



### Numerical Air Quality Prediction Models at Baron Advanced Meteorological Systems: Toward the Future

#### John N. McHenry Baron Advanced Meteorological Systems, LLC

and

C. Coats, J. Vukovich, D. Olerud, R. Husar, C. Hsu, M. J. Jeong, J. Warner, C. Salustro, and B. Do





## **Talk Outline**

- Introduction to NAQP at BAMS
- Updating and re-thinking emissions (from a dataassimilating land-surface modeling perspective)
- Using satellite data: real-time AOD assimilation and emissions improvements
- Very high resolution forecast modeling
- Summary





Introduction:

#### Baron Adv. Met Systems: 11th year in Operational Numerical Air Quality Systems

#### • MAQSIP-RT

- Began in 1998
- Participated in all major field programs since 2000
  - TXAQS-2000, NEAQS-2001, 2002, 2004 (McHenry, et al., 2004, Bull. Amer. Meteorological Society), TEXAQS-06
  - Performance Statistics leader among all models forecasting ozone throughout all of these field programs
- CMAQ-DA (improved SOA)
  - NASA grant/cooperative agreement Data-Assimilation Version
    - TERRA/AQUA-MODIS Deep Blue for PM
    - EPA AIRNOW sfc PM
    - OMI-based NO2 emissions cross-checks
- Both MAQSIP-RT and CMAQ-DA
  - Coupling to NASA Land-Information System:
    - VERY HIGH resolution (1km CONUS) for improved:
      - Emissions and surface meteorology
    - 45/15/5km availability; 5-day forecast; New 3-km real-time forecast availability
- MATC-H (under development)
  - Multi-scale Atmospheric Transport and Chemistry Hybrid Parallel

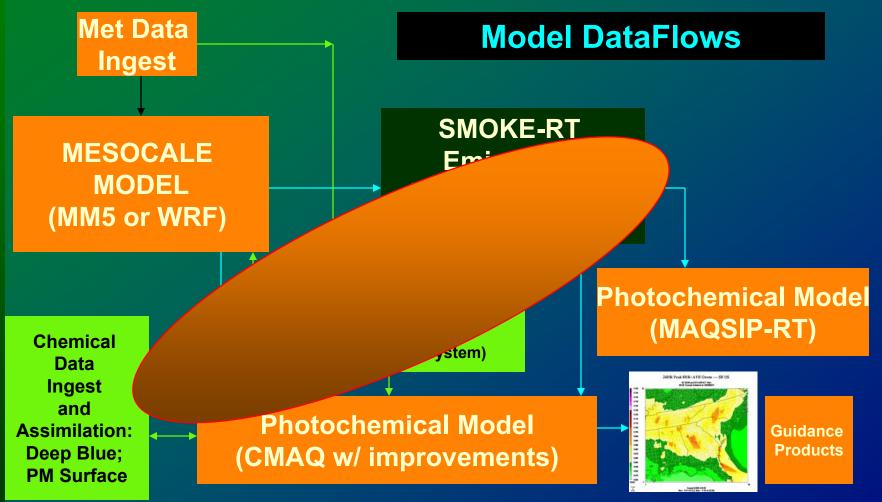




Introduction: Baron Adv. Met Systems 11<sup>th</sup> year in Operational Numerical Air Quality Systems

Goal: To continually improve operational decision support for issuance of air quality forecasts by numerous clients

• TOOLS *DIFFER* FROM NATIONAL EPA/NCEP CMAQ model in all cases – thus they all add value:


 almost all meteorological forecasts are based on more than one model—

• WHY NOT AIR QUALITY?? BAMS provides the additional hi-value modeling systems that allow AQ forecasters to make forecasts with increased confidence and certainty





Introduction: Baron Adv. Met Systems 11th year in Operational Numerical Air Quality Systems





