Final Technical Report to U.S. Geological Survey

Award Number: Grant 06HQGR0170

Prinicipal Investigator: Virginia S. Gillerman, Ph.D.

Title:

Geochronology of Iron Oxide-Copper-Thorium-REE Mineralization in Proterozoic Rocks at Lemhi Pass, Idaho, and a Comparison to Copper-Cobalt Ores, Blackbird Mining District, Idaho

December 30, 2008

Research supported by the U.S. Geological Survey (USGS), Department of the Interior, Under USGS award number 06HQGR0170. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. government.

Introduction

This MRERP study proposed to investigate the geochronology and petrology of apparently multistage mineralization of copper-gold and iron oxide-thorium-rare earth element deposits in Proterozoic rocks of the Lemhi Pass District, Idaho and Montana. A primary question for the study to answer was whether the Lemhi Pass mineral deposits could be considered as an example of the iron oxide-copper-gold (IOCG) classification of ore deposits. Secondary project goals included a comparison of alteration assemblages for the Lemhi Pass rocks with rocks from the copper-cobalt-gold ores of the Blackbird Mining District, hosted in similar Proterozoic strata approximately 43 miles to the west; and an evaluation of using the electron microprobe to determine chemical ages for monazite geochronology. Previous preliminary work had suggested the presence of a component of Proterozoic-aged mineralization for both the copper-molybdenite mineralization and thorium-REE deposits, as well as a Cretaceous overprint.

Location and Previous Work

The Lemhi Pass Thorium District is located in the Beaverhead Mountains, along the Idaho-Montana border, southeast of Salmon, Idaho (Figure 1). The Lewis and Clark Expedition crossed the Continental Divide at Lemhi Pass in August, 1805. Fieldwork by the Idaho Geological Survey (IGS) started in 2000 as part of a hazard inventory of inactive mine sites. The field crew spent ten days in the area, surveying the Copper Queen mine and several of the larger thorium pits, including the Lucky Horseshoe Mine, Buffalo mine, and Wonder Lode in Idaho (Gillerman and others, 2001; Gillerman and others, 2006). Mines on the Montana side were not examined in 2000.

The Lemhi Pass District is hosted in Proterozoic-age quartzites and siltites of the Apple Creek and Gunsight Formations, overlain by Tertiary-age Challis Volcanics (Staatz, 1979; Evans and Green, 2003). Early prospectors discovered copper-gold mineralization of the Copper Queen mine in 1883 (Umpleby, 1913), along a branch of Agency Creek two miles west of Lemhi Pass. Thorium was discovered there in 1951 and a prospecting boom followed, along with considerable geologic work. Staatz (1979) in USGS Professional Paper 1049A provided a geologic map and the most comprehensive description of the numerous mineral deposits. However, his interpretation that the thorium was related to the Eocene-age Challis volcanics was inconsistent with a number of the IGS crew's field observations, which suggested the Cu and Th mineralization was at least pre-Cretaceous, most likely Proterozoic, in age and had a striking similarity to the Olympic Dam-type Cu-U-Fe Oxide-REE class of mineral deposits (Gillerman and others, 2000; Gibson, 1998).

The 2000 field results and the unusual rocks prompted subsequent geochronological research, limited in scope and described partially in Gillerman and others (2002) and Jercinovic and others (2002). The copper and thorium deposits at Lemhi Pass presented a challenging but unique opportunity to date mineralization using both Th-U-total Pb and Re-Os chronometers on monazite and molybdenite, respectively, and to experiment with

Figure 1. Location Map of the Lemhi Pass Thorium District with additional metallogeny of Salmon region, Idaho.

dating thorite by Th-U-total Pb methods, according to techniques being developed at the University of Massachusetts. Initial results of Electron Microprobe Th-U-total Pb geochronology on zoned monazites in two samples from the Lucky Horseshoe mine showed a complex hydrothermal history with core ages of 800-1100 Ma and younger rims of 200-400 Ma. Colleagues at the electron microprobe facility at the University of Massachusetts were also able to obtain ages on fresh and altered thorite (ThSiO₄) reflecting Paleozoic ages and altered domains with Pb loss as young as 100 Ma. In addition, one sample of molybdenite from the waste dump at the Copper Queen mine contained sufficient Re to obtain a Re-Os date of 1053 Ma, matching well the monazite cores (Gillerman and others, 2002). The Proterozoic age did correspond with literature reports of some type of "Grenville-age" thermal event in the region (Anderson and Davis, 1995) but not with any known geologic events in the Salmon region. Lemhi Pass district geology and ore deposits were summarized in Gillerman and others (2003, 2006), and a comprehensive regional geologic map has since been published by the USGS (Evans and Green, 2003).

Given the unusual rocks and unexpected age constraints, additional study seemed warranted. Specific research objectives listed in the ambitious MRERP proposal included better determinations of:

- 1. Age of mineralization
- 2. Regional hydrothermal alteration (widespread sodic or potassic alteration is a signature of IOCG systems)
- 3. Ore Deposit Model is Lemhi Pass a thorium-rich variant of IOCG's?
- 4. Comparison to the Idaho Cobalt Belt
- 5. Comparison to other Idaho thorium deposits

After the initial fieldwork on the project was started, a more realistic assessment of the resources and time available has limited the work on goals 4 and 5 in particular. The geologic complexity and some of the unexpected findings at Lemhi Pass itself focused the study more on that specific district and the Beaverhead Mountains.

Summary of Work Activities and Co-Investigators on Project

Project activities included: 1) fieldwork in late summer of 2006 (plus a shorter time in 2007) involving the principal investigator (PI) and a field crew with a field assistant and two Idaho Geological Survey expert mappers (supported in part by additional funding sources) to do reconnaissance mapping traverses and sampling (see Appendix A for sample waypoint locations); 2) rock-cutting and commercial preparation of a substantial number (approximately 125) of thin sections and polished sections in several batches over two years with ongoing petrographic examination (see Appendix B for brief summary); 3) microprobe analyses at Washington State University of selected polished sections (see Appendix C); 4) geochronology of one intrusive and two detrital zircon samples using SHRIMP U-Pb dating by Dr. Mark Fanning, Australia (see Appendix D for data tables); 5) submittal of one batch of samples, principally intrusives, for whole rock geochemistry by Act Labs of Canada (see Appendix E for full analytical results); 6) submittal of five samples for ⁴⁰Ar/³⁹Ar geochronology at the University of Alaska, Fairbanks, by Dr. Paul Layer (see Appendix F for report); 7) submittal of

samples to Dr. Mike Jercinovic at University of Massachusetts, Amherst, for Electron Microprobe Th-U-total Pb geochronology on monazites (see Appendix G for report); and 8) preparation and analysis of 30 samples of feldspar, oxide, and sulfide separates for TIMS (thermal ionization mass spectrometer) analysis of lead isotope ratios at Dr. Mark Schmitz' Isotope Geology Lab at Boise State University (see Appendix H for data tables).

Only a synopsis of the field and petrographic work is included in this summary report. More complete presentations will be included in future publications. Laboratory investigations and basic microprobe analysis used standard analytical procedures; the more difficult and critical issue was finding samples to adequately answer the appropriate questions. Electon microprobe geochronology and microanalysis did require development of new procedures at the University of Massachusetts to study these special monazites and thorites (see Appendix G). A great benefit to the study was additional rock sampling and whole rock geochemistry done by Thorium Energy Inc., and their geologist, Rich Reed of IEG. Some of that data is included in the graphs and discussion in the text, but the full analytical information was retained by them and is not included in this report; some was presented publicly at the SME meeting in February 2008.

Summary of Field Observations and Discoveries

The fieldwork revealed that the district's geology is extremely complex but poorly exposed in many areas, and significant portions of all the published maps are (as expected) in error. A remapping of the Lemhi Pass District was far beyond the objectives of this study. Figure 2 shows major mine locations and general topography.

Figure 2. Mine Locations at Lemhi Pass District. The Last Chance mine is about one mile west of the Frying Pan mine in Montana. Note also the location of the Belt Supergroup of Mesoproterozoic clastic sedimentary rocks on the inset map.

Stratigraphic Correlations

A difficulty in mapping was that the Mesoproterozoic quartzite-siltite units (regionally correlative with the Apple Creek and Gunsight Formations in the southeastern most portion of the Belt Supergroup shown in Figure 2) have few marker horizons to map; this study did not find any new ones. However, the predominance of coarser clastic rocks in most of the area lead to an interpretation that most of the district is more likely underlain by the Gunsight Formation, and that the Beaverhead Range metasediments probably have minor facies variations from the type localities and exposures in the Lemhi Range. Some outcrops of more argillaceous and banded lithologies could most likely be classified as upper(?) Apple Creek Formation. There are few age constraints or detailed stratigraphic studies on the Precambrian rocks in the Beaverhead Range, and so two detrital zircon samples from quartzite were collected for age dating and provenance determination using the SHRIMP. Geochronology of the detrital zircons in two samples, DZ-2 and DZ-3, showed probable sedimentation ages of approximately1420-1450 million years ago (Figure 3 and Appendix D). The bar graph pattern (Figure 3) is similar to that from detrital zircon populations of known samples of the Yellowjacket, Apple Creek and western Gunsight Formations (Link, et al., 2007). There are a very few younger grains with ages of about 1370 ma in DZ-2 and DZ-3, which may be due to metamorphism or recrystallization by the 1370 ma suite of megacrystic granites and augen gneiss, exposed further west in the Salmon region (Evans and Zartman, 1990). Because of the regional thrusting which occurred in the Mesozoic, the "original" location of the rocks in the district could have been much further west, closer to the current exposures of the megacrystic granites, but exactly where is unknown.

Figure 3. Density plot of youngest ages of detrital zircons in DZ_LP_2. See Appendix D for additional information on both samples.

Structural Interpretation

The structural models in the two most complete district geologic maps, Staatz (1979, USGS Professional Paper 1049-A), and Lund in Evans and Green (2003, I-2765) are radically different (Figures 5 and 6). Staatz's map, at a more detailed scale, defines a number of intersecting normal faults, which cut Tertiary volcanics. He also considered many thorium deposits to be localized along or near the regional-scale Lemhi Pass Fault (Figure 4). Many of the major faults appear to be correctly mapped, but the details of folds and strain fabrics are not included; justification for others is unclear. Lund's map (1:100,000 scale) shows a number of regional thrusts and related normal faults, as well as enigmatic younger over older thrusts. Reed Lewis and Russ Burmester, who have years of experience mapping Proterozoic rocks, could not substantiate the thrusts as they did not see differences in the rock units above and below the thrust faults, in a few traverses. Nor could they see any unequivocal movement direction indicators at the Lucky Horseshoe mylonite zone. However, both the mylonite zone at the Lucky Horseshoe and low angle faults which offset quartz-chalcopyrite veins at the Copper Queen mine clearly indicate that a major low angle flattening, thrust faulting or detachment event has taken place post-mineralization (Figure 7). It seems most compatible with a Mesozoic compressional event and regional thrust faulting. Float of pencil mylonites or strongly elongated quartzite, mapped along the Lemhi Pass Fault, and drag folds at the Lucky Horseshoe and In Trust mines, suggest a complex, and multistage deformation along this very major WNW-trending structure which shows up as a major topographic lineament (Figure 4). After considerable hours in the field, it is my interpretation that both multigenerational thrust faults and normal faults are important, and many of the faults are post-mineral. Deciphering the structural geology and origin of the mylonitization needs more work, but the lack of outcrop or marker beds may preclude any full understanding of the structure.

Figure 4. Lemhi Pass Fault, looking northwest from Lemhi Pass. The fault zone is filled with landslides and Tertiary volcanics. It is interpreted as a Mesozoic or older structure that has been reactivated during the Tertiary.

Figure 5. Geologic map of Lemhi Pass District by Staatz, 1979, from USGS Professional Paper 1049-A. The red lines and text are veins; the blue lines are dikes. The tan and brown colors are the quartzite-siltite units, with the brown being more argillaceous. Large block of blue on west side is also Proterozoic quartzite. Blues at south end are Paleozoics.

Figure 6. Simplified geologic map by K. Lund of the Lemhi Pass region from USGS Map I-2765 (Evans and Green, 2003). Illustration is from Gillerman, Lund and Evans (2003). Note map pattern of thrust faults and younger over older "thrusts" (open teeth). CQ is Copper Queen mine (locale 5). Detrital zircon sample 2 was from locale 6.

Figure 7. A) Lucky Horseshoe mine cataclasite and mylonite in Th-Fe-REE "schist", looking N30E; B) Gouge and low angle faults cutting quartz-copper vein at Copper Queen mine, adit 3, looking N12E.

Intrusive Rocks

In general, Staatz's map showed the correct rock units, except for some of the Tertiary and Quaternary ones, and was very accurate on the location of the mineralized veins and prospects. Staatz (1979) also mapped a number of intrusive dikes, labeled as "Td" for Tertiary diorite. Additional dikes, sills, and small plugs were discovered by IGS mapping. Anderson (1961) also noted the altered dikes and correctly identified them as lamprophyres. The intrusives range in composition from ultramafic or mafic to syenitic and all have undergone substantial hydrothermal alteration. They do not look at all like the Tertiary volcanics in the district, which are fresh and typical Eocene Challis volcanics. The Tertiary volcanics, including a basal conglomerate or tuff-cobble unit, were deposited on a dissected topographic surface cut into the Precambrian metasediments. The nearest exposures of Paleozoic sediments are approximately 12 miles south of Lemhi Pass.

Mafic dikes have been previously described at the Copper Queen mine, both at the surface and from underground. A fine-grained, altered greenstone dike (sample CQ06-25) with calcite-filled vesicles outcrops prominently at one of the adit portals; the dike is subparallel to the copper vein system. It could be a sill as the bedding attitudes are not well-defined. It has strong propylitic alteration. More interesting are the unweathered mafic dike rocks found on the dump from the Copper Queen shaft, presumably representing those dikes found underground. Schipper (1955) noted that the "propylite dike" on the west side of the mine contains sufficient chalcopyrite and bornite to be classified as ore. He also noted the mineralogy to be largely calcite, epidote, and quartz. One sample of the pyroxene porphyry was cut by a small (5mm wide) vein of calcite with chalcopyrite, pyrite, and galena, all used for lead isotope analysis. The intrusive dike on the Copper Queen dump is a mafic porphyry, which I have informally given the name of "pyroxene porphyry," due to the large euhedral augite crystals, set in a slightly bluish, dark matrix (Figure 8).

Figure 8. Pyroxene Porphyry from Copper Queen mine dump. Sample CQ06-30. Note large euhedral pyroxenes and green altered phenocrysts.

Finer-grained mafic dikes were also mapped in a number of other locations by Staatz and previous workers, including at the Wonder mine, in Frying Pan Creek, Pattee Creek, and along or on either side of the Continental Divide. In thin section, many of these show a similar and distinctive phenocryst assemblage and alteration similar to that of the Copper Queen pyroxene porphyry (Figure 10). In addition to pyroxene, which remains fairly fresh, the phenocryst assemblage includes a distinctive, red brown amphibole (also fairly unaltered) and aggregates of talc, tremolite, and other phases which are interpreted as pseudomorphs after Mg-rich olivine. However, no unaltered olivine was seen preserved; cross-sections are 6-sided in places. Geochemistry and petrography suggests that these are alkaline basalts in composition, perhaps bordering on more ultramafic, and that they should be classified as true lamprophyres. The intense to moderate propylitic alteration is consistent over a wide area, extending at least from the Saddlehorn prospect in the south to at least as far north as the Lucky Horseshoe and from the Frying Pan Creek to Pattee Creek.

Two other, more localized and unusual mafic intrusives were discovered. One, noted by Anderson (1961) on Pattee Creek, is a biotite lamprophyre (sample PCL), very highly altered and actually plotting chemically as an ultramafic rock. The other, not shown on any previous maps of the district, is referred to as the Lucky Horseshoe sill (Figure 9, 11). It is well exposed over a short distance along the road to and just east of the adit below the Lucky Horseshoe mine and just above Flume Creek. Samples LH06-23 and 07WP120 are of this rock, an aphanitic to very fine-grained black to very dark gray massive sill approximately 1 meter thick.

Figure 9. Lucky Horseshoe sill, looking northerly at Waypoint 120.

Figure 10 (next page). Petrography of Pyroxene Porphyry Dike Sample BL06-3. The highly birefringent minerals are tremolite blades, interpreted as replacing Mg-rich olivine. Brown phenocryst is amphibole. Large colorless phenocryst in upper left is augite. A. Uncrossed polarizers, B. Crossed polarizers.

Figure 11. Lucky Horseshoe Sill in thin section, sample 07WP120. Top half is uncrossed polars, bottom half is crossed polarizers. Note fresh euhedral colorless pyroxene phenocrysts, brown amphibole phenocrysts, and fine-grained masses of very highly birefringent, slightly tan colored mineral, some of which show tabular to wedge-shaped outlines. This is a dusty brown carbonate mineral(Fe-rich magnesite), shown better in enlarged slides below. Some looks as if it could be a primary phenocryst, but it is probably a replacement of olivine. Carbonate veins, of more typical dolomitic composition, also cut the sill and infill vugs, locally with barite and celestite. Some of opaques may be chromite, from reconnaissance microprobe and SEM results. Matrix is hard to discern but includes plagioclase of intermediate composition.

Figure 12. Magnesite "phenocrysts" and replacements in Lucky Horseshoe sill, sample 07WP120. Note fresh hornblendes and feldspar matrix coexisting with carbonate.

As seen in Figures 11 and 12, presumed olivine phenocrysts in the sill are replaced by ferroan magnesite, and other phenocrysts include pyroxene and brown hornblende in matrix of relatively fresh feldspar. Carbonate veins and vug-fillings include probable barite and celestite, suggesting that the unusual carbonate alteration of a possible ultramafic sill may be related to the nearby thorium-REE-iron deposits.

The most significant discovery of the field mapping was discovery of a syenite body exposed in a large trench just west of the Continental Divide in the heart of the district (Figure 13). It is shown on an old thesis map (Hansen, 1983) as a Tertiary syenite but not on any more recent work, and it is not on Staatz's map. The trench exposure is over 20 meters long and the syenite is exposed in at least two additional prospects and further north in a tiny dozer scrape south of the Bluebird copper prospect.

Figure 13. Locations of syenite (SY) exposures. H = hornfels, PxP = pyroxene porphyry, Tv = Tertiary volcanic cover, Q = Quaternary cover.

Figure 14. Syenite from trench in hand specimen. Sample A is most typical, but Sample B and the polished section in C show cross-cutting specular hematite alteration. Blue circles are ink for microprobe markings.

The tan-colored syenite consists largely of inclusion-rich potassium feldspar with few mafics and local specular hematite alteration. It outcrops only in dozer cuts and does not exhibit any deformational fabric where seen, but it looks "old" (Figure 14, 15).

Figure 15. Syenite sample JA06-01D in thin section; top is uncrossed polars, bottom is crossed polars. Inclusion-rich cores are potassium feldspar; clearer rims are albite.

The syenite sample (BL06-05) did contain remnant biotite, presumably magmatic, but syenite samples (JA06-01) from the trench locality further south had little if any biotite, and all mafics were replaced by specular hematite. Zircon and rutile were noted in thin section; quartz is sparse and interstitial.

As specular hematite is a major component of the thorium-REE veins, and the hematite veins do not exhibit obvious wall rock alteration envelopes against the syenite, a working hypothesis was that they are related or that the hematite alteration was close in time and/or temperature to crystallization of the syenite. The albitic rims may represent a type of fenitization or sodic type of alteration (Figure 15).

A large sample of syenite was crushed and zircons separated for U-Pb geochronology on the SHRIMP at ANU. A good age date of 529.1 Ma plus or minus 4.5 Ma (1 std) was obtained (Figure 16).

Figure 16. Geochronology for Lemhi Pass syenite sample JA06-01A. The best age of crystallization is 529 Ma +/- 4.5 Ma or Lower Cambrian. More details are in Appendix D.

Summary of Mineralization and Hydrothermal Alteration

Staatz (1979) and previous literature, as well as the thesis of Gibson (1998) present more comprehensive descriptions and maps of the veins. Gillerman, et al. (2006) includes detailed surveyed maps of surface workings at some of the major properties, including the Copper Queen, Lucky Horseshoe and Cago mines.

