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EXECUTIVE SUMMARY 
  
Predictive modeling has been suggested as an alternative to the current approach of monitoring 
recreational waters for fecal indicator bacteria.  The traditional technique for monitoring E. coli 
is based on laboratory analysis of representative samples and involves a considerable amount of 
time for obtaining results.  It has been suggested that predicting bacteria counts using statistical 
models may be a suitable alternative because results are timelier, less subject to local variation, 
and more explanatory.  Presently, model development for beach management purposes has not 
been well explored.  Relatively few beaches have been modeled and the results have varied 
widely; of these trials, few models have been conservatively validated.  While some have been 
cross-validated using modern recursive techniques (e.g., jackknife, PRESS) on inherently biased 
subsets from the same collected data period, there has been a notable absence of validation using 
autonomously collected data sets.  Autocorrelation, especially in time series analysis, 
conservatively requires that model validation is performed during a different time period (in our 
case, swimming season) while being consistent in all other sampling approaches.   Another 
inadequacy of most models is that they are limited spatially which results in limited explanation 
of coastal variation, effects of fix factors (orientation, development, source contaminants), and 
how background levels vary among themselves.  The general assumption is that beaches are 
essentially unique and subject to mostly local influences and pollution effects; this undermines a 
wider view that the lake is a complex system that interacts with local beaches in similar ways 
and that once accounted for, local and pollution effects can be more efficiently explained.  
Nonetheless, it is intuitive that traditional modeling will be more successful as one restricts space 
and time, but this is done at the expense of a more generalized and explanatory view of regional 
waters. 
 
Restricting models to a local scale has major scientific and managerial disadvantages.  First, it is 
well known that general seasonal, weather, and hydrological conditions greatly influence the 
physical, chemical, and biological characteristics of large water bodies such as the Great Lakes.  
Such factors may in turn affect the occurrence, distribution, and survival of microbiological 
contaminants in the water.  How these hydrometeorological and biological conditions may affect 
the densities of indicator bacteria is poorly studied, aside from the obvious forcing of 
contaminated water by local currents.  Regional models may provide clues as to how these 
factors interact and relate to beach contamination.   Second, by restricting observations to only 
one beach, little can be said of adjoining waters and potential sources.  One can see the effects 
but not the overall influence of outside factors, so they appear to be indeterminate forces acting 
on the local model.  Since beach designations and their respective management are largely 
defined by political jurisdiction, selection of spatial scale and boundaries is essentially arbitrary.  
  
This study reviews four years of data (2000-2003) from 55 beaches along southern Lake 
Michigan from Milwaukee, Wisconsin through Michigan City, Indiana.  The dataset included 
10,422 observations, with an overall mean log E. coli of 1.72 (SD=0.76), or 51.5 CFU/100 ml.  
Multi-dimensional spatial analysis showed that these beaches fell into seven relatively 
homogeneous groupings: Milwaukee and Racine, Wisconsin; Lake County, north Chicago and 
south Chicago, Illinois; and eastern and western Indiana.  On the broad scale, beaches were 
generally correlated with one another.  Most beaches were not significantly different in overall 
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mean E. coli densities; however, 63rd Street Beach, IL and South Shore Beach, WI were notable 
exceptions.  At the local scale there was spatial correlation with beaches close to one another 
behaving similarly.  A trend towards increasing E. coli density over the course of the summer 
sampling season was evident.   
 
During the course of the study, 79 hydrometeorological factors were collected and screened to 
ascertain how these factors influence E. coli density at the beaches.  The final candidate list of 
potential predictors included averages for: minimum temperature, rainfall, wave height, wave 
period, wind speed, wind direction, barometric pressure, lake stage at Calumet Harbor (measured 
inside the harbor mouth), and E. coli from the previous day.  When all data were pooled, these 
prediction coefficients were all highly significant as was the overall model using multiple linear 
regressions.  The overall, R2 was 0.29; the R2 using yesterday’s E. coli reading (the presently 
accepted model) was only 0.19.  Clustering beaches increased the R2 to 0.32, but regression on 
individual zones did not improve the model variance explanation.   Modeling of Indiana had 
limited success because of the low sampling intensity.   Overall, the model accurately predicted 
whether the mean bacterial levels were over or under EPA criteria (235 colony forming units/100 
ml) 78% of the time; analysis of data for individual zones did not increase the predictability of 
closures. 
  
Regression tree statistics suggested that 3-day prior moving average E. coli density was the 
factor best separating present E. coli into subgroups.  For the lower E. coli subgroup, rainfall was 
an important classification factor, while for higher levels of E. coli wave height best separated E. 
coli levels.   Partitioning the data into zones or N-S wind vectors notably changed the 
classification tree structure.  Analysis of groups as determined by hierarchichal clustering 
resulted in more significant regression models than individual beaches.  Nonetheless, regression 
confidence intervals were wide. 
  
Chicago’s 63rd Street Beach was used as an example modeling exercise for a single location 
because there were several sets of independently collected data.   E. coli densities from a USGS 
study conducted in 2000 were compared to concurrent data collected by the Chicago Park 
District.  Morning E. coli was compared to afternoon data and knee-deep was compared to waist-
deep collections.  The R2 was higher for afternoon samples taken at waist deep water, and knee-
deep morning samples had the lowest coefficients of determinations.  We conclude that weather 
and lake conditions have only marginal effect on E. coli readings at 0700 h collections, but 
deeper water integrates and smoothes sampling variation and allows predominant coastal 
conditions to exert an influence.  We suggest that serious consideration be given to sampling in 
deeper water late in the morning or mid-day.  
  
The performance of our derived predictive model was evaluated against the present monitoring 
approach (culturing water samples for E. coli) for all zones and years using Root Mean Square 
Error (RMSE).  The RMSE behaves similarly to the standard deviation but expresses the 
variation between the predicted and the measured E. coli. Thus, a perfect model would have an 
RMSE of 0 (model performance) and an R2 (model explanation) of 1.  The model developed in 
this study performed better than the recommended state and EPA ‘model’ in all four years 
evaluated.  The RMSE for the developed model was 14% lower for all pooled beaches from 
Illinois and Wisconsin than the currently recommended approach.  This improvement must be 
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weighed against the increased cost and effort of collecting, assembling, and applying the 
hydrometeorological predictive factors.  From a management perspective the use of a regional 
model is unlikely to improve predictability efficiently on a routine basis.  The strength of these 
exercises was to differentiate local from general effects and fixed from random factors, describe 
the variation and relative concentrations of indicator bacteria, and develop an understanding of 
background levels of E. coli within the regions.  The exercise goes far in explaining why beaches 
tend to vary together, illustrates the difference in the character of local regions, and challenges 
the sampling practices currently used. 
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INTRODUCTION 
 

Beaches along southern Lake Michigan are closed to swimming when there are high 
concentrations of E. coli bacteria in the lake.  To protect public health,  several jurisdictions in 
this area have been monitoring their beaches for E. coli, for as long as 20 years, and closing them 
to swimming when counts exceed the US EPA recommended limit of 235 CFU/100 ml.  Beaches 
are differently affected by this policy with some being closed frequently during the swim season 
and others rarely being closed.  Factors that affect E. coli counts are varied and numerous, and 
patterns of beach closures have been difficult to perceive. 

Along this highly populated length of beaches that include the cities of Milwaukee, 
Chicago, and Gary, beach closures are a nuisance to the public, resulting in limited recreational 
activities.  Current monitoring protocols have been widely criticized because results of testing 
are not available until 18-24 hours after a sample is collected, a time period during which E. coli 
counts can change considerably (Whitman et al., 1999; Boehm et al., 2002).  Furthermore, the 
variation in E. coli counts between adjoining and intervening beaches can be high, which leads to 
questions about management policies. 

Alternatives to current monitoring protocols are being explored to improve the reliabity 
of management decisions regarding E. coli counts, and among these, predictive modeling has 
shown some promise.  Predictive modeling relies on parameters that can be obtained 
immediately or within a short period of time rather than having to wait 18-24 hours.  In 
predictive models, water and weather conditions are determined, and using a mathematical 
equation, probable E. coli count is determined.  Other attempts at modeling have determined 
specifically whether E. coli count at a beach exceeds the 235 recommended level (Francy and 
Darner, 2002).  Previous attempts at predictive modeling have included the variables rainfall in 
association with wind (Whitman et al., 1999; Haack et al., 2003), nearby discharge (Olyphant et 
al., 2003) and turbidity (Olyphant and Whitman, 2004; Nevers and Whitman, In Review).  In 
order to develop a predictive model, however, a robust data set of E. coli counts is needed with 
coincident water and weather conditions.  From this dataset, E. coli counts can be 
mathematically predicted using ambient water and weather data. 

Predictive models are typically developed for single beaches, which can force beach 
managers to gather data and calculate results for dozens of beaches separately, if models are 
available for all of them.  Typically, however, predictive models are only developed for the 
highest priority beaches, and the effort is not extended to all beaches within a given jurisdiction.  
Many beaches have well-established similarities with neighboring beaches, and combining the 
modeling effort to apply to several beaches could improve effectiveness of modeling and 
decrease associated costs. 
 

Regional Forecast Model 
 

Monitoring programs along southern Lake Michigan are among the most robust in the 
nation, with samples usually collected 5-7 days a week at many popular beaches.  Furthermore, 
there are numerous weather and water monitoring stations in the region that have collected 
continuous data for many years.  With the available database, a predictive model was designed 
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that could be used for the southern Lake Michigan region, extending from Milwaukee, 
Wisconsin to Michigan City, Indiana. 

By incorporating historical monitoring data collected by the City of Milwaukee, City of 
Racine, Lake County Illinois Health Department, Chicago Park District, Gary Sanitary District, 
Indiana Dunes National Lakeshore, US Geological Survey, and US EPA from the beaches 
monitored from Milwaukee, Wisconsin to Michigan City, Indiana, the regional forecast model 
relies on ambient conditions measured concurrently with lake E. coli counts.  Using these data, 
correlational relationships and multivariate regressions were developed with the outcome being a 
regional model of E. coli counts for use by beach managers.  
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DATA DESCRIPTION AND SOURCES 
 

E. coli Data 
E. coli monitoring data for the study years (2000-2003) were gathered from the several 

sources responsible for individual monitoring programs and included 55 beaches (Figure 1; 
Table 1).  Sampling frequency was highly variable among jurisdictions, but the data were 
typically included in analyses with the given frequency of collection.  Wisconsin beaches 
included in the analysis included two jurisdictions: Milwaukee and Racine.  Milwaukee beaches 
were sampled generally four days a week in 2000 and seven days a week in 2001-2003.  Racine 
beaches were sampled 5-7 days a week for 2000-2003.  In Illinois, Lake County beaches were 
sampled seven days a week but only for years 2002 and 2003; prior to 2002, beaches were 
sampled for fecal coliform bacteria, which is not comparable to E. coli for data analysis.  
Chicago beaches were sampled five days a week for 2000-2003.  Indiana beaches were sampled 
once a week for the period 2000-2003; in the event of a high E. coli count (above 235) a given 
beach was sampled again until E. coli count fell below 235 CFU.  Prior to incorporation into the 
overall database, all data were checked for outliers and unusual values, and when data were 
determined to be likely in error, they were removed from the analyses, which included very few 
instances. 