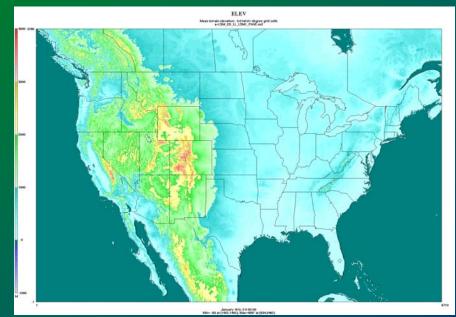


# Updating and *Re-thinking* Emissions (from a Land-Surface Modeling Perspective)

### LSM: standalone, real-time

- Very high resolution: 1km or 3km "super CONUS"
  - Terrain: NHD+ (30-meter resolution terrain, Albers grid) → CONUS TERRAIN; re-sampled USGS 30-arc second outside of US
  - LU/LC: NLCD (30-meter resolution Albers grid) → CONUS; outside of US, utilize USGS 30-arc second (900-meter) global
  - SOILS: USGS 30-arc second (900-meter) global data
- Assimilating observed precipitation \*and\* snow-pack in real-time
- Utilizing "best-possible" *downscaled-to-1km* surface meteorology other than precipitation:

2-meter Temp, Mixing ratio, 10-meter wind speeds, surface pressure


To the maximum extent possible, harmonize and unify \*all\* emissions with the LSM





Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

#### LSM <-> GIS Data (Terrain)





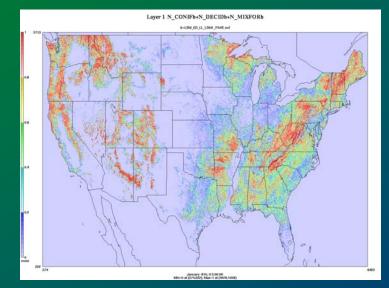
## NHD+ Terrain @ 30-meters: averaged to 1km

Max/Min terrain at each 1km grid location

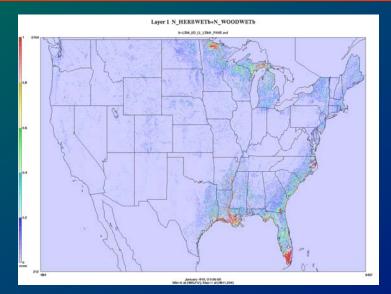


#### Forecasting a Better Future




National Aeronautics and Space Administration

LU/LC categories by number: NLCD w/in CONUS, USGS in Canada/Mexico



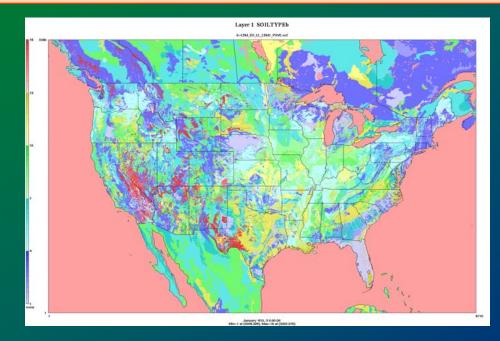

Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

#### LSM <-> GIS Data (LU/LC)



NLCD Total Forest fraction at 1km resolution, From 30-meter native data




NLCD Wetland fraction at 1km resolution, From 30-meter native data



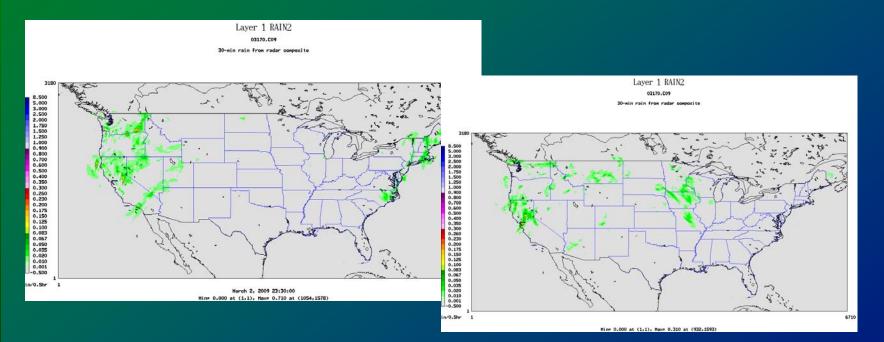


Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

#### LSM <-> GIS Data (Soils)



Soil parameter values for LSM typically aggregated from native 30-arc second data using fractions projected onto USLSM grid