Copper Deposits

Several copper veins are known in the district, but the Copper Queen mine is the only one of significance and the best exposed vein system. A good description of the Copper Queen with level maps is available in the thesis of Schipper (1955) and Sharp and Cavender (1962). The mine was developed down approximately 400 feet and the workings flooded. All the copper veins have an assemblage of quartz-chalcopyrite-bornite with minor gold. Pyrite is very rare. Molybdenite is found locally at the Copper Queen in samples on the dump and mentioned in the literature. The wall rock at the Copper Queen is very quartzitic and alteration is hard to define but appears to be minimal. The rocks show a weak color anomaly and have a vague "baked" or "hornfels" appearance. Schipper (1955) notes argillaceous, calcareous quartzite on the western part of the mine. There are local specular hematite veins, but they are not clearly tied to the copper veins. In some samples, the bornite looked boudinaged, not unexpectedly considering the shearing and faulting evident in the adit walls (Figure 17). Quartz in the veins near the low angle fault system is intensely sheared and strained. The host rock is a micaceous quartzite but in some samples the muscovite mica appears to be replaced by potassium feldspar, and in one vein sample microcline is present. Other samples have coarse epidote but the paragenesis is questionable. As noted, the mafic intrusive rocks exhibit a ubiquitous, moderate to intense propylitic alteration. At the Copper Queen, Schipper (1955) described finding a "cross-cutting" radioactive veinlet which formed later than the main copper veins but contains both copper and thorium. This is evidence that the copper mineralization predates, but may be partly overlapping with, the main thorium veins sets. Schipper (1955) also records assays of 3-5% copper as chalcopyrite-bornite-calcite mineralization in the greenstone dike.

Figure 17. Bornite in possible pull-aparts of boudinaged quartz-copper vein, Copper Queen mine. No clear alteration envelope, but diffuse hornfels(?) in quartzite wall rock.

An outcrop of good epidote-bearing calc-silicate hornfels (Waypoint 97) was mapped about 1000 feet southeast of the Bluebird copper vein and a large outcrop of brown-stained baked quartzite (Waypoint 113) with numerous barren quartz veins, some with trace epidote and perhaps albite selvages was mapped in the bottom of the canyon a half mile east of the Copper Queen. Thus, alteration suggests a speculative possibility of a "dry" buried intrusive at depth in the center of the district and near the copper prospects.

Thorium and Rare Earth Element (REE) Deposits

Most of the thorium deposits in the district are quartz veins, and the quartz has a distinctive waxy to greasy luster. It is typically fine-grained and strongly colored in shades of pink to brown as a result of the abundant hematite and thorite. The veins are steep to moderately dipping, of variable size, but share an assemblage of quartz-hematite-thorite with alkali feldspar and lesser but variable amounts of apatite, monazite, biotite, barite, carbonate, fluorite, allanite, and many other minerals (Figure 18). Thin sections from the Cago vein and others show that the muscovite in the host quartzite is converted to potassium feldspar adjacent to the vein, though alteration extends only a few feet away from the vein. Though reported as microcline (Staatz, 1979), the feldspar is hard to recognize since it lacks typical microcline twinning. Locally, albite twins are visible, but most of the potassium feldspar is untwined and occurs in patchy masses near the veins. Microprobe analyses also detected albite and rutile in altered zones. Brecciation and crackle veins are common to all the thorium deposits, and multi-generational strained quartz is typical.

Figure 18. Pink quartz-potassium feldspar-specular hematite-thorite vein from the Cago prospect. The white outer envelope contains additional K-feldspar plus albite and rutile.

One deposit, the Lucky Horseshoe, is classified as a "replacement" deposit, in more argillaceous wall rocks. Unlike most of the deposits, it has not been affected by extensive supergene weathering, and the original mineralogy and texture are well-preserved. The ore rocks, essentially specularite schist and breccia, are strongly sheared and in places mylonitic with a nearly horizontal fabric (Figures 19, 20). Because the deposit has been partially excavated and ripped up, the original vein orientations and structure are unknown, but in thin section and the preserved 3-dimensional outcrop, it is obvious that the rocks are strongly sheared, brecciated, and cataclastic in nature with a near-horizontal schistocity. At least one probable fold nose is exposed in the pit (Gillerman and others, 2006). The near-horizontal fabric, plus the lack of mineralization exposed in an adit driven underneath the open pit level, support the interpretation of a horizontal geometry rather than a vertical or steeply dipping vein, but no drilling has been done to test this hypothesis. Lucky Horseshoe ores contain some of the highest REE concentrations in the district (Staatz, 1979). In thin section, the biotite layers contain as much as 25% of monazite (Figure 19). Textures are extremely complex and probably record multiple deformation and metamorphic events that pre-date to post-date the mineralization (Figure 21).

Figure 19. LH-12 (kcv-9) under high magnification and plain light. Brown biotite, opaques (hematite-thorite) and monazite (high relief colorless grains abundant in lower half of slide). Image is approx. 2.7 mm across. Note the preferred orientation and shear fabric.

Dominant minerals in the Lucky Horseshoe ores are hematite, potassium feldspar, biotite, and monazite and thorite. Much of the biotite is brown, especially where less affected by deformation or subsequent events. Other micas are green biotite (especially in sheared or veined zones) and muscovite. Albite is locally present, plus allanite, fluorite, barite, minimal quartz, and carbonate; a variety of other minerals are reported in the literature.

Figure 20. Lucky Horseshoe mine. Top photo (A) shows cataclasite with radioactive thorium ore. Black color is due to biotite and hematite. Tan-colored clasts are feldspar and/or apatite. Bottom Photo B shows some of the tan alkali feldspar veins which are peripheral, especially in the hanging wall of the deposit. Thin sections and geochemical analyses indicate the tan veins have both Na and K feldspars.

Figure 21. LH06-24B, Lucky Horseshoe cataclasite. Top (A) is plain light; Bottom (B) is in crossed polarizers. Note clasts are aggregates and the metamorphic biotite is growing or recrystallized within pressure shadows of the clasts. Also note some similar textures of the feldspar aggregates in the clasts to the texture of the syenite.

Mineral Compositions

Both the electron microprobe and scanning electron microscope were used to facilitate mineral identification and to analyse mineral compositions. Unfortunately, access to both of these was limited by time, distance, funds, and equipment breakdowns and replacements. In particular, local access to good SEM facilities or a microprobe with qualitative imaging would have been very useful.

With the exception of the monazite and thorite used for the EMPA geochronology, the remaining electron microprobe work was done at Washington State University on a Cameca electron microprobe with visual optical lens capability. This was helpful in selecting grains. Laboratory manager Scott Cornelius did a superb job with the instrument setup and standard selection.

Blackbird Mining District

The USGS has been undertaking a new study of mineralization in Proterozoic Basins, and part of that is a new look at the Blackbird Copper-Cobalt District, located a few tens of miles west of Lemhi Pass and hosted in similar rocks (Figure 1). In cooperation with that Blackbird project, microprobe analyses of garnets and biotites, specifically, were completed. Results are in Table 1 and Table 2, as well as Appendix C. In addition, scapolite and chloritoid were analysed and those results are tabulated in Appendix C.

Garnet, biotite, and chloritoid at Blackbird all show extreme iron enrichment, and chloritoid, though less abundant as a coarse blue porphyroblast, is typical of metamorphosed iron formations. Also of interest is the element zoning in the garnets. Cores have higher manganese contents, and lower magnesium, than the rims. One hypothesis is that they grew under prograde metamorphic conditions, with the rims forming at higher temperatures than the cores. A subsequent and visually distinct retrograde rim was avoided in the probe analyses.

Biotites greatly favor iron over magnesium in their compositions. Also of interest is the fairly low amount of F and Cl, with Cl being 2-4 times more abundant than F. Scapolite in the regional host rock contains 2 weight percent Cl (Appendix C), but it is present only locally in the stratigraphic section.

Table 1. Blackbird Mining District Garnets. RMet1 is from the RAM deposit metallurgical core; BZ is from Blacktail Pit. Both rocks are garnet-biotite schists. Chloritoid is also present in the BZ sample (see Appendix C).

Representative Mineral Compositions, Formulas and End-Members: Blackbird Mining District

Samples							
Determined	d by Electron Mid	croprobe, Wa	shington State	e University			
	RMet1, pt.						
Sample	E3	RAM depos	sit	Sample	BZ-06A1, ptE1		
Wt. %	Garnet	Garnet -	Garnet	Garnet	Garnet -	Garnet	
Oxides	Core	Int.	Rim	Core	Int.	Rim	
SiO2	35.36	35.84	35.4	34.55	34.87	35.18	
TiO2	0.06	0.19	0.06	0.04	0.06	0.03	
AI2O3	19.77	19.84	20.16	19.43	20.2	19.94	
FeO t	32.41	32.82	33.57	37.06	38.49	39.36	
MnO	2.58	2.04	0.83	2.55	1.92	1.28	
MgO	0.26	0.33	0.71	0.37	0.47	0.46	
CaO	6.42	7.02	6.59	1.56	1.81	1.51	
Na2O	0	0	0	0.01	0.04	0.04	
K2O	0	0.01	0	0	0.01	0	
F, Cl zero							
Total	96.86	98.08	97.32	95.57	97.87	97.81	
	Cations						
Si	2 982	2 082	2 962	2 985	2 9/6	2 073	
Ti	0.004	0.012	0.004	0.003	0.004	0.002	
ΔΙ -Ι\/	0.004	0.012	0.004	0.000	0.004	0.002	
AI-VI	1 964	1 945	1 988	1 979	2 011	1 986	
Fe	2.286	2.284	2.348	2.678	2.72	2.782	
Mn	0 184	0 144	0.058	0 186	0 138	0.092	
Ma	0.033	0.04	0.089	0.047	0.059	0.058	
Ca	0.58	0.625	0.591	0.144	0.164	0.137	
Na	0	0	0	0.002	0.006	0.007	
K	0	0.002	0	0	0.001	0	
Formula	Ũ	0.002	0	0	0.001	Ũ	
Total	20.032	20.034	20.04	20.024	20.048	20.036	
Fe/(Fe+Mg) 0.99	0.98	0.96	0.98	0.98	0.98	

Table 2. Analyses of Blackbird Micas. Yac is from Apple Creek Fm. Outside of mine area, RMet1 is from RAM deposit, BZ is Blacktail Pit, HE is Hawkeye portal.

Sample Average Wt. % Oxides -	Yac- 06A, biotite	RMet1, biotite	BZ-06A1, biotite	He-06A, biotite (brn/grn) Biot.	RMet1, Muscovite
Averages	Biotite	Biotite	Biotite	brown/grn	Muscovite
SiO2	32.82	31.71	30.29	31.03	45.07
Al2O3	16.39	16.90	17.30	17.13	33.57
TiO2	2.72	2.10	1.38	0.70	0.26
FeO if 50% Fe+2	11.89	13.38	14.79	14.14	1.32
Fe2O3 calc at 50%	13.22	14.88	16.44	15.72	1.47
MnO	0.30	0.04	0.04	0.03	0.00
MgO	5.97	4.39	2.32	4.33	0.62
CaO	0.00	0.00	0.01	0.00	0.00
Na2O	0.04	0.13	0.06	0.07	0.49
K2O	9.59	9.35	9.25	9.38	10.44
F	0.24	0.25	0.13	0.32	0.31
CI	0.65	0.42	0.78	0.78	0.00
(H2O)	3.51	3.51	3.38	3.34	4.23
TOTÁL - w/					
corrections	97.07	96.86	95.94	96.66	97.66

Lemhi Pass Mineral Compositions

In order to help classify the intrusive rocks, representative samples of the syenite and mafic intrusives were examined, as well as some of the alteration minerals associated with the thorium veins. Given the complexity of the rocks, the amount of probe work could easily have been doubled, had more time and funds been available. Additional details are in Appendix C.

Table 3: Zoning of alkali feldspar in the syenite, traverse across a single feldspar grain.

We	ight Percent Oxide on Grain Traverse	Na2O	K2O
Un	79 JA06-01C, Feldspar Trav., rim, pt. B1	7.72	5.91
Un	80 JA06-01C, Feldspar Trav., rim/core, pt. B2	0.35	16.37
Un	81 JA06-01C, Feldspar Trav., core, pt. B3	0.38	16.53
Un	82 JA06-01C, Feldspar Trav., core middle, pt. B4	0.75	16.04
Un	83 JA06-01C, Feldspar Trav., core, pt. B5	0.39	16.76
Un	84 JA06-01C, Feldspar Trav., rim/core, pt. B6	11.76	0.12
Un	85 JA06-01C, Feldspar Trav., rim, pt. B7	9.73	3.06

Table 4: Compositions of selected mafic minerals at Lemhi Pass

		Biotites			Amphibole	<u>s</u>
	• •		Th		Px Porphy	/ry
	Syenite	Th ore	ore	Th ore	Phenos	0000
	BL06-		LH-		CQ06-	CQ06-
Sample (Averages)	05	LH-12C	12c2	LH01-1a	30A1 red	30A1
color	brown	brown	green	gn/brwn	brown	clear -alt.
Wt. % Oxides						
SiO2	32.25	38.19	38.23	41.67	35.63	55.50
AI2O3	11.24	11.24	11.11	11.72	13.13	0.95
TiO2	1.96	0.19	0.12	0.28	5.70	0.02
FeO if 50% Fe+2	16.01	4.94	5.02	5.53	4.35	5.89
Fe2O3 calc at 50%	17.81	5.50	5.59	6.15	7.26	2.18
MnO	0.78	0.10	0.11	0.10	0.12	0.23
MgO	1.18	19.64	19.97	19.31	11.92	19.22
CaO	0.28	0.02	0.12	0.05	11.95	12.85
Na2O	0.03	0.03	0.05	0.05	2.12	0.22
K2O	8.68	10.24	10.28	10.47	1.35	0.04
F	0.90	4.03	4.84	NA	0.33	0.00
CI	0.53	0.02	0.02	0.03	0.05	0.01
(H2O)	2.96	1.98	1.61	4.13	1.76	2.12
TOTAL - w/ corrections	94.11	94.41	95.03	99.47	95.53	99.24

Table 5. Representative Feldspars from Lemhi Pass

Feldspars	Cores BL06-	Rims BL06-		Orangy	clearer/outer?	
Sample Number	05	05		CA06-B1	CA06-B1	
Wt. % Oxides	syenite			vein	Envelope?	
SiO2	63.28	67.08		64.52	70.91	
AI2O3	19.04	20.58		18.87	20.62	
			as			
Fe2O3	0.06	0.10	FeO	0.09	0.03	
CaO	0.01	0.22		-0.03	0.06	
Na2O	0.45	11.24		0.34	10.93	
K2O	16.20	0.41		16.36	0.13	
BaO	0.21	0.01		na	na	
Total	99.24	99.65		100.14	102.67	

A curious feature of the feldspars probed in both the syenite and the Cago and Lucky Horseshoe thorium deposits at Lemhi Pass is the bimodal composition with both Na-rich and K-rich varieties, often in the same thin section. The pinker K-feldspar is dominantly orthoclase in composition, but the clearer rims are albitic. Few in-between compositions were found, and the amount of calcium plagioclase in the albite is minimal. Though less distinct, both feldspar compositions are also present in the Lucky Horseshoe deposit. Timing and exact zoning are poorly constrained, though as in the Cago vein, the more sodic phases appear to be either an outer zone or possibly later.

In comparison to the Blackbird District, biotites from the Lucky Horseshoe mine at Lemhi Pass have F >> Cl, with 4% F at Lemhi Pass versus only 0.25 % F in the Blackbird ores. TiO₂ content of the biotite in the Blackbird ore is comparable to that in the Lemhi Pass syenite. TiO₂ in the red-brown amphibole (oxyhornblende or hastingsite?) of the pyroxene porphyry at Lemhi Pass is very high (over 5%), but TiO₂ in the ore zone biotite at the Lucky Horseshoe is very low. Overall, the biotites from the Lucky Horseshoe ores are significantly more phlogopitic in composition.

The clear or colorless alteration amphibole with the composition in Table 4 is a tremolite, interpreted as one of the alteration products of olivine phenocrysts in the pyroxene porphyry. Pyroxene compositions are augitic.

Geochemistry

Intrusive Rocks

Complete whole rock analyses of the syenite and mafic intrusives are in Appendix E. Major elements are listed in Table 6 below. All analyses were done by Activation Laboratories in Canada.

	C-	Total													
Analyte Symbol	Total	S	F	SiO2	AI2O3	Fe2O3(T)	MnO	MgO	CaO	Na2O	K2O	TiO2	P2O5	LOI	Total
Unit Symbol	%	%	%	%	%	%	%	%	%	%	%	%	%	%	%
Detection Limit	0.01	0.01	0.01	0.01	0.01	0.01	0.001	0.01	0.01	0.01	0.01	0.001	0.01	0.01	0.01
Analysis			FUS-	FUS-	FUS-		FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-	FUS-
wiethod	IR	IR	15E	ICP	ICP	FUS-ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP	ICP
		<	<												
JA06-01	0.03	0.01	0.01	63.48	15.1	8.01	0.044	0.1	0.1	5.78	4.79	0.26	0.06	0.76	98.48
14.00.040	0.00	>	>	04.00	40.0	40.77	0.000	0.00		4.07	4.00	0.000	0.07		00.04
JA06-01C	0.02	0.01	0.01	64.09	13.6	10.77	0.033	0.06	0.1	4.87	4.92	0.296	0.07	0.44	99.24
BL 06-05	0.04	< 0.01	0.04	62.2	16 27	7 88	0 123	0.31	0 32	5 95	5 55	0 305	0 14	0 74	99 79
DE00 00	0.04	<	0.04	02.2	10.27	7.00	0.120	0.01	0.02	0.00	0.00	0.000	0.14	0.74	55.75
07WP129	0.02	0.01	0.05	73.41	12.96	1.95	0.028	0.23	0.18	2.6	6.48	0.339	0.08	0.82	99.08
CQ06-25B	0.26	0.11	0.18	46.49	15.27	12.27	0.157	6.98	7.38	3.14	2.75	2.554	0.53	3.39	100.9
CQ06-30B	0.33	0.13	0.14	45.25	13.94	11.1	0.186	8.94	9.78	2.78	1.91	1.86	0.51	3.49	99.75
BL06-03	0.04	0.02	0.14	44.96	13.44	11.7	0.172	10.35	10.05	2.37	1.68	2.041	0.52	2.35	99.63
LH06-23B	3.62	0.05	0.09	41.2	10.82	10.07	0.181	10.68	8.32	1.81	1.96	0.845	0.25	13.44	99.58
07WP120	2.45	0.07	0.09	44.65	11.09	10.37	0.193	10.28	8.91	1.83	1.95	0.871	0.26	9.74	100.1
		<													
LH06-24B	0.02	0.01	0.44	48.95	11.99	19.78	0.028	1.89	3.43	5.12	2.86	0.163	3.41	0.77	98.38
0714104070	0.00	0.40	0.5	0.07	0.74	0.00	0.000	4.05	00.05	0.07	<	0.044	10.00	44.00	74.40
07WP127B	3.93	0.13	0.5	3.97	0.74	8.03	0.606	1.25	23.35	0.07	0.01	0.014	18.92	14.23	/1.16

Table 6. Whole rock chemistry from Lemhi Pass. The first three samples listed (JA06-01 and BL06-05) are syenite with about 63% silica and about 5-6% each of Na2O and K2O. 07WP129 is a granite from near Leadore. CQ06-25B is the Copper Queen greenstone dike, CQ06-30B and BL06-03 are pyroxene porphyries from the Copper Queen and Bluebird areas, LH06-23B and 07WP120 are samples of the carbonate-rich mafic sill by the lower Lucky Horseshoe adit, and LH-6-24B is of the Lucky Horseshoe breccia ore. For comparison, 07WP127B is from a carbonatite sample on the Roberts property west of Shoup (Anderson, 1958).

The syenite contains about 25-30 ppm thorium and moderately high alkalis, subequal in amount between potassium and sodium, and very low calcium. The mafic rocks seem to have a slightly alkaline character (Figure 22) and are low in silica with only about 45% SiO₂, rather low for basalt and approaching the value for peridotites, based on representative igneous rock analyses (Winter, 2001). The mafic pyroxene porphyries fit the definition of a true lamprophyre as a dark, porphyritic mafic rock with biotite and/or amphibole phenocrysts and normally rich in alkalis (Winter, 2001, p. 363). If the syenite and mafic porphyries are of approximately the same age (see geochronology discussion below), they are interpreted to comprise a bimodal assemblage of continental alkalic magmatism, most likely rift-related. In spite of considerable searching in thin section, no feldspathoids or clear evidence of silica undersaturation or ultraalkaline mineralogy was found. Hydrothermal alteration has obviously affected the rocks, and makes classification more difficult.

Figure 22. Total alkali-silica plot (normalized) for same samples. Red circles are syenite; green triangles are mafic dikes; blue squares are Lucky Horseshoe sill and purple is regional granite.

Figure 23. Nb versus Th for intrusive samples in diagram above, plus two additional mafic to ultramafic rocks(black stars) in the district and two samples of the regional Precambrian megacrystic granite (open purple crosses). The syenite (red circles) seems to be the most enriched in Th and Nb as well as alkalis and REE.