 
Figure 1. Southern Lake Michigan, indicating 55 beaches included in study. 
 

Lake Michigan 
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Table 1. Beaches in the regional forecast model, listed from Milwaukee south to Michigan City, Indiana. 
MILWAUKEE, WI  Bradford 
  McKinley 
  Wisconsin-South Shore 
RACINE, WI  Zoo 
  North 
LAKE COUNTY, IL  North Point Marina 
  Illinois Beach SP North 
  Illinois Beach SP Sailing 
  Illinois Beach SP South 
  Waukegan North 
  Waukegan South 
  Lake Bluff 
  Lake Forest 
  Park Ave 
  Rosewood 
CHICAGO, IL  Juneway 
  Rogers 
  Howard 
  Jarvis/Fargo 
 Leone/Loyola/Greenleaf 
 Pratt 
 North Shore 
  Albion 
  Thorndale 
  Hollywood 
  Foster 
  Montrose 
  North Ave 
  Oak 
  Ohio 
  12th 
  31st 
  49th 
  57th 
  63rd 
  South Shore 
  Rainbow 
  Calumet 
INDIANA  Lake Street 
  Marquette Park 
  Wells Street 
  West Beach 
  Ogden Dunes 
  Dune Acres 
  Porter 
  State Park West 
  State Park East 
  Kemil 
  Dunbar 
  Lakeview 
  Central 
  Mount Baldy 
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Parameters considered for the model were collected from locations throughout the study 

region (Figure 2).  Weather and water information were both collected, and averages were 
typically for the few hours prior to E. coli collection time (determined as 10 AM). 

 

Weather Data 
 

Data were collected from the National Climatic Center for several locations, including 
Milwaukee, Racine, and Kenosha, Wisconsin; Waukegan, Park Forest, Chicago and Midway 
Airport, Illinois; and Indiana Dunes and La Porte, Indiana.  At each of these locations, the 
parameters collected included total daily precipitation (cm), daily maximum air temperature 
(°C), daily minimum air temperature (°C), and daily average temperature (°C).  

More extensive data from Gary Regional Airport, Indiana were also considered in the 
model.  Parameters collected included averages from 4-10 AM for air temperature (°C), wind 
direction (° from true north), wind speed (m/s), wind gust (m/s), atmospheric pressure (cm Hg), 
cloud cover (%), and cloud height (m). 

Weather parameters collected by Great Lakes Environmental Laboratory, NOAA, were 
also included from several locations: Milwaukee, Chicago, and Michigan City, Indiana.  These 
data were generated using some of their models, and included averages from 4-10 AM for air 
temperature (° C), minimum wind speed (m/s), maximum wind speed (m/s), average wind speed 
(m/s), wind direction (° from true north).  Additionally, those data were used to calculate 
resulting vector magnitude and resulting vector direction for all three locations. 

Insolation data were used from several locations and different lengths of exposure were 
considered for the models.  From Wanatah, Indiana, insolation (MJ/m2) was recorded for total 
daily insolation (24-hr), insolation from 4-10 AM (6-hr), and insolation from 8-10 AM (2-hr).  
From St Charles, Illinois, insolation was recorded as total daily (24-hr).  Insolation for 4-10 AM 
(6-hr) was recorded for Chicago at Ohio Street, at Illinois Beach State Park, and at Gary Airport.  
In 2000 only, an onsite weather station was located at Chicago’s 63rd Street Beach, and those 
data were also considered, using 4-10 AM (6-hr) data. 
 

Water Data 
 

Physical water conditions from monitoring stations located in Chicago and near Burns 
Ditch, Indiana and maintained by the US Army Corps of Engineers were also considered in the 
model.  These data were averaged for the period 4-10 AM and included depth (m), wave height 
(m), wave period (seconds), and wave direction (° from true north).  Water depth for two nearby 
outfalls, Calumet Harbor in Illinois and Burns Ditch in Indiana, were also considered. 

Water conditions collected by NOAA at a Lake Michigan buoy were also examined.  
These included wind direction (° from true north), wind speed (m/s), wind gust (m/s), wave 
height (m), barometric pressure, air temperature (°C), and water temperature (°C). 
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Data Acquisition Sources 
 
US Army Corps of Engineers Waterways Experiment Station 

At Chicago, Illinois: wave height, wave period, wave direction, water depth 
 At Burns Ditch, Indiana: wave height, wave period, wave direction, water depth 
 
National Climatic Data Center 

At Racine Wisconsin; Kenosha, Wisconsin; Waukegan, Illinois; Park Forest, Illinois; 
Midway airport Chicago, Illinois; Chicago Botanical Gardens, Chicago, Illinois; La 
Porte, Indiana, Indiana Dunes National Lakeshore : precipitation, air temperature, 
weather events 

 
National Climatic Data Center, At Milwaukee, Wisconsin: precipitation, air temperature, weather 

events, barometric pressure, wind direction, wind speed 
 
Gary Regional Airport, Gary, Indiana: air temperature, wind direction, wind speed, wind gust 

speed, barometric pressure, cloud cover, cloud height 
 
Great Lakes Environmental Research Laboratory, National Oceanic and Atmospheric 
Administration,  

At Milwaukee, Wisconsin: air temperature, wind speed, wind direction 
At Chicago, Illinois: air temperature, wind speed, wind direction 
At Michigan City, Indiana: air temperature, wind speed, wind direction 

 
Water and Atmospheric Resources Program, At St. Charles, Illinois: solar insolation 
 
Purdue University, Applied Meteorology Group.  At Wanatah, Indiana: solar insolation 
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Figure 2. Locations for study beaches and stations from which hydrometeorological data were collected for 
consideration in the model. 
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Data Grouping 
 

In order to maximize comparisons, site locations were often divided into groups based on 
geographic location. At the finest scale, individual beaches were considered separately.  Next, 
zones of beaches were considered, which were identified primarily by municipality or managing 
entity, and these included Milwaukee, Wisconsin; Racine, Wisconsin; Lake County, Illinois; 
Chicago, Illinois (north); Chicago, Illinois (south); Gary District, Indiana; and Indiana Dunes 
National Lakeshore, Indiana.  At the broadest level, state designations (Wisconsin, Illinois, 
Indiana) were considered. 

In later analyses, several parameters were combined to get means that covered the entire 
study region.  For minimum daily temperature (4-10AM) and rainfall (24-hr total), data collected 
at numerous locations were averaged: Milwaukee, Racine, Kenosha, Waukegan, Chicago, 
Midway, Indiana Dunes, and LaPorte.  Wave height (4-10 AM) and wave period (4-10 AM) 
from stations in Chicago and Burns Harbor, Indiana were averaged.  Average wind speed was 
calculated from data collected at Milwaukee, Chicago, Gary, and Michigan City.  Also used in 
analyses, average pressure was calculated using data from Milwaukee and Gary, and insolation 
(4-10AM) was averaged from Illinois Beach State Park, Ohio Street, Gary, and Wanatah. 
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RESULTS 

E. coli at Individual Beaches 
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Figure 3. Mean log E. coli count for each beach over the 2000-2003 period. Different colors indicate state. 
 
 

Mean E. coli counts over the four-year period were variable among beaches, with means 
ranging from 1.2-2.3 log E. coli CFU (Figure 3).  Beaches with higher mean E. coli included 
South Shore in Wisconsin, North Point Marina, Waukegan South and 63rd Street in Illinois, and 
State Park West in Indiana.  Highest counts overall were in Wisconsin and lowest in Indiana, but 
there was considerable variability between states in the frequency of sampling and number of 
beaches sampled. 

Beaches within specific zones were significantly different from one another.  In 
Milwaukee, E. coli counts at South Shore beach were significantly higher than at the other two 
beaches (P<0.05), with a mean log E. coli of 2.33.  McKinley beach had the lowest mean E. coli 
counts.  There were only two beaches for Racine, so no comparison of significance was made, 
but North Beach generally had higher mean E. coli counts.  In Lake County, Illinois, North Point 
Marina Beach (log mean 2.19) and Waukegan South (log mean2.15) had significantly higher E. 
coli counts than all other Lake County beaches (P<0.05); Lake Bluff had the lowest mean (1.2).  
There were 24 Chicago beaches included in the study, so groupings were large; however, 63rd 
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Street Beach alone had significantly higher mean E. coli (2.13) than all other Chicago beaches 
(P<0.05), and 49th Street had the lowest mean E. coli count (1.34).  In Gary Indiana, Lake Street 
had highest E. coli (1.58) and Wells Street the lowest (1.26), and for Indiana Dunes, groupings 
were large, but Dune Acres had the lowest mean E. coli (1.40) and State Park West had the 
highest (1.82). 
 

When compared by zone, Milwaukee beaches had the significantly higher log mean E. 
coli (2.03) than other zones (P<0.05), and West Indiana (Gary) beaches had E. coli counts that 
were significantly lower (1.39) than all other beaches (P<0.05) (Table 2). 
 
 
Table 2. Results of Duncan post-hoc test for mean log E. coli counts by zone. 
 
Duncan  

Subset for alpha = .05 
Zone N 1 2 3 4 5 
West Indiana 460 1.3925      
North Chicago 4261  1.6178     
East Indiana 750  1.6491 1.6491    
Lake County, IL 1727   1.6988    
City of Racine 631    1.8061   
South Chicago 1235    1.8687   
City of Milwaukee 1155     2.0318 
Sig.   1.000 .363 .149 .069 1.000 

Means for groups in homogeneous subsets are displayed. 
a  Uses Harmonic Mean Sample Size = 923.327. 
b  The group sizes are unequal. The harmonic mean of the group sizes is used. Type I error levels are not 
guaranteed. 
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Figure 4. Multidimensional scaling results for all beaches included in the study. Different colors indicate 
states. 
 

Results of multidimensional scaling showed that beaches grouped generally within states 
(Figure 4).  Indiana beaches were grouped together somewhat loosely, as were Wisconsin 
beaches.  Illinois beaches exhibited an interesting pattern, with Chicago beaches forming a 
tighter grouping together and the other Illinois beaches (in Lake County) appearing fairly widely 
distributed and separate from Chicago beaches. 