USGS "dominant" soil categories (1-16) on BAMS USLSM grid for US, Canada, Mexico

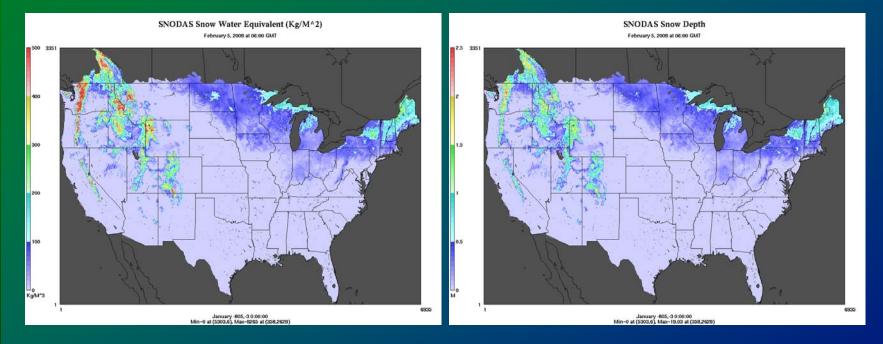




Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

#### LSM <-> Data-Assimilation in Real-Time




Real-time radar-precipitation rate estimation from ~160 radars in the US at 1km resolution: input to soil-moisture and plant transpiration in real-time



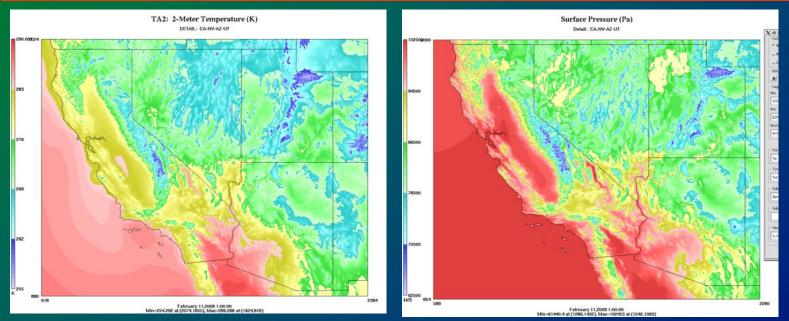


Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

### LSM <-> Data-Assimilation in Real-Time



Real-time snow water equivalent and snow-depth data updated daily: snow-melt runoff contributes to soil-moisture/temperature, snow-pack modifies soil-atmosphere interaction



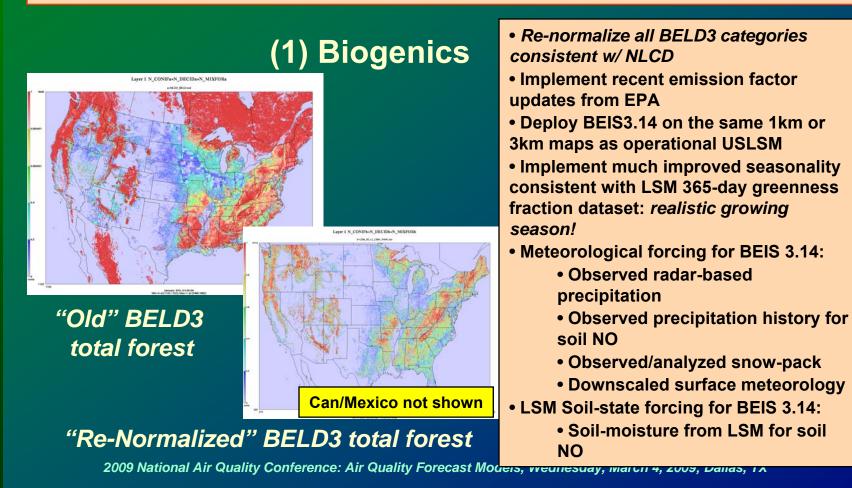



Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

#### LSM <-> Downscaled Forcing Data

Utilizes highest resolution BAMS CONUS+ Meteorological model and applies terrain correction to surface meteorological forcing variables