Figure 24. REE spider diagram for selected intrusives and ore sample. Note standard Eu anomaly for the syenite, and the flat to slightly elevated Eu pattern of the mafic porphyries. Also note the difference in ore sample LH06-24B with an extreme Nd-enrichment versus standard LREE enriched pattern of North Fork carbonatite (07WP127B).

The syenite shows the highest enrichment in Nb, Th, and REE of the intrusives sampled in the Lemhi Pass District (Figures 23, 24). It also shows a modest negative Eu anomaly. The mafic porphyries and greenstone show flatter patterns with a hint of a positive Eu anomaly, and the Lucky Horseshoe sill shows lower REE fractionation relative to chondritic values, appropriate for the basaltic chemistry of the rocks and probable mantle derivation.

In contrast to the intrusives, rare earth element compositions of the thorium-REE veins show a definitely unusual pattern of middle rare earth (MREE) enrichment relative to chondritic values (Figure 25). This has been noted by previous workers in the Lemhi Pass District. It is of both geologic and economic interest since neodymium is currently used in several high tech applications, such as magnets. The other middle rare earths are also of considerable economic importance, but carbonatites and other easily mined REE deposits tend to be LREE-enriched.

Figure 25. A number of vein samples from data supplied by Thorium Energy. Note the middle rare earth enrichment of many of the samples. This has been noted by earlier workers in both government (Staatz et al., 1972b), industry, and by Samson and Wood (2005). It remains an unexplained and unique characteristic of the Lemhi Pass District.

Monazite Geochemistry

As monazite is the major rare earth element bearing mineral in the deposits and is particularly abundant at the Lucky Horseshoe, I was interested to look at its composition. Scanning electron microscopy provided a quick look at several samples with monazite (Figure 26). SEM scans of thorite showed just Th and silica peaks, suggesting fairly pure thorite in the fresh sections examined.

Figure 26a. EDS spectra of monazite in LH-12 ore from Lucky Horseshoe mine. Note high Nd and Ce peaks and lack of large La peak.

Figure 26b. EDS spectra from 07WP127B monazite from Roberts South prospect near North Fork. Note standard LREE dominance of La and Ce peaks, typical of a carbonatite. Scale is different from LH-12 spectra.

Figure 27. Monazite compositions determined by electron microprobe at WSU. Eu was not analysed for (NA). Four samples from the Lucky Horseshoe mine show an average of 35% Nd oxide, while sample 07WP127B from the Roberts carbonatite shows standard La and Ce LREE enrichment. A sample from the Sunshine Lode of the Blackbird district is also Ce dominant. Analyses are in Appendix C.

Monazites, both rim and cores, from the Lucky Horseshoe mine are the most enriched in Nd of any reported in the literature, based on a modest survey; the Lucky Horseshoe monazites contain 35 weight percent Nd oxide (Figure 27). The exact reason is unknown. Also different is the mineral's color – or lack of it. Mineral separation of the Lucky Horseshoe monazite for geochronology proved extremely difficult, because, unlike standard amber or yellow monazites, Lucky Horseshoe monazite is virtually indistinguishable by color from common grains like feldspar. It is a "dishwater grey to soapy tan" color at best.

The most compositionally analogous (i.e. MREE-enriched) monazite example found in the literature is that described by Laval (1998). He describes "grey monazite", a slightly thoriferous monazite of sedimentary, diagenetic origin that forms REE-zoned ovoid grains. Nd_2O_3 contents of the three grey monazite analyses given in his paper are in the 21-25% range, but CeO₂ contents are still greater (> 40%). At Lemhi Pass, both La and Ce oxide contents are lower and Nd oxide is higher.

Geochronology

Feldspars and Hornblendes with ⁴⁰Ar/³⁹Ar

Five samples were analysed by Dr. Paul Laver for ${}^{40}\text{Ar}/{}^{39}\text{Ar}$ geochronology and thermal history. His full report is in Appendix F. Only the most important or representative results are included here. In summary, potassium feldspars from three thorium veins were examined, the Lucky Horseshoe deposit, and the Cago, and ThO₂ veins (Sample 07WP119). Of those, the ThO_2 is the furthest south and most remote from the syenite or any presumed intrusive center. An earlier, unpublished study on biotite from the Lucky Horseshoe (LH) mine, as well as from the Blackbird District, showed evidence of partial resetting of LH biotites and complete resetting (or thermal closure) at Blackbird in the 120-150 Ma range. Regionally, the Lucky Horseshoe mine shows the greatest deformation, interpreted as syn and post-mineralization, which may have contributed to its resetting. Other vein deposits do not contain biotite. Thus, feldspars were used (Figure 28). Feldspars have closure temperatures of 150-350° C. somewhat lower than biotite. The two samples from the ThO₂ mine and the Lucky Horseshoe show saddle ages of 112 Ma and 56 Ma, respectively. The ThO₂ mine area does not display the intense mylonitization present at the Lucky Horseshoe. The spectra suggest a period of Tertiary to Cretaceous reheating and a primary age or thermal event near or older than 200 Ma. This is not sufficient to pin down an exact age of mineralization and feldspar precipitation, but it is definitive proof that the feldspar is not Eocene, as interpreted by earlier workers (Staatz, 1979), and the feldspar could be much older, most likely pre-Jurassic in age.

Hornblende closes to argon diffusion at much higher temperatures (about 550° C), so an attempt was made to date the red-brown hornblende in the pyroxene porphyry. A sample of pyroxene porphyry (07-CQ09 HO#1) from the Copper Queen mine dump and a sample of coarse hornblende from the pegmatitic mafic rock clast in the calcite breccia at location #77 of Staatz (1979) were analysed. The hornblende in the breccia pipe has crystals several centimeters in diameter and is surrounded by a matrix of coarse calcite which might have protected the hornblende from alteration or recrystallization. The hornblende is tan, slightly lighter but of a similar color to that in the pyroxene porphyry dikes. It is probably related to a pyroxene porphyry dike adjacent to the calcite matrix breccia, which Staatz (1979) interpreted as a carbonatite. Results are shown in Figure 29.

The hornblende spectra from the Copper Queen pyroxene porphyry is "messy" but suggests thermal resetting perhaps about 400 Ma, though it continues to step up to older ages. The hornblende sample (07LOC77BP HO#3) is from the coarse hornblende megacryst in the breccia pipe and exhibits a very nice plateau age of 558 Ma +/- 1.6 Ma. This is statistically older than the age of the syenite, suggesting mafic magmatism predated the syenite (529 Ma) and igneous activity may have spanned 30 million years or more, possibly in discrete pulses. Considerable additional work is needed to more fully describe this Latest Precambrian to Early Cambrian magmatism, but the geochronology presented here provides definitive evidence for an early Paleozoic igneous event, most likely with bimodal and mildly alkaline signatures. Field and petrographic evidence is compatible, though not definitively, with the mafic intrusives being older than the syenite. Copper mineralization cuts the mafic porphyries and
could be related to the mafic magmatism. Based on the cross-cutting hematite vein (Figure 14) and possible clasts of syenitic feldspars in the Lucky Horseshoe cataclasite (Figure 21), field and petrographic evidence suggests the Th-REE-hematite mineralization postdates the syenite.

Figure 28. Feldspar ⁴⁰Ar/³⁹Ar geochronology for sample 07WP119 KS#1 from the ThO₂ vein on the south end of Lemhi Pass District, and for 07LH-02 KS#1 from the Lucky Horseshoe mine. The potassium feldspar is intimately associated with the thorite veins and deposits. Both samples show "saddle ages" indicative of Tertiary to Cretaceous thermal resetting. However, the maximum ages of approximately 200 Ma suggest that the feldspars retain a component of Jurassic or older crystallization.

Figure 29. Hornblende geochronology. The upper spectra (07CQ-09 HO#1) is from the Copper Queen pyroxene porphyry and shows a messy spectra that was reset perhaps about 400 Ma but continues to step up to older ages. The lower sample (07LOC77BP HO#3) is from the coarse hornblende megacryst in the breccia pipe and shows a very nice plateau age of 558 Ma.

Electron Microprobe Geochronology on Thorite and Monazite

Preliminary work in 2002 (Jercinovic, et al., 2002) and this study's more comprehensive work done at the University of Massachusetts showed the utility of microanalysis of monazites and thorites for Th-U-total Pb geochronology (by measuring chemical amounts of U, Th, and total Pb). The full report of Dr. Mike Jercinovic is included in Appendix G and only a brief summary of the results is included in this section. In spite of the unusual low actinide contents (below 0.5 wt. % total) of the abundant monazite at Lemhi Pass and the Lucky Horseshoe mine in particular, the electron probe microanalysis (EPMA) on their new, unique Cameca SX-Ultrachron at the University of Massachusetts achieved some impressive results. The spatial resolution and in situ analysis are especially important for documenting chemical and age zoning and altered or unaltered domains. While monazite in metamorphic rocks has frequently been dated by this means, there are fewer examples in the literature of dating monazite in mineralized systems and fewer of good quality thorite ages. While U and Pb contents are quite low in the Lemhi Pass monazites, one advantage is that the overall Pb content of the hydrothermal thorium-REE deposits seem to be low (based on whole rock geochemistry), thus minimizing the common lead problem. While a few vein analyses contained a few hundred ppm of lead, most had only 50 ppm or less, while thorium was over 1000 ppm. In addition, Dr. Matt Kohn used a Laser Ablation-ICPMS for reconnaissance U-Pb geochronology analysis on two Lucky Horseshoe monazite samples. His results suggest that radiogenic lead greatly dominates over common lead in the Lucky Horseshoe thorium deposit.

Summary results from the University of Massachusetts EMPA study are in Figures 30 and 31. In the report, Dr. Jercinovic notes: "Monazite from the Lucky Horseshoe mine is exceptionally high in Nd and Pr (~ 35wt.% Nd2O3, ~ 5wt.% Pr2O3), and commensurately low in La and Ce compared to most monazite worldwide (see example analyses, Table 6). Thorium concentrations in the bulk monazite (by far the most volumetrically significant) in the samples for this study is generally below 0.6 wt.% (Table 6). There is also clear evidence, in most monazite samples, of higher Th rims and fracture fillings (see Figure 1). This higher Th monazite (1-2 wt.% in general, see Table 6), can be interpreted as precipitating later than the bulk, low-Th monazite via textural evidence."

Conclusions of the report (Appendix G), are:

"Summary Evidence of two episodes of monazite growth is preserved in samples from the Lemhi Pass Th-REE District of Idaho and Montana, illustrated in Figure 5. The initial episode, at which time the major Th-REE mineralization appears to have taken place, occurred ca. 350 Ma. The actinide content of this monazite is exceptionally low, and the Nd-Pr content exceptionally high, relative to typical igneous or metamorphic monazite (for example, see Williams et al., 2007). Thorium concentrations are generally below 6000 ppm, and concentrations of U generally below 100 ppm in the Lemhi Pass region bulk monazite. This monazite is, however, associated with major mineralization of thorite (ThSiO4). A second episode of ca. 100 Ma monazite growth is also suggested. This monazite occurs generally as thin (less than 5 micrometers) rims on the bulk monazite or as fracture fillings. The later monazite is significantly higher in Th, generally 1-2 wt.% Th, but reaching nearly 5 wt.% in some samples (06CTCAr). There is no suggestion of mineralization older than late Devonian based on monazite EPMA geochronology, and a second episode (although volumetrically minor) of cretaceous mineralization is implied. EPMA of thorite from the Lemhi Pass Th-REE District yields data compatible with ages suggested by monazite. Although easily rendered metamict with subsequent hydrolyzation (Lumpkin and Chakoumakos, 1988) some small (generally below 10 micrometer) areas within some thorite grains remain. Analysis of these areas yields ages similar to coexisting monazite, and are compatible with mineralization at ca. 350 Ma and ca. 100 Ma (see Figure 5). Radiogenic Pb concentrations in thorite are expected to be somewhat variable due to the effects of metamictization, therefore the spread of apparent ages is correspondingly larger for thorite relative to monazite in Figure 5. There is no suggestion of ages appreciably older than ca.350 Ma, or significantly younger than ca. 100 Ma based on thorite analyses."

Figure 30, (Figure 2 in report in Appendix G). Histogram representation of age results for LH06-25 monazite. Histograms represent age and error as normal distribution around weighted mean age of analyses in each domain. A separate weighted mean of the cumulative results of M2 monazite and M3 high Y core results is shown.

Figure 31, (Figure 5 in report). Summary of EPMA geochronology results, analyses from all domains, all samples (see Tables 4 and 5). Monazite data are from Table 8, representative of 2σ errors of weighted means. Thorite values are from Table 9 in report from Dr. Jercinovic (Appendix G). Note the overlapping range of monazite and thorite ages, centered on 350 Ma.

Thus, the best estimate of primary thorium mineralization is ca.350 Ma, or in the range 300-400 Ma, Late Devonian to early Mississippian in age, and considerably younger than the age of crystallization of the Cambrian syenite (Figure 31). Recrystallization and remobilization of thorium and lead in the Cretaceous is not surprising and is most likely related to intrusion of the Idaho Batholith, and associated regional metamorphism and thrusting.

Lead Isotope Measurements

Lead isotope compositions were measured in a suite of igneous and vein potassium feldspars, and district and regional sulfide and oxide minerals, in an attempt to test the genetic associations, if any, of igneous rocks and mineralized veins. The mineral separation and laboratory work was conducted principally by a Boise State University student, Michelle Gordon, under supervision of the PI and Dr. Mark Schmitz, of the Isotope Geology Lab at Boise State University. All analyses are of mineral separates. Oxide and sulfide minerals underwent bulk dissolution in aqua regia, under the assumption that measured ratios estimate the initial isotopic composition for these low U/Pb phases. For the feldspars, a sequential mixed acid (HNO₃-HCl-HF) leaching process, modified after Housh and Bowring (1991), was

done to remove alteration zones or U or Th-bearing inclusions which could compromise the measurement of initial Pb compositions. The preferred fraction was the second HF leach aliquot. Pb was separated from dissolved samples by double-pass anion exchange chromatography in dilute HBr media. Isotope ratios were measured by thermal ionization mass spectrometry using static Faraday analysis on the Isoprobe-T mass spectrometer at Boise State University. Measured ratios were corrected for instrumental fractionation (0.11%/a.m.u.) based upon repeated measurement of the NBS-981 and 982 standards, and are listed in Appendix H and Table 7. Figure 32 shows the location of the regional samples analysed.

Figure 32. Location of lead isotope samples (blue text with waypoints), plus regional metallogeny.

Table 7a. Lead Isotope Analyses for Igneous and Veni reidspars, Oxides, and Sundes.													
Sample Mineral Rock Locale ²⁰⁸ Pb/ ²⁰⁴ Pb %se ²⁰⁷ Pb/ ²⁰⁴ Pb %se ²⁰⁶ Pb/ ²⁰⁴ Pb %se ²⁰⁸ Pb/ ²⁰⁶ Pb %se ²	^{.07} Pb/ ²⁰⁶ Pb %se												
Regional Intrusives (magmatic compositions)													
07WP129 KF-P feldspar granite Leadore 38.132 0.047 15.631 0.046 18.093 0.046 2.1075 0.005	0.86384 0.004												
07WP129 KF-C feldspar granite Leadore 37.976 0.036 15.658 0.036 18.044 0.035 2.1049 0.004	0.86771 0.003												
085-F feldspar alkali syen/gabbro Deep Creek 39.409 0.007 15.729 0.007 19.545 0.007 2.0163 0.001	0.80484 0.001												
099-F feldspar syenite Bluebird 39.628 0.002 15.672 0.002 19.354 0.002 2.0475 0.000	0.80973 0.000												
Altered Intrusives													
BC4-F feldspar granite Bull Canyon 44.754 0.009 15.963 0.009 23.879 0.009 1.8743 0.002	0.66850 0.001												
102-F feldspar mafic porphyry Bluebird 42.604 0.005 15.861 0.004 21.388 0.004 1.9920 0.002	0.74157 0.001												
JA06-01A KF-C feldspar syenite Continental Divide 40.293 0.016 15.809 0.015 20.361 0.015 1.9790 0.003	0.77644 0.002												
Regional Fe or REE Mineralization													
195-H hematite vein Loc. 195 Fe mine 38.288 0.002 15.655 0.002 18.688 0.002 2.0488 0.001	0.83772 0.001												
126A-I ilmenite carbonatite Roberts Prospect 38.420 0.005 15.646 0.004 18.692 0.003 2.0638 0.002	0.84049 0.001												
1													
Th-REE-Fe Mineralization													
JA06-01C HM hematite vein Continental Divide 42.977 0.003 15.984 0.003 22.515 0.003 1.9089 0.001	0.70994 0.001												
LH06-24B HM hematite vein Lucky Horseshoe 400.057 0.016 16.364 0.016 30.014 0.016 13.3286 0.001	0.54518 0.002												
B3r-H hematite vein Buffalo Mine 41.607 0.002 15.806 0.002 19.995 0.002 2.0809 0.001	0.79502 0.001												
LH06-24B KF-C feldspar vein Lucky Horseshoe 97.440 0.012 15.956 0.012 23.001 0.012 4.2364 0.001	0.69370 0.002												
LH33-F feldspar vein Lucky Horseshoe 45.897 0.006 15.988 0.006 23.123 0.006 1.9850 0.001	0.69145 0.001												
CAC-F feldspar vein Cago Mine 46.264 0.011 15.871 0.010 21.370 0.010 2.1648 0.002	0.74261 0.001												
Cu Mineralization													
CO06-30B GA galena vein Copper Oueen Mine 41.023 0.008 15.849 0.006 20.112 0.004 2.0397 0.004	0.78803 0.002												
CO06-30B PY pvrite vein Copper Queen Mine 40.926 0.004 15.803 0.003 20.105 0.002 2.0356 0.002	0.78598 0.001												
CO06-52 CP chalcopyrite vein Copper Queen Mine 42 316 0 001 15 881 0 001 21 564 0 001 1 9624 0 001	0 73648 0 000												
1CO-26 MO molybdenite vein Copper Queen Mine 40.337 0.005 15.745 0.004 19.487 0.002 2.0700 0.002	0.80799 0.001												
07COS-R BN bornite vein Copper Queen Mine 43 577 0 002 15 964 0 002 22 317 0 002 1 9527 0 001	0.71533 0.001												
YI-G galena vein Yellowiacket Mine 39 350 0 017 15 652 0 013 17 729 0 010 2 2194 0.008	0.88284 0.004												
Y.II-C chalcopyrite bxa Yellowiacket Mine 39.672 0.008 15.735 0.006 18.619 0.004 2.1307 0.004	0.84507 0.002												
1189-C chalcopyrite vein Napo Can 38 944 0 003 15 658 0 002 18 151 0 002 2 1455 0 001	0.86266 0.001												
BP94-18-C chalconvrite vein Blacknine Cu-Co prospect 45 131 0.003 16 302 0.002 26 656 0.002 1 7321 0.001	2.20-00 0.001												
$DI J = 10^{-0}$ $U = 0.000$	0.62566 0.001												

Table 7a. Lead Isotope Analyses for Igneous and Vein Feldspars, Oxides, and Sulfides.

Notes: %se is the relative 1-sigma standard error on the measured ratio; fractionation uncertainty imposes the following minimum absolute uncertainties (1-sigma): 208 Pb/ 204 Pb, 0.019; 207 Pb/ 204 Pb, 0.007; 206 Pb/ 204 Pb, 0.008; 208 Pb/ 206 Pb, 0.0009; 207 Pb/ 206 Pb, 0.0004.

Table 7b. Summary Sample Descriptions. See appendix H for more information.

Lemhi Pb: Gillerm	Lemhi Pb: Gillerman								
Sample	Туре	Rock type	Location						
Regional Intrusives (ma	gmatic comp	ositions)							
07WP129 KF-P	feldspar, L2	Leadore Pink Granite	Leadore – Hawley Crk.						
07WP129 KF-C	feldspar, L2	Leadore Granite	Leadore – Hawley Crk.						
085-F	feldspar, L2	Ord. mafic alkali Syenite?	Napias/Deep Creek –very fresh						
099-F	feldspar, L1	LP Syenite	Bluebird area (=BL06-05)						
Altered Intrusives									
BC4-F	feldspar, L2	Bull Canyon granite-alt.	South of Leadore area						
102-F	feldspar, L1	Pyroxene Porph (alt.)	Bluebird area (=BL06-03)						
JA06-01A KF-C	feldspar, L2	LP Syenite (Hm alt.)	Continental Divide						
Regional Fe or REE Mi	neralization								
195-H	hematite	Spec. Hm vein	Loc. 195 Fe mine						
126A-I	ilmenite	Carbonatite Bxa	Roberts Prospect, North Fork						
Th-REE-Fe Mineralizat	tion								
JA06-01C HM	hematite	LP syenite – Hm vein	Continental Divide						
LH06-24B HM	hematite	Th ore	Lucky Horseshoe						
B3r-H	hematite	Hm-Th-(Cp) vein	Buffalo Mine, LP District						
LH06-24B KF-C L2	feldspar, L2	Th ore	Lucky Horseshoe						
LH33-F	feldspar, L2	Vein hw to LH Th ore	Lucky Horseshoe						
CAC-F	feldspar, L2	Th vein envelope	Cago mine						
Cu Mineralization									
CQ06-30B GA	galena	PbCu Vein in Px Porph	Copper Queen (CQ) mine						
CQ06-30B PY	pyrite	Mineralized Px Porph	CQ mine						
CQ06-52 CP	chalcopyrite	Cu _{vein}	CQ mine						
1CQ-26 MO	molybdenite	Cu-Mo vein	CQ mine						
07CQS-R _{BN}	bornite	Bornite-qz vein	CQ mine						
YJ-G		Qz-Galena vein	Yellowjacket mine						
YJ1-C	chalcopyrite	Chalcopy. Bxa	Yellowjacket mine						
1189-C	chalcopyrite	Chalcopy. Vein	Napo Canyon, S of district						
BP94-18-C	chalcopyrite	Qz-Cp vein	Blackpine Cu-Co prospect						
PS-1-C	chalcopyrite	Cu ore	Fope Shermon Mine						

galena

Figure 33a and 33b. Lead isotope results relative to ²⁰⁴Pb with curves from 2-stage model of Stacey and Kramer.

