The AC energy 
use even outweighs the energy loss to rolling resistance, 
aerodynamic drag, or driveline losses for a typical 27­
mpg (8.7-l/100km) vehicle, as shown in Figure 1. An air 
conditioner compressor can add up to 5-6 kW peak 
power draw on a vehicle’s engine. This power draw is 
equivalent to a vehicle driving steady state down the road 
at 35 mph (56 kph). 

The fuel economy of a vehicle drops substantially when 
the AC compressor load is added to the engine. The 
effect is larger with higher fuel economy vehicles. Figure 
2 shows both simulations and test data [1, 2] of the SC03 
fuel economy for a variety of vehicles (a conventional 
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Figure 2: Fuel Economy vs. Auxiliary Load: 
Simulations and Test Data (Tests are with AC on, 
actual kW load unknown) 
If all drivers used the AC all of the time, the fuel used for 
AC in the US would be very large. Of course, if everyone 
lived in northern Alaska and never turned on the air 
conditioning, this fuel use penalty would never be seen. 
This study, therefore, attempts to quantify when drivers 
use the air conditioning, including local weather effects 
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and locations of population centers to estimate how 
much fuel the US uses for air conditioning. This 
approach is based on the thermal comfort of a driver and 
is an improvement over previous studies that relied on a 
single constant AC use percentage for every location in 
the US. 

The purpose of this study was to determine the 
magnitude of energy used for creating thermally 
comfortable cabins in vehicles. Once this magnitude is 
known, optimization of vehicle cabins or air conditioning 
systems have an established metric of impact. Ways to 
reduce the amount of energy used for cabin environment 
control are multiple and include optimized conventional 
AC systems, advanced window glazings for reduced 
peak cabin soak temperatures, localized cooling, or use 
of alternative cabin cooling such as heat generated 
cooling via exhaust gases [3]. 

THERMAL COMFORT APPROACH FOR 
ESTIMATING VEHICLE AC FUEL USE 

This study used a bottoms-up approach to estimate the 
fuel used in vehicles for air conditioning for a given year. 
A simple thermal comfort model determined the 
percentage of time that a driver used the air conditioning. 
The thermal-comfort link was based on the premise that 
if a person were dissatisfied with the thermal 
environment, they would turn on the air conditioning. The 
thermal comfort results were then combined with 
statistics on when people drive, where they live, and how 
far they drive in a year. Finally, vehicle simulations 
determined the fuel use penalty of using the air 
conditioning in cars and trucks. This algorithm 
determined the fuel used for air conditioning in light-duty 
vehicles. 

TYPICAL METERORLOGICAL YEARS – A Typical 
Meteorological Year (TMY) is a catalog of expected 
environmental conditions in a given city. This data is a 
part of the National Solar Radiation Data Base (NSRDB) 
based on measurements from National Weather Service 
stations in 239 cities across the US over a period of 30 
years (1961-1990) [4]. The cities with available data are 
shown in Figure 3. 

The environmental conditions used in this study are dry 
bulb temperature (°C), humidity ratio (kg/kg of water 
vapor / dry air), and direct and diffuse integrated 
radiation (Wh/m2). 

The NSRDB data contains environmental parameters for 
every hour and every day of the year. The data for a 
given month is actual data from a month of the 30-year 
set. Each typical month was selected based on 
temperature, humidity, wind velocity, and radiation 
comparisons to the 30-year averages. The typical 
months are then concatenated, with 6-hour smoothing at 
the interfaces, to form a year. TMY data are within 2% of 
the 30-year averages. 

Figure 3: TMY Cities 
Figure 4 shows the subset of the TMY Cities with 
populations greater than 100,000 people, or at least one 
city per state, used in this study. This down-selecting 
allowed focus in the areas where most of the vehicles 
were in operation. 

Figure 4: 116 Cities Used in AC Fuel Use Study: TMY 
Cities with >100,000 People  
Ambient Temperature – Sample temperature values as 
they vary with time of day and month of the year in 
Denver and Phoenix are shown in Figure 5 and Figure 6. 
The figures show temperature differences between 
months and throughout the day. For example, Denver 
just reaches 25°C (77°F) during mid-day (1-4 pm) in 
June, while Phoenix is above 35°C (95°F). 