Terrain-corrected 2-meter temperature (left) and pressure (right)





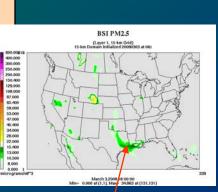
Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

### LSM <-> Emissions Coupling








Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

#### LSM <-> Emissions Coupling

### (2) Fires and Dust

• Fire emissions (locations and source strength improvements)

- HMS (already in use)
- SMART-FIRE / FIRMS under consideration
- LU/LC from NHD+
- Soil moisture/plant stress from operational LSM at 1km resolution
- Downscaled meteorological surface forcing variables:
  - Wind, temperature, RH

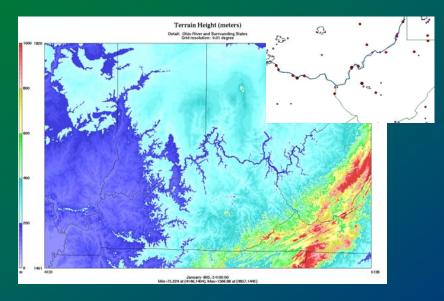


• Dust emissions at 1km resolution:

- Soil types at 1km resolution
- Soil moisture at 1km resolution from realtime LSM
- Downscaled meteorological surface forcing variables:

• Wind, temperature, RH, etc.

#### BAMS operational CMAQ w/ HMS fires: March 3, 2009: 18Z






Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

#### LSM <-> Emissions Coupling

#### (3) Anthropogenic Point Sources



• Implement point-source plume-rise with 1km / 3km scale terrain using downscaled meteorological model atmosphere *in 3D: where is stack top located in relationship to REAL TERRAIN?* 

• Use "best combination" of NEI 2005 and RPO-projected 2009, with other customizations from state/local as possible (currently evaluating)

• Use top-down NO2 satellite data as a cross-check.





Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

#### LSM <-> Emissions Coupling

### (4) Mobile Sources

- Mobile-6 "lite"
  - 12-km resolution (now running)
  - BAMS surface meteorology, e.g. T, RH
    - terrain-corrected / downscaled





Updating and Re-thinking Emissions (from a Land-Surface Modeling Perspective)

#### LSM <-> Emissions Coupling

#### (5) Area / Non-road Sources

- Use "best combination" of NEI 2005 and RPO-projected 2009, with other customizations from state/local as possible (currently evaluating)
- Upgrade ancillary data, e.g. spatial surrogates
- 1km / 3km resolution consistent w/ USLSM



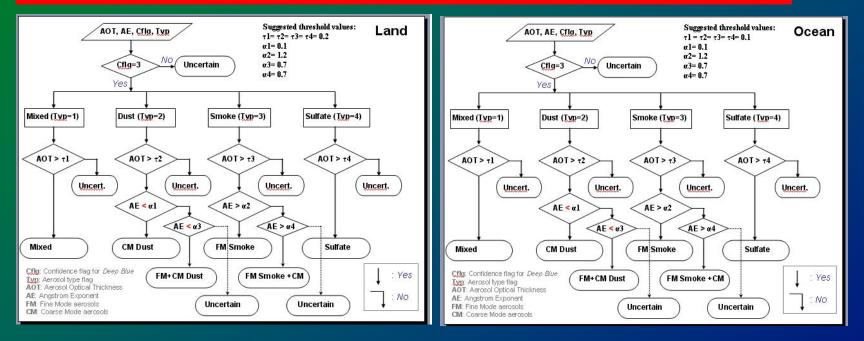


### Using Satellite Data: Real-time AOD assimilation and emissions improvements

### Data Assimilation Module: Observation Space Formulation for AOD

$$T_{b\lambda} = H_{mt}(C_m) + ε_{b\lambda}$$
 (1) Model Mass Concentration to AOD

$$\mathbf{T}_{a\lambda} = \mathbf{T}_{b\lambda} + \mathbf{P}_{b}\mathbf{H}^{\mathsf{T}} [\mathbf{H}\mathbf{P}_{b}\mathbf{H}^{\mathsf{T}} + \mathbf{R}_{o}]^{-1} [\mathbf{T}_{o\lambda} - \mathbf{H} (\mathbf{T}_{b\lambda})]$$
(2) Data Assimilation Step