Figure 34. Lead isotope ratios relative to ²⁰⁶Pb.

The objective of the lead isotope study was to determine if a correlation exists between the common lead in the intrusive rocks (as measured in igneous feldspar), the common lead in the sulfide veins, and/or the common lead in the thorium veins (measured in both feldspars and hematite). If the ratios are similar, then the hypothesis was that this would support a genetic connection between the veins and the intrusives with both of them sharing a common lead isotopic source reservoir. Both regional intrusives and Lemhi Pass district intrusives were sampled; likewise some regional hematite veins and copper sulfide veins, as well as district copper and thorium veins were analysed and are graphed with different symbols (Figure 33, 34).

The most unradiogenic or "primitive" lead sources still lie slightly above (at greater 207/204 ratios) the Stacey and Kramers crustal growth curve (Stacey and Kramers, 1975). Several attempts were made to model the data using higher values of μ , or ²³⁸U/²⁰⁴Pb, and a third stage of crustal evolution. Most of the data points still remain to the more radiogenic (or future time) side of such curves, but a simple, reasonable fit to the most primitive points was made by changing the second-stage to μ =10 as shown in Figure 35 where key points are labeled. Among the samples of intrusive rocks, both unaltered and altered rocks were sampled for lead isotopes. It is likely that the least or unaltered samples are most representative of magmatic lead isotope reservoirs. However, it is noteworthy that, with the exception of the Tertiary volcanics, no samples of truly fresh igneous rocks were seen in the Lemhi Pass district. Propylitic alteration is extensive in the mafic dikes and specular hematite veins locally cut the syenite.

Results of lead isotope study

The very fresh Deep Creek alkali gabbro pluton (085-F), dated as Ordovician (Evans and Zartman, 1988) has an isotopic lead composition between that of the two Lemhi Pass syenite samples. It is described by Evans and Zartman (1988) as an equigranular, alkali-feldspar syenite to alkali-feldspar quartz syenite with an Ordovician age of around 500 Ma but with some inherited lead or lead loss possible in the zircons. Our sample analysed had substantial mafic minerals, including biotite, and extremely fresh feldspar. On Figure 35, it is still one of the least radiogenic samples. The Leadore granite intrusion, 07WP129, sits close to the modeled curve and a reasonable model age of 503 million years can be calculated (Appendix H). It is located in the Beaverhead Range south of Lemhi Pass, and the analysed sample had only very minor deuteric alteration of plagioclase; it is a pink granite and has the least radiogenic composition (206/204, 207/204 is 18.044, 15.658).

Within the Lemhi Pass district, sample 099-F is the least altered intrusive and considered most likely to represent a "magmatic" value. It is syenite (62% SiO₂ with Na₂O+K₂O > 11%; sample BL06-05 in Table 6) with magmatic biotite preserved but still has some specular hematite alteration. It plots below the model curve but is more radiogenic than 07WP129. Sample JA06-01A KF-C is potassium feldspar from the syenite (dated at 529 Ma) exposed in the trench near the Continental Divide; it has abundant interstitial specular hematite with no biotite left. Its isotopic signature is significantly more radiogenic (20.361, 15.809) than 099-F (19.354, 15.672). A hydrothermally altered pyroxene porphyry, 102-F, is also radiogenic. The most radiogenic intrusive analysed is sample BC4-F from the Bull Canyon stock south of Leadore. Feldspars in this purple granite are partially altered to muscovite plus hematite. Sample BC4 seems too altered and too radiogenic (23.879, 15.963) for a primary magma and is interpreted as having an enriched lead composition more indicative of alteration than any magmatic signature. It is only a few miles south of the least radiogenic sample 07WP129.

Two oxide samples of unusual regional mineralization were analysed. Though from very different types of deposits, the regional specular hematite vein (195-H) and the Roberts carbonatite (126A-I) overlap and are among the lowest in ²⁰⁶Pb/²⁰⁴Pb and ²⁰⁷Pb/²⁰⁴Pb ratios (18.688, 15.655), plotting in between 07WP129 and 099-F. Though the ages are unconstrained, it does present the possibility of a common lead isotopic reservoir for the hematite vein and the Paleozoic intrusives.

The lead isotopic values of regional sulfides cover a wide range, with copper vein, 1189, and the Yellowjacket sulfides (YJ-G, YJ1-C), being among the least radiogenic. The Yellowjacket chalcopyrite had minor secondary limonite and so the galena sample (15.652, 39.350) may be a better indication of the lead isotopic value for the Yellowjacket base metal mineralization. An intrusive suite of Paleozoic age has also been mapped near the Yellowjacket mine (Evans and Green, 2003). A sample of chalcopyrite (PS-1-C) from the Pope Shennon mine, near Salmon, was substantially more radiogenic (22.307, 15.987) than the other regional sulfides with the exception of BP94-18-C from the Blackpine copper-cobalt district. The Blackpine chalcopyrite plots in the upper right corner of Figure 35 with values (26.056, 16.302) much more radiogenic than the others.

Lemhi Pass with Hi Mu Stacey-Kramers 2-stage Model

Figure 35. Lead isotope results in ${}^{207}\text{Pb}/{}^{204}\text{Pb}$ versus ${}^{206}\text{Pb}/{}^{204}\text{Pb}$ graph with higher μ =10 curve.

Sulfides from the Copper Queen mine at Lemhi Pass show a wide variation in their lead isotopic composition, perhaps reflecting subsequent deformation and/or metamorphism, or dual mineralizing events. The molybdenite sample (1CQ-2b MO) preserves the least radiogenic value (19.487, 15.745). Molybdenite was previously dated by ReOs at about 1 Ga in age (Gillerman et al., 2002) but that date was barely within analytical limits, and this study has not confirmed that age. Still, it is possible that molybdenite is either less susceptible to later recrystallization than other sulfide minerals, or that multiple aged veins exist. Two samples of galena (late vein) and pyrite (disseminated and in vein) cutting a mineralized pyroxene porphyry dike (CQ06-30B) plot close together (20.112, 15.849) in the middle of the graph, but two other copper samples from a quartz-chalcopyrite vein (CQ06-52 CP) and a bornite vein (07CQS-R BN) cutting the quartzite are considerably more radiogenic (22.317, 15.964 on bornite). The two copper samples were collected from the surface and could be affected by the deformation and thrusting described earlier. The mineralized mafic porphyry samples (CQ06-30B) from the mine dump are probably less affected by the intrusive wall rock.

Several samples of feldspar or hematite associated with the thorium-rare earth mineralization were analysed with acceptable results for common lead. Least radiogenic (19.995, 15.806) of those was a hematite vein with a trace of chalcopyrite from the Buffalo mine (B3r-H). A sample of feldspar in the envelope to the Cago vein (CAC-F) was more radiogenic, while two

samples from the Lucky Horseshoe mine, LH33-F (23.123, 15.988) and LH06-24B KF-C, plotted close to a sample of hematite (22.515, 15.984) from a vein that cuts the syenite.

Interpretation of isotope results

In summary, a correlation is possible between the least radiogenic regional intrusives and some regional sulfides or oxides. Geologic evidence also suggests a spatial association between some of the Paleozoic intrusions and minor base metal mineralization, particularly at Yellowjacket but also at Leadore. At Lemhi Pass, the Copper Queen sulfides, as well as the syenite and mafic porphyry samples, occupy a considerable isotopic range which is tentatively interpreted as reflecting both variable hydrothermal alteration of the intrusives and perhaps mixing of more radiogenic fluids during formation or remobilization of base metal mineralization. It is quite possible that fluids with more radiogenic lead introduced during thorium mineralization have recrystallized some sulfides, or that the fluids responsible for the thorium deposition overlap in time/space/isotopic composition with those of the copper mineralization. Field relations show that the bulk of copper mineralization post-dates the mafic intrusives, which are both altered and mineralized, and the thorium post-dates the copper veins. Geochronology indicates that the mafic porphyries predate the syenite, as discussed earlier. Lead isotope values from the feldspars associated with the thorium veins are more radiogenic than the least-altered syenite (099-F) but close to the lead isotopic value of the hematite vein cutting the syenite, suggesting a genetic link to the specular hematite alteration. But that lead is far more radiogenic than lead from any known, unaltered intrusions of likely magmatic composition.

Sample BC4-F may be an example of this more strongly U and Th-enriched hydrothermal alteration affecting an intrusive rock. BC4-F is from the thorium-anomalous granite intrusion south of Leadore, at Bull Canyon (Staatz and others, 1972; Figure 32). The feldspar sample BC4-F is highly enriched in ²⁰⁶Pb/²⁰⁴Pb and more moderately enriched in ²⁰⁷Pb/²⁰⁴Pb. However, the unusual granite is a rose to dark purple in color and is quite altered. The feldspars, which appear to have been perthitic alkali feldspar originally, are in the process of being converted to hematite and a muscovite phase. Matrix (or perhaps interstitial plagioclase) is largely fine-grained sericite. Quartz is unaffected and no mafics were seen in the few sections examined. Graphic intergrowths of quartz and feldspar are common, suggesting eutectic, low temperature growth, possibly in a water-rich environment. Accessory zircon or monazite and sphene seem to be partly under attack by the hydrothermal fluids responsible for the unusual alteration (Figure 36). In short, the enriched lead isotope signature is probably as much hydrothermal as magmatic, though additional work would be needed to evaluate this hypothesis.

Figure 36. Euhedral Monazite (?) in hematite-sericite altered feldspar in Bull Canyon stock, sample 08BC1-2. Other grains show more intense alteration of the monazite. No microprobe data is available for this thin section sample.

Cobalt Deposits

There is one more radiogenic sample, BP94-18-C, which sits in the upper right corner of the graph (Figure 35). There is a considerable gap between it and the other samples. Sample BP94-18 is chalcopyrite from a quartz-chalcopyrite vein in drill core from the Blackpine copper-cobalt mine (Figure 32). Its highly radiogenic lead isotopes are typical of those reported from more metamorphosed copper-cobalt horizons (thought to be Precambrian exhalatives or sediment-hosted sulfides) in the Blackbird District (Panneerselvam, et al., 2004).

Blackbird Co-Cu ores have ranges of 206 Pb/ 204 Pb = 30.8-40.4; 207 Pb/ 204 Pb=16.8-17.6; and 208 Pb/ 204 Pb=49.7-63.9 and are interpreted to reflect leaching of lead from the host Yellowjacket Formation by basinal brine or metamorphic fluid circulation (Panneerselvam, et al., 2004). Other explanations for the Blackbird deposits invoke Proterozoic, syngenetic, volcanic-related exhalative solutions localized along a rift basin (Nash and Hahn, 1989). Some combination of the two theories for the origin of the Blackbird deposits may better fit the geologic and isotopic data. The isotopic gap between the Blackpine sample and the Lemhi Pass and other regional samples is suggestive of different processes, metal/fluid sources, and probably timing of mineralization, with the Lemhi Pass and other regional sulfide samples crystallized from fluids tapping a less radiogenic lead source, possibly involving a greater amount of magmatically derived lead.

Conclusions of lead isotope study

In conclusion, the lead isotope data from the Lemhi Pass District and other nearby deposits sampled is interpreted to reflect mixing of juvenile magmatic lead represented by the unaltered igneous intrusives with a more U and Th-enriched crustally-derived, hydrothermal lead component. The thorium veins, the hematite vein cutting the syenite, some of the copper veins, and the Bull Canyon altered intrusive appear to contain a significantly higher proportion of the crustal-derived lead, and they also reflect increasing hydrothermal alteration and metasomatism. The source of the more radiogenic component could be magmatic – perhaps a buried intrusion derived from a lead reservoir of continental derivation – or it could be hydrothermally derived from leaching radiogenic lead from Precambrian or Paleozoic sediments, or both.

General Conclusions and Discussion

Important major results of this MRERP study are listed below. Additional interpretation and analysis of the large amount of data collected is ongoing and more will be published.

- Lemhi Pass District hosts at least two unusual and previously undescribed and undated intrusive suites of Latest Precambrian to Early Cambrian age: a syenite (approximately 530 Ma, based on U-Pb date on zircons) and mafic porphyries (in part 560 Ma based on ³⁹Ar/⁴⁰Ar), probably alkaline lamprophyres, plus other altered mafic rocks. The intrusives are interpreted to represent a bimodal, alkaline suite with rift-related affiliation in a continental setting. More work is planned on their geochemistry, but they are very unusual rocks for Idaho.
- The mafic intrusives are propylitically to calc-silicate altered over a wide geographic area, and one unusual mafic or ultramafic sill shows Mg-carbonate replacement of igneous phenocrysts, suggesting fluids of very high CO₂ content. Timing of the alteration is unknown. Some thorium and copper deposits are spatially associated with intrusive dikes, suggesting related structural settings.
- Local epidote-bearing hornfels and one area of "dry" quartz veins in the center of the district are compatible with a buried pluton of some type.
- Alteration and stratigraphic variation in the Mesoproterozoic metasediments is subtle to indistinguishable. The metasediments have detrital zircons that correlate temporally with and share similar provenance to the Apple Creek and Gunsight Formations further west. More detailed mapping is needed to understand the structural setting, but the Lemhi Pass Fault is a major WNW-trending shear zone, probably with drag folds. The Lucky Horseshoe mylonite has sheared and recrystallized the thorium-REE mineralization there. The mylonite most likely represents a Mesozoic thrust complex, as does the low angle, brittle fault zone that displaces copper veins at the Copper Queen mine stopes.
- Hydrothermal alteration in the metasediments around the copper veins is poorly developed but seems to include local potassium feldspar, carbonate, and epidote. The mafic intrusives are strongly propylitically altered. Hydrothermal alteration around the thorium-REE veins and replacements is better developed, though only on a scale of centimeters to meters in width, approximating the width of the vein. It includes strong potassium feldspar replacement of the muscovite quartzite, with local sodium feldspar and some rutile outwards of that. Specular hematite is ubiquitous and early as well as being intergrown with thorite and quartz.
- Based on petrographic evidence, feldspar veins surrounding the Lucky Horseshoe mine, and resulting clasts within the Lucky Horseshoe cataclasite/mylonite, could include syenite dikes, or related alkali metasomatism (fenites?). One clast of crystalline monazite, plus metamorphic fabrics of biotite growing in pressure shadows around feldspar clasts, confirms that the deformation and metamorphism largely postdates thorium mineralization. However, multiple orogenic events are likely, before, during and after mineralization.

- Argon geochronology and thermochronology indicate regional-scale resetting during the Tertiary and Cretaceous of vein feldspars and biotites in the thorium veins. Hornblendes from the mafic porphyries record maximum ages as old as 560 Ma, but possibly as younger (to 400 Ma) as well.
- The only direct age on the copper mineralization is the original Re-Os age on molybdenite in the Copper Queen vein. This study could not substantiate the 1.05 Ga age, and it is considered as questionable due to the extremely low levels of Re. Both copper and thorium-REE mineralization are considered to be Paleozoic (or latest Precambrian for the copper) based on their cross-cutting relationship to dated intrusives and the electron microprobe ages (approximately 350 Ma) on monazite and thorite. The best interpretation of the window of mineralization is from 550 to 350 million years ago, with the copper most probably being deposited in the earlier portion (i.e. Cambrian) and the thorium somewhat later in the Devonian. Multiple periods of base metal sulfide mineralization are quite possible as some thorium veins do contain minor copper, though it is unclear if the copper is remobilized or primary.
- Lead isotopes indicate possible correlations of the regional Paleozoic intrusions with some copper mineralization, particularly at the Yellowjacket mine, but some of the Copper Queen mine sulfides and the thorium-REE mineralizing fluids show a trend to more U and Thenriched, crustally derived source of lead. No Devonian intrusions are known, though other undated Paleozoic plutons exist in the Beaverhead Range, and large areas of gravel cover are present in the valley. Lead may have been derived from a buried plutonic source or from leaching of continental sediments. Multistage mineralization is quite possible.

Rare earth geochemistry of Lemhi Pass and Iron oxide - copper - gold (IOCG) deposits

While many of the structural and mineralogical characteristics of Lemhi Pass mineralization are similar to those present in IOCG deposits, such as the giant Olympic Dam deposit in Australia, other features are not. And IOCGs constitute a very diverse group of deposits, not all of which have rare earth data available in the literature. Geochemical signatures of rare earth deposits have been used to help distinguish deposit types (Samson and Wood, 2005; Castor and Hedrick, 2006), though a full review is beyond the scope of this report. Samson and Wood (2005) included the Lemhi Pass veins in their study. They note the unusual rare earth signature (MREE enriched) of the Lemhi Pass veins, in contrast with LREE enriched carbonatites (inc. the carbonate breccia at Staatz' locale #77). Their plots of Lemhi Pass veins on a normalized La vs. Eu/Eu* graph show a position below (i.e. less enriched in La) the values for either the Olympic Dam IOCG deposit or the Bayan Obo carbonatite and also outside the fields of rocks from the Missouri iron oxide REE deposits and others in Australia (Figure 37). Olympic Dam is unusually enriched in rare earths compared to other IOCG deposits, perhaps because of the granitic host rocks.

Figure 37. From Samson and Wood (2005), showing different rare earth deposits distinguished by their different normalized La/Lu ratio versus normalized Eu/Eu* content. They include data for Lemhi Pass veins, which are outside of the data fields for Olympic Dam and IOCGs (top diagram), but overlap some of the iron deposits. New analytical data is similar to their Lemhi Pass data.

Figure 38 shows a similar plot of La/Gd versus Eu/Eu* modified from Castor and Hedrick (2006) with addition of new vein geochemical analyses from Lemhi Pass (Reed and Gillerman, 2008). The Lemhi Pass vein samples partially overlap the field of peralkaline REE deposits and the field of iron-REE deposits. The veins are quite distinct from the LREE-enriched carbonatites, including those at North Fork, a few tens of miles northwest of Lemhi Pass, along the monazite-rutile belt. Castor and Hedrick (2006) also discuss the more HREE-enriched pattern typical of large low grade igneous, peralkaline rare earth deposits and the mixed signatures of various vein deposits, such as at Lemhi Pass.

Figure 38. Plots of La/Gd versus Eu/Eu* for suite of Lemhi Pass rocks in comparison to values from literature for various types of deposits (from Reed and Gillerman, 2008, after Castor and Hedrick, 2006).

Figure 39. La/Gd vs. Eu/Eu* plot of Lemhi Pass intrusive rocks compared to a syenite from the Mountain Pass carbonatite complex, California, and to altered granite from Bull Canyon pluton, Leadore, Idaho. Note the much lower Eu/Eu* for the Bull Canyon rocks.

Figure 39 shows the much lower Eu/Eu* for the Bull Canyon rocks in comparison to the Lemhi Pass intrusives (all types), along with one sample of fresh syenite at Mountain Pass, California. All four Bull Canyon samples show a distinctly low Eu/Eu* value, evidence of a huge negative Eu anomaly on a REE spider diagram (Figure 40); they also have only 0.02 wt. % CaO. One possible interpretation would be that Eu was mobilized out of the rocks as divalent Eu during hydrothermal alteration. Divalent Eu is more soluble than the trivalent Eu (Samson and Wood, 2005). The Bull Canyon samples still contain 18-35 ppm Th, or approximately the same amount as the Lemhi Pass syenite (25-33 ppm, 3 samples). So, while both the Lemhi Pass syenite and Bull Canyon stocks are anomalous in thorium and rare earths, compared to typical igneous rocks, they are not themselves mineralized, except in iron.

Figure 40. REE spider diagram for Lemhi Pass intrusives and Bull Canyon stock samples.