Humidity Ratio – Sample values for humidity ratio as they 
vary with time of day and month of the year in Denver 
and New Orleans are shown in Figure 7 and Figure 8. 
The humidity ratio in the graphs is expressed in g/kg 
instead of kg/kg for clarity purposes. New Orleans is 
seen to have over twice the specific humidity as Denver 
(e.g. 18 g/kg vs. 9 g/kg). 
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Figure 5: Denver, CO Temperature vs. Time of Day Figure 8: New Orleans, LA Humidity Ratio vs. Time of 
and Month Day and Month 

Temperature (C) in Phoenix, AZ Mean Radiant Temperature – One of the derived inputs 
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used in the thermal comfort model is mean radiant 
temperature (MRT). MRT is defined as the uniform black 
body surrounding temperature to which a person would 
exchange the same amount of heat as they do in the 
actual non-uniform thermal environment. 

The value for MRT in a vehicle can be a variety of 
temperatures. In order to see how the magnitude of fuel 
used for air conditioning varied with changing MRT, two 
extreme cases were considered. On the low temperature 
side, the MRT could be ambient temperature, e.g. if the 
car were parked in a garage. On the high temperature 
ide, the MRT could be significantly above ambient at a s
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12-6am 6-9am 9am-1pm 1-4pm 4-7pm 7-10pm 10pm-12am for hours. Ti me of Day 

Figure 6: Phoenix, AZ Temperature vs. Time of Day Various vehicle tests performed by NREL [5] showed that 
and Month during soak tests in Phoenix, AZ, window and vehicle 

trim temperatures reached 17°C above ambient 
Humidity Ratio (g/kg) in Denver, CO temperature at 3 pm. The integrated solar radiation up to 

3 pm that day was 6.8 kWh/m2. In other words, 6.8 
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kWh/m2 of energy entering a vehicle caused the thermal 
mass of the cabin to increase by 17°C (see Figure 9). 
The effect of color on interior mean radiant temperature 
is negligible (within 2°C), even though exterior roof 
temperatures may vary 20°C. 

Using the integrated radiation incident on a given city 
(see Figure 10), the expected temperature rise above 
ambient in a soaked vehicle up to that point in the day 

 calculated as follows, with a saturated radiation was
input at 3 pm: 

12-6am 6-9am 9am-1pm 1-4pm 4-7pm 7-10pm 10pm-12am t 
Ti me of Day [17°C * ∫ Wh tion SolarRadia / m2] 

Figure 7: Denver, CO Humidity Ratio vs. Time of Day t MRT ) = Tambient + 0(
and Month 6800 [Wh / m2] 
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Figure 9: Reference Solar Radiation and Vehicle 
Temperature Rise in Phoenix, AZ 
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Figure 10: Incident Solar Radiation for City A 
Integrated through Time 
This estimate for MRT, representing expected window 
and trim temperatures, is fairly conservative for the 
following reasons: 

• The vehicles used for the 17°C estimate were 
large vehicles. Smaller vehicle would have lower 
cabin mass and air volume (e.g. 2 m3 vs. 3.5 m3) 
such that the temperature rise for a given 
amount of incident radiation could be larger than 
17°C. 

• Additional vehicle soak tests in Colorado showed 
a similar ratio of temperature rise above ambient 
over incident radiation, though slightly greater in 
magnitude (within 10%). For example, the 
∆T/RadiationPhoenix = 17/6.8 = 2.5°Cm2/kWh, and 
∆T/RadiationGolden = 20/7.2 = 2.78°Cm2/kWh, or 
11% above the Phoenix data. The lower value 
was used, to avoid over-predicting MRT. 

• Instrument panel temperatures may rise 
significantly above this average MRT (e.g. up to 
100°C absolute), and depending on the 

geometry of the vehicle, could have an elevating 
influence on the MRT. Figure 11 shows the 
range of cabin temperatures, the average cabin 
temperature, ambient, and the MRT model for a 
soak condition. Instrument panel temperatures 
are greater than the cabin average by ~15°C. 
Figure 12 shows that the model MRT is slightly 
lower than the average experimental cabin and 
air temperatures, thus representing a 
conservative MRT estimate. 
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Figure 11: SUV Cabin Soak Temperatures and Model 
MRT in Golden, CO, June 28, 2001 
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Figure 12: Average SUV Soak Temperatures and 
Model MRT in Golden, CO, June 28, 2001 
Figure 13 and Figure 14 show sample values for MRT in 
a soaked vehicle, as they vary with time of day and 
month of the year in Denver and Phoenix. Phoenix MRT 
soak temperatures exceed 50°C (122°F) for a large 
portion of the summer. Denver soak temperatures reach 
40°C (104°F) for a small portion of the summer and on 
average are 15°C lower than Phoenix soak 
temperatures. 
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Figure 15: Thermal Comfort Flow Chart May 

Fanger’s Equations – Fanger’s equations describe a Apr 

person’s heat balance, the PMV and the PPD. The PMV Mar 

is the mean vote of a large group of people on theFeb 
seven-point thermal sensation scale shown in Table 1. 