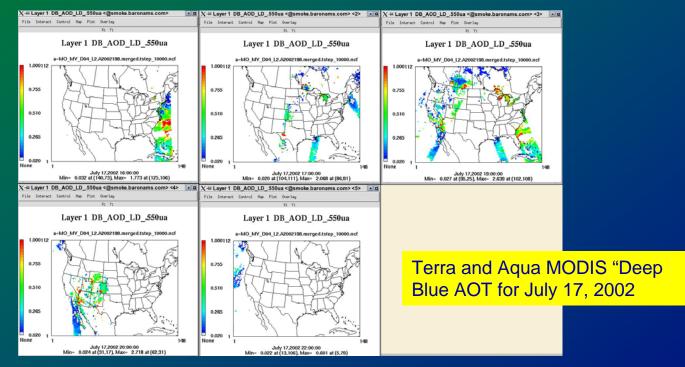

 $C_{m} = H_{tm}(T_{a\lambda}) + \epsilon_{m}$  (3) Analyzed AOD to Model Mass Concentration





Using Satellite Data: Real-time AOD and emissions improvements

#### Data Assimilation Module: Decision Trees for Deep Blue AOD Observations

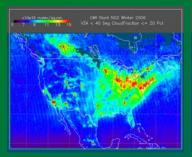




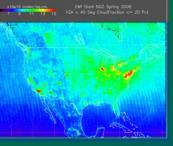



Using Satellite Data: Real-time AOD and emissions improvements

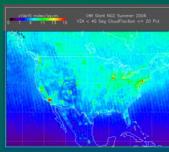
### Data Assimilation Module: Sequential Progression of Assimilation "Steps" throughout any given day



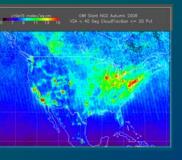



Using Satellite Data: Real-time AOD and emissions improvements


### Total Column NO2 from OMI, seasonally averaged

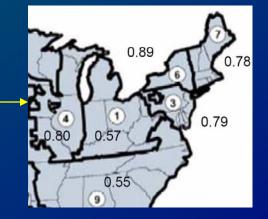



#### winter



#### spring



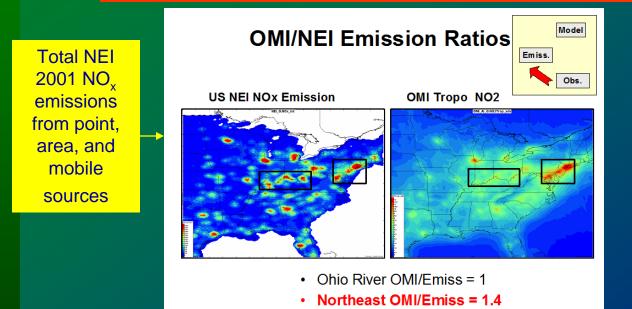

### summer



fall

OMI NO<sub>2</sub> ratios of "base" to most "current" forecast year allow (with appropriate caveats) cross-checks against published reduction factors – at much higher resolution than the published factors themselves

Example: Regional NO<sub>x</sub> adjustments according to DOE: Point sources, 2004/2001





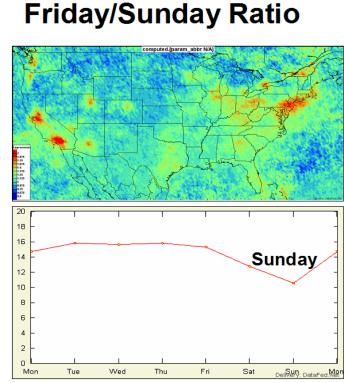


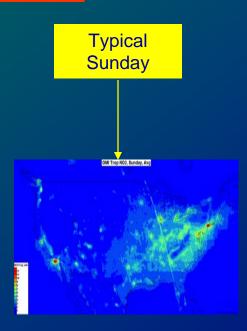

Using Satellite Data: Real-time AOD and emissions improvements

## Comparison of OMI and NEI NOx point source data on a sub-regional level



Over the Northeastern megalopolis the ratio of the total observed NO2 and total NOx emission is about 40% higher than the corresponding ratio over the Ohio River Valley.