Discussion on Origin of Lemhi Pass Deposits

The multiple methods of geochronology used in this study strongly suggest the existence of two significant geologic events at Lemhi Pass – a latest Precambrian to Cambrian (560-520 Ma) bimodal mafic/syenite magmatic episode, probably with associated copper and base metal mineralization, and a later, 350 Ma, or late Devonian period of thorium-REE-hematite mineralization and vein formation. The Th-REE-Fe mineralization could correspond to a lengthy time interval from 300-400 Ma, approximately. As essentially no magmatic rocks of Devonian age are known in Idaho, but some "sedex" and MVT-type mineralization has been described in central and eastern Idaho (Figure 41 from Lund, 2008, and summary therein), it seems possible that the Lemhi Pass veins, including their unique REE signature, could be related to regional-scale hydrothermal circulation through the sedimentary and upper crustal package in response to whatever triggered other "sedex" and MVT mineralization.

Figure 41. Figure 5 from Lund, 2008, showing mineral deposit types along the, rifted Paleozoic margin to western Laurentia.

The Lemhi Pass fault zone may be an inherited portion of this rifted margin, and the multiple intrusives at Lemhi Pass are interpreted to be related to extensional settings along the Paleozoic rifted margin over a protracted period of geologic history.

Strong or abundant regional alteration has not been recognized in the Proterozoic siltites and quartzites at Lemhi Pass or elsewhere in the Salmon region, and regional mapping available for eastern Idaho does not include alteration mapping. But using a model similar to some IOCG types of deposits, metals and lead could be associated with a widespread, regional hematite-bearing alteration of earlier, lithophile-rich intrusions, including hypothetical buried ones in the Beaverhead Range and adjacent areas. However, the abundant apatite and fluorine signatures of the district, along with the large volume of the thorium and rare earths, locus of fracturing and vein localization, are hard to explain with a standard "sedimentary leaching" model.

The iron oxides, apatite, rare earths and fluorine are also signatures of more typical thorium deposits - those associated with alkaline intrusive-(+- carbonatite) complexes, such as at the Powderhorn District in Colorado (Van Gosen and Lowers, 2007; Staatz and others, 1980). Some combination of a crustally derived, igneous source of metals, and modification by regional hydrothermal circulation seems necessary to explain the Th-REE suite and the lead isotope results at Lemhi Pass. Thus, the existence of a buried Paleozoic-age pluton seems likely, though its location has been obscured by later structural displacements.

In particular, Lemhi Pass and the Paleozoic syenite intrusive and thorium mineralization may be related to a Paleozoic belt of syenites and carbonatite/intrusive complexes with Th-REE veins which trend through New Mexico and Colorado (Figure 42).

Figure 42. Paleozoic syenites of New Mexico and Colorado. From Loring and Armstrong, 1980. The Colorado alkalic complexes host Th, REE, Ti, Nb, and other mineralization; they are Cambrian in age (Olson and others, 1977).

At Lemhi Pass, the substantial age separation, nearly 200 million years, between the mafic to syenitic igneous rocks and the vein monazites and thorites, as well as the lead isotopic differences and discrete geographic loci of mineralization for the Th-REE-Fe versus copper mineralization, argue against the original hypothesis that the district represents a Th-rich variant of an Olympic Dam or IOCG type of deposit. It is possible that the consistent electron microprobe ages of 300-400 Ma on both monazites and thorites represent a complete recrystallization of earlier thorium-REE mineralization, but that also seems doubtful.

However, lead isotope signatures, the unique MREE-enriched rare earth chemistry, and altered intrusives at Lemhi Pass also suggest that regional hydrothermal alteration and fluid flow, with possible metal leaching from crustal sources, such as buried intrusives, may have had a role in formation of the thorium-rare earth veins and deposits. Extensive, regional-scale calcic-sodic alteration and fluid flow is a hallmark of IOCG deposits (Corriveau, 2006; Williams and others, 2005). It is possible that an altered and mineralized, buried or eroded, Cambrian pluton of unknown composition could simply have served as a metal source for Devonian fluid flow and mineralization. It is also possible that a buried pluton of Devonian (300-400 Ma) age was directly involved in the genesis of a more typical peralkaline thorium-rare earth magmatic-related ore system. A multistage sequence of ore-forming processes and geologic events certainly seems required to produce the unique deposits at Lemhi Pass. Additional study of both the district and the region will be needed to more fully understand the genesis of these unique deposits.

In summary, two possible models for the Lemhi Pass District are hypothesized. Both recognize a regional-scale Late Precambrian to early Paleozoic, bimodal intrusive event, probably with accompanying base metal mineralization in the region. The first model postulates magmatic-hydrothermal Th-REE-Fe mineralization related to a buried or unknown, Devonian-age alkaline intrusive with radiogenic lead compositions. The second model forms the Th-REE-Fe veins and replacements during the Devonian in a hydrothermal (to metamorphic) setting with regional fluid flow leaching metals and volatile components from earlier Paleozoic (Cambrian?), Th-REE-P mineralized intrusive complexes, plus continentally derived, U and Th-enriched sediments and earlier copper deposits in part. A combination of both models is also possible. Regardless of the exact origin of the Lemhi Pass base metal and thorium mineralization, it is dominantly of Paleozoic age with remobilization, thermal resetting, and probably some metamorphism and alteration, along with structural disruption during Cretaceous and Tertiary times.

References Cited and Selected Others

- Anderson, A.L., 1958, Uranium, thorium, columbium, and rare earth deposits in the Salmon region, Lemhi County, Idaho: Idaho Bureau of Mines and Geology Pamphlet 115, 81p.
- Anderson, A.L., 1961, Geology and mineral resources of the Lemhi quadrangle, Idaho, Lemhi County, Idaho: Idaho Bureau of Mines and Geology Pamphlet 124, 111 p.
- Anderson, H.E., and Davis, D.W., 1995, U-Pb geochronology of the Moyie sills, Purcell Supergroup, southeastern British Columbia: implications for the Mesoproterozoic geological history of the Purcell (Belt) basin: Canadian Journal of Earth Sciences, v. 32, p.1180-1193.
- Austin, S.R., Hetland, D.L., and Sharp, B.J., 1970, Mineralogy of the Lemhi Pass thorium and rare-earth deposits: Idaho Bureau of Mines and Geology Mineral Resources Report 11, 10 p.
- Bell, Keith, ed., 1989, Carbonatites—Genesis and evolution: London, Unwin Hyman, approx. 400p.
- Castor, S.B., and Hedrick, J.B., 2006, Rare earth elements, *in* Kogel, J.E., Trivendi, N.C., Barker, J.M., and Krukowski, S.T., eds., Industrial minerals and rocks – commodities, markets, and uses (7th ed.): Society for Mining, Metallurgy, and Exploration, Inc. (SME), Littleton, CO, p. 769-792.
- Corriveau, L, 2006, Iron oxide copper-gold (+-Ag+-Nb+-P+-REE+-U) deposits: A Canadian Perspective: Internet pdf accessed 12-2008, <u>http://gsc.nrcan.gc.ca/mindep/synth_dep/iocg/index_e.php</u>
- Doe, B.R., and Sanford, R.F., 1995, Lead isotope characteristics of ore systems in central Idaho, *in* Worl, R.G., et al., eds., Geology and mineral resources of the Hailey 10 x 20 quadrangle and the western part of the Idaho Falls 1° x 2° quadrangle, Idaho: U.S. Geological Survey Bulletin 2064 A-R, p. M1-M29.
- Evans, K.V., and Green, G.N., 2003, compilers, Geologic map of the Salmon National Forest and vicinity, east-central Idaho: U.S. Geological Survey Miscellaneous Investigations Map I-2765, scale 1:100,000.
- Evans, K.V., and Zartman, R.E., 1990, U-Th-Pb and Rb-Sr geochronology of middle Proterozoic granite and augen gneiss, Salmon River Mountains, east-central Idaho: Geological Society of America Bulletin, v. 102, p. 63-73.
- Evans, K.V., and Zartman, R.E., 1988, Early Paleozoic alkalic plutonism in east-central Idaho: Geological Society of America Bulletin, v. 100, p. 1981-1987.
- Gibson, P.E., 1998, Origin of the Lemhi Pass REE-Th deposits, Idaho/Montana: petrology, mineralogy, paragenesis, whole rock chemistry and isotope evidence (unpublished M.S. thesis): University of Idaho, Moscow, Idaho, 320 p.
- Gibson, P., and Wood, S.A., 1997, Geochemistry and mineralogy of the Lemhi Pass Th-REE deposits: Mineral Deposits, Papunen (ed.), Balkema, Rotterdam, p. 945-948.
- Gillerman, V.S., Fanning, C.M., Link, P.K., Layer, P., and Burmester, R.F., 2008, Newly Discovered Intrusives at the Lemhi Pass Thorium-REE Iron Oxide District, Idaho: Cambrian Syenite and Mystery Ultramafics Signatures of a Buried Alkaline Complex or Two Systems?[abs.]: Geological Society of America Abstracts with Programs, v. 40:1, p. 51.

- Gillerman, V. S., Jercinovic, M.J., and Stein, H.J., 2002, U-Pb and Re-Os geochronology suggest a multistage Precambrian-Mesozoic history for thorium and copper mineralization, Lemhi Pass, Idaho [abs.]: Geological Society of America Abstracts with Programs, v. 34:6, p. 337.
- Gillerman, V.S., Lund, K., and Evans, K.V., 2003, Stratigraphy, structure, and mineral deposits of the Lemhi Pass area, central Beaverhead Mountains, eastern Idaho: Northwest Geology, v. 32, p. 134-146.
- Gillerman, V.S., Otto, B.R., and Griggs, F.S., 2006, Site inspection report for the abandoned and inactive mines in Idaho on U.S. Bureau of Land Management property in the Lemhi Pass area, Lemhi County, Idaho: Idaho Geological Survey Staff Report S-06-4, 170 p.
- Gillerman, V.S., Otto, B.R., and Griggs, F.S., 2001, Site inspection report for the abandoned and inactive mines in Idaho on U.S. Bureau of Land Management property in the Lemhi Pass area, Lemhi County, Idaho: contract report to the Bureau of Land Management, 168 p.
- Gillerman, V.S., Otto, B.R., and Griggs, F., 2000, Lemhi Pass Thorium District: a variant of Proterozoic iron oxide (Cu-U-Au-REE) deposits?[abs.]: Geological Society of America Abstracts with Programs, v. 32:7, p. A-83.
- Hansen, P.M., 1983, Structure and stratigraphy of the Lemhi Pass area, Beaverhead Range, Southwest Montana and east-central Idaho (unpublished M.S. thesis): Pennsylvania State University, Pennsylvania, 112 p.
- Hitzman, M.W., Oreskes, N., and Einaudi, M.T., 1992, Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu-U-Au-REE) deposits: Precambrian Research, v. 58, p. 241-287.
- Housh, T.B., and Bowring, S.A., 1991, Lead isotopic heterogeneities within alkali feldspars; implications for the determination of initial lead isotopic compositions: Geochimica et Cosmochimica Acta, v. 55(8), p. 2309-2316.
- Jercinovic, M.J., Gillerman, V.S., and Stein, H.J., 2002, Application of microprobe geochronology to hydrothermal monazite and thorite, Lemhi Pass District, Idaho [abs.]: Geological Society of America Abstracts with Programs, v. 34:6, p. 172.
- Jones, A.P., Wall, F., and Williams, C.T., eds., 1996, Rare Earth Minerals, chemistry, origin and ore deposits: Mineralogical Society Series #7, Chapman & Hall: London, England, 372 p.
- Kohn, M.J., and Vervoort, J.D., 2008, U-Th-Pb dating of monazite by single-collector ICP-MS: Pitfalls and potential: Geochemistry Geophysics Geosystems, v. 9, Q04031, doi: 10.1029/2007GC001899.
- Laval, M., 1998, Properties and geology of grey monazite: a possible new resource of REE: Canadian Institute of Mining Special Volume 50, p. 193-204.
- Link, P.K., and Fanning, C.M., 2003, Detrital zircon ages from the Yellowjacket, Apple Creek and Gunsight Formations, Blackbird mining district, Salmon River Mountains, central Idaho: Northwest Geology, v. 32, p. 206-207.
- Link, P.K., Fanning, C.M., Lund, K.I., and Aleinikoff, J.N., 2007, Detritial-zircon populations and provenance of Mesoproterozoic strata of east-central Idaho, U.S.A.: correlation with Belt Supergroup of southwest Montana, *in* Link, P.K., and Lewis, R.S., eds., Proterozoic Geology of Western North America and Siberia, SEPM Special Publication No. 86, p. 101-128.
- Linnen, R.L., and Samson, I.M., eds., 2005, Rare-element geochemistry and mineral deposits: Geological Association of Canada Short Course Notes 17, 342 p.

- Loring, A.K., and Armstrong, D.G., 1980, Cambrian-Ordovician syenites of New Mexico, part of a regional alkalic intrusive episode: Geology, v. 8, p. 344-348.
- Lund, K., 2008, Geometry of the Neoproterozoic and Paleozoic rift margin of western Laurentia: Implications for mineral deposit settings: Geosphere, April 2008, v. 4:2, p. 429-444.
- Mackin, J.H., and Schmidt, D.L., 1957, Uranium and thorium-bearing minerals in placer deposits in Idaho: Idaho Bureau of Mines and Geology, Mineral Resources Report No. 7, 9 p.
- Mariano, A.N., 1989, Nature of economic mineralization in carbonatites and related rocks, *in* Bell, Keith, ed., Carbonatites—Genesis and evolution: London, Unwin Hyman, p. 149-176.
- Nash, J.T., and Hahn, G.A., 1989, Stratabound Co-Cu deposits and mafic volcaniclastic rocks in the Blackbird mining district, Lemhi County, Idaho: Geological Association of Canada Special Paper 36, p. 339-356.
- Newton, J., LeMoine, D., Adams, C.N., Anderson, A.L., and Shively, J.A., 1960, Study of two Idaho thorite deposits: Idaho Bureau of Mines and Geology Pamphlet 122, 53p.
- Olson, J.C., and Hedlund, D.C., 1981, Alkalic rocks and resources of thorium and associated elements in the Powderhorn district, Gunnison County, Colorado: U.S. Geological Survey Professional Paper 1049–C, 34 p.
- Olson, J.C., Marvin, R.F., Parker, R.L., and Mehnert, H.H., 1977, Age and tectonic setting of lower Paleozoic alkalic and mafic rocks, carbonatites, and thorium veins in south-central Colorado: U.S. Geological Survey Journal of Research, v. 5, no. 6, p. 673–687.
- Olson, J.C., Shawe, D.R., Pray, L.C., and Sharp, W.N., 1954, Rare-earth mineral deposits of the Mountain Pass district, San Bernardino County, California: U.S. Geological Survey Professional Paper 261, 75 p.
- Panneerselvam, K., Macfarlane, A.W., and Salters, V.J.M., 2006, Provenance of ore metals in base and precious metal deposits of central Idaho as inferred from lead isotopes: Economic Geology, v. 101, pp. 1063-1077.
- Panneerselvam, K., Macfarlane, A., and Salters, V., 2004, Lead isotope constraints on the origin of Proterozoic sediment-hosted cobalt-copper ores of central Idaho [abs.]: Geological Society of American Abstracts with Programs, v. 36:5, p. 517.
- Reed, R., and Gillerman, V., 2008, Thorium and rare earths in the Lemhi Pass region, Idaho: SME Annual Meeting Program, p. 90-91.
- Ross, G.M., Parrish, R.R., and Winston, D., 1992, Provenance and U-Pb geochronology of the Mesoproterozoic Belt Supergroup (northwestern United States): implications for age of deposition and pre-Panthalassa plate reconstructions: Earth and Planetary Science Letters, v. 113, p. 57-76.
- Samson, I.M., and Wood, S.A., 2005, The rare earth elements: behaviour in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings, *in* Linnen, R.L., and Samson, I.M., eds., Rare-Element Geochemistry and Mineral Deposits: Geological Association of Canada, GAC Short Course Notes 17, p. 269-297.
- Sanford, R.F., and Wooden, J.L., 1995, Sources of lead in ore deposits of central Idaho, *in* Worl, R.G., et al., eds., Geology and mineral resources of the Hailey 10 x 20 quadrangle and the western part of the Idaho Falls 1° x 2° quadrangle, Idaho: U.S. Geological Survey Bulletin 2064 A-R, p. N1-N24.
- Schipper, W.B., 1955, The Tendoy Copper Queen mine (unpublished M.S. thesis): University of Idaho, Moscow, Idaho, 38 p.

- Sha, G.S., Vervoort, J.D., Watkinson, A.J., Doughty, P.T., Prytulak, J., Lee, R.G., and Larson, P.B., 2004, Geochronologic constraints on the tectonic evolution of the Boehls Butte-Clearwater core complex; evidence from 1.01 Ga garnets: Geological Survey of America Abstracts with Programs, v. 36:4, p. 72.
- Sharp, W.N., and Cavender, W.S., 1962, Geology and thorium-bearing deposits of the Lemhi Pass area, Lemhi County, Idaho, and Beaverhead County, Montana: U.S. Geological Survey Bulletin 1126, 76p.
- Slack, J.F., Aleinikoff, J.N., Belkin, H.E., Fanning, C.M., Ransom, P.W., 2008, Mineral chemistry and SHRIMP U-Pb geochronology of Mesoproterozoic polycrase-titanite veins in the Sullivan Pb-Zn-Ag deposit, British Columbia: Canadian Mineralogist, v. 46, pp. 361-378.
- Slack, J.F., 2006, High REE and Y concentrations in Co-Cu-Au ores of the Blackbird District, Idaho: Economic Geology, v. 101:2, p. 275-280.
- Staatz, M.H., 1979, Geology and mineral resources of the Lemhi Pass thorium district, Idaho and Montana: U.S. Geological Survey Professional Paper 1049-A, 90p.
- Staatz, M.H., Bunker, C.M., and Bush, C.A., 1972a, Thorium distribution in a granite stock near Bull Canyon, Lemhi County, Idaho: U.S. Geological Survey Professional Paper 800-B, p. B51-B56.
- Staatz, M.H., Hall, R.B., Macke, D.L., Armbrustmacher, T.J., and Brownfield, I.K., 1980, Thorium resources of selected regions in the United States: U.S. Geological Survey Circular 824, 32 p.
- Staatz, M.H., Shaw, V.E., and Wahlberg, J.S., 1972b, Occurrence and distribution of rare earths in the Lemhi Pass thorium veins, Idaho and Montana: Economic Geology, v. 67, p. 72-82.
- Stacey, J.S., and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model: Earth and Planetary Science Letters, v. 26, p. 207-221.
- Umpleby, J.B., 1913, Geology and ore deposits of Lemhi County, Idaho: U.S. Geological Survey Bulletin 528, 182 p.
- Van Gosen, B.S., and Lowers, H.A., 2007, Iron Hill (Powderhorn) carbonatite complex, Gunnison County, CO—A potential source of several uncommon mineral resources: Mining Engineering, v. 59, no. 10, p. 56-62.
- Williams, P.J., Barton, M.D., Johnson, D.A., Fontbote, L., de Haller, A., Mark, G., Oliver, N.H.S., and Marschik, R., 2005, Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin: Economic Geology 100th Anniversary Volume, pp. 371-405.
- Winter, J.D., 2001, An Introduction to Igneous and Metamorphic Petrology: Prentice-Hall, New Jersey, 697 p.

Publications Resulting from MRERP Grant #06HQGR0170

Completed

Gillerman, V., Layer, P., Jercinovic, M., Gordon, M., and Schmitz, 2008, Geology of the Lemhi Pass Thorium-Rare Earth District, Idaho and Montana: Evidence for a Buried Paleozoic Alkalic System? [abs.]: SME Annual Meeting 2009 Technical Program, p. 53.

Gillerman, V.S., Fanning, C.M., Link, P.K., Layer, P., and Burmester, R.F., 2008, Newly Discovered Intrusives at the Lemhi Pass Thorium-REE Iron Oxide District, Idaho: Cambrian Syenite and Mystery Ultramafics - Signatures of a Buried Alkaline Complex or Two Systems? [abs.]: Geological Society of America Abstracts with Programs, v. 40:1, p. 51.

Reed, R., and Gillerman, V., 2008, Thorium and Rare Earths in the Lemhi Pass Region, Idaho[abs.]: SME (Society for Mining, Metallurgy, and Exploration, Inc.) Annual Meeting Program, p. 90-91.

