

# Overview of the Amargosa Desert Research Site (ADRS)

A Field Laboratory for the Study of Arid-Site Processes

Brian Andraski & David Stonestrom, Co-leaders ADRS
USGS-Nevada Water Science Center & National Research Program

#### **BACKGROUND**

- Arid sites often proposed for isolating Nation's radioactive & other hazardous wastes
  - Low precipitation, high ET, thick unsaturated zone









#### **BACKGROUND**

- Arid sites often proposed for isolating Nation's radioactive & other hazardous wastes
  - Low precipitation, high ET, thick unsaturated zone
- Rapid population growth in the desert southwest is placing increased demands on ground-water resources





Modified from Stonestrom & Harrill (2007)

#### **BACKGROUND**

- Arid sites often proposed for isolating Nation's radioactive & other hazardous wastes
  - Low precipitation, high ET, thick unsaturated zone
- Rapid population growth in the desert southwest is placing increased demands on ground-water resources
- Dual needs ... waste management & resource protection ... require an understanding of <u>both</u> natural-hydrologic systems & contaminated systems



 Natural waste-isolation features present a challenge when gathering data needed to support management decisions



- Natural waste-isolation features present a challenge when gathering data needed to support management decisions
  - Precipitation annual average is low, but large temporal variability
    - Short-term field studies do not capture extreme variations



Dry, duststorm



Heavy rain, standing water



- Natural waste-isolation features present a challenge when gathering data needed to support management decisions
  - Precipitation annual average is low, but large temporal variability
    - Short-term field studies do not capture extreme variations
  - Thick unsaturated zone (100+ m) highly variable; dry, rocky sediments
    - Complexities in characterization, instrumentation, & monitoring



Waste trench under construction – 18 m ... 1/6<sup>th</sup> of the way to the water table



UZB-3 borehole (115-m deep, 15-cm diam.) – ~2 km of cables & tubing ... "The White Mamba"

- Natural waste-isolation features present a challenge when gathering data needed to support management decisions
  - Precipitation annual average is low, but large temporal variability
    - Short-term field studies do not capture extreme variations
  - Thick unsaturated zone (100+ m) highly variable; dry, rocky sediments
    - Complexities in characterization, instrumentation, & monitoring
- Detailed data for arid sites are often lacking ...
  - Limits ability to test assumptions about natural & contaminated systems
  - Increases uncertainty in predictive models



## **AMARGOSA DESERT RESEARCH SITE (ADRS)**

Field laboratory for sustained study of arid-site processes

- 1983 USGS, BLM, State of Nevada
  - USGS Low-Level Radioactive Waste Program, Toxic Substances Hydrology (1997)
- Adjacent to Nation's first commercial low-level radioactive waste (LLRW) facility – Beatty, Nevada

#### **Overall objective**

 Improve understanding of processes controlling unsaturated-zone transport of water & contaminants in arid environments



## LLRW typically is "mixed waste"

Contains both radioactive & hazardous components

#### - LLRW

- "... waste not classified as high-level, spent-nuclear fuel, or mill tailings" (Regulated by USNRC, Agreement States; LLRW Policy Amendments Act; 10 CFR Part 61)
- Commercial sources & forms
  - Hospitals, research, industry, nuclear-power plants, ...
  - Shoe covers & lab coats, tools, nuclear-power reactor filters & residues, ...
- Hazard to public health
  - Up to 500 yr for high-concentration/long-lived radionuclides
- Hazardous components
  - May include radioactive organics & heavy metals
    - (Regulated by USEPA; RCRA; 40 CFR Part 261)
    - Scintillation vials, cleaning solvents, mercury amalgam, ...











#### Shallow-land burial of LLRW

- Excavation, waste emplacement, backfill with stockpiled soil
- No liner required
  - Rely on natural- & disposal-site features to minimize water-waste contact
- Liquid waste solidified/dewatered prior to burial
  - "Early days" ... some liquids disposed directly into trenches





- Surfaces of completed trenches during operational period
  - Kept free of vegetation
- Final cover over entire LLRW area (22 trenches)
  - Additional backfill to 2 m above land surface





## **ADRS Experimental Approach**

- Field-intensive research with multiple lines of data
  - Weather; ET; plants; microbiology;
     soil properties; soil water & gas monitoring;
     geology; geophysics; ground water
- Natural & perturbed/contaminated conditions
  - Water & gas movement
  - Mixed-waste contaminants data
    - Tritium, carbon-14, VOCs, elemental mercury
  - Natural nitrate, perchlorate
- Methods development
- Field data integrated with modeling
  - Test & refine conceptual & numerical models
- Multidisciplinary collaboration
  - USGS, University, Research Institute, National Lab, Other Agency



## Instruments & monitoring within 400-m buffer zone\*









## Cape Cod tracer-test array is impressive ...





# but we've got the instrument shaft!







Installation August 1983

## **Topical Outline for ADRS Session**

- Oral
  - Overview
  - Water & gas flow
  - Tritium transport
  - VOC distribution & fluxes
  - Mercury transport
  - Tritium release by evapotranspiration
  - Wrap up ... Use of results
- Poster
  - Dispersion of contaminants by barometric pumping
  - Diurnal distillation for dewatering non-volatile point sources
  - Modeling water movement in desert soils
  - Natural perchlorate in precipitation, soils, & plants
  - Geologic framework
  - Geophysical mapping of hydrogeologic features