Using Satellite Data: Real-time AOD and emissions improvements

Comparison of OMI NO2 daily data: weekday versus weekend





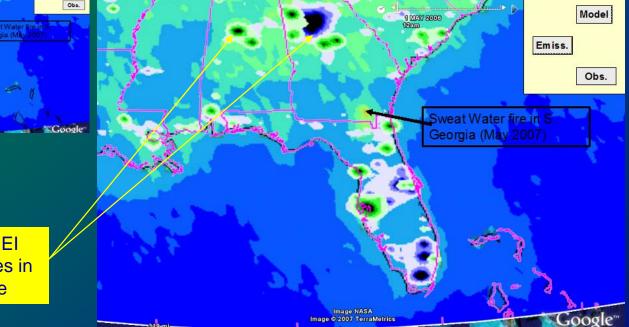






Using Satellite Data: Real-time AOD and emissions improvements

#### Monthly ave column NO2



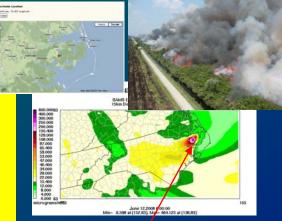

**Georgia Sweetwater Fire** 



With superimposed NEI emissions: point sources in green, mobile in blue

#### **Georgia Sweetwater Fire**







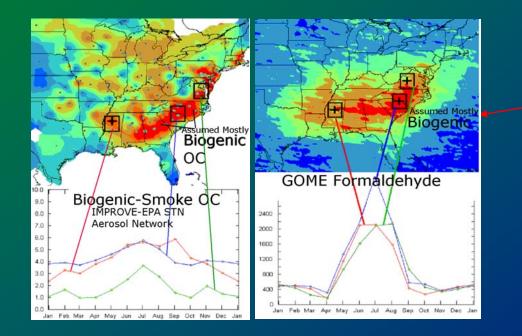

Using Satellite Data: Real-time AOD and emissions improvements

Use of satellite-based  $NO_2$  observations is being used (in various stages of development) to improve the current emission inventories for  $NO_x$  in multiple ways:

- quantification of exceptional source contributions such as biomass burning
- verification of emission factors for mobile and major point sources
- improving the temporal resolution of emissions, such as the weekly cycle
- Analyzing relative reduction factors between base and current year inventories



BAMS CMAQ forecast Evans Road Fire, NC

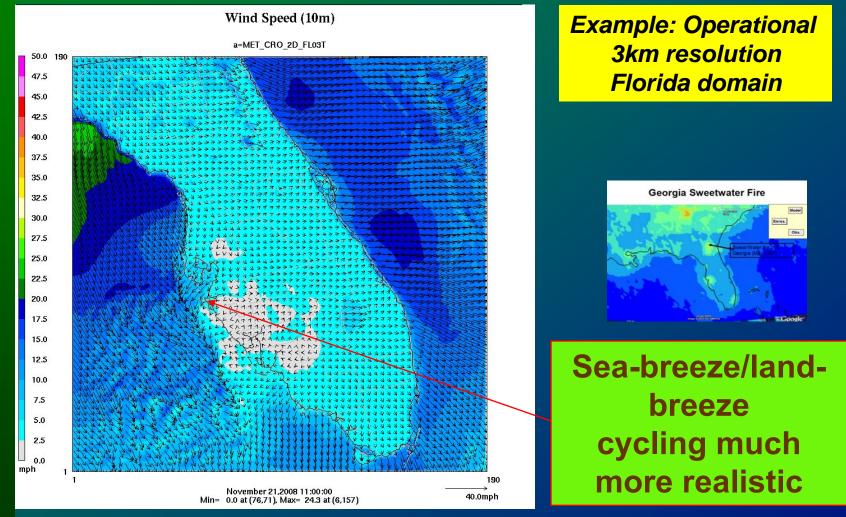





Using Satellite Data: Real-time AOD and emissions improvements

#### Use of satellite-based Formaldehyde (HCHO) observations

• As a observational surrogate for natural organic emissions (e.g. biogenic isoprene)