Additional Manuscripts in Preparation

Abstract Reprints:

Geology of the Lemhi Pass Thorium-Rare Earth District, Idaho and Montana: Evidence for a Buried Paleozoic Alkalic System? V. Gillerman1, P. Laver2, M. Jercinovic3, M. Gordon4 and M. Schmitz4: 1 Idaho Geological Survey, Boise, ID: 2 Geology & Geophysics, Univ. of Alaska, Fairbanks, AK; 3Dept. of Geosciences, Univ. of Massachusetts, Amherst, MA and 4Dept. of Geosciences, Boise State Univ., Boise, ID The Idaho Geological Survey has been studying the Lemhi Pass District, Idaho and Montana. Base metal and iron mineralization predate thorium-REE veins but are locally coincident. Thorium veins exhibit intense alkali and ferric iron metasomatism and are enriched in middle REE; identifiable hypogene minerals include monazite, allanite and thorite. Mapping discovered a Cambrian (530 Ma) syenite (cut by hematite veins) and a slightly older suite of altered mafic and lamprophyre dikes in proximity to many of the thorite deposits. Nd-rich monazite from the Lucky Horseshoe mine has complex U-Pb zoning, but preliminary results show a vounger (recrystallized?) Paleozoic age signature of 300-350 Ma. Lead isotope studies are underway to look at the relationship of the sulfides, thorium veins and intrusives. Regional associations include Paleozoic igneous rocks (with local base metals) intruded along a rifted continental margin, Th-REE deposits at Diamond Creek, a Th-enriched red syenite, and Cretaceous(?) carbonatite replacements. Subsequent structural disruption, the Cretaceous thermal overprint, and lack of subsurface data obscure any buried intrusive-hydrothermal system.

in SME Annual Meeting 2009 Technical Program, p. 53.

NEWLY DISCOVERED INTRUSIVES AT THE LEMHI PASS THORIUM – REE IRON OXIDE DISTRICT, IDAHO: CAMBRIAN SYENITE AND MYSTERY ULTRAMAFICS – SIGNATURES OF A BURIED ALKALINE COMPLEX OR TWO SYSTEMS?

GILLERMAN, Virginia S., Idaho Geological Survey, 322 E. Front St., Ste. 201, Boise, ID 83702, <u>vgillerm@uidaho.edu</u>, FANNING, C. Mark, School of Earth Sciences, Australian National Univ., Canberra, ACT 0200, Australia, LINK, Paul K., Dept. of Geosciences, Idaho State University, Campus Box 8072, Pocatello, ID 83209, LAYER, Paul, Geology and Geophysics, Univ. of Alaska, Fairbanks, PO 755780, Fairbanks, AK 99775, and BURMESTER, Russell F., Geology Dept., Western Washington University, 514 High Street, Bellingham, WA 98225.

Thorium and rare earth element (REE) mineralization in the Lemhi Pass District, Idaho and Montana, is characterized by quartz-thorite-hematite veins and monazite-thorite-apatite-bearing shears and replacements with specularite, biotite and alkali feldspar. REE are unusually enriched in neodymium. Mineralization is hosted in Proterozoic metasediments of the Gunsight/Apple Creek formations (1420 Ma detrital zircons) but has not previously been linked to specific intrusives in the district. New Idaho Geological Survey mapping discovered a small syenite outcrop, locally cut by nonradioactive, specular hematite veins. The syenite (80% feldspar, 63% SiO₂) has thin albite rims on orthoclase; mafics are locally converted to specular hematite. SHRIMP geochronology gives a U-Pb crystallization age on zircon of 529.1 +/- 4.5 Ma, or lower Cambrian. Paleozoic ages are also reported in the literature for granitic plutons further south in the Beaverhead Range, and thorium enrichment has been noted at the Leadore pluton.

A suite of mafic dikes, previously interpreted as Tertiary, include altered pyroxene porphyry lamprophyres. A newly discovered, ultramafic sill (41-45% SiO₂ and 10% MgO with 3% Na₂O + K₂O) has possible carbonatitic affiliation (abundant dolomite "phenocrysts" or replacements of olivine phenocrysts; 3% total carbon). The sill contains Ba and Sr minerals found in the thorite veins, suggesting it predates or is contemporaneous with them. At

least one lamprophyre dike is cut by base metal mineralization; many dikes show propylitic alteration. Ages of the mafic rocks are unknown.

Previously reported electron microprobe ages on monazites suggest Th-REE mineralization had a Proterozoic (800-1100 Ma) and a mid-Paleozoic component at the Lucky Horseshoe prospect nearest the sill. A single Re-Os age (1050 Ma) on molybdenite at a copper mine supports Proterozoic mineralization. Non-plateau ⁴⁰Ar/³⁹Ar ages on hydrothermal biotite from the Lucky Horseshoe Th-REE prospect are interpreted to indicate an older (> 200 Ma) component of biotite growth followed by the regional Cretaceous resetting (~140 Ma saddle age). Field relations are consistent with ancient and overprinted mineralization. It could be associated with a buried Precambrian or Cambrian alkaline intrusive complex – or both.

Keywords: Idaho, syenite, carbonatite, thorium, rare earths Published in 2008, Geological Society of America Abstracts with Programs, v. 40:1, p. 51.

Version 2:CSV 2006-	2007 Lemhi Pass Waypoint	s: VSG	10/30/2007	Viro	inia Gillorman	Samples Taken	Date Sampled Comments 10/30/200	7			
ZoneOffset 0		S Report: APPEN		Virg	inia Gillerman						
TypeNameZoneW/1	Num Easting Northing	Month# Day#	Year 2006	Altitude (M Alt f	eet WP		7/18/2006 CO Middle Stope with Murray				
W 2	12 304925.2 4982260.2	10 4	4 2000 4 2006	1909.29	6264 W001	sample? photos	7/18/2006 "				
W 3 W 4	12 303342.4 4984837.8 12 304442.1 4980235.3	10 4 10 4	4 2006 4 2006	2410.613	6368 W003 7908 W004	photos	7/24/2006 Lucky Horseshoe - Notch Cut - ore, photos v 7/24/2006 Trench #54. Cont Divide	vith USGS			
W 5	12 303935.5 4980366.5	10 4	4 2006	2302.466	7554 W005	samples Are these 06Ca??	7/24/2006 Cago Mine, big trench				
W 6 W 7	11 723458 4998132.1 11 722175.8 4998743.6	10 4 10 4	4 2006 4 2006	6 1/1/./49 6 1679.055	5508 W006	Yac, Tour Breccia	7/26/2006 Deep Crk Rd, Upper Banded Siltite	w scapolite			
W 8	11 707928.5 5000937.2 11 709561 6 5000003 7	10 4	4 2006 1 2006	2374.804	7791 W008		7/26/2006 Blacktail Pit, NW corner high bench				
W 9 W 10	11 709550.6 5000003.7 11 709550.6 5000044.8	10 4	4 2006 4 2006	2323.855 2323.134	7621 W010	samples (WP010), mafic dike	7/26/2006 Merle Zone, trenches				
W 11	11 708015.2 5000922.5	10 4	4 2006	2393.07	7851 W011		7/26/2006 Blackbird "Boneyard" South Highwall pit				
W 12 W 13	11 708081.4 5001030.3 11 708086.7 5001031.2	10 4	4 2006 4 2006	2405.326	7890 W012		7/26/2006 Blacktall Pit, SE highwall 7/26/2006 " 1st garnet in argillite				
W 14	11 708093 5001055.7	10 4	4 2006	2407.97	7900 W014		7/26/2006 Blacktail Pit, high wall	shiat			
W 15 W 16	11 708075.7 5001067.7 11 708641.2 4999863.5	10 4	4 2006 4 2006	2399.558	7138 W015	Samples	7/26/2006 SE Corner, Blacktall pit high wall gt-bi-chid s 7/27/2006 Blackbird, 30 ft. west of 7100 portal,	Chist			
W 17	11 708646.5 4999867.3	10 4	4 2006	2176.534	7140 W017	4 Samples	7/27/2006 Blackbird, 7100 portal				
W 19	11 710494.9 4996522	10 4	4 2006 4 2006	2036.423	6681 W019	Sample W018a, b	7/27/2006 Blackbird, Hawkeye portal 7080 elev.				
W 20	12 305469.3 4978841.7	10 4	4 2006	2362.308	7750 W020	Sample LCHVH-102a or WP020	7/28/2006 Lemhi Pass - Last Chance Mine trench	Th ore Cu, calcite			
W 21 W 22	11 576851.2 5087482.8	10 4	4 2006 4 2006	543.7473	1783 W022	Sample CQ greenstone dike					
W 23	11 576523.6 5087284.8	10 4	4 2006	702.3635	2304 W023						
W 25	11 576674.4 5087179.6	10 4	4 2006 4 2006	663.4307	2176 W024						
W 26	11 576457 5087092	10 4	4 2006	672.3228	2205 W026						
W 28	11 576624.7 5087088.8	10 4	4 2006	640.5994	2143 W027 2101 W028						
W 29	11 576552.5 5087010.4 11 576595 9 5087028 3	10 4	4 2006 1 2006	606.9536	1991 W029						
W 31	11 576572.1 5087039.8	10 4	4 2006	596.1389	1955 W031						
W 32	11 576594.6 5087012.9 11 576562 5 5087272 7	10 4	1 2006	566.5786	1858 W032						
W 34	11 576968 5087240.3	10 4	4 2006	554.0813	1817 W034						
W 35	12 305050.4 4982337.1 12 304594 7 4981538 8	10 4	1 2006	1980.667	6498 W035	CQ06-20flt, 21A, B 8/23/2006	Copper Queen Greenstone Dike	CQ06-20 float			
W 37	12 304146.8 4980593.4	10 4	4 <u>2006</u>	2303.908	7558 W037		Bend in road to Cago				
W 38 W 30	12 303443.1 4984530 12 303476 4984549.0	10 4	4 2006 4 2006	1846.564	6058 W038	LH06-21, 22 (dump)	Lucky Horseshoe Lower Adit - Quartzite	LH06-20, oriented at	Flume Crk road	d crossing, alt. qtzt 76	
W 40	12 303357.1 4984815.6	10 4	4 <u>2006</u>	1932.842	6341 W040	LH06-24 through 34 see detailed map	Lucky Horseshoe Mine open cut, close to AN	/L site ID point; Zero pt	. ORE, Alterati	ion	
W 41 W 42	12 303335.9 4984868.6 12 303663.6 4984601.9	10 4	1 2006 1 2006	1964.325	6444 W041 6152 W042	LH06-35	Qtzt, white vns Lucky Horseshoe, road above cut - weak fsp	veins			
W 43	12 303748.4 4984601.8 12 303748.4 4984606	10 4	4 <u>2006</u>	1915.058	6282 W043	IT06-03a, b; IT06-04, 05	In Trust mine bench Black Breccia				
W 44 W 45	12 303314.9 4984839.8 12 304853.8 4982282.9	10 4	1 2006 1 2006	1935.726	6350 W044 6178 W045	photos	SC fabric Lucky Horseshoe, west end	DV net PC			
W 46	12 304743.2 4982582.5	10 4	4 2006	1892.226	6208 W046	CQ06-53 or CQ06-31	arkose-sericite CQ road above old tailings dam				
W 47 W 48	12 304741.9 4982638.6 12 304744 1 4982642.0	10 4	1 2006 1 2006	1885.257	6185 W047		Bad WP, Delete				
W 49	12 304882.6 4982415.7	10 4	4 2006	1923.229	6309 W049	CQ06-32 or?	CQ area, quartzite w. mica				
W 50 W 51	12 305189.3 4981048.2 12 305226 5 4981070 4	10 4	1 2006 1 2006	2051.564	6730 W050 6812 W051	WL06-01a, b brwn vn, wr calc silic WL06-3 North Dike - wk alt	avein, wrWonder Lode, 1st adit cutMafic DikeWonder Lode, same bench as #2	WL06-02a,b,c next be	ench up	-06-05 Dike on S swit	tchback weakly mt
W 52	12 307312.2 4982973.2	10 4	4 2006	2251.997	7388 W052	LP06-1 to 5	bleached qtzt Lemhi Pass, next to bathroom	L-tectonite float			
W 53 W 54	12 306133.6 4982547.5 12 306012 4982572.0	10 4	1 2006 1 2006	2287.565	7505 W053 7492 W054	BL06-06a,b BL06-01a,b,c,d; BL06-02 Curveine	Sandst., cong. Bluebird Claims Bluebird Shaft dump whitegzCu: browpsilie	a			
W 54x	12 305961 4982482	Jerem	iy's ?		w054x	BL06-03 BL06-04,5	Pyrox.Porph. + Bluebird area, intrusives- 05 is hblplag diorite	e?, 03 is Px Porphyry			
W 55	12 303963.9 4980354.9 12 308068 2 4979944 7	10 4 10 4	+ 2006 + 2006	2303.667	7557 W055 7001 W056	CA06-10,11/ CA06-12AtoE Xsect	Vein, WRCago Mine Adit/ Trench profile (see map)Musc. Qtzt.Frving Pan Creek road	also CA06-14,15,16;	Russ#207		
W 57	12 305306.6 4978952.1	10 4	4 2006	2418.063	7933 W057	LC06-01a,b,c	East Last Chance Mine prospect				
W 58	12 305436.2 4978887.8 12 305478.6 4978834.5	10 4	4 2006 1 2006	2376.246	7796 W058	LC06-2a,b,c	vein, wr East Last Chance Mine trench				
W 60	12 305103.1 4979172	10 4	4 2006	2323.615	7623 W060	LC06-06,7,8,9,10,11,12,13	Veins West Last Chance portal - dump samples	12 is ore composite			
W 61	12 307562.7 4983487.2 12 305159 3 4983406 5	10 4	4 2006 1 2006	2225.08	7300 W061	Sample	Lemhi Pass Road, Montana side	qz vein - epid, brown	? In siltite		
W 63	12 304882.1 4982274.6	10 4	4 2006	1892.707	6209 W063	CQ06-24, 25, 26/27	Dike, greenston Copper Queen Adit 1 bulk sample	#27 is mica, 26 is wa	llrock		
						CQ06-28, 29a,b,c,d CQ06-30a a2 a3 : -031 32 32a 33	Hornfels by vein Copper Queen Adit 2, Pyrox Porph + Copper Queen Shaft Dump - variety	sulfide veins cuts por	ph And hornfel	ls PS	
						CQ06-34a-c, -38	Cu veins, shears Copper Queen Adit 3 portal	hm veinlets in 38	34 chlor., gou	ige	
						CQ06-35a-c, 36, 37a,b	Cu veins, alterat Copper Queen Stope 2	Veins cut by mylonite)		
W 64	12 274939.8 4994702.6	10 4	1 2006	1761.729	5779 W064	PS06-4 PS06-6 talus to adit	Fault Bxa - late Pope-Shenon Mine - road by switchback				
W 65	12 275187.9 4994958.7 12 275276 9 4994941 3	10 4	4 2006 1 2006	1797.778	5898 W065	PS06-1,2,3 PS06-5a b	veins, argill. Pope-Shenon Mine - reclaimed adit (#2??)	dump samples			
	12 210210.0 4004041.0		2000	Ask	Reed RB211	JA06-01a,b,c,d,e,f,g; JA06-02a,b,c	Syenite near ridge, west of Divide				
W 67	11 726891 4 4984607 6	10 4	1 2006	2401 961	RB212	CAS06-01	Syenite Image: Case Property top of drill road				
W 68	11 726923.3 4984684	10 4	4 2006	2401.301	7930 W068		CAS Property, DH 2 and 3				
W 69	11 727006.2 4984593 11 727528 1 4982583 4	10 4	1 2006	2372.401	7783 W069	CAS06-02	Siltite CAS Property, switchback 300' S of Hole 4				
W 70	11 730842.4 4978007.3	10 4	4 2006	6 1622.819	5324 W071		ironstone talus Iron Creek road green siltite				
W 72	11 734201.3 4977270 12 3046161 49815811	10 4	1 2006	1506.5	4942 W072	sample	Ore pad for No Name Adit				
W 74	12 304589.8 4981545.3	10 4	4 2006	2016.476	6615 W074	DZ-LP2 fresher	Gunsight Fm. Copper Qn FT Stop 6 for detrital zircons				
W 75	12 303298 4984740.8 12 303300 2 4984738 3	10 4	4 2006 1 2006	1920.585 dele	ete/630 W075	survey of between r	Lucky Horseshoe section	0 9 T19N R25E			
W 77	12 303300.2 4984738.3 12 303405 4984801.2	10 4	4 2006	i 1923.229	6309 W077	DZ-LP3	Provide state Providestate Provide state Provide s	6. 9, 119N, K25E			
W 78	12 303419.8 4984770.5 12 303411.4 4984773.8	10 4	1 2006	1905.925	6253 W078	WP078	ore vein Lucky Horseshoe, lower bench	oriented			
W 80	12 303403.7 4984700.3	10 4	4 2006	5 1910.422 5 1902.08	6240 W080	boulder of pyroxene	porphyry Lucky Horseshoe FIND IT again	onented			
W 81	12 303453.5 4984716.5 12 303421 5 4984624 9	10 4	1 2006	1882.613	6176 W081	sample	Lucky Horseshoe, lower road				
W 83	12 304671.6 4983524.1	10 4	4 <u>2006</u>	1989.799	6528 W083	BU06-1	variety, ore Buffalo Mine				
W 84	11 724042.4 5002408.8 11 719253 1 5001025 4	10 4	1 2006 1 2006	2038.826	6689 W084	photos tourmaline pod in Sample - geochron	Ymg, Augen Gn Road to Beartrack mine				
W 86	11 719709.6 5000277.9	10 4	4 2006	1501.694	4926 W086	hand sample	"Gabbro" Deep Creek Rd.				
W 87 W 99	12 306102.1 4983917.7 12 306554 4981060	10 4	1 2006 1 2006	2048.199	6719 W087	DZ-LP4 Apple Crk?	Siltite-Argill. Lemhi Pass/Horseshoe Bend Crk. Outcrop	photos			
W 89	12 306401.8 4981022	10 4	4 2006	2267.618	7439 W089		foliated quartzite Outcrop to w				
VV 90 W 91	12 306426.2 4980777.9 12 306380.3 4981108.3	10 4 10 4	+ 2006 + 2006	2247.19	7372 W090 7419 W091	small sample	sanded qtzt. prospect syenite + qtzt. Prospect Pit (Russ's)				
W 92	12 306427.1 4981077.4	10 4	4 2006	2268.82	7443 W092	sample WP092	syenite, wk, veir Large prospect on N edge of clearing				
vv 93 W 94	1∠ 306543.4 4981063.8 12 306475.4 4980847.8	10 4 10 4	+ 2006 4 2006	≥305.59 2271.223	7451 W093	Sample VVPU93	quartzite float Prospect Pit - tiny				
W 95	12 306110.9 4982520	10 4	4 2006	2291.891	7519 W095		sericitic qtzt. Bluebell - south of; SW corner of Badger No.	1			
vv 96 W 97	12 306151.7 4982424.3 12 306151.7 4982370.7	10 4	+ 2006 4 2006	2264.254	7428 W097	WP097	Sanded qizi. Prospect rare qz-hm vn Hornfels - epid. Large dark outcrop 1 piece svenite float				
W 98	12 306091.4 4982419.4	10 4	4 2006	2261.13	7418 W098	WP098 Lamprophyre/Tuff?	Biot. Volcanic/in Prospect, pit, tiny, in gully	06.052			
W 100	12 305078 4982326.9 12 305766.1 4982258.1	10 4	4 2006	2162.595	7095 W100	WP100 Baked and Qz veine	Qtzt., qz veins Brown Outcrop, top "dry??". Bull Qz veins	s pink color			
W 101	12 305733.4 4982380.3 12 305055 2 4082480.2	10 4	4 2006	2226.522	7304 W101	WP101	wk. hornfels, sai Outcrop, tiny on ridge				
W 102	12 303935.2 4982486.2 12 315264.8 4953563.2	10 4	t 2006 1 2006	1965.767	6449 W102	WP103	Feldspar Porph. Leadore, mouth of Thompson Gulch				
W CAS06 2	11 726909.7 4984680.8 11 727528 6 4082507 0	10 4	4 2006	2406.287	CAS06 2						
W 104	12 307143.9 4978817.8	8	2006	, 1 <i>31</i> 2.490	7144 W104	07WP104 bulk	Diorite - biot rich, bulk sample at pit S. Frying Pan Creek,	MT			
W 105	12 306450.6 4978944 12 306696 3 4078593 5	8	2007	· · · · · · · · · · · · · · · · · · ·	7240 W105	07WP106	Quartzite - gray, few green veinlets	r			
W 107	12 307209.3 4978138.5 12 307209.3 4978138.5	8	2007	,	7517 W107	07WP107	Altered Quartzite - black veins, ser.				
W 108	12 307214.8 4978304.9 12 305345 2 4081760 4	8 8	2007		7498 W108	07WP109	Diabase, mod. Epid.	t fault			
W 110	12 305377.5 4981741.2	8	2007	,	6847 W110	57777700 SEVELAI	Hematite veins, tan halo				
W 111 W 112	12 305855.2 4981808.1 12 305813 1 4982000 9	8	2007	,	6727 W111	07WP112	Photo fold nose float Sheared atzt red Fe stain enid node horofole				
W 113	12 305694.4 4981977.5	8	2007		6567 W113	07WP113 several	Brown Outcrop - hornfels with epid-qz veins, actin., white alte	ration envelope			
W 114	12 304902.8 4982135.1	8	2007		6252 W114	07CQ-01	South Copper Queen adit - hornfels qtzt with actinolite veins	and qz veins			
W 115	12 301066.7 4967738	8	2007		6931 W115		Lemhi Quad - bleached Fe siltstone, on Reese Crk Fault				
W 116 W 117	12 300690.3 4967107.1 12 301321 4060366 0	8	2007		6946 W116	07WP116 several	Iron Mine - Staatz 195; Specular Hematite Vein, Qz				
W 118	12 301739.1 4909300.9 12 301739.1 4970182	8	2007		7837 W118	07WP118 ?	ThO2 roads				
W 119 W 120	12 302326.7 4970507.1 12 303476 5 4984549 2	8	2007		7837 W119 6001 W120	07WP119 several	ThO2 Open Pit - recl. Float, high grade ore - pink Kf, qz, Lower Lucky Horseshoe Adit Sill - mafic porphyry, cut by ten	vein - feldsnar, carb, 22			
			2007		W040	07LH-tan LH Pit, several	Tan Feldspar zones in argillite below ore zone. "silicified" or f	eldspathized			
W 121 W 122	12 298065.3 4986194.2 12 265970 1 5032052 6	8	2007		5469 W121	07WP121 07WP122 Highway Poodout	Upper Pattee Creek Workings - sheared phyllite White (fsp?) veins cut North Fork Siltite				
W 123	11 718413 5032307.1	8	2007		3990 W123	Shoup area Hike to NF propspec	t Augen Gneiss - North Fork				
VV 124	11 718417.4 5032304.3	8	2007		4020 W124 4542 W125	Hike to NF propspec	ts Augen Gneiss cut by pegmatite		+		
W 125	11 718105 2 5032506 5	× ×	71117			I	- Jen shows of pognitutio	1		1	
W 125 W 126	11 718105.2 5032506.5 11 718105.9 5032106	8	2007		4057 W126	07WP126 several at adit	Roberts Prospect - calcite-ilmenite veins, mz?				
W 125 W 126 W 127 W 128	11 718105.2 5032506.5 11 718105.9 5032106 11 718159.6 5032032.1 11 718267.7 5031760.4	8 8 8 8	2007 2007 2007 2007	, , ,	4057 W126 3930 W127 3533 W128	07WP126 several at adit 07WP127A, B 2	Roberts Prospect - calcite-ilmenite veins, mz? Roberts South - small outcrop, orangeB, greenA, MZ-rich Parking Area - highway clean up pad				
W 125 W 126 W 127 W 128 W 129	11 718105.2 5032506.5 11 718105.9 5032106 11 718159.6 5032032.1 11 718267.7 5031760.4 12 325189.4 4947433.5	8 8 8 8 8	2007 2007 2007 2007 2007		4057 W126 3930 W127 3533 W128 6665 W129	07WP126 several at adit 07WP127A, B 2 07WP129 Leadore Pluton - bul	Roberts Prospect - calcite-ilmenite veins, mz? Roberts South - small outcrop, orangeB, greenA, MZ-rich Parking Area - highway clean up pad Hawley Creek Canyon - oc, pink granite, wk.chlorite				