Jan 
12-6am 6-9am 9am-1pm 1-4pm 4-7pm 7-10pm 10pm-12am 

Ti me of Day 
Table 1: Thermal Sensation Scale 

Figure 13: Denver, CO MRT vs. Time of Day and 
Thermal Sensation Month PMV 
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The PPD predicts the percentage of a large group of 
people likely to feel too warm or cool (e.g. votes of +2, May 

+3, or –2, -3).Apr 

Mar 
If a person’s heat generation is equal to their heat loss to 

Feb 
the environment, they are considered thermally neutral 

Jan 
12-6am and will have a vote of zero. Any deviation in the thermal6-9am 9am-1pm 1-4pm 4-7pm 7-10pm 10pm-12am 

balance away from this causes positive (warm) or 
negative (cold) votes. 

As the body generates heat, heat is transferred to the 
environment via the respiratory tract or the skin, or 
accumulated within the body. This heat balance (in 
W/m2) is expressed as follows [7]: 

dQbody = S = M − Ediff − Ersw − ERe s − CRe s − R − C
dt 

where the heat accumulation in the body (S) is 
determined by the metabolic heat generation (M), natural 
water diffusion through the skin (Ediff), sweat evaporation 
(Ersw), latent (ERes) and dry respiration (CRes), radiation 
(R) and convection (C) to the environment. External work 
performed and conduction were assumed negligible. 

During driving, a person generates a metabolic power 
(M, W/m2) of 1.5 mets [7]. This value is 50% above the 
resting heat production of 1 met (58.2 W/m2). 

Skin moisture losses cause evaporative heat loss from a 
combination of the evaporation of sweat secreted due to 
thermoregulatory control mechanisms (Ersw) and the 
natural diffusion of water through the skin (Ediff) [7]: 

Ti me of Day 

Figure 14: Phoenix, AZ MRT vs. Time of Day and 
Month 
THERMAL COMFORT MODEL – The thermal comfort of 
a person in a vehicle’s highly non-uniform, transient 
environment is difficult to predict. However, a person’s 
thermal comfort can be estimated by using studies 
based on a person in a uniform, steady thermal 
environment [6, 7, 9]. 

A person’s thermal sensation is mainly related to the 
thermal balance on the body as a whole. This balance is 
influenced by physical activity and clothing, as well as the 
environmental parameters of air temperature, mean 
radiant temperature, air velocity, and humidity. 

When these factors have been estimated or measured, 
the thermal sensation for the body as a whole can be 
predicted by calculating the predicted mean vote (PMV) 
index (see Figure 15). The predicted percent dissatisfied 
(PPD) index provides information on the thermal 
discomfort or thermal dissatisfaction by predicting the 
percentage of people likely to feel too hot or too cold in a 
given environment. 
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A significant amount of heat can be associated with 
respiration because the air is inspired at ambient The clothed body temperature is then found as follows: 
conditions and expired nearly saturated at a temperature 
only slightly cooler than the core body temperature. 	 tcl = t req sk − 155.0 I cl (R + C), 
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PMV and PPD – Fanger created a person’s thermal 
sensation vote and predicted percent dissatisfied from a 
person’s heat balance deviation from a thermally neutral 
sensation (e.g. the heat generation S). The Predicted 
Mean Vote is described by the following [7]: 

The PMV indicator, by its definition, predicts the mean 
thermal sensation vote of a large population for a given 
heat balance on a typical body. In reality there is a 
distribution of votes about that typical ‘mean vote’, such 
that a percentage of the people are dissatisfied. For 

)
 of ‘warm’ or ‘hot’ (+2 or +3), as shown by Figure 16. E E E C R C− − − − − −diff Re Rersw s s Therefore, for a mean vote of +1, 26% of the population 
would be dissatisfied and turn on the air conditioning 

or, written with expanded terms: were they to get into a vehicle. Throughout this study, 
therefore, PPD is synonymous with the percent of time 
the air-conditioning is turned on. exp 303 0 (- 036 0 *M)* .( * 028 0 . )PMV = +. 