A separate MDS of the Chicago beaches reveals a clearer picture of the relationship and 
results in an interesting pattern (Figure 5).  The north Chicago beaches group with each other, 
and the south Chicago beaches appear widely distributed and separate from the north Chicago 
beaches.  Chicago South Shore, Rainbow, Calumet, and 63rd Street are the furthest south in the 
city, and 57th lies just to the north of those. 
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Figure 5. Multidimensional scaling results for Chicago beaches. 
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 Although the Indiana beaches could not be used in many of the analyses due to the 
scarcity of available data (collected once a week), relationships between beaches could be 
highlighted using a correlation scatter graph matrix (Figure 6).  Beaches close to each other 
geographically often show some relationship in overall E. coli counts, although numerous other 
factors can be more important than geographic proximity depending on the nature of the beach.  
The scatterplot matrix for these beaches shows the relationship between each pair of beaches, 
and general trends clearly show relationships among all beaches.  Periodic high counts at either 
comparison beach reveal the high variation inherent in E. coli counts and influence the 
correlation between beaches overall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Scatter matrix of Indiana beaches with best fit lines. 
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Milwaukee beaches were all highly correlated, with McKinley and Bradford with the highest 
Pearson R result (Table 3; Figure 7).  These beaches lie adjacent to one another, so it was 
expected that E. coli counts would be similar and similarly affected by environmental influences.  
Clear boundaries in E. coli counts along each axis indicate the detection limit or the maximum 
count (missed dilution) for the method, in this case Colilert-18. 
 
Table 3. Pearson correlation results for Milwaukee beaches.  ** indicates a significant correlation at P<0.01. 
 
 Correlations 
 

  Bradford McKinley 
Wisconsin_So.

Shore 
Bradford 1 .506(**) .374(**)
McKinley .506(**) 1 .364(**)
Wisconsin_So.Shore .374(**) .364(**) 1

**  Correlation is significant at the 0.01 level (2-tailed). 
 
 
Figure 7. Scatter matrix for Milwaukee beaches with best fit lines indicated. 
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In Racine, E. coli counts at the two beaches were highly correlated (Table 4; Figure 8).  These 
beaches are similarly contiguous with a storm drainage dividing the two named areas from each 
other, so a high correlation would be expected. 
 
Table 4. Pearson correlation results for Racine beaches.  ** indicates a significant correlation at P<0.01. 
 
 Correlations 
 
  Zoo North 
Zoo 1 .799(**) 
North .799(**) 1 

**  Correlation is significant at the 0.01 level (2-tailed). 
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Figure 8. Scatter matrix for Racine beaches with best fit lines indicated. 
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Beaches in Lake County, Illinois are spread over a longer length of Lake Michigan than 
Milwaukee and Racine.  All of the beaches had E. coli counts that were highly correlated with 
one another, but the Pearson R values were lower (Table 5; Figure 9).  The highest R value was 
between Park Avenue and Rosewood (0.661), two contiguous beaches, and the lowest R value 
was between Rosewood and Waukegan South (0.154).  Overall, the patterns can be seen in the 
scatterplot matrix, with lower correlations exhibiting almost a horizontal fit line.  
 
Table 5. Pearson correlation results for Lake County, Illinois beaches.  ** indicates a significant correlation 
at P<0.01. 
 

  
No.Pt.Ma

rina IBSP_N IBSP_S 
Waukegan

_N 
Waukegan_

S Lake_Bluff Lake_Forest Park_Ave Rosewood
No.Pt.Marina 1 .467(**) .380(**) .415(**) .487(**) .240(**) .352(**) .344(**) .224(**)
IBSP_North .467(**) 1 .525(**) .360(**) .371(**) .406(**) .378(**) .447(**) .422(**)
IBSP_South .380(**) .525(**) 1 .476(**) .382(**) .605(**) .599(**) .642(**) .561(**)
Waukegan_North .415(**) .360(**) .476(**) 1 .456(**) .403(**) .427(**) .446(**) .390(**)
Waukegan_South .487(**) .371(**) .382(**) .456(**) 1 .262(**) .339(**) .314(**) .154(*)
Lake_Bluff .240(**) .406(**) .605(**) .403(**) .262(**) 1 .594(**) .576(**) .600(**)
Lake_Forest .352(**) .378(**) .599(**) .427(**) .339(**) .594(**) 1 .520(**) .596(**)
Park_Ave .344(**) .447(**) .642(**) .446(**) .314(**) .576(**) .520(**) 1 .661(**)
Rosewood .224(**) .422(**) .561(**) .390(**) .154(*) .600(**) .596(**) .661(**) 1

**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
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Figure 9. Scatter matrix for Lake County, Illinois beaches with best fit lines indicated. 
 
 
 
 
 
 
 
E. coli counts for beaches in North Chicago were all highly correlated with one another (Table 6; 
Figure 10).  Albion and North Shore beaches had a very high Pearson R (R=0.910); these 
beaches are in close proximity to one another.  The lowest value was between Jarvis-Fargo and 
31st Street Beaches (R=0.427), two beaches a great distance from one another.  Generally, 
however, the beaches were more closely correlated with one another than the beaches of Lake 
County were to each other.  The correlations seen in the scatterplot matrix show the similarity 
among beaches, with a general appearance of close correlations in all comparisons. 
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Table 6. Pearson correlation results for North Chicago, Illinois beaches.  ** indicates a significant correlation at P<0.01. 
 

 
Junewa

y Rogers 
Jarvis_Far

go Pratt 
Leone_
Loyola Albion 

North_S
hore 

Thornda
le 

Hollywo
od Foster 

Montros
e 

North_A
ve Oak Ohio Twelfth 

Thirty_F
irst 

Forty_Ni
nth 

Juneway 1 .878(**) .867(**) .777(**) .845(**) .820(**) .791(**) .706(**) .711(**) .699(**) .704(**) .719(**) .711(**) .696(**) .556(**) .456(**) .523(**) 

Rogers .878(**) 1 .802(**) .742(**) .813(**) .798(**) .758(**) .663(**) .660(**) .680(**) .677(**) .713(**) .689(**) .666(**) .577(**) .464(**) .499(**) 

Jarvis_Fargo .867(**) .802(**) 1 .752(**) .841(**) .773(**) .755(**) .681(**) .695(**) .653(**) .684(**) .693(**) .701(**) .667(**) .545(**) .427(**) .547(**) 

Pratt .777(**) .742(**) .752(**) 1 .831(**) .803(**) .822(**) .729(**) .778(**) .717(**) .735(**) .755(**) .733(**) .688(**) .599(**) .512(**) .565(**) 

Leone_Loyola .845(**) .813(**) .841(**) .831(**) 1 .818(**) .803(**) .777(**) .782(**) .761(**) .798(**) .814(**) .787(**) .733(**) .640(**) .522(**) .559(**) 

Albion .820(**) .798(**) .773(**) .803(**) .818(**) 1 .910(**) .768(**) .752(**) .744(**) .757(**) .777(**) .738(**) .713(**) .622(**) .540(**) .566(**) 

North_Shore .791(**) .758(**) .755(**) .822(**) .803(**) .910(**) 1 .756(**) .759(**) .712(**) .733(**) .768(**) .749(**) .723(**) .584(**) .526(**) .586(**) 

Thorndale .706(**) .663(**) .681(**) .729(**) .777(**) .768(**) .756(**) 1 .848(**) .737(**) .773(**) .745(**) .706(**) .663(**) .588(**) .495(**) .542(**) 

Hollywood .711(**) .660(**) .695(**) .778(**) .782(**) .752(**) .759(**) .848(**) 1 .793(**) .802(**) .750(**) .759(**) .712(**) .644(**) .564(**) .583(**) 

Foster .699(**) .680(**) .653(**) .717(**) .761(**) .744(**) .712(**) .737(**) .793(**) 1 .801(**) .781(**) .726(**) .718(**) .662(**) .526(**) .548(**) 

Montrose .704(**) .677(**) .684(**) .735(**) .798(**) .757(**) .733(**) .773(**) .802(**) .801(**) 1 .786(**) .724(**) .680(**) .616(**) .511(**) .555(**) 

North_Ave .719(**) .713(**) .693(**) .755(**) .814(**) .777(**) .768(**) .745(**) .750(**) .781(**) .786(**) 1 .819(**) .750(**) .643(**) .549(**) .562(**) 

Oak .711(**) .689(**) .701(**) .733(**) .787(**) .738(**) .749(**) .706(**) .759(**) .726(**) .724(**) .819(**) 1 .818(**) .604(**) .495(**) .574(**) 

Ohio .696(**) .666(**) .667(**) .688(**) .733(**) .713(**) .723(**) .663(**) .712(**) .718(**) .680(**) .750(**) .818(**) 1 .546(**) .430(**) .567(**) 

Twelfth .556(**) .577(**) .545(**) .599(**) .640(**) .622(**) .584(**) .588(**) .644(**) .662(**) .616(**) .643(**) .604(**) .546(**) 1 .716(**) .641(**) 

Thirty_First .456(**) .464(**) .427(**) .512(**) .522(**) .540(**) .526(**) .495(**) .564(**) .526(**) .511(**) .549(**) .495(**) .430(**) .716(**) 1 .685(**) 

Forty_Ninth .523(**) .499(**) .547(**) .565(**) .559(**) .566(**) .586(**) .542(**) .583(**) .548(**) .555(**) .562(**) .574(**) .567(**) .641(**) .685(**) 1
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Figure 10. Scatter matrix for North Chicago, Illinois beaches with best fit lines indicated. 
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Beaches in southern Chicago were also highly correlated with one another (Table 7; Figure 11).  
Far fewer beaches were included in this zone, and the highest correlation was between Calumet 
and Rainbow (R=0.743), two beaches close to one another, and the lowest was between Calumet 
and 63rd Street (R=0.582).  As a group of beaches, other than Racine, these beaches were the 
most closely correlated with one another.  These high correlations are apparent in the scatterplot 
matrix, with few singular high counts at individual beaches; high counts at one beach tend to be 
associated with high counts at all other beaches.  
 
Table 7.  Pearson correlation results for South Chicago, Illinois beaches.  ** indicates a significant correlation 
at P<0.01. 
 