THIN SECTION NOTES APPENDIX B		APPENDIX B	Lemhi Pass Project, Idaho				T	
V.S. Gill	lerman, May .	2007	Dec 30, 2008 version					
Property	Sample #	PS, TS Lab#	Field Name	Mineralogy	Alteration/Mineralization	Comments		
Wonder L	ode							
	WL06-01A							
	WL06-01B							
	WL06-02A							
	WL06-02B							
ts-f	WL06-02C	svx-006	Dike - Py2Amph Por	Brown Amph megacryst phenos	More altered, green: faint Kf stain			
ts	WL06-05	syx-000	Dike - fa	Brown Ampri megaci yst, prierios	More altered, green, faint ki stain			
ts-c	07Wr	VOV-004	Wonder Th vein	lue-stained Ma-calcite?, opaques: late veins pink-sta	Coarse mosaic carb. Cut by opaques that replace twin lamella	epink-stained calcite cuts opaques in crackle bxa		
Copper Q	ueen							
ps	CQ06-35B	TSX-009	Quartz Vein-deformed	Qz-Musc10%-(fsp)-bornite1%	Sutured Qz; Microcline, Local Kf; Strained, no hm	GET STAINED -Kf		
ps	CQ06-35C	TSX-010	Quartz Vein - cataclastite	Qz-Bornite5% - Fsp?	Qz suture/gran./Bornite (liquid?), Secondary Ox. Cu	Mylonitized/sheared QzBn vein; late Cucarb.		
ps, ts-f	CQ06-37A	TSX-011, TSY-006	Meta Siltstone- stylolites	Qz-muscovite-Kf-Carb./Vn-strainedQz-Carb	Qz-Calcite Vein has K-feldspar halo?; ? Hm,Th??	Stope 2 talus		
ps	CQ06-37B	TSX-012	Hornfels	Epidote-Qz-Kf-Mica-(Sphene)	Qz vein, Epidote replacing Kf qz musc wr??	Stope 2 talus		
ps	CQ-06A	swx-001	Greenstone Dike	plag-chl-grn amph?-Epid-mica-Calcite	Propylitic - strong, opaq. 10%	well altered basaltic dike		
ps	CQ-06C	swx-002	Musc. Quartzite - foliated	Qz-Musc. / Fsp	Foliated, Microcline vein cut by qz-calcite gash vns	deformed		
ts-f	CQ-06A	swx-014	Greenstone		Stained - no Kf in rock. Lots opaq., epid.	uncovered section		
ts-f	CQ-06C	swx-015	Micaceous Quartzite	cut by vein of uz-microcline, pale pink	Intense Kristain; late carbonate gash vns; albite ??	uncovered section	Yes:	
TS tc	CQ06-21	Syx-010	Greenstone Dike	for ohl and 2 mica/ az calcita	Propylitic - strong; vesicles to calcite-epid	Dike above CQ workings		
ns	CO06-24A	syx-011	Greenstone - dump	calcite-enid-py	Propylitic - strong diss Sulfides	RELOOK		1
ts	CO06-25A2	syx-012	dump	calone-opid-py	epidote	Relook	1	
ps	CQ06-30A1	syx-014	Pyroxene Porphyry - CQ Shaf	Px-Brn. Amph-Oliv?/Trem-epid-calcite	Propylitic (Trem, chl, ep) - weak. pyrite abund.	relook	Yes:	
ts-f	CQ06-30A2	syx-015	Pyroxene Porphyry	as above	Cut by Qz-cp-qn-po vein	relook		1
	CQ06-30B	separate	Pyroxene Porphyry	lots of pyrite crystals (noncubic) in T1 fraction			1	
				• · · · · ·				
ts-f ??	CQ06-24A	UCS-009				from syx-011		
ts-f	CQ06-35B	UCS-010				from tsx-009		
ts	07ABS	UOS-8	Carbonate Vein-AgencyCrk	Carbonate-Fsp-opaq	e Opaques; microcline twins, late clay/mica; ? Acc. Apat, alla	r Agency Creek		
ps	CQ06-28	VGG-6	Quartz-Bornite Vein	Vn: Qz-bn-FeCuOx; Env: Fsp in Musc Qtzt	Need Stain/SEM to confirm narrow K alt	detrital? Zircons; high strain		
ts-f	CQ06-28wr	VGG-7	Quartzite - foliated	Qz-Musc-Kf-(Opaq)-Zirc	Wallrock, with more Kf near vein	hint of potassic alt by vein, scan ts		
ps	CQ06-38	VGG-8	Quartzite - foliated	Qz-epid?_Musc-Hm-Esp	Sent to UI for xray; musc more common by vein	Complex. Qz-epid may be early, cut by spec vr	1.	
Lueky He	reach as							
ts_f	LH06-21	VOV-001	Metasiltstone-altered (low ad	Recry Detrital Oz Esp Music And shreddy: carbona	Weak Potassic: strong foliation/stylolitic: cut by calcite yn	Accessory anatite, green tour : Kf rims on music	<u> </u>	
ts-f	LH06-22	VOV-002	Laminated Siltstone (low adit	Detrital Oz. Green Biot? musc. opaques untwin Esr	Accessory anat zirc sphene or allanite	Lots of heavy minerals	1	
ts-f	LH06-23A	syx-008	Dike- Oliv, Porph.: UM?	Oliv. Xxxxx. Mt in field: Carbonate	Faint Kf stain	Get Polish Sec/Geochem		
ts-f	LH06-23B	syx-009	Sill: OlivPx Porph.	Oliv-px-Fsp-Bi-Dolomite?-Barite-talc?	Apatite?, Trem-Talc alteration; Faint Kf stain	fresher, need Xray, SEM		
ts-c	LH06-23D	VOV-003	Sill: with carbonate vein	Stained blue phenos (magnesite); veins also Mg,	or serpentine or clay alt. near carbonate veins. Minor red sta	in on late calcite.		
ps, ts-f	LH06-24A	TTT-010, TSY-010	Breccia:	Fsp (2 types), GreenMica, big MZ	Wk Kf; MZ-AP vein cut by shear Qz-FI	WOW: Take to Umass; clasts=syenite?	Yes:	
ps	LH06-24A2	UOS-14	Ore Breccia	Fsp Clasts-Mica(grn,c)-Opaq-MZ-Apat-Fl	Cataclastic; Fsp in Clasts, Mz in clasts, shears,	Mylonitic WOW section take photos	WSL	J
ps	LH06-24B	TTT-011	Black Breccia	SpecHm-Fsp-Qz?-Ap-MZ	minor Mz vein	Boudins, late mylonite		
ps, ts-f	LH06-25	TTT-012, TSY-011	Ore Breccia	Fsp-Mica-Ap-Mz-Hm	Mod. Coarse Kf in clasts, fsp replacements	Need imaging; Umass		
ps	LH06-25b	UOS-15	Ore Breccia	Fsp Clasts-Mica(grn, brwn)-MZ-Opaq	more retrograded, large MZ	Syenite Clasts??	<u> </u>	
ps	LH06-26	111-013	Cataclasite	Qz?-Esp-Mica	acc. Zircon, sphene?		<u> </u>	
ps, ts-r	LHU6-27	TSV 012		KI/AD-DI-HM-MICa	Strong coarse KI, tiny MZ,	rsp replacements of KI clasts		
is-orient	1 H06-200	TTT-015	Lavered Black Breccia	Espland, Clasts-brn biot-anat-Onad Allanito	Allanites > Mz: rotated for clasts: dz clote	Pare Oz deformed		1
ps, ts-f	LH06-30	TTT-016, TSY-014	Cataclasite Ore	Esp-Apat clasts in brwn biot-MZ-Hm	Mod. Kf: PHOTOS: 45% fsp. coarse allapite lots M7	Kare Q2 deformed	-	l
ps, ts-f	LH06-31	TTT-017, TSY-015	Cataclasite Ore	Brwn Biot-Apat-Fsp-M7-Hm-Grn Bi	Wk Kf: Cut by late brittle Oz vein 2-4mm normal to fol	some green biotite (retro?)	1	
ps, ts-f	LH06-32	TTT-018, TSY-016	Siltite - cut by tan veins	Feldspar-Biot-Opag rhomb	Veins are areas w/ no mica; local K, Na?Weak Kf stain	veins merge to WR, Wk Kf	geod	2
ps, ts-f	LH06-33	TTT-019, TSY-017	Tan Veins cut cataclasite	Kf-Ab-MuscBiot	Mod. Kf stain, Potassic, sodic; albite twins	Fold Nose? In opaques, sheared	geod	2
ps	LH-06A1	swx-006	spec. schist/breccia	Biot-MZ-Kf-allanite?; Xeno??	Abundant Monazite, K, Opaq.	WOW: Take to Umass; find rock	1	
ps	LH06-A2	swx-007	spec. schist/breccia	Kfeldspar-Bi-MZ-Apat-Allanite-	Orth98 +Albite, MZ veins cut fabric/along	Probed 8/07 Biot, Fsp, Apat	Yes:	
ts-f	LH06-A1	swx-017	spec. schist	Kfeldspar abundant	Potassic, plag, microcline in clasts			
							<u> </u>	
ps	LH06-23Bp	UCS-006	UM SIII- Carbonate Alt?OI? - F	Oliv??-Px Phenos-Biot/Amph? Fsp-carb matrix	Magnesite repl OI?; 25% Carbonate; barite?	Bizarre: Primary/Sec.? Carb.,	Yes:	
	041115	TTT 000	Cross Cohist Categorit:	For shorts have black \$47 and a '	Vans farala Jaka of sames M7	Direter	and a	
ps	U4LH-E	111-009	Spec. Schist Cataclasite	Esp clasis-brwn blot-MZ-grn Mica	Very Iresn; IOIS OF COARSE MZ	Photos	give	
ps	07LHtap	111-008	Feldsnar lens	Hm-Biot-Fsp-WZ snear	20% Hm at least 20% Fsn Albite twins, recrystallized	Photos	Phot	1
- PS	07WP120a b	UIK-001.002	Mafic/UM Sill	Px_Amph_Esp_Carbonate(OI2) carb veins	Oliv to Magnesite Late Dolomite	Fe-Magnesite after Oliv/2 Amph	Yee	l
ts	07rl HB	UOS-007	Ultramafic Boulder	Px-Amph-Opagplag-enid-chl-Olnseudos	Coarse Mafic Porph./gabbro: well-altered	FLOAT	103.	
ts-f	06RL487	UOS-16	LP Fault Z. in Qtzt shear	Qz-muscbiot?-Mz or zirc??-rutile?	Detrital heavies or intro by shear Zone: no Kf stain	Oz vein, minor mica shears.	1	ł
							1	1
Cago								
ps	CA06-10A	TSX-007	Quartz Vein/Breccia	Qz-Opaques(HmTh)-Apatite	Waxy look in HS; Multgen Qz; rhombs	Get Stained		

DC	CA06 10P	900 Y2T	Quartz Vein	Oz(2 generations) Onagues	Hm Thorita(2) rhombs: Oro on Dumn	Cot Stained: Man: Undul Extinct	1	
ps	CA00=10B	132-008	Cuartz Verri	Oz(2 generations)=Opaques	Tim-monte() months, ore on bump	Get Stalled, Map, Oldul. Extilict.		
ps	CAU6-12A1	13X-002	Silic. Silisione. Cago FW	dz-opaques-ki-carb.	25% opaques, patchy Ki-apatite?	vein rootwaii, qz veins; mutugen qz straineu		
ps	CA06-12A2	ISX-003	SIIIC. SIItstone - vein	QZ-KT-Hm(opaq)-Carb.	Qz-nm Veins, Kr alteration	probe/stains; photos		
ps, ts-f	CA06-12C1	TSX-004, TSY-001	Muddy Siltstone - CagoHW	Qz-Musc-Opaques-Kf	Qz-Kf veins; late shears; Hm	Mod. Kf stain		
ps, ts-f	CA06-12D	TSX-005, TSY-002	Siltstone- blocky, white alt. F	Qz-Kf-CarbOpaques- Apat??	White Alt. HW: Silic.?/Kf alt. Qz (mosaic), fsp detrital plag	Mod. Kf stain	imag	
ps, ts-f	CA06-12E	TSX-006, TSY-003	Muddy Siltstone- outer HW	Qz-Mica-Opaques	very little Kf; detrital text.	acc. Tourmaline?		
ps	CA- 06A	swx-003	Quartz Vein	Qz-Goethite(Mt?)-Hm-Fl	Latw Qz+fl after Mt	Latticework, 2 generations Qz	Need	
ns	CA-06B1	swx-004	Quartzite - Hm yns	OrthoclaseKf-Albite-onaques	Orthoclase vein +Ab wr2 rutile Hm veins	2 generations feldspar	Yes.	
tc f	CA 06P2	SWX 001	Quartzite/Siltite_clast suppo	Oz Kf Mica Hm	notassic22 Vollow Kf stain nonvasivo: Hm vns	debydration reactions: Kf ony on Hm yns	105.	
13=1	CA-00B2	3004-0005	Quartzite, Jim une		potassic !! Tellow KI stalli-pervasive, Till vils	denydration reactions. Kr env on min vis		
ts-r	CA-06B1	SWX-016	Quartzite - Hm vns	KI-qz-nm	potassic envelope .5-1 on vn, outer KI vnits	strong yellow. Uncovered section		
ts-f	CA06-12A2	UCS-007	Silic. Siltstone - vein	abundant Kf from stain		from tsx-003		
ts-f	CA06-10A	UCS-008	Quartz Vein/Breccia	moderate Kf stain		from tsx-007		
Last Char	nce							
ps	LC06-06	TTT-001	Quartz Vein	Quartz-2 gen, allanite?	Recry, Mosaic, euhedral overgrowths	West Portal Dump, try CL		
ns	1.006-09	TTT-002	Quartz Vein	Oz-Kf? Or barite??	a few opaques	late vellow barite veins on dump		
ps ps	1006-07	TTT 002		dz-kir or barneri	a iew opaques	late yellow bartle vellis on ddinp		
ps	LC00=10	111-003	Falationalli Ciltation a				-	
ts-r	LC06-03A	ISY-007	Poorwall Sitstone	Uz(detritai)-mica-opaq	metased textures; tg musc - c to pale tan	tr. Kr stain	ren	
ts-f	LC06-03B	ISY-008	Recryst. Siltstone/vns	Qz-mica-Kt-opaq	Strong recrystallization, tr. Potassic; Qz vns-Kf center	wk. Kf stain, geochem	Iren	
ps, ts-f	LC06-03D	TTT-004, TSY-009	Qz. Veins/Siltstone	Qz-Kf-mica-opaques	Strong potassic Wall rock alt., mica to Kf	Strong Kf stain, Qz Vein stockwork	Tren	
ps	LC06-03E1	TTT-005	Pink Quartz vein-breccia	Qz-CuOx?-fl?-ap? (ba?)	brecciated, strained, late vugs, check HS for Cu	8800 ppm Ba; 1600 ppm Th & Cu	Tren	
ps	LC06-03F	TTT-006	Quartz Vein - "HOT"	Qz-opaques	Sheared	check for Kf	Tren	
ps	LC06-03G	TTT-007	Limonitic Quartz Vein	Qz-multigenerations, opag.	Shear Zone with opaques	"Dirty" quartz; no mz seen	Tren	
							1	
Other Co	oper Veins						1	
ps	07WP109a	U0S-17	Pros. #44 - Cu Vein, mylonite	Oz-fsp-microcline-opag-chl/clay	Strong mylonitization. Shearing, bya	check to see if spec, hm	1	
PS PS	07WP100b	1105 19	Shear Zone: Silic Mylonite	Ozt Cut by az opag yoin grundgo	strong shoaring cilicification. Some late calcite	late brittle fx permal to voin		
ps to f	07WP109D	UOS 10	Brochost #44 Horpfold	Otat with opidete(2) to Mice, open ophone:	intercely separatellized, as Kf (stained)	late of apatita		
15-1	07WP109W	003-19	Flospect #44 - Holffiels	clizit with epidote(?), th. witca, apat, spherie:	Intensely recrystallized, no kr (stalled)	iots of apatite.		
-	1189		South of district	спасоруне	pure cp vein no thin section.			
ts-f	PS06-05a	VOV-009	Pope Shennon wall rock	Qz-muscgrn?amph?mica?	No fabric, micaceous qtzt, 5% green hornfels	cut by qz vn highly sutured bound.		
ps	P08PS-1b	VOV-010	Pope Shennon Cu vein	Meta Qtzt and Cu vein	wn Hbl?? In wall rock absent near vein; chlorite/act? And mus	Chalcopyrite-qz Vein recrystallized; late calcite		
Other The	orium Veins							
ps	07WP119w	UOS-20	ThO2 Pit - Qz vein, wall rock	Qz-Opaq-Fsp vein in micaceous quartzite	Musc. Destroyed in vein envelope, Sec. fsp growing	Euhedral Qz ghosts; rutile; NOT Deformed.	Geod	
ps	07WP119v	UOS-21	ThO2 Vein					
ts	CACTr2	VGG-9	CagoContact - dupl.	Oz- with minor Esp. Opag. Apat. MZ	Opag rhombs, crackle bxa and high strain	could stain slab, photo textures		
ts-f	BKBP7a	VGG-10	Black Bear	Oz-Kf-Ab-Apat-Opag	Altered Wallrock: intense K (Na albite twins) alt P 6%	musc to KE to bm interstitial: fine messy		
13-1	DIGINZa	100-10	Black Beal	az-ki-Ab-Apat-Opad	Altered Wallock, Interise k (Na abite twins) alt. 1 070	muse to Kr to him interstitial, inte, messy		
	WET DC4	VCC 11	Diam Crk Voin	On For Rist Ones Anat (MZ) El sut2	No Fon(- E9/tot) loto Eluorito, ma ma	room, Oz un (ronlooing stat2, brown biot		
ps	W3Z-DC4	VGG-TT	Minite Alteration Zana (fleat)	Q2-FSP-BIOL-Opaq-Apat-(MZ)-FI-LUT?	Na-Fsp(>5%tot) late Fluorite, mg mz	recry 02 virreplacing qizt?, brown blot		
ps	08DC-2D	VUV-005	White Alteration Zone (noat)	issive Feidspar (aikali); opaq., rare musc. In gash vh	ns/pericine or recryst. Alterationi cut by vein of coarse nemati	te or rutile		
ts	08DC-4a	VOV-006	Mica-rich Radioactive "vein"	RedBrwn opaq., Qz, Muscovite	coarse mica, acc. MZ on diffuse quartz vn., minor calcite, apat	No hint of igneous texture. Very Rad.		
BlackBird								
ps	Yac-06A	swx-008	Siltite with Scapolite	Qz-Scapolite-Biot(20%, brwn)	Fresh rock	Minimal Foliation	Yes:	-
ps	Yac-06B	swx-009	Biotite Siltite	Oz-Biot-Musc-(Zr)	local silicification	Weak Foliation	1	
ps	He-06A1	swx-010	Ore Schist, layered	Qz-sulf-chl-biot-cc	Cobaltite-Cp-motheatern ? Marcasite?	Hawkeye Lode; good fabric		
ps	He-0642	swx-011	Quartzite - ore	WR: atzt but by Vns: Oz-Sulf-biot(an/bn)	Micas by Cobit are green mica/chlor	tr. Late gz-calcite-cn	Yes	
ps	He-06B	swx-012	Mica Quartzite	Oz-Biot (brwn)	Oz-Musc vein, chl: Onag And ??	Metamorphic look cut by Oz-musc-vn		
- P3	B7-0441	SWV 012	Biotite-chloritoid Siltite	Biot-Oz-Chloritoid Carpot	small at: huge norphyroblasts chid	Chloritoid is very Fe rich: in mote PLFs	Voc	
ps to f	Vac 064	SWA-013	Siltite with Scapolite	stain indicates only yory miner Kf	sinali gi, nuge porpriyrobiasis cilu.	chiomolu is very re-rich, in meld BIFS	105.	
ts-f	Tac-U6A	5WX-U18	Distite Ciltite	stain indicates only very minor Ki				
ts-r	Yac-06B	SWX-019	DIDUTE SITTE	stain indicates only very minor Kr				
L								
ts	K05-04-49	no cover slip	Unioritoid-Gt-Biot Schist	Qz-BIOT-Gt-Child (blue porphyroblast)-(Zirc)	retrograde chlorite rims, zircons; strong foliation; qz vns	RAM		
ts	R99-3	opx-2	Biotitite w. Qz	Biot-Quartz	Is some of Qz feldspar.	RAM		
ts	R99-5	opx-3	Biotitite	foliated biotite - 2% qz	Weird; no hint of igneous texture	RAM		
ps	RMet1	opx-4	Biot Siltite/ Gt-Biot Schist	Layered: Qz-biot/Gt-Qz-Biot-musc	Chld to Biot-musc-qz, gt incl rotated?	RAM	Yes:	
ps	RMet2	opx-5	Biotite Quartzite w vein	Qz-Biot-Musc with Qz-musc-Cp vein	relook?	RAM	1	
				•			1	
DS	scca1	UCS-1	Garnet Amphibolite	Amphibole-Gt (isot.)-Plag-Oz-(On)	Bands with Oz. at some rim plag, at cores inclusions	Salmon Canvon Cu: late retro volets	1	
ns	btg1	UCS=2	Garnet-Biotite Schist	Oz-biotite25% (brwn)-Gt20%	usions of az, foliation thru at: few opag: thin retrograded rime	Blacktail Pit		
PS PS	N24 VSC0 OF	003=2	Ore Supphine Lode	Oz Piotito MZ Chi Sulf	Cobalities Monazite: bya voin text	Drobod M7: from Stockpilo/I Stock	Voci	
ps	1134 1369-05		ore - Sunshine Loue	QZ-DIUTIR-IVIZ-CHI-SUII	CODdittie, Monazite; bxa veni text.	Frobed WZ; from Stockpile/J.Slack	162:	
Al		a and attack to the						
Miscellan	eous Intrusive	es and other Veins						
ps	IT06-04	TSX-001	In Trust Ore					
ts-f	BL06-02A	TSY-004	Altered Siltite, Cu veins					
ts-f	BL06-02B	TSY-005	Siltite. Cu veins					