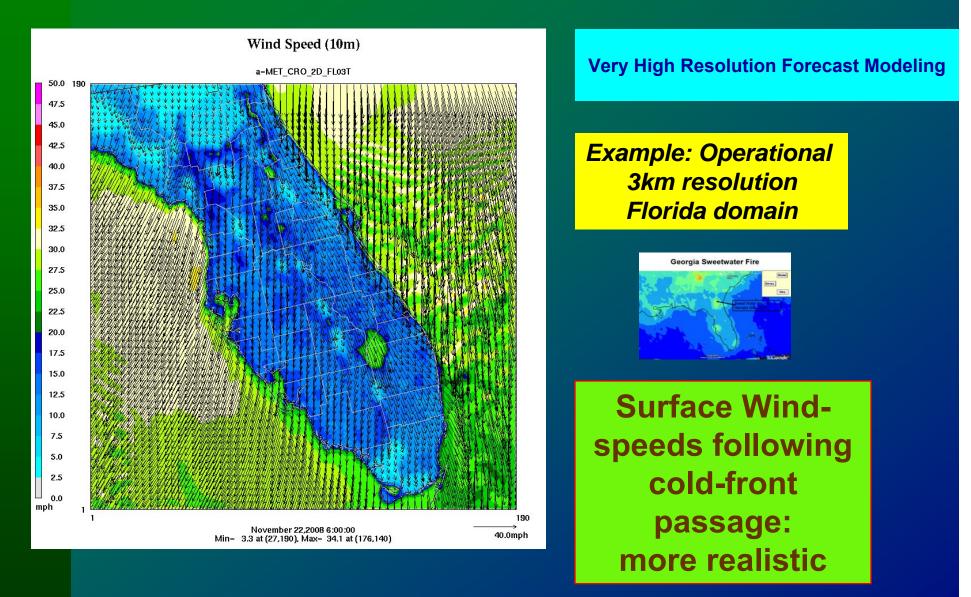



Our analysis suggests that the spatial-temporal pattern of isoprene emission, derived from formaldehyde measurements (GOME, SCHIAMACHI, OMI), may provide a valuable crosscheck to improve biogenic secondary organics emissions from isoprene – especially when combined w/ the LSM-based approach discussed in the first part of the talk





### Very High Resolution Forecast Modeling

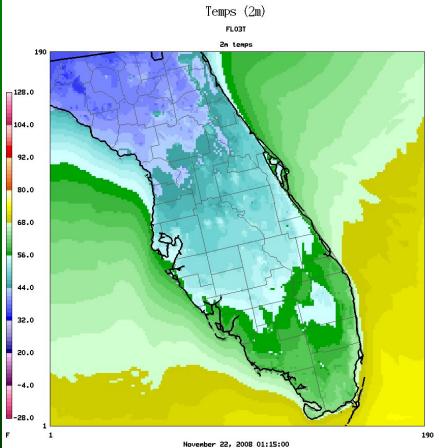





#### Forecasting a Better Future



National Aeronautics and Space Administration






#### Forecasting a Better Future



National Aeronautics and Space Administration

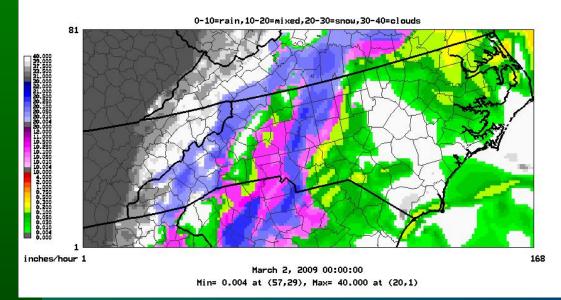


November 22, 2008 01:15:00 Min= 34.0 at (8,179), Max= 74.2 at (175,5)