 

  Fifty_Seventh Jack_63rd 
Chicago_So.Sh

ore Rainbow Calumet 
Fifty_Seventh 1 .717(**) .627(**) .618(**) .620(**) 
Jack_63rd .717(**) 1 .690(**) .627(**) .582(**) 
Chicago_So.Shore .627(**) .690(**) 1 .699(**) .602(**) 
Rainbow .618(**) .627(**) .699(**) 1 .743(**) 
Calumet .620(**) .582(**) .602(**) .743(**) 1 

**  Correlation is significant at the 0.01 level (2-tailed). 
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Figure 11.  Scatter matrix for South Chicago, Illinois beaches with best fit lines indicated.
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Figure 12.  Scatter graph of mean log E. coli counts each year showing seasonal increase in E. coli counts 
 

E. coli showed a seasonal pattern in all four years analyzed (Figure 12).  Generally, E. 
coli increases throughout the swimming season, with many beaches reporting the greatest 
number of closures in August.  This seasonal trend in E. coli has been seen at other times 
(Whitman et al., 1999), and could be the result of increasing water and air temperatures or else 
concentration, persistence, and resuspension. 
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Modeling 
 

The currently used model for E. coli sampling involves collecting a water sample, 
incubating it for 18-24 hours and then making a management decision on whether to close the 
beach based on the number of colonies present.  Comparing day of sampling with day of results 
reporting, this approach results in a R2 of 0.192 for the entire dataset.  The results by zone for 
this approach were variable (Table 8). 
 
 
Table 8. Result of regression model using E. coli count from previous day to predict current day’s count 
(currently used approach). 
 

Zone Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

City of Milwaukee 1 .465(a) .216 .215 .66102
City of Racine 1 .360(a) .129 .127 .55913
Lake County, IL 1 .385(a) .149 .148 .74810
North Chicago 1 .441(a) .195 .194 .67472
South Chicago 1 .351(a) .124 .123 .65521
West Indiana 1 .323(a) .104 .096 .48823
East Indiana 1 .081(a) .007 -.007 .52105

a  Predictors: (Constant), lec_mn_1 
 Component Matrix(a) 
 
 

 
 
 
Principal component analysis (factor analysis) was performed on the independent variables used 
in the models to understand better the relationship between predictors and to explore whether 
reducing the number of factors would be advantageous.  Table 9 and Figure 13 show the rotated 
component matrix using varimax with Kaiser normalization.  Ten independent factors were 
reduced to four factor components.  Cloud cover, sunlight, rainfall contributed most to Factor 1; 
wave height, wave period and wind speed Factor 2; lake depth and temperature, Factor 3; while 
Factor 4 was best described by E. colit-1.  Regression analysis was then performed using these 
four factors; all were coefficients, were significant at p<0.0001, and for the overall model R2 was 
0.245.  Since there were a sufficient number of observations relative to the number of 
independent variables available and the amount of variation was explained by the original 
variable, the extracted factors were not used further in regression analysis. 
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Table 9 Relationships between parameters used in the predictive model using principal component analysis. 
 
 Rotated Component Matrix(a) 
 

Component 

  1 2 3 4 

Zcloudcover -.791 .096 -.059 .003 

Zlakedepth .066 -.042 .723 .237 

Zsunlight .853 .067 .157 -.076 

Zrain -.633 -.113 -.069 .020 

Zpressure .556 .190 -.202 .351 

Ztemperture .083 .050 .822 -.094 

Zwaveheight .136 .868 -.071 .296 

Zperiod .249 .810 .028 .157 

Zwindspeed -.321 .695 .077 -.380 

ZEcoli_lag -.081 .152 .152 .829 

Extraction Method: Principal Component Analysis.  Rotation Method: Varimax with Kaiser Normalization. 
a  Rotation converged in 6 iterations. 
 
 
 

-1.0 -0.5 0.0 0.5 1.0Component 1

-1.0

-0.5

0.0

0.5

1.0

C
om

po
ne

nt
 2

-1.0-0.50.00.51.0

Component 3

Zcloudcover

Zlakedepth
Zsunlight

Zrain

Zpressure

Ztemperture

Zwaveheight

Zperiod
Zwindspeed

ZEcoli_lag

Component Plot in Rotated Space

 
 

Figure 13 Resulting configuration of principal component analysis of variables used in the model. 
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In a model using univariate analysis of variance, E. coli counts were included for separate 

zones.  The variables used in the model were previous day’s E. coli, average rainfall, average 
wave height and period, depth of Calumet Harbor, minimum air temperature, and an interaction 
term of wind speed and wind direction (Table 10).  The interaction term used a weighted wind 
direction term that accounts for wind vector and average wind speed.  All parameters were log-
transformed averages from several collection locations.  The resulting model had an R2 of 0.285. 
 
 
Table 10.  Parameters used in the best model for entire regional dataset. 
 
 Tests of Between-Subjects Effects 

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 699.494(a) 13 53.807 130.330 .000
Intercept 6.620 1 6.620 16.035 .000
lec_mn_1 191.443 1 191.443 463.706 .000
laverain 62.062 1 62.062 150.323 .000
lavewave 53.788 1 53.788 130.284 .000
laveperiod 11.781 1 11.781 28.534 .000
lavecaldepth 6.591 1 6.591 15.965 .000
lavemintemp 73.513 1 73.513 178.060 .000
avewdspXwdcode 

25.140 1 25.140 60.894 .000

Zone 59.733 6 9.956 24.114 .000
Error 1752.153 4244 .413   
Total 16271.731 4258    
Corrected Total 2451.647 4257    

a  R Squared = .285 (Adjusted R Squared = .283) 
 
 
 

Variations on the model were explored, including changing the wind direction increments 
to onshore and offshore components.  The beach zone was also included as a parameter, and the 
resulting model improved the model only slightly to 0.291.  A second variation had zone and 
wind direction as interacting variables, which also increased the model slightly, to 0.293. 
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Figure 14.  Actual E. coli count measured vs. count predicted using the best model developed.  Colors indicate 
different zones, and lines indicate performance of zones within the overall model. 
 
 

The resulting model produces lower R2 values when the predictions are examined for 
individual zones (Figure 14).  The Indiana beaches were sampled far less frequently, and as a 
result, the E. coli counts are more difficult to predict.  It is apparent that the model still produces 
numerous false positives and false negatives.  Of the 4258 cases included in the prediction, 3149 
occasions (74% of samples) when E. coli counts were below log 2.38 CFU were correctly 
predicted, and 188 occasions (4% of samples) when E. coli counts were above log 2.38 CFU 
were correctly predicted.  On 148 occasions (3% of samples), E. coli was below log 2.38 CFU, 
but the model predicted the count was above (false positive), and on 773 occasions (18% of 
samples), E. coli was above log 2.38 CFU, and the model predicted the count was below (false 
negative).  It should be noted that counts below log 2.38 are far more common, but 22% of the 
samples had counts above the 2.38 limit.  Overall, for 78% of the samples, E. coli level was 

Zone  R2 
O City of Milwaukee 0.277 
O City of Racine 0.215 
O Lake Co., Illinois 0.226 
O North Chicago 0.276 
O South Chicago 0.286 
O West Indiana 0.115 
O East Indiana 0.262 
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accurately predicted as above or below 235, which is the goal of current recommended 
monitoring programs by the EPA. 
 The vertical lines of data points indicate either detection limits (low) or maximum count 
possible using analysis method (high).  Generally, it is noticeable that the Milwaukee beaches 
have higher counts and that many low counts were recorded for Chicago beaches.  Chicago 
beaches dominated the overall number of cases included in the analysis, and Indiana beaches had 
far fewer samples than all other zone locations. 

Running the same model on individual zones yielded less successful models, overall 
(Table 11).  In this exercise, data from zones were input in the same model to examine how the 
parameters interact with E. coli data from each zone.  There were not enough data points for the 
input parameters to complete model analyses for the Indiana beaches.  There was no 
improvement when the model was applied to individual zones, and many parameters were no 
longer significant in the analyses. 
 
Table 11.  Results of model as applied to different regional zones. 
 
 Tests of Between-Subjects Effects 
 
Dependent Variable: log_ec  

Zone Source 
Type III Sum of 

Squares df Mean Square F Sig. 
Milwaukee Corrected Model 84.544(a) 8 10.568 28.315 .000
  Intercept 10.612 1 10.612 28.433 .000
  windcode_gyy_onof

fshore .243 1 .243 .652 .420

  lec_mn_1 25.313 1 25.313 67.821 .000
  laverain 10.888 1 10.888 29.174 .000
  lavewave 3.577 1 3.577 9.585 .002
  laveperiod 1.492 1 1.492 3.997 .046
  lavecaldepth 10.618 1 10.618 28.449 .000
  lavemintemp 6.344 1 6.344 16.997 .000
  avewdspXwdcode 

2.117 1 2.117 5.672 .018

  Error 188.481 505 .373    
  Total 2656.891 514      
  Corrected Total 273.025 513      
Racine Corrected Model 29.919(b) 8 3.740 14.699 .000
  Intercept .510 1 .510 2.005 .158
  windcode_gyy_onof

fshore 2.551 1 2.551 10.027 .002

  lec_mn_1 5.043 1 5.043 19.822 .000
  laverain 15.109 1 15.109 59.384 .000
  lavewave .326 1 .326 1.281 .259
  laveperiod .096 1 .096 .379 .539
  lavecaldepth .511 1 .511 2.008 .158
  lavemintemp .043 1 .043 .170 .681
  avewdspXwdcode 

2.771 1 2.771 10.890 .001

  Error 58.263 229 .254    
  Total 887.462 238      
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  Corrected Total 88.182 237      
Lake Co. Corrected Model 166.651(c) 8 20.831 42.457 .000
  Intercept 10.040 1 10.040 20.463 .000
  windcode_gyy_onof

fshore 1.734 1 1.734 3.535 .060

  lec_mn_1 59.996 1 59.996 122.282 .000
  laverain 19.030 1 19.030 38.786 .000
  lavewave 9.804 1 9.804 19.981 .000
  laveperiod 6.759 1 6.759 13.775 .000
  lavecaldepth 10.124 1 10.124 20.634 .000
  lavemintemp .004 1 .004 .007 .931
  avewdspXwdcode 

7.727 1 7.727 15.749 .000

  Error 435.690 888 .491    
  Total 3360.017 897      
  Corrected Total 602.341 896      
N Chicago Corrected Model 313.170(d) 8 39.146 98.495 .000
  Intercept 2.606 1 2.606 6.556 .011
  windcode_gyy_onof

fshore 2.765 1 2.765 6.956 .008

  lec_mn_1 36.232 1 36.232 91.163 .000
  laverain 5.795 1 5.795 14.580 .000
  lavewave 42.890 1 42.890 107.914 .000
  laveperiod 10.304 1 10.304 25.925 .000
  lavecaldepth 2.645 1 2.645 6.656 .010
  lavemintemp 86.537 1 86.537 217.733 .000
  avewdspXwdcode 

.001 1 .001 .004 .952

  Error 745.608 1876 .397    
  Total 6395.986 1885      
  Corrected Total 1058.779 1884      
S Chicago Corrected Model 77.707(e) 8 9.713 27.255 .000
  Intercept .032 1 .032 .090 .765
  windcode_gyy_onof

fshore .218 1 .218 .612 .434

  lec_mn_1 15.075 1 15.075 42.300 .000
  laverain 11.768 1 11.768 33.020 .000
  lavewave 4.877 1 4.877 13.685 .000
  laveperiod .618 1 .618 1.733 .189
  lavecaldepth .031 1 .031 .086 .770
  lavemintemp 11.971 1 11.971 33.591 .000
  avewdspXwdcode 

3.694 1 3.694 10.365 .001

  Error 208.487 585 .356    
  Total 2528.523 594      
  Corrected Total 286.195 593      
W Indiana Corrected Model 2.409(f) 7 .344 1.709 .122
  Intercept .000 0 . . .
  windcode_gyy_onof

fshore .000 0 . . .

  lec_mn_1 .000 0 . . .
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  laverain .000 0 . . .
  lavewave .000 0 . . .
  laveperiod .000 0 . . .
  lavecaldepth .000 0 . . .
  lavemintemp .000 0 . . .
  avewdspXwdcode 

.000 0 . . .