ts	BL06-03	syx-004	Pyroxene Porphyry (Lamp.)	ed brwn Amph-Px-(Oliv?)toChl-talc?-Trem-Fsp matri	Semi-fresh; weak propylitic, apatite	Pseudomorph Oliv Phenos		
PS	BL06-03p	UCS-005	Px Porph -Lamprophyre	Px-Brown Amph-Oliv Porph + Kf? Matrix	Oliv to Trem+Serp, chlorite,talc?; ep.	WOW. 2 pyroxenes?? fresher	same	
ps	BL06-05	syx-005	Syenite - w/biot	Feldspar(turbid) - Remnant Biot- Hm	Less Altered	alignment of tabular fsp xstals	Yes:	
ps	BL06-05	syx-017	Syenite -	Feldspar-Biot(10%)-Hm; 10% dark crud	Less Altered, fsp. Aligned	flow foliation?		
ts-f	06CT13a	TSY-018	Mudstone	Qz-mud	No yellow stain, no Kf	vfg mudstone		
ts-f	06CT13b	TSY-019	Argill. Siltstone	Quartz-Mica25%- (chlorite)	Trace chlorite, pyrite?; no Kf stain visible	Detrital textures		
ps	06CTCArr	TSX-015	Quartz-Th-Hm Vein	Qz-Hm-Th-MZ-Apat	2 types of opaque veins; weak potassic	Crackle Veins/Sent to Umass; see dupl	UMA	
ps	06CT13d	TSX-014	Siltite with Uz-Hm vein	Kt-Hm(30%)-(Th?)-Qz-Biot late	Strong Potassic-mosaic microcline; probe/chem	late pale brwn mica?		
ps	06831	15X-013	Quartzite/ Qz-Hm Vn, Bullaid	UZ-Hm35%-Cp-(Apat)-(FI)	Chalcopyrite-Hm in same vein, check for F	Deformed vein, crushed; xray		
	14 6 014		Svopito			Minoral Son, Shrimp Date II Ph		
nc	JA-6-01A	SVX 001	Svenite	Foldspar(80%) Opaquo(15%)	Orthoclaso with Ab rims. Cut by Oz Hm yoins	Probod Esp. avida	Voc:	
ps ps	JA06-01D	syx-001	see below?	Teluspai (80%)=Opaque(15%)	Orthoclase with Ab hins, cut by 02-hin veins	Probed rsp, oxide	165.	
ts-f	JA06-01D	syx-002	Svenite -	Abund K-fsp-opag-(gz): 80% turbid Esp	Hm, replaces mafic? Only 5%gz interstit	eubedral zircon		
DS	JA06-01D	syx-016	oyonno	Abartal it isp opad (42), oo to tarbia i sp		Sandara Endorr		
ps	JA06-01B	TSX-016	Syenite	Fsp(70%)-Opag.	big feldspars	do relook?		
ps	JA06-01D	syx-002*	Syenite-Hm vein	Kf(70%)-Opaques(25%)-(plaq)-Qz-Fl?	Qz(unstrain)-Hm vein; Plag rims Kf; check fl, zirc	Photogenic, probe?		
		· · · · ·				- · ·		
ts	CQD	OPX-1	Greenstone Dike					
ps	06WP099	UCS-003	Syenite	Kf(85%)Plag rims-Bi (brown)-opaq-fl?	fresher; Bluebird area; green needles apat?	geochem		
ts-f	06WP099k	UCS-004	Syenite	as above, virt. No quartz	Mod. Kf stain esp. in cores			
ps	BL06-03p	UCS-005	Px Porph -Lamprophyre	Px-Brown Amph-Oliv Porph + Kf? Matrix	Oliv to Trem+Serp, chlorite,talc?; ep.	WOW. 2 pyroxenes?? fresher	same	
ps	07WP102	UOS-1	Pyroxene Porphyry	Px-Brown Amph-Oliv?psuedoPhenos	Oliv to Trem. Lozenges, Alt. Matrix Fsp, epid, chl	prob. same loc BL06-03	phot	
ts-f	07WP106	UOS-2	Diorite/Monzonite?	Fsp(AbKf)-Px,Biot,graphic granite-Apat	Strong Alt: chlorite-epid, apatite-vugs, 5% opaq,	CRUSH for zircons, probe; Low Qz-interstit		
ts-f	07SHD	UOS-4	Mafic Dike - Px Porph	Px, brown amph, OI pseudos, fsp matrix	propylitic; Oliv to Trem; Ampfresh, carb.epid	yellow epid, weak Kf		
ps	07-77d	UOS-5	Dike loc. 77 - Px Porph	Pseudo?, Brn Amph, Px phenos; sphene?	chlorite-epid-carbonate; allanite???	Mg-rich, next to breccia pipe		
ts	07-77di	UOS-6	Dike with inclusions	1 incl may be syenitic, also quartzite	brown carbonate in vugs?			
ps	07-77bp	UOS-9	Breccia Pipe - Carbonate	Calcite, Large Brown Amph, small tan amph, in calci-	Opaque - mt or ilm?			
ps	07-77bp2	UOS-10	Breccia Pipe - Carbonate					
ts-f	07FPr	VGG-4	Matic Dike - Px Porph	px phenos amph rims, OI(?)-Amph-Esp	ily altered, px fresh, ol to talc-trem, Kf rims on plag Mod. Kf s	3%Na, 2%K, 3800 ppm Ba		
ts	07PCLr	VGG-5	Mica UM Lamprophyre - alt.	Biot(brwn)-OI(talcFeOx)-Px-Opaq-Calc	highly altered-propylitic	mary BiotPx-OI phenos; 1400ppm Cr, 22% M	gO	
Deviewe								
Regional	I Samples	1100.0	Loodere Disten pink granite	Kf anothite OFO(an another Oron anian		manager in the Mer On late late and the second		
ps	07WP129	005-3	Leadore Pluton - pink granite	Ki-pertnite-25%qz-granophy-Opaq-mica	20% myrm (KI-qz), zircon, opaq. Sauceritizzation	granophyric KI+Q2 late intergrow; late ser.		
ts-r	08BC1-2	VOU-1	Bull Canyon Stock (mg)	Fsp(altKT?)-UZ-Hematite-MZ-sericite	1% Monazite, euned.; hm in fsp/intergrown with sericite	WOW. Igneous MZ, graphic qz-tsp	shou	
ps	08BC1-2a	VSP-001	Bull Canyon Stock - purple	Hm-altered Granite; brown sphene?	FSP to Hm + Musc.; Zoned sphere altering?		Neec	
ps	08BC1-2D	VSP-002		Hm-altered Granite' prown sphere?	Monazite or sphere or both??			
ps te	U0DU=4	VOV 000	Bull Canyon Stock - purple	Dink: 1 olk for gr ZiroMZ2: Durnlo: Or For Um	page altering to appa . Muss . Matrix to corisite? Check Ma	again		
15	002.2	VOV-008	Bull Canyon Stock - purple Bull Canyon Stock-pink/purpl	Pink: 1-alk.fsp, qz, ZirCMZ?; Purple: Qz, Fsp, Hm	spars altering to opaq + Musc.; Matrix to sericite? Check Mz	again		
	08Y-3	VOV-008 VOV-007	Bull Canyon Stock - purple Bull Canyon Stock-pink/purpl Yearian Vein/Peg?	Pink: 1-alk.fsp, qz, ZircMZ?; Purple: Qz, Fsp, Hm Quartz, opaques	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq., fractured qz. Check chem - dead?	again		
ns	08Y-3	VOV-008 VOV-007	Buil Canyon Stock - purple Buil Canyon Stock-pink/purpl Yearian Vein/Peg?	Pink: 1-aik.fsp, qz, ZircMZ?; Purple: Qz, Fsp, Hm Quartz, opaques Calcite (vcq)-Trem-Opaq-tr. Mice. M7	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq., fractured qz. Check chem - dead?	again Opag May be ilmenite (iit)		
ps	08Y-3 07WP126a 07WP126b	VOV-008 VOV-007 UOS-11	Bull Canyon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts	Pink: 1-aik.fsp. qz, ZircM2?; Purple: Qz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-Trem-Opaq-tr. Mica, Mz	spars altering to opaq + Musc.: Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite	again Opaq. May be ilmenite (lit) NO deformation - resetter of ampth		
ps ps	08Y-3 07WP126a 07WP126b 07WP1274	VOV-008 VOV-007 UOS-11 UOS-12 UJK-003	Bull Canyon Stock - publie Bull Canyon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite	Pink: 1-aik.fsp, qz, ZirCMZ?, Purple: Qz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite: 4-000-MZ-Abat	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq., fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund, Monazite	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph.	Yes:	
ps ps ps	08Y-3 07WP126a 07WP126b 07WP127A 07WP127B	VOV-008 VOV-007 UOS-11 UOS-12 UJK-003 UJK-004	Bull Canyon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts Roberts South - Carbonatite Roberts South - Carbonatite	Pink: 1-aik fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq., fractured q2. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem	Yes:	
ps ps ps ps ps	08Y-3 07WP126a 07WP126b 07WP127A 07WP127B 011B-1	VOV-008 VOV-007 UOS-11 UOS-12 UJK-003 UJK-004 VGG-12	Bull Canyon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite	Pink: 1-aik.fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Anat-Riot-Allan-Opan	spars altering to opaq + Musc.: Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric. Hvdrothermal	Yes:	
ps ps ps ps ps ps	08Y-3 07WP126a 07WP126b 07WP127A 07WP127A 07WP127B 01LB-1 01LB-2	VOV-008 VOV-007 UOS-11 UOS-12 UJK-003 UJK-004 VGG-12 VGG-13	Bull Canyon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Roberts South Deposit Lee Buck - Carbonatite Lee Buck - Carbonatite	Pink: 1-aik.fsp, qz, ZirCMZ?; Purple: Qz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal	Yes:	
ps ps ps ps ps ps ps ps	08Y-3 07WP126a 07WP126b 07WP127A 07WP127A 01LB-1 01LB-2 07WP127A2	VOV-008 VOV-007 UOS-11 UOS-12 UJK-003 UJK-004 VGG-12 VGG-13 VGG-14	Bull Canyon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite	Pink: 1-aik.fsp, qz, ZirCMZ?; Purple: Qz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(blueorn)-Allan-MZ-Apat	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq., fractured q2. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Banded and altered; supergene: Act retro on Trem?	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat. Mz cores rimmed by Allanite	Yes:	
ps ps ps ps ps ps ps ps ps ps	08Y-3 07WP126a 07WP126b 07WP127A 07WP127A 01LB-1 01LB-2 07WP127A2 07WP127A3	VOV-008 VOV-007 UOS-11 UJS-12 UJK-003 UJK-004 VGG-12 VGG-13 VGG-14 VGG-15	Buil Caryon Stock-pink/purpl Buil Caryon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite	Pink: 1-aik.fsp. qz, ZirCMZ?, Purple: Oz, Fsp, Hm Ouartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite-Qui-TremAct-Opaq-Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat	spars altering to opaq + Musc.: Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene: Act retro on Trem?	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite	Yes:	
ps ps ps ps ps ps ps ps ps	08Y-3 07WP126a 07WP126b 07WP127A 07WP127B 01LB-1 01LB-2 07WP127A2 07WP127A3 DC	V0V-008 V0V-007 U0S-11 UJK-003 UJK-004 VGG-12 VGG-13 VGG-14 VGG-15	Bull Canyon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite	Pink: 1-aik.fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq., fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem?	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite	Yes:	
ps ps ps ps ps ps ps ps	08Y-3 07WP126a 07WP126b 07WP127A 07WP127A 07UB-1 01LB-2 07WP127A2 07WP127A3 DC	VOV-008 VOV-007 UOS-11 UJK-003 UJK-004 VGG-12 VGG-13 VGG-14 VGG-15	Buil Canyon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite	Pink: 1-aik.fsp, qz, ZirCMZ?; Purple: Qz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite.Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq., fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem?	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite	Yes:	
ps ps ps ps ps ps ps	08Y-3 07WP126a 07WP126b 07WP127A 07WP127B 01LB-1 01LB-2 07WP127A2 07WP127A3 DC	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-004 VGG-12 VGG-13 VGG-14 VGG-15	Buil Caryon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite	Pink: 1-aik.fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Ouartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite:-Amph-MZ-Apat Calcite:-Amph-MZ-Apat Calcite:-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat	spars altering to opaq + Musc.: Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene: Act retro on Trem?	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite	Yes:	
ps ps ps ps ps ps ps ps	08Y-3 07WP126a 07WP126b 07WP127b 07WP127b 01LB-1 01LB-2 07WP127A2 07WP127A2 07WP127A2	V0V-008 V0V-007 U0S-11 UJK-003 UJK-004 VGG-12 VGG-13 VGG-14 VGG-15	Bull Canyon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite	Pink: 1-aik.fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq., fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem?	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite	Yes:	
ps ps ps ps ps ps ps other Ar	08Y-3 07WP126a 07WP126b 07WP127b 07WP127b 01LB-1 07WP127A2 07WP127A2 07WP127A3 DC ees	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-003 UJK-004 VGG-12 VGG-12 VGG-14 VGG-15	Bull Canyon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite	Pink: 1-aik.fsp, qz, ZirCMZ?; Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, , fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem?	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite	Yes:	
ps ps ps ps ps ps other Ar ts	08Y-3 07WP126a 07WP127b 07WP127A 07WP127A 07WP127A 07WP127A2 07WP127A2 07WP127A3 DC 07WP127A3 07WP127A3 DC	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-003 VGG-12 VGG-13 VGG-13 VGG-15 VGG-01 VGG-001	Buil Caryon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite Mtn. Pass Carbonatite	Pink: 1-aik.fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Ouartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite	spars altering to opaq + Musc.: Matrix to sericite? Check Mz Red brown opaq , fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered: supergene: Act retro on Trem? Banter Phenos with bast.rims/interstitial;vcg More Fe stain: preciated, acc. Open	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field	Yes:	
ps ps ps ps ps ps ps other Ar ts ts	08Y-3 07WP126a 07WP126b 07WP127B 07WP127B 07WP127B 07WP127A2 07WP127A2 07WP127A2 07WP127A3 DC 08MPc-1a 08MPc-1a 08MPc-1a	VOV-008 VOV-007 UOS-11 UOS-12 UJK-003 UJK-003 UJK-004 VGG-12 VGG-14 VGG-15 VGG-001 VGG-001 VGG-002 VGG-003	Bull Canyon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Syenite	Pink: 1-aik.fsp. qz, ZirCMZ?, Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Kf(mircocline)-Amnofblue-Dor-Opa	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Barite Phenos with bast.rims/interstitial;vcg More Fe stain; brecclated, acc. Opaq. about 2% opag. og interstitial fsn - vcn	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field Perthite: amph blue-brwn pleo. Alkali Amph ?	Yes:	
ps ps ps ps ps ps ps other Ar ts ts_ts_ts_f	08Y-3 07WP126a 07WP126b 07WP127b 07WP127b 07WP127A 07WP127A2 07WP127A2 07WP127A3 DC ees 08MPc-1a 08MPc-1b	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-003 VGG-12 VGG-14 VGG-14 VGG-15 VGG-001 VGG-001 VGG-002 VGG-003	Bull Canyon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite	Pink: 1-ak.fsp. qz, ZircMZ?; Purple: O2, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Kf(microcline)-Amph(blue)-Q2-Opaq.	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, , fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Barite Phenos with bast.rims/interstitiai; vcg More Fe stain; brecclated, acc. Opaq. about 2% opaq., qz interstitial, fsp - vcg	again Opaq: May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.?	Yes: WSU	
ps ps ps ps ps ps ps other Ar ts ts-f	08Y-3 07WP126a 07WP126b 07WP127A 07WP127B 07WP127B 07WP127B 07WP127A2 07WP127A2 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A 07WP1	VOV-008 VOV-007 UOS-11 UJS-012 UJK-003 UJK-003 UJK-004 VGG-12 VGG-13 VGG-13 VGG-14 VGG-15 VGG-001 VGG-001 VGG