

Monitoring & Modeling to Improve Understanding of Tritium Transport in an Arid Environment

B.J. Andraski, D.A. Stonestrom, C.J. Mayers, M.W. Sandstrom, R.L. Michel, C.A. Cooper, S.W. Wheatcraft, & other ADRS members

USGS-Nevada Water Science, National Research Program, & National Water Quality Lab; Desert Research Institute; & University of Nevada

U.S. Department of the Interior U.S. Geological Survey

OUTLINE

Introduction

- Tritium monitoring
 - Methods
 - Results

-Plants, shallow & deep unsaturated zone, ground water

Modeling transport Deep unsaturated zone

Conclusions

INTRODUCTION

Tritium (³H)

- Formed naturally (cosmic rays) & from human activities
- Radioactive form of hydrogen ... half-life ~12.3 yr
 - Tritiated water (³HHO) ... chemically like "ordinary" water (H₂O)
 - Migrates in both the liquid & vapor phases
- EPA drinking water standard = 740 Bq/L

(20,000 pCi/L or 6,250 TU)

- Large component of LLRW
 - e.g., ~60% of total radioactivity disposed at Beatty, Nevada site
- Despite prevalence in waste stream ... relatively little is known about its subsurface transport at LLRW sites

Tritium at the Amargosa Desert Research Site (ADRS)

- 1995 elevated tritium & carbon-14 "discovered" beneath ADRS during study to determine natural distribution of gases in deep UZ (Prudic & Striegl, 1995; Striegl et al., 1996)
- Scope of research was broadened to include study of processes affecting contaminant transport through the UZ
- 1997 ADRS incorporated into USGS Toxics Program

TRITIUM MONITORING – Deep & Shallow UZ, Ground Water

Low-level radioactive waste area

UZB-3 (100 m from neares trench)

UZB-2 (Initial 1995 "discovery;" 160 m from nearest trench)

 Initial grid of shallow gas tubes in 300 x 300-m area (1.5 m deep)

Distant study area (3 km away) – deep & shallow UZ

(Prudic & Striegl, 1995; Healy et al. 1999; Mayers et al. 2005)

Method for Sampling Soil-Water Vapor

- Soil air pulled through freeze trap
- Water vapor captured as ice, thawed & bottled for analysis

Deep UZ –

- Two primary boreholes
- Multiple depths (to 109 m)

Shallow soil –

- Multiple locations
- Two depths (0.5 &/or 1.5 m)

Shallow Vapor Sampling ... all over the desert

- Installation labor intensive
- Equipment & tools lots to move from site to site
- Sampling time 12 to 24 hours per sample

Plant Method for Detecting & Mapping Tritium ContaminationSampleSolar distillLab prep

- Noninvasive, no "installation" required
- Simple
- Rapid ... 100 locations = 4 days = sample (1 d) + distill (1 d) + lab prep (2 d)
 - Shallow vapor = 4+ weeks ... assuming no breakdown in equipment/people

(Andraski et al., 2003)

Plant Sample Locations & Plume-Scale Delineation of Tritium

Science for a changing world

(Andraski et al., 2005)

Field measurements to develop predictive equations for mapping subsurface contamination from plant data

(Andraski et al., 2005)

Maps of Predicted Root-Zone & Sub-Root Contamination

science for a changing world

(Andraski et al., 2005)

Maps of Predicted Root-Zone & Sub-Root Contamination

- Plant-based mapping aided identification of transport pathways
- Long-distance, preferential lateral movement away from waste source
- Subsequent upward movement into root zone & release to atmosphere

Deep Unsaturated Zone – Tritium Monitoring

Deep Unsaturated Zone – Tritium Monitoring

Depths of peak concentrations

 Correspond with dry, gravelly layers mapped using non-invasive, DC resistivity

(Abraham & Lucius, 2004)

MODELING – Conceptual Tritium Transport

Predominantly lateral, vapor-phase transport controlled by stratigraphy

Numerical Model

- Coupled liquid-gas-heat flow
- Non-isothermal, heterogeneous domain
- 40-yr simulations (1962-2002)
- Assumptions
 - Instantaneous emplacement of all waste
 - Instantaneous isotopic equilibrium between gas & liquid phases

Base Case

(Mayers et al. 2005)

Expanded model

• Effects of anisotropy, source temperature & pressure forcing

- Expanded model
 - Anisotropy & heat/pressure generated by decaying waste
 - Greatly reduced discrepancies between basic theory & measurements
- Further work is needed to evaluate other processes that may be enhancing vapor-phase tritium transport ...
 - Barometric pumping?
 - Interactions with volatile-organic compounds?

... step back/recap ... Two conceptual models developed from ADRS studies (1) Natural system – negligible percolation + upward water/gas flow

(Fischer, 1992; Prudic 1994; Andraski 1997; Stonestrom et al. 1999, 2004; Scanlon et al. 2003; Walvoord et al. 2004,

... step back/recap ... Two conceptual models developed from ADRS studies

(1) Natural system – negligible percolation + upward water/gas flow

(2) Contaminated – lateral tritium migration superimposed on natural, upward flow field

We CAN measure the tritium

We CAN measure the tritium

We CAN map the tritium

- We CAN measure the tritium
- We CAN map the tritium
- But ... our present models CANNOT accurately reproduce the observed extent or distribution of transport

We are continuing to look for the answer ...

Ultimately ... better process understanding is needed to develop & build confidence in UZ transport models