  Error 13.093 65 .201    
  Total 193.307 73      
  Corrected Total 15.503 72      
E Indiana Corrected Model 5.423(g) 7 .775 3.570 .004
  Intercept .000 0 . . .
  windcode_gyy_onof

fshore .000 0 . . .

  lec_mn_1 .000 0 . . .
  laverain .000 0 . . .
  lavewave .000 0 . . .
  laveperiod .000 0 . . .
  lavecaldepth .000 0 . . .
  lavemintemp .000 0 . . .
  avewdspXwdcode 

.000 0 . . .

  Error 10.633 49 .217    
  Total 249.545 57      
  Corrected Total 16.055 56      

a  R Squared = .310 (Adjusted R Squared = .299) 
b  R Squared = .339 (Adjusted R Squared = .316) 
c  R Squared = .277 (Adjusted R Squared = .270) 
d  R Squared = .296 (Adjusted R Squared = .293) 
e  R Squared = .272 (Adjusted R Squared = .262) 
f  R Squared = .155 (Adjusted R Squared = .064) 
g  R Squared = .338 (Adjusted R Squared = .243) 
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The model was then tested on individual beaches to see if there was an improvement in 
model capability when beaches were examined on an even smaller scale.  Indiana beaches were 
not analyzed because the dataset was not sufficient.  The model results were highly variable, 
with R2 ranging from 0.094 to 0.474 (Figure 15); models were significant for all beaches except 
North Point Marina. 
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Figure 15.  R2 values for individual study beaches when best model applied to separate beaches.  Beaches are 
ranked in order of R2 value. 
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Classification and Regression Trees 
 

Regression trees were used to indicate which parameters would subdivide the E. coli 
dataset, indicating the parameters having the greatest effect on counts. In an analysis of the 
dataset (N=10348), previous E. coli count, as 3-day prior moving average, was the first to 
subdivide the data, with counts lower than 1.68 log CFU resulting in a lower overall mean of E. 
coli (Figure 16).  The lower E. coli group was further subdivided by rainfall, with lower rainfall 
associated with lower E. coli counts.   The higher 3-day prior moving average group was then 
subdivided by wave height, with higher waves associated with higher E. coli counts.  
Improvements with branching were limited.  Importance of each of the input parameters is also 
calculated as part of the analysis (Table 12). 

Node 0
Mean 1.716
Std. Dev. 0.758
n 10348
% 100.0
Predicted 1.716

3 Day Prior E. coli
Improvement=0.037

log_ec

Node 1
Mean 1.435
Std. Dev. 0.731
n 3274
% 31.6
Predicted 1.435

Rainfall
Improvement=0.010

<= 1.68

Node 2
Mean 1.847
Std. Dev. 0.735
n 7074
% 68.4
Predicted 1.847

Wave Height
Improvement=0.020

> 1.68

Node 3
Mean 1.404
Std. Dev. 0.711
n 3176
% 30.7
Predicted 1.404

<= 1.77

Node 4
Mean 2.450
Std. Dev. 0.642
n 98
% 0.9
Predicted 2.450

> 1.77

Node 5
Mean 1.559
Std. Dev. 0.738
n 1850
% 17.9
Predicted 1.559

<= 0.11

Node 6
Mean 1.948
Std. Dev. 0.706
n 5224
% 50.5
Predicted 1.948

> 0.11

  
Figure 16.  Regression tree for entire dataset considered in the study. 
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Table 12 Independent variable importance as determined by regression tree for the entire dataset. 
 
 

Independent Variable Importance 
Normalized 
Importance 

3 Day Prior E. coli .037 100.0%
Wave Height .032 85.7%
Temperature .014 38.3%
Rainfall .014 38.1%
Pressure .010 27.7%
Sunlight .001 1.5%

Growing Method: CRT  
 Dependent Variable: log_ec  
  
 

Wind direction was also considered with its effect on the classification tree, and a model 
with south winds had similar results, with 3-day prior moving average having the most 
importance in the model, followed by wave height and air temperature (Figure 17).  Rainfall was 
far less important when only south winds were considered, with normalized importance resulting 
as less than 0.1%. 

 
 
 
 
 
  

 
 Independent Variable Importance 
 

Independent Variable Importance 
Normalized 
Importance 

log_ec_3dayPMA .046 100.0%
awaves_mean .041 88.4%
amtemp_mean .027 59.6%
asolar_mean .000 .7%
awspeed .000 .3%
averain_mean 5.78E-006 .0%

Growing Method: CRT  
 Dependent Variable: log_ec  
 
 
 
 
Figure 17.  Regression tree for all data collected on days of 
prevailing south winds.  Table indicates independent 
variable importance, as derived from the regression tree. 
 
 
 
 

Node 0
Mean 1.672
Std. Dev. 0.770
n 6721
% 100 .0
Predicted 1.672

PMA(log_ec,3)
Improvement=0.046

log_ec

Node 1
Mean 1.340
Std. Dev. 0.712
n 2082
% 31.0
Predicted 1.340

<= 1.67

Node 2
Mean 1.821
Std. Dev. 0.749
n 4639
% 69.0
Predicted 1.821

awaves_mean
Improvement=0.022

> 1.67

Node 3
Mean 1.493
Std. Dev. 0.779
n 1095
% 16.3
Predicted 1.493

<= 0.11

Node 4
Mean 1.922
Std. Dev. 0.709
n 3544
% 52.7
Predicted 1.922

> 0.11
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Regression trees were also developed for north and south winds for two select zones: 
south Chicago and Milwaukee. 
 

Results for south Chicago beaches during north winds indicated that air temperature was 
the first variable to split the dataset (Figure 18).  Air temperature is often a surrogate factor for 
seasonality because E. coli and air temperature both increase through the course of the beach 
season.  The E. coli group with a higher mean count was then split by wave height, with higher 
waves associated with an E. coli group whose mean was 2.4 log CFU.  This is significant 
because the mean is above the 2.38 log CFU threshold for beach advisory as recommended by 
the EPA. 
 

 
 
  
 
 Independent Variable Importance 
 

Independent Variable Importance 
Normalized 
Importance 

amtemp_mean .113 100.0% 
log_ec_3dayPMA .046 40.8% 
awspeed .043 38.0% 
awaves_mean .034 29.7% 
asolar_mean .001 .7% 

Growing Method: CRT  
 Dependent Variable: log_ec  
  
 

 
 
 
 

Figure 18.  Regression tree for south Chicago beaches on days of 
prevailing north winds.  Table indicates independent variable 
importance, as derived from the regression tree. 
 

Node 0
Mean 1.985
Std. Dev. 0.762
n 286
% 100 .0
Predicted 1.985

amtemp_mean
Improvement=0.111

log_ec

Node 1
Mean 1.558
Std. Dev. 0.717
n 108
% 37.8
Predicted 1.558

<= 15.24

Node 2
Mean 2.244
Std. Dev. 0.667
n 178
% 62.2
Predicted 2.244

awaves_mean
Improvement=0.034

> 15.24

Node 3
Mean 1.914
Std. Dev. 0.603
n 57
% 19.9
Predicted 1.914

<= 0.22

Node 4
Mean 2.400
Std. Dev. 0.641
n 121
% 42.3
Predicted 2.400

> 0.22
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The classification tree for south winds for South Chicago similarly was first divided by 
air temperature, and the group with lower air temperature was then subdivided by amount of 
rainfall (Figure 19).  The subset with higher air temperature was secondarily subdivided by 3-day 
prior moving average of E. coli.  The dataset divided several more times with different 
subgroups, but the important parameters were wave height, air temperature, solar insolation, and 
3-day prior moving average (Table 13). 
 
 
 
 
 
 
 
 
 
 
   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
Figure 19 Regression tree for south Chicago beaches on days of prevailing south winds. 

Node 0
Mean 1.745
Std. Dev. 0.749
n 910
% 100 .0
Predicted 1.745

amtemp_mean
Improvement=0.036

log_ec

Node 1
Mean 1.396
Std. Dev. 0.747
n 210
% 23.1
Predicted 1.396

averain_mean
Improvement=0.015

<= 14.02

Node 2
Mean 1.850
Std. Dev. 0.718
n 700
% 76.9
Predicted 1.850

PMA(log_ec,3)
Improvement=0.024

> 14.02

Node 3
Mean 1.206
Std. Dev. 0.680
n 135
% 14.8
Predicted 1.206

<= 0.27

Node 4
Mean 1.738
Std. Dev. 0.745
n 75
% 8.2
Predicted 1.738

> 0.27

Node 5
Mean 1.542
Std. Dev. 0.888
n 113
% 12.4
Predicted 1.542

asolar_mean
Improvement=0.037

<= 1.34

Node 6
Mean 1.909
Std. Dev. 0.665
n 587
% 64.5
Predicted 1.909

awaves_mean
Improvement=0.020

> 1.34

Node 7
Mean 2.155
Std. Dev. 0.911
n 50
% 5.5
Predicted 2.155

<= 8.00

Node 8
Mean 1.055
Std. Dev. 0.474
n 63
% 6.9
Predicted 1.055

> 8.00

Node 9
Mean 1.441
Std. Dev. 0.574
n 68
% 7.5
Predicted 1.441

<= 0.11

Node 10
Mean 1.971
Std. Dev. 0.653
n 519
% 57.0
Predicted 1.971

averain_mean
Improvement=0.014

> 0.11

Node 11
Mean 1.829
Std. Dev. 0.588
n 272
% 29.9
Predicted 1.829

<= 0.01

Node 12
Mean 2.127
Std. Dev. 0.685
n 247
% 27.1
Predicted 2.127

> 0.01
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Table 13.  Independent variable importance for south Chicago during prevailing south winds, as derived 
from the regression tree. 
 