5733 
15. 58 )
( pa )−3



 







 




M M− 10 05.3 x − 99.6 − 
Sample values for PPD as they vary with time of day and 
month of the year in Denver, Phoenix, and New Orleans 
are shown in Figure 17 through Figure 19. The 
conditions used to determine these PPD plots are a 
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The Percent Predicted Dissatisfied is described by the 
following equation, and shown graphically in Figure 16: Denver (Figure 17) shows a small contour island of 90% 

PPD around midday in July, and zero percent dissatisfied 
4 - 2179 0 

from October through April. Therefore, midday in July, 2 .PPD
 =
 100 − exp 95 (- 03353 0 PMV* . PMV ) 90% of the population is expected to use the AC, and no 
one is expected to use the AC from October through 

In this study, PPD was set to zero for mean votes less 
than one (e.g. cold conditions) because the concern was 

April. 
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Figure 17: PPD in Denver, CO 
Phoenix (Figure 18) shows much greater use of the AC 
than Denver, as over 90% of the people use AC from 
mid-morning through the end of the day for most of the 
summer months. Even in November, by mid-day 60% of 
the population is expected to be using the AC. 

30 

20 

10 

0
-3 -2 -1 0 1 2 3 

Thermal Sensation Vote 

Figure 16: PPD vs. PMV 
It is worth revisiting the definitions of PMV and PPD to 
see how they apply to vehicle air conditioning use. If a 
person is ‘warm’ or ‘hot,’ e.g. votes of +2 or +3 on the 
thermal sensation scale (Table 1), they are assumed to 
be uncomfortable. The PPD, by its name, is the percent 
of people that will be dissatisfied with the thermal 
environment at a given mean vote. The premise of this 
study is that if a person is uncomfortable with their 
thermal environment, when they get into the car they will 
turn on the air-conditioning.  
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Figure 18: PPD in Phoenix, AZ 
AC usage in New Orleans (Figure 19) falls between that 
of Denver and Phoenix. The 90% AC usage contour 
covers morning through evening from May through 
September. No AC is used in December or January. 
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Figure 19: PPD in New Orleans, LA 
Range of Thermal Comfort Inputs – As shown above in 
Figure 15 and Fanger’s equations, the thermal comfort 
model uses six input parameters to predict a person’s 
thermal comfort. If a person were dissatisfied with the 
thermal environment, they would turn on the air 
conditioning. Data were used for the thermal comfort 
parameters when available (e.g. air temperature, 
humidity ratio), and assumptions were made for the other 
variables (e.g. metabolic rate, clothing), as described 
below. 

Metabolic rate (used in M, Ediff, Ersw, Eres, Cres, R, C, and 
PMV) was assumed to be typical of driving a car at 1.5 
mets [7], or 87.3 W/m2. 

To illustrate the effect of varying clothing levels and MRT 
temperatures, Figure 20 through Figure 23 show the 
PPD (or percent of the population that will turn on the 
AC) with varying input parameters for New Orleans.  

Case A (summer clothes with ambient MRT) in Figure 20 
shows the least amount of AC use of the four cases, as 
PPD reaches only 80% in the middle of the day in July. 
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Figure 20: PPD for Case A: Summer Clothes, 
Ambient MRT in New Orleans, LA 
Case B (summer clothes with soak MRT) in Figure 21 
shows more use of the AC, as PPD reaches over 90% 
for a large portion of the day throughout the summer 
months. Again, Case B is taken as the representative 
case for predicting fuel use, and many of the results 
graphs in this paper use the assumptions of Case B. 
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Figure 22: PPD for Case C: Suit, Ambient MRT in 
New Orleans, LA 
The final Case D (suit with soak MRT) in Figure 23 
shows the largest use of the AC, as PPD reaches over 
90% for a larger portion of the day than Case B. AC use 
also extends further into the winter months than shown in 
Case B. 
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Figure 23: PPD for Case D: Suit, Soak MRT in New 
Orleans, LA 
DRIVER DATA – The following calculations determine 
the fuel used for vehicle air conditioning per state, and 
were repeated for all 50 states. 