#### Very High Resolution Forecast Modeling

Example: Operational 3km resolution Florida domain




Surface Temperatures following coldfront passage: more realistic





#### **Very High Resolution Forecast Modeling**

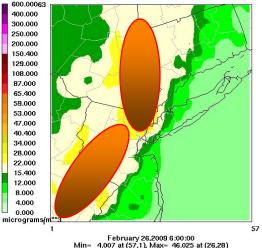
NC05A2\_RADSAT\_Emulation2



Example: Operational 5km resolution North Carolina domain

Much more wellresolved precipitation, and...

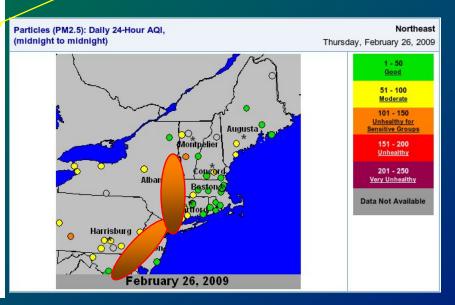



#### Forecasting a Better Future



National Aeronautics and Space Administration

### Forecast 24hr-ave PM2.5 versus obs


Daily Air Quality Product CMAQ 24hr Avg. PM2.5, 05km, NY05A New York Model Run: 2009022518 : Thu-0600-GMT to Thu-0600-GMT Forecast time: Feb-26-Thu-0600-GMT PM2.5 24HR Average (00-23 CST) BAMS Environmental Modeling Center NY05A Domain Initialized 20090225 at 182





Very High Resolution Forecast Modeling

Example: Operational 5km resolution NYC vicinity domain



... Much more well-resolved Emissions: Note local hotspot in NYC and plume orientation in fcst versus obs





#### Summary

 BAMS Continues to be the leading provider of air quality forecast decision support:

- Models

- MAQSIP-RT
- CMAQ-DA w/ improved SOA
- Emissions Modeling
- MATC-H
- Information Delivery (wide variety of approaches)
- BAMS is rapidly advancing forecast capability through model improvements
  - Re-thinking Emissions from an LSM perspective: very high resolution
  - Updating traditional inventories
  - Improving fire detection / modeling
  - Improving dust emissions modeling
  - Data-assimilation of Deep Blue AOD (CMAQ)
  - Using satellite-derived NO2 and HCHO to cross-check emissions
  - Improving forecast meteorology (PBL, LSM)
    - Model science components
    - Downscaling to very high resolution terrain

#### BAMS is rapidly evolving the ability to deliver timely forecast information to a variety of customers

- End-user Forecasters
  - Traditional Web-graphics
  - VIPIR-AQ
- Broadcast Television
  - VIPIR-AQ / OMNI
- On-board automobile XM-based system
  - Visibility
- GEOSS / Google Earth



Please stop by our booth in the Exhibit Hall to learn more

2009 National Air Quality Conference: Air Quality Forecast Models, Wednesday, March 4, 2009; Dallas, TX

BAMS AQ Forecast Systems:

The Leader in Advanced Air Quality Forecast Modeling for Decision Support





## Acknowledgements

- Rudy Husar, Erin Robinson, Kari Hoijvari, Janja Husar (Center for Air Pollution Impacts and Trends Analysis, Wash U., St. Louis)
- Christina Hsu, , MJ Jeong, Jeremy Warner, Clare Salustro, Jay Herman (NASA Goddard)
- Mike Abraczinskas, Bebhinn Do (VISTAS RPO)
- Carlie Coats; Jeff Vukovich; Don Olerud, Ted Smith, Jesse O'Neal, Bob Imhoff (BAMS)





## **Contact Information**

John N. McHenry

Chief Scientist Baron Advanced Meteorological Systems 920 Main Campus Drive Suite 101 Raleigh, NC 27606

Email: john.mchenry@baronams.com Phone: 919-424-4443

Web: <u>http://www.baronams.com</u> Web: <u>http://www.baronservices.com</u>