Independent Variable Importance 
Normalized 
Importance 

Awaves_mean .059 100.0%
amtemp_mean .051 86.4%
asolar_mean .039 66.2%
log_ec_3dayPMA .039 65.7%
Averain_mean .038 63.5%
awspeed .008 12.9%

Growing method: CRT 
Dependent Variable: log_ec  
 
 
 
For the Milwaukee beaches, north winds resulted in a tree with 3-day prior moving 

average of E. coli causing the primary split of the dataset (Figure 20).  It was the most important 
variable in the model, and it caused the only split, given the input definition of the model.                       

 
   
 

Independent Variable Importance 
Normalized 
Importance 

log_ec_3dayPMA .046 100.0% 
Awaves_mean .015 31.6% 
amtemp_mean .008 16.4% 
asolar_mean .004 8.9% 
Averain_mean .003 5.8% 
awspeed .000 .6% 

Growing Method: CRT  
 Dependent Variable: log_ec  
  
 
 
 
 
 
 
 
 

Figure 20.  Regression tree for Milwaukee beaches on days of prevailing north winds.  Table indicates 
independent variable importance, as derived from the regression tree. 
 
 

Node 0
Mean 2.247
Std. Dev. 0.699
n 204
% 100 .0
Predicted 2.247

PMA(log_ec,3)
Improvement=0.046

log_ec

Node 1
Mean 2.064
Std. Dev. 0.722
n 114
% 55.9
Predicted 2.064

<= 2.08

Node 2
Mean 2.479
Std. Dev. 0.597
n 90
% 44.1
Predicted 2.479

> 2.08
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Similarly, 3-day prior moving average of E. coli first subdivided the dataset for Milwaukee 
during south winds (Figure 21).  The division was for cases with E. coli counts lower than 2.35 log 
CFU and cases with E. coli counts higher, which is close to the EPA advisory limit of 2.38 log 
CFU.  Further subdividing was based on different 3-day prior moving average levels, which was 
identified as the most important variable; all other variables had far lower importance values.  

  
  
 

 
 
 
 
 
Independent 
Variable Importance 

Normalized 
Importance 

log_ec_3dayPM
A .099 100.0%

asolar_mean .017 17.1%
amtemp_mean .009 9.2%
awaves_mean .004 3.6%
awspeed .002 1.6%
averain_mean .001 1.5%

 
Growing Method: CRT  
 Dependent Variable: log_ec  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 21.  Regression tree for Milwaukee beaches on days of prevailing south winds.  Table indicates 
independent variable importance, as derived from the regression tree.

Node 0
Mean 2.019
Std. Dev. 0.713
n 825
% 100.0
Predicted 2.019

PMA(log_ec,3)
Improvement=0.067

log_ec

Node 1
Mean 1.857
Std. Dev. 0.675
n 596
% 72.2
Predicted 1.857

PMA(log_ec,3)
Improvement=0.019

<= 2.35

Node 2
Mean 2.442
Std. Dev. 0.633
n 229
% 27.8
Predicted 2.442

PMA(log_ec,3)
Improvement=0.012

> 2.35

Node 3
Mean 1.610
Std. Dev. 0.651
n 179
% 21.7
Predicted 1.610

<= 1.67

Node 4
Mean 1.963
Std. Dev. 0.658
n 417
% 50.5
Predicted 1.963

asolar_mean
Improvement=0.011

> 1.67

Node 5
Mean 2.309
Std. Dev. 0.622
n 164
% 19.9
Predicted 2.309

<= 2.84

Node 6
Mean 2.779
Std. Dev. 0.529
n 65
% 7.9
Predicted 2.779

> 2.84

Node 7
Mean 2.043
Std. Dev. 0.652
n 325
% 39.4
Predicted 2.043

<= 9.43

Node 8
Mean 1.681
Std. Dev. 0.606
n 92
% 11.2
Predicted 1.681

> 9.43
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Hierarchical Cluster Analysis 
 

In order to determine which beaches could be modeled together in smaller groups, 
hierarchical cluster analysis was used.  A cluster of all beaches in Wisconsin and Illinois was 
created; Indiana beaches were omitted due to the scarcity of available data relative to other 
beaches studied.  The resulting cluster showed numerous groupings, with some expected 
clustering of beaches that are in close proximity to one another (Figure 22). 
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                         Rescaled Distance Cluster Combine 
 
    C A S E      0         5        10        15        20        25 
  Label     Num  +---------+---------+---------+---------+---------+ 
 
  Hollywoo    8   òûòòòø 

  Thorndal   30   ò÷   ùòòòø 

  Montrose   17   òòòòò÷   ó 

  Juneway    12   òòòòòûòø ó 

  Pratt      24   òòòòò÷ ùòôòø 

  Leone_Lo   15   òòòòòòò÷ ó ó 

  Albion      1   òòòûòòòòòú ó 

  North_Sh   20   òòò÷     ó ó 

  North_Av   19   òòòûòòòø ó ó 

  Oak        21   òòò÷   ùò÷ ùòòòø 

  Ohio       22   òòòòòòò÷   ó   ó 

  Foster      7   òòòòòòòòòòòú   ùòòòòòòòòòø 

  Rogers     26   òòòòòòòòòòò÷   ó         ó 

  Jarvis_F   11   òòòòòòòòòòòòòòò÷         ùòòòø 

  Fifty_Se    5   òòòòòòòòòòòòòûòòòòòòòø   ó   ó 

  Jack_63r   29   òòòòòòòòòòòòò÷       ùòòò÷   ó 

  Calumet     3   òòòòòòòòòûòòòòòòòòòø ó       ùòòòòòòòòòòòòòòòòòø 

  Rainbow    25   òòòòòòòòò÷         ùò÷       ó                 ó 

  Chicago_    4   òòòòòòòòòòòòòòòòòòò÷         ó                 ó 

  Thirty_F   28   òòòòòòòòòòòûòòòòòòòòòòòø     ó                 ó 

  Twelfth    31   òòòòòòòòòòò÷           ùòòòòò÷                 ó 

  Forty_Ni    6   òòòòòòòòòòòòòòòòòòòòòòò÷                       ùòø 

  Zoo        34   òòòûòòòòòòòòòòòòòòòòòòòòòòòòòòòòòø             ó ó 

  North      35   òòò÷                             ó             ó ó 

  Park_Ave   23   òòòòòòòòòòòûòòòòòòòòòø           ùòø           ó ó 

  Rosewood   27   òòòòòòòòòòò÷         ùòòòòòòòø   ó ó           ó ó 

  IBSP_Sou   10   òòòòòòòòòòòòòòòòòòòòòú       ùòòò÷ ùòòòòòòòòòòò÷ ó 

  Lake_For   14   òòòòòòòòòòòòòòòòòòòòò÷       ó     ó             ó 

  Lake_Blu   13   òòòòòòòòòòòòòòòòòòòòòòòòòòòòò÷     ó             ó 

  IBSP_Nor    9   òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò÷             ó 

  No.Pt.Ma   18   òòòòòòòòòòòòòòòòòòòòòòòòòòòûòòòòòòòø             ó 

  Wisconsi   36   òòòòòòòòòòòòòòòòòòòòòòòòòòò÷       ó             ó 

  Waukegan   32   òòòòòòòòòòòòòòòòòòòòòòòûòòòø       ùòòòòòòòòòòòòò÷ 

  Waukeg_1   33   òòòòòòòòòòòòòòòòòòòòòòò÷   ùòòòø   ó 

  McKinley   16   òòòòòòòòòòòòòòòòòòòòòòòòòòò÷   ùòòò÷ 

  Bradford    2   òòòòòòòòòòòòòòòòòòòòòòòòòòòòòòò÷ 
 
Figure 22.  Dendrogram of results from hierarchical clustering analysis for all beaches but Indiana beaches. 
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The beaches were clustered again, and specific numbers of clusters were forced: 2, 3, and 
4 clusters (Table 14). The groupings based on three clusters were then used as smaller groups for 
modeling.  
 
Table 14.  Results of hierarchical clustering analysis with forced number of clusters.  Numbers indicate 
cluster membership.  All beaches but Indiana beaches included. 
 
 Case 4 Clusters 3 Clusters 2 Clusters 
Albion 1 1 1
Bradford 2 2 2
Calumet 1 1 1
Chicago_So.Shore 1 1 1
Fifty_Seventh 1 1 1
Forty_Ninth 1 1 1
Foster 1 1 1
Hollywood 1 1 1
IBSP_North 3 3 1
IBSP_South 4 3 1
Jarvis_Fargo 1 1 1
Juneway 1 1 1
Lake_Bluff 4 3 1
Lake_Forest 4 3 1
Leone_Loyola 1 1 1
McKinley 2 2 2
Montrose 1 1 1
No.Pt.Marina 2 2 2
North_Ave 1 1 1
North_Shore 1 1 1
Oak 1 1 1
Ohio 1 1 1
Park_Ave 4 3 1
Pratt 1 1 1
Rainbow 1 1 1
Rogers 1 1 1
Rosewood 4 3 1
Thirty_First 1 1 1
Jack_63rd 1 1 1
Thorndale 1 1 1
Twelfth 1 1 1
Waukegan_North 2 2 2
Waukegan_South 2 2 2
Zoo 4 3 1
North 4 3 1
Wisconsin_So.Shore 2 2 2
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Modeling Groups of Beaches 
 

From hierarchical clustering, cluster 1 was the largest group of beaches, with 23 Chicago 
beaches.  If the same model is used for this subgroup, each of the parameters remains significant 
but for Calumet Harbor depth; however, with this included or removed from the model, the result 
is R2=0.315 (Table 15; Figure 23). 
Table 15.  Results of best model applied to one of three clusters determined through hierarchical clustering 
analysis.  The cluster included Chicago beaches. 

