PM Measurement Metrics and Their Relationship to Human Health Effects

Yousheng Zeng, Ph.D., P.E. Providence

What Is the Issue?

PM Deposition Fraction in the Human Respiratory Tract

Two Samples at Gary, IN Site - Based on field data

Run	PM2.5/ PM10	PM10/ PM[TOT]	PM2.5/ PM[TB+A]	PMc/ PM[ET]
4	0.32	1.05	1.92	0.84
10	0.83	1.20	6.12	0.24

Two Samples at Gary, IN Site - Simulation assuming size distribution is true

Gary, IN Run #10

- Based on size distributions at Gary, IN site

An Explanation

Questions Raised - Question 1

If PM health effect studies use the PM metrics that is based on what is delivered to and retained at the target site in the human respiratory system rather than PM₁₀ or PM_{2.5}, would the outcome of the studies be different?

Questions Raised - Question 2

- Are there objective ways to determine what shapes and cut points of PM sampling curves should be?
 - Why do we pursue a steep curve?
 - Why 2.5 and not 2.8, 2.3, etc.?

Proposed Concept
Dosimetry Based PM
Metrics and Standards

The Concept

- Measures the PM that is delivered to and retained at the target site in human respiratory system
- No size cut-off
- Can be defined based on research needs or the population group that needs the most protection

- C_D = Ambient concentration of dosimetry-based PM, μg/m³
- d_(i) = Human respiratory tract (or a region of it) deposition fraction on a mass basis for size interval i
- c_(i) = Ambient PM interval mass concentration for size interval i, μg/m³

How to Implement the Concept?

Use the Comprehensive Particulate Matter Measurement System (CPMMS)

Schematic of CPMMS

CPMMS Equations

PEER

Findings through a Simulation Study Published Elsewhere

- Current PM sampling methods (including FRM) are vulnerable and may produce significant biases
- Advantages of CPMMS
 - reduces the accuracy requirements of particle sizing devices
 - The results can survive possible changes in PM definitions no need to change monitoring equipment; data continuity
 - Makes dosimetry-based PM metrics possible
- The simulations did not address the sample losses due to volatilization and moisture change

See ref. for details: Zeng, Y., *J. Air Waste Manage. Assoc.*, Vol. 56: 518-529 (April 2006)

Application to the EPA Three-Site PMc Field Data Sets

Dosimetry-Based PM Applied to Three Sites

PEER

Performance of Current PM Metrics - Based on data at Gary, IN site

PM2.5 vs. PM[TB+A]

Performance of Current PM Metrics - Based on data at Gary, IN site Further comparison using FRM PM2.5 and PM10

Performance of Current PM Metrics - Based on data at Phoenix, AZ site

PM2.5 vs. PM[TB+A]

Performance of Current PM Metrics - Based on data at Riverside, CA site

PM2.5 vs. PM[TB+A]

Conclusions

- This analysis suggests that current PM metrics may not serve well as indicators of PM health effects
 - The ratio of current PM metrics to the amount of PM deposited vary significantly from location to location
 - Temporal correlation is poor too, especially for fine
- Dosimetry-based PM metrics
 - requires no subjective/arbitrary PM definitions and associated sampling curves
 - is feasible (using CPMMS)
 - appears to be more appropriate than the current PM metrics for PM health effect studies
 - is expected to yield significantly different results

Acknowledgements

The author would like to thank EPA for making the multi-site PMc field data available.