Driver behavior - Information on driver behavior was 
obtained through the 1995 Nationwide Personal 
Transportation Survey (NPTS, [11]), a survey sponsored 
by the Federal Highway Administration and the 
Department of Transportation. The NPTS is a source of 
national data on daily trips including purpose of the trip, 
means of transportation, how long the trip took, day of 
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Figure 21: PPD for Case B: Summer Clothes, Soak 
MRT in New Orleans, LA 
Case C (suit with ambient MRT) in Figure 22 shows a 
greater use of the AC than Case A, as PPD reaches 
80% for a large portion of the day throughout the 
summer months. The AC use for Case C is lower than 
that of Case B. 
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week and month, number of people on trip, etc. 
Approximately 21,000 households across the US were 

m
e 

surveyed for the NPTS. 

The NPTS data used in this study were vehicle usage 
with time of day (Figure 24) and time of year (Figure 25). 
Figure 24 shows that between 9 am and 7 pm (the time 
when the sun is out, temperatures are high, and AC use 
is high), 70% of the daily travel occurs. 
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For example, the PPDs for Phoenix and Tuscon were 
population-weighted by 72% and 28% to get the overall 
PPD in Arizona of 54.2% AC usage. 

Predicted Percent Dissatisfied – The Predicted Percent 
Dissatisfied with the thermal environment, assumed 
equal to the percent of time that the air conditioning is 
on, for each state is shown in Figure 26. This is the PPD 
plot for Case B: summer attire with vehicle soak MRT 
conditions. 

Hawaii shows the highest AC usage throughout the year 
at 70%, Arizona comes in at 54%, Florida at 47%, Texas 

20 at 39%, and California at 13%. The AC usage in 
California is somewhat low because most of the cities lie 

15 on the coast and have very mild temperatures 
throughout the year. 
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If vehicle miles traveled were equally distributed 
throughout the months of the year, 8.33% of yearly travel 
would occur during a given month. Figure 25 shows that 
during the summer months, travel is slightly higher than 
this average; travel drops off during the winter months. Figure 26: PPD, or Percent of Time the AC is On 

0 

PPD 
i

0 
9 
17 
26 
35 
44 
52 
61 
70 

Percent of T me 
AC is On 

12-6am 6-9am 9am-1pm 1-4pm 4-7pm 7-10pm 10pm-12am 24
Hour of the Day 70 28 28 32 32 

36 33 27 
39 40Figure 24: Percentage of Travel Occurring 

47
throughout the Day 

Average 

throughout the Year 

Summer Months: 
May - September 

VMT and Gallons Used per Vehicle – Average values for 
vehicle miles traveled (VMT) for cars and trucks were 
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Figure 25: Percentage of Travel Occurring 
throughout the Year 

obtained from Wards 2001 Automotive Yearbook [12]. 

1999. 

A key assumption in this study is that the percentage of 
time that the air-conditioning is used is equivalent to the 
percentage of distance traveled. In general, 40% of 
vehicle trips are under 10 minutes, 85% are under 30 
minutes, and 92% are under 40 minutes [11]. These 
numbers support the assumption that if drivers are 
turning on the AC, they would tend to leave it on for their 
entire trip, as most trips are short in duration. 

The miles traveled with air conditioning (VMTwithAC) for 
both cars and trucks were found by using the PPD for a 

7 On average, a car was driven 11,850 miles (19,070 km) 
and a truck was driven 11,958 miles (19,244 km) in 

6 

given state: 
The driver behavior data from Figure 24 and Figure 25 
were used to collapse the PPD maps (e.g. Figure 23) , ( (VMTwithAC ( type state ) = type VMT ) * state PPD )
into a single AC usage percentage (PPD) for each city. g e .. 