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 349.617(a) 27 12.949 38.355 .000 
Intercept 6.117 1 6.117 18.118 .000 
lec_mn_1 38.902 1 38.902 115.228 .000 
laverain 15.709 1 15.709 46.531 .000 
lavewave 43.427 1 43.427 128.632 .000 
avewdspXwdcode 5.408 1 5.408 16.018 .000 
laveperiod 8.596 1 8.596 25.462 .000 
lavemintemp 87.444 1 87.444 259.012 .000 
code 31.447 21 1.497 4.436 .000 
Error 761.302 2255 .338    
Total 7653.034 2283     
Corrected Total 1110.919 2282     

a  R Squared = .315 (Adjusted R Squared = .307) 
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Figure 23.  Scatter of measured mean log E. coli count and predicted count using best developed model.  
Colors indicate individual beaches; this group includes Chicago beaches. 
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Cluster 2 included six beaches: the 3 Milwaukee beaches (Bradford, McKinley, and 
Wisconsin South Shore) and 3 beaches located in Lake County Illinois (North Point Marina, 
Waukegan North, and Waukegan South).  In the model, wave period was no longer significant, 
and the model resulted in an R2 of 0.301; values at the maximum count level were eliminated for 
the analysis (Table 16; Figure 24). 
  
Table 16.  Results of best model applied to one of three clusters determined through hierarchical clustering 
analysis.  The cluster included Milwaukee and Lake County Illinois beaches. 

Source 
Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 97.848(a) 12 8.154 25.518 .000 
Intercept 14.820 1 14.820 46.380 .000 
lec_mn_1 8.685 1 8.685 27.181 .000 
laverain 9.650 1 9.650 30.201 .000 
lavewave 6.425 1 6.425 20.106 .000 
avewdspXwdcode 1.463 1 1.463 4.577 .033 
laveperiod 1.005 1 1.005 3.144 .077 
lavemintemp 5.500 1 5.500 17.213 .000 
lavecaldepth 14.837 1 14.837 46.432 .000 
code 20.824 5 4.165 13.034 .000 
Error 227.193 711 .320    
Total 3520.311 724     
Corrected Total 325.040 723     

a  R Squared = .301 (Adjusted R Squared = .289) 
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Figure 24.  Scatter of measured mean log E. coli count and predicted count using best developed model.  
Colors indicate individual beaches; this group includes Milwaukee and Lake County, Illinois beaches. 
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The third cluster included 6 Lake County, Illinois beaches (IBSP North, IBSP South, 
Lake Bluff, Lake Forest, Park Ave., Rosewood) and the 2 Racine beaches (North, Zoo).  If the 
model is applied to this group of beaches, neither minimum temperature nor Calumet Harbor 
depth remains a significant parameter, and removing them from the model results in an R2 of 
0.292 (Table 17; Figure 25). 
 
Table 17.  Results of best model applied to one of three clusters determined through hierarchical clustering 
analysis.  The cluster included Racine, Wisconsin and Lake County, Illinois beaches.  
 
 
Source 

Type III Sum 
of Squares df Mean Square F Sig. 

Corrected Model 122.734(a) 12 10.228 28.886 .000 
Intercept 11.670 1 11.670 32.958 .000 
lec_mn_1 11.310 1 11.310 31.942 .000 
laverain 27.579 1 27.579 77.891 .000 
lavewave 13.181 1 13.181 37.226 .000 
laveperiod 6.171 1 6.171 17.428 .000 
avewdspXwdcode 11.089 1 11.089 31.317 .000 
code 17.451 7 2.493 7.041 .000 
Error 298.132 842 .354    
Total 2574.262 855     
Corrected Total 420.866 854     

a  R Squared = .292 (Adjusted R Squared = .282) 
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Figure 25.  Scatter of measured mean log E. coli count and predicted count using best developed model.  
Colors indicate individual beaches; this group includes Racine, Wisconsin and Lake County, Illinois beaches. 
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Case Study for a Single Beach 
 
Intensive sampling at 63rd Street Beach in Chicago in 2000 provides a large dataset from which 
numerous models can be explored.  In these examples, the data are examined to find the best 
model and best approach at modeling a single beach. 
 
Concentrations of E. coli measured in 90 cm of water at 13:00 h were used as the dependent 
variable, while wave height, wind speed, sunlight intensity, rainfall, barometric pressure, wave 
period, and temperature were available as independent factors. Data were collected from local 
weather stations, a buoy operated by NOAA, wave measurements from the Army Corps of 
Engineers and hydrometeorological information from instruments placed at the beach. The data 
set consisted of 42 measurements made between May and September 2000.  
 
 
Multiple Regression Model 
A multiple regression model, similar to those used for the regional and zone area models, was 
developed using three major influencing factors: wind speed, sunlight, and wave height.   The 
model explains 60% (R2=0.597) of the variation log-E. coli of the data set. This model resulted 
in an RMSE=0.429 with 2 (5%) type 1 errors and 0 (0%) type 2 errors.  It had the form: 
 
y = B0 + B1X1 + B2X2 + B3X3 + e      
   
where B0 is a constant; y is log-E. coli where E. coli has units of CFU/100 mL; B1, B2, and B3 are 
regression coefficients for the predictors wave height, wind speed, and sunlight, respectively;  
X1, X2, and X3 are the value of each predictor wave height, wind speed, and sunlight, 
respectively; and e is the residual error of the model. The three factors were chosen using a step-
wise multiple regression that maximized the model success as measured by an r-square. The 
analysis yielded the following equation: 
 
y=2.310+0.029(X1)-0.083(X2)-2.287(X3)       
 
The positive coefficient for wave height suggests that larger waves give rise to higher E. coli 
concentrations. The negative coefficients for wind speed and sunlight indicate that high winds 
and high sunlight intensity lead to reduced concentrations of E. coli. The model explains 60% 
(R2=0.597) of the variation log- E. coli of the training data set.  
 
When constructing a multiple regression model, care must be taken not to violate any of the 
assumptions used in formulating the model. One such assumption requires the dependent 
variable to not be autocorrelated. The Durbin-Watson statistic can be used to assess this. In the 
case of the model presented above, the Durbin-Watson statistic is 1.8, suggesting that log-E. coli 
are not autocorrelated. Another assumption requires that the independent variables used to 
formulate the model are not correlated. The wind speed and sunlight are correlated (r= 0.795, 
p<0.05) suggesting that this assumption has been violated.  
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Models should be validated with independent data before they are used with confidence.  Most 
empirically derived models tend to be biased because they are based on the data that they seek to 
predict.  Even cross-validation by techniques such as jack-knife procedures are biased since the 
generated subsets are taken from the raw data itself.  Validation is best used on independently 
collected data.  In the case of 63rd Street Beach, the Chicago Park District (CPD) collected E. coli 
at the same transects at 1000 h at 45 cm on our sampling days.  Our model was developed for E. 
coli at 1300 h in 90 cm of water.   Our 45 cm morning water was higher than comparable CPD 
samples but both were higher than 90 cm afternoon water.  All three were significantly correlated 
but our samples were more closely correlated to one another than to CPD samples.  There were 
no afternoon CPD samples, so we attempted to validate using CPD 1000 h E. coli concentrations 
using the same independent variables developed for our deeper, later samples. 
 
The coefficient of determination (R square) for CPD morning samples using wind speed, wave 
height and sunlight was only 0.124 and the model was not significant (p=0.098).  When rainfall, 
air temperature and wave height were used, the model improved markedly (R square =0.351, p 
<0.001).  Comparable analysis of our own morning 45 cm data suggested equally poor results 
(p=0.078). Thus, it appears that our attempts to validate the model were incomplete. 
 
The lack of relationship between hydrometeorological conditions and morning E. coli 
concentration is understandable; there was no reason to expect immediate relationships between 
bacteria counts and ambient conditions.  Deeper water had a smoothing effect on E. coli 
variation, which increased the performance of the equation.  We conclude that afternoon E. coli 
samples would need to be taken to validate the current model; alternately lagged data or data 
taken from earlier in the day might yield better morning predictions. Unfortunately, the effects of 
sunlight on E. coli would not be factored into these pre-dawn hours.  We argue that predicting 
the E. coli at 1300 h is justified based on the increased water contact at this time and that 90 cm 
water while not the most conservative estimate is still protective for many of the active 
swimmers. The inability to extrapolate from 90-cm, afternoon to 45-cm, morning bathing water 
suggests that routine monitoring data are satisfy validation requirements.  That is, the same 
model is required on completely independent but comparable samples.  To this end, either 
improvement in morning, shallow models are necessary or if early afternoon models are 
acceptable then new equivalent data are required. 
 
 
Regression Tree Model 
A regression tree algorithm (SYSTAT, Point Richmond, CA) was used to create a classification 
tree for 63rd Street Beach using the three independent variables used in the multiple regression 
modeling. The data were sorted into homogeneous subsets using recursive partitioning. At the 
end of each branch were leaf nodes.  
 
The initial population of 42 observations had a log-mean E. coli 1.749 CFU/100 mL. The first 
branching occured based on wave height.  When wave height was below 31 cm, the log-mean 
was 1.52 CFU/100 mL while above this criteria, the log-mean was 2.33 CFU/100 mL (thus, 
many of the readings in this subset will be in exceedance of the E. coli water quality standard 
log-E. coli equivalent to 2.37 CFU/100 mL). The next branching used a wind speed criteria of 
14.4 m/s. When wind speed was below this value and wave height above 31 cm, closures were 
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predicted as common. Apparently higher offshore winds had a moderating effect on E. coli 
concentrations while slower winds (during increased waves) allowed contaminants to accumulate 
in the nearshore water.  At low wave heights, sunlight was important, but both leaves of the tree 
were well below closing criteria.  This is apparently because of the negative effect of sunlight on 
the bacteria coupled with enhanced exposure by decreased turbulence, turbidity, and surface 
conditions. Overall, the proportion reduction in error (equivalent to the R square) for this tree 
was 47 % and approaches that delivered by traditional linear regression models. 
 
Discriminant Analyses  
Often the beach manager is interested not so much in the actual E. coli concentration but rather 
whether the beach is in or out-of compliance with the water quality criteria. For this purpose, a 
discriminant analysis, which seeks to predict categorical values by finding the best combination 
of continuous variables, is used. Whether a beach is open or closed/posted depends on the 
specific policy in place. At 63rd Street Beach, we assumed that a beach with E. coli<235 MPN 
(most probable number)/100 mL should be open, whereas if E. coli≥235 MPN/100 mL it should 
be closed. 
 
A multiple analysis of variance was performed to determine the discriminant functions for the 
same data set used for the multiple-regression. First we tested the significance of the derived 
discriminant functions and then classified the data based on those functions. The following set of 
discriminant function coefficients were highly significant (p<0.0001, Wilk’s lambda=0.497, 
df=3). 
 
Using the discriminant function, we were able to predict correctly 34 of the 37 (91.9 %) E. coli 
observations that were within compliance with the single-sample standard and 5 of the 5 (100%) 
out-of-compliance observations. This model gave rise to 3 (7%) type 1 and 0 (0%) type 2 errors 
out of 42 testable outcomes. Note that these results are from comparing the model with the 
observations with which it was trained. 
 