,VMTwithAC ( car AZ ) = 11,850 * .0 542 = ,6 423Population data – TMY cities with populations greater 
than 100,000 people were used in this study. Their ,VMTwithAC ( truck AZ ) = 11,958 * .0 542 = ,6 480 
relative population percentages, as determined by 
Census 2000 data, gave a weighting for each city’s PPD The fuel economies of a vehicle both with and without 
within a state to determine the overall PPD for a state. the AC load on the engine were determined through 



vehicle simulations and checked with sample test data. 
Overall, cars in the US average 21.4 mpg (11 l/100km) 
and trucks average 17.1 mpg (13.8 l/100km) [12]. 
Typical cars and trucks with similar fuel economies were 
modeled in ADVISOR (version 3.2, [13]) and simulated 
over the FTP (Federal Test Procedure) drive cycle. The 
FTP cycle was chosen because the predicted fuel 
economies were similar to expected fuel economies in 
the real world, based on real-world data taken by CARB. 
The AC load was assumed to be a 3 kW mechanical 
auxiliary load on the engine. This estimate is somewhat 
conservative, as vehicle tests on the Insight, Prius, and 
other conventional vehicles [1, 2] corresponded to an 
approximate 4 kW AC load (see Figure 2). Note that 
these are small cars with small engines, and a peak AC 
load of 5-6 kW is more typical for a sedan. AC use of 3 
kW penalized fuel economy by 24% (22 mpg to 16.7 
mpg) for cars and 16% (17.7 mpg to 14.9 mpg) for 
trucks. 

The gallons of fuel used for air conditioning were then 
determined by using the fuel consumed to drive the 
vehicle the number of miles traveled with the AC on and 
a hypothetical amount of fuel that would have been 
consumed if those same miles were traveled without the 
AC: 

Gallons C TotalWithA ( type state ) =, 
VMTwithAC ( type state ) / MPGwithAC,


Gallons utAC TotalWitho ( type state ) =
, 
VMTwithAC ( type state ) / MPGwithoutAC,


GallonsForAC ( type state ) =
, 
Gallons C TotalWithA ( type state ) −, 
Gallons utAC TotalWitho ( type state ), 

g e . . 
Gallons C TotalWithA ( car AZ ) = 423 ,6 / 7. 16 = 385, 
Gallons utAC TotalWitho ( car AZ ) = 423 ,6 / 22 = 292, 
GallonsForAC ( car AZ ) = 385 − 292 = 93gal, 

Gallons C TotalWithA ( truck AZ ) = 480 ,6 / 9.14 = 435, 
Gallons utAC TotalWitho ( truck AZ ) = 480 ,6 / 7.17 = 366, 
GallonsForAC ( truck AZ ) = 435 − 366 = 69gal, 

Registrations – In 2000, there were a total of 213 million 
light-duty vehicles registered in the US [12]. The vehicle 
distribution throughout the states is shown in Figure 27. 

Vehicle registrations were used to find the total amount 
of fuel used for air conditioning in a given state: 

GallonsTotalForAC (state) =

, (
GallonsForAC ( car state )*# state Cars ) 

, (+ GallonsForAC ( truck state )*# state Trucks ) 
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Figure 27: Vehicle Registrations (Cars + Trucks) 

NATIONAL AIR CONDITIONING FUEL USE MAP 

The amount of fuel used for light-duty vehicle air 
conditioning by state for the representative Case B 
(summer attire, soak MRT) is shown in Figure 28. 
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Figure 28: Millions of Gallons Used for Light-Duty 
Vehicle Air Conditioning 
The top AC fuel consumption states, shown in Figure 29, 
are Florida, Texas, California, New York, Arizona and 
Georgia. Florida and Texas are significantly above other 
states, as their AC fuel use is near 900 million gallons. 
Combining the fuel use for AC in all of the states totaled 
to 7.14 billion gallons (27 billion liters) of gasoline used 
for AC. 
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. . g e 
GallonsTotalForAC ( AZ ) = 255 ,858,1* 93 + 261 ,528,1* 69 Figure 29: Top AC Fuel Consumption States 

= gallons million 277 NATIONAL AC FUEL USE MATRIX – Table 3 shows the 
combined AC fuel use for all the states, with a grid of 
values describing a range of thermal comfort inputs. 



Case B is highlighted as the representative case of 7.14 
billion gallons (27 billion liters) used for vehicle AC. The 
range of results based on varying thermal comfort input 
assumptions is from 2.6 to 9.2 billion gallons (10 to 35 
billion liters) of gasoline for light-duty AC use. 

Table 3: Billions of Gallons Used for AC in Light-duty 
vehicles 

Mean Radiant 
Temperature 

• 	 The AC load on the engine was assumed to be a 
3 kW load (a cautious average load) vs. 4 kW 
estimated on sample vehicles. The resulting fuel 
economy penalty used was 24% vs. a 26% 
penalty expected at 4 kW. 

• 	 The air temperature in Fanger’s equations was 
assumed to be ambient for all cases, where in a 
vehicle, the initial breath temperature when 
entering a soaked vehicle could be above 
ambient (e.g. closer to the soak MRT than 

ambient). 

Predicted Percent Dissatisfied 
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Ambient Soak 

2.57 7.14 

4.7 9.23 

Table 4 compares the AC fuel use numbers to the US 
consumption for light-duty vehicles of 125.9 billion 
gallons (476.6 billion liters) of gasoline [12]. 

• may 
underestimate the use of AC. PPD does not 
model the uncomfortable effect of sitting on a hot 
seat with a sweating back, or a non-uniform 
environment such as the sun shining on one side 
of the driver. Also, humidity effects on discomfort 
may be greater than predicted with Fanger’s 
heat balance equations, which were originally 
intended for indoor thermal comfort assessment. 

• The study ignores AC use in vehicles due to 
defrost, automatic temperature control, or driver 
behaviors such as simply avoiding the noise of 
rolled-down windows. 

Table 4: AC Use as a Percentage of US Consumption 
CONCLUSION 

This study used a bottoms-up approach to determine the 

Mean Radiant 
Temperature 

Ambient Soak 

2.0% 5.7% 

3.7% 7.3% 

amount of fuel used for light-duty vehicle air conditioning 
based on occupant thermal comfort. Representative data 
over 30 years in cities throughout the US gave 
temperature, radiation, and humidity variations 
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Suit throughout the day and year. The study integrated this 
environmental data, driver behavior, a basic thermal 
comfort model, vehicle simulations, and US population 
and vehicle statistics to determine the final AC fuel use 
numbers. 

The amount of fuel used for air conditioning is significant. 
In absolute terms, 7.1 billion gallons of gasoline (27 

According to DOE’s Energy Information Administration 
[14], the US imports 11.1 MMBD (million barrels of oil per 
day), of which 43% is crude oil. This corresponds to 73 
billion gallons (276 billion liters) of gasoline per year. 
Table 5 compares the AC fuel use numbers with the billion liters) are used in the US for air conditioning light-crude oil imports. duty vehicles. Put in relative terms, the AC fuel use is 

equivalent to 6% of domestic petroleum consumption, or 
Table 5: AC Use as a Percentage of Crude Oil 10% of crude oil imports. 
Imports 

The range of fuel used for vehicle air conditioning based 
on different thermal comfort inputs was 2.6 to 9.2 billion 
gallons (10 to 35 billion liters) of gasoline. Optimization of 

Mean Radiant 
Temperature 

Ambient Soak 

3.5% 9.8% 

6.4% 12.6% 

vehicle cabins or air conditioning systems now have an 
established metric of impact. Thus, reducing the amount 
of energy used for air conditioning a vehicle by 50% 
could reduce the nation’s fuel consumption by 3.6 billion 
gallons (13.5 billion liters), or equivalently reduce crude C
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Suit
oil imports by 5%. As mentioned previously, ways to 
reduce the amount of energy used for cabin environment 
control are multiple and include optimized conventional 

As	 a final comment on this study, note that the AC systems, advanced window glazings for reduced 
predictions for AC fuel use are conservative estimates. peak cabin soak temperatures, localized cooling, or use 
The results are conservative for several reasons: of alternative cabin cooling such as heat generated 

cooling via exhaust gases. 
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DEFINITIONS, ACRONYMS, ABBREVIATIONS\ 

1X: One times the fuel economy of a 1993 vehicle with 
27.5 mpg, or 8.8 l/100km 

AC: Air Conditioning 

ASHRAE: American Society for Heating, Refrigeration, 
and Air-Conditioning Engineers 

CARB: California Air Resources Board 

DOE: Department of Energy 

IP: Instrument Panel in a vehicle 

ISO: International Standards Organization 

MMBD: Million Barrels of Oil per Day 

MPGGE: Miles per gallon, gasoline equivalent 

MRT: Mean Radiant Temperature 

NREL: National Renewable Energy Laboratory 

PMV: Predicted Mean Vote 

PPD: Predicted Percent Dissatisfied 

TMY: Typical Meteorological Year 

US: United States 

SC03: Drive cycle used in the Supplemental Federal 
Test Procedure for AC use 

STP: Standard Temperature and Pressure 

VMT: Vehicle Miles Traveled 