We validated the model by rebuilding with a smaller training data set and validating on the 
remaining observations. Thirty-three of 37 (89.2%) in-compliance and 5 of 5 (100%) out of 
compliance observations were correctly predicted.  There were 4 (10%) type 1 and 0 (0%) type 2 
out of 42 testable outcomes. 
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DISCUSSION 
 
 The regional forecast models developed here provide some insight into the southern Lake 
Michigan ecosystem for E. coli.  Because of the high variability of many of the parameters 
considered due to the wide regional scale, predicting E. coli for all locations presented many 
challenges.  
 The different regional groupings presented an interesting pattern of beaches.  Typically 
the Chicago beaches were grouped together, as were the Wisconsin and Lake County Illinois 
beaches and also the Indiana beaches.  This type of grouping, in both multidimensional scaling 
and cluster analysis, can often be explained by regional factors related only to those beaches, 
which may be the result of nearby E. coli input sites, nearshore currents, beach orientation, or 
other physical or biological factors. 

Numerous factors must be considered with E. coli counts.  Primary source can influence 
abundance and persistence, and beaches can typically be divided into two types, those dominated 
by an effluent source and those not directly impacted by an effluent outfall.  Those dominated by 
an effluent source can be periodically subject to inputs with high counts of E. coli.  In Wisconsin, 
the Milwaukee River discharges in to Lake Michigan between McKinley and South Shore, and 
the river outflow carries water with high counts of E. coli (McLellan and Salmore, 2003).  The 
Chicago River periodically discharges to Lake Michigan, flowing out near Oak Street, Ohio 
Street, and 12th Street beaches.  Similarly, the Calumet River discharges south of Rainbow Beach 
and north of Calumet beach periodically, although both the Chicago River and Calumet River 
typically drain to the west.  In Indiana, the Little Calumet River discharges to the east of Ogden 
Dunes, West Beach, and the Gary Beaches.  Smaller natural creeks drain into beach areas, most 
notably Dunes Creek, which empties into Lake Michigan between State Park east and west sites.  
To the east, Trail Creek empties into the lake just east of Mount Baldy.  The influence of these 
outfalls is variable, but typically, their influence would be stronger during rain events.  Rain 
events rarely equally affect the entire region of study.  

In situations in which there is no direct effluent or the effluent is not having an impact, 
predicting E. coli counts can be more difficult because the sources may be diffuse and differently 
affected by water and weather conditions.  E. coli counts are less likely to fluctuate similarly at 
beaches far from a direct source, which makes it difficult to use the same model for numerous 
beaches.  In the model presented here, all beaches were tested using the devised model, and for 
each of them at least one of the parameters had no significant impact on its model.   
 

Parameters Used in the Model 
 
 Although current monitoring protocols typically rely on E. coli counts from the previous 
day for deciding whether to close a beach, this relationship has been widely criticized and 
undermined.  However, when considered with other factors, it appears to have some predictive 
capability.  Both previous day’s E. coli and prior moving average of E. coli for three days were 
stronger parameters included in the models examined.  Because of the highly variable nature of 
E. coli in natural water, taking a single sample for monitoring and applying it to the next day’s 
beach closure decision results in poor reliability overall.  However, with a larger and denser 
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dataset, patterns within the E. coli can be discriminated.  The noticeable seasonal pattern of E. 
coli in these data indicates that some day to day relationship exists.  Many monitoring programs 
do not collect daily samples, so the relationship is hidden in data gaps. 
 Rainfall was a major parameter in the models developed, indicating the importance of 
effluent, outfalls, and runoff in driving E. coli counts in southern Lake Michigan.  Rainfall has 
been widely recognized as associated with high E. coli levels.  This relationship can be attributed 
to both runoff and direct sewage input.  During rainfall, E. coli can be washed from numerous 
surface sources and transported to draining waters and subsequently to Lake Michigan.  
Additionally, some sewage treatment plants that have combined sewage and stormwater systems 
(e.g., Milwaukee, much of Indiana) are permitted to bypass treatment during heavy rains, 
resulting in the release of untreated sewage into draining waters and ultimately Lake Michigan.  
There is often a delayed impact, and beach waters experience high counts 24-72 hours after 
initial rain event (Whitman et al., 1999; Haack et al., 2003).  
 Wave height is often associated with rainfall or wind direction but typically interacts with 
nonpoint sources of E. coli on the beaches.  Wave height and wave period were effective 
predictors in the model presented.  High waves are more associated with onshore winds and 
result in resuspension of nearshore and onshore sand and sediments.  These sediments can harbor 
E. coli several orders of magnitude higher than what is in the beach water, and during high 
waves, the beach sand can act as a source of E. coli to the water (Whitman and Nevers, 2003). 
 An interactive term was used in the model that incorporated both wind speed and wind 
direction.  Wind direction is commonly used to divide datasets because it has such a strong 
influence on E. coli counts in similar ways as wave height.  Onshore winds are generally 
associated with higher E. coli counts because they increase the swash zone and therefore the 
amount of E. coli washed from the sand and sediment into the lake.  In several approaches 
presented here, models were divided by wind direction, and the results showed different 
parameters being more closely related to E. coli counts depending on wind direction. 
 Other parameters considered in the models were depth of Calumet Harbor, which could 
be a direct correlate of rainfall or onshore winds, and minimum daily temperature, which may be 
directly related to seasonality in E. coli counts (i.e., higher E. coli later in the summer). 
 

Grouping Beaches 
 
 For the entire region, the best model developed was capable of explaining the variance in 
E. coli 29% of the time.  Using the same model on pre-determined zones, that number ranged 
from 12-29%, but when the beaches were divided based on general E. coli trends, that number 
increased to 31%, for the Chicago beaches.  The beach groupings generally fell along 
geographical lines, with some mixing between Wisconsin and northern Illinois.  These groupings 
were seen in both the multidimensional scaling and cluster analysis and may result from impacts 
and effects experienced on a smaller scale than the region examined here. 
 If beaches were considered individually, the R2 increased to as high as 0.474 (Illinois 
Beach State Park South), but low values were also abundant (e.g., R2=0.09 for North Point 
Marina, R2=0.20 for Jarvis/Fargo).  More than half of the beaches included, however, had R2 
values of 0.3 or higher, which makes them superior to the overall regional model.  Using 
individual beaches, however, several parameters were no longer significant in contributing to the 
model; therefore models would have to be individually assessed for each of these beaches. 
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Model Effectiveness 
 
 In the current monitoring protocol, a water sample is collected one day, analyzed for E. 
coli, and when the results are read the following day, a determination is made whether to close 
the beach.  Due to the high variation from day to day, the decision often results in closing a 
beach that has low counts or keeping a beach open that has high counts.  More timely results are 
necessary to protect public health and to provide maximum recreation opportunities.  Predictive 
modeling may offer a realistic solution, and a predictive model that can be used for numerous 
beaches would help expand the application. 
 In this study, the regional model developed could account for 29% of the variation in E. 
coli counts.  As low as the predictor result is, it is still superior to the 19% of variance explained 
using the current monitoring approach of sampling the water on day 1 to determine whether to 
close it on day 2.  This low result is due to the numerous types of beaches included in the model 
and also the wide extent over which the beaches are spread.  Because weather and water 
conditions may vary highly from the northern to the southern portions of the study area, using 
data for a single parameter, collected in a single location, will rarely incorporate conditions 
throughout the study region. 
 Subdividing the beaches by type improved the model results for several locations, but in 
such cases, several parameters were no longer significant to the overall equation.  Separate 
models could be developed for certain groups of beaches, but that would obviously limit the 
scope of the application. 
 

Model Validation 

 

We evaluated the performance of the overall regional forecast modeling effort by calculating 
respective Root Mean Square Error (RMSE) statistics.  RMSE is simply the mean of the sum of 
the squared differences between the actual (measured) E. coli reading and the E. coli predicted 
by the model.  The square root of the mean is calculated in order to yield the same units as the 
original data set.  The RMSE is conceptually equivalent to the standard deviation of the residuals 
of each model.  A larger value indicates an inferior performance by the model.  While R2 relates 
to the proportion of the variance that is explained by the model, the RMSE provides information 
on the performance or reliability of the model.   RMSE is inversely proportional to R2.  When all 
55 beaches across all four years are combined, the RMSE for the linear regression model 
developed in the present report (Table 10) is 0.709 (log E. coli/100ml); mean log E. coli for the 
same dataset was 1.73 (SD=0.77).  For the same data set, the RMSE for conventional EPA 
model would be 0.843.  The EPA model is merely that yesterday’s E. coli equals that of today, or 
EPAt-1= EPAt.  Thus, the overall regional model is about 14% better in performance than the 
EPA model, but that improvement is made only with the additional expenses and observations 
needed to run the model.  Most of the parameters are weather-related and thus with advent of 
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internet portals, these hydrometeorological factors can be automated to an extent to minimize 
these costs.  
 
The relative performance of the EPA and Regional models can be illustrated by a paired plot of 
residuals (Figure 26).   Both residual plots should approximate a normal curve with a mean of 0.   
The narrower the curve around the mean, the better the performance (a perfect fit would have no 
variance and be represented by a vertical line at 0).  
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Figure 26 Residuals for EPA (RSEPA) and regional (RSGS) models for determining E. coli count. 
 
Both the EPA and Regional plots are similar but it is apparent that the regional model has more 
values closer to the observed (‘true’) values and that the regional model hugs the origin slightly 
better than the conventional  model. 
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Figure 27 RMSE (root mean square of the error) values by year for EPA and regional (USGS) models of 
determining E. coli count. 
 
Calculation of the RMSE is likely a less biased assessment of the performance of the respective 
models.  For this exercise, we left out one year of observations, created our model on the 
remaining three years and used that formula to predict the outstanding year.  This process was 
repeated to validate each year of data, so several permutations were calculated (i.e., leave out 
2000; leave out 2001; etc.) The same parameters used in the regression equation (Table 10) were 
included in all cross-validated analyses.    Figure 27 clearly shows lower error variance 
associated with each of the four years using the USGS over the EPA model.  Cross-validated 
RMSE differences varied from 0.236 in 2000 to 0.075 log E. coli (CFU/100 ml) in 2002.  The 
best (lowest) RMSE was in 2001 or 0.597, the mean log E. coli for that year was 1.55, N=1060, 
S.D.= 0.740.   

The results of validation analyses indicate that the regional model approach is superior to 
the currently used EPA monitoring protocol.  The incremental increase in performance using the 
regional model, however, must be weighed against the need for numerous parameters and the 
applicability across such a large region.  The results indicate, however, that there are certain 
factors that contribute to the overall fluctuations in E. coli counts at the 55 beaches studied. 
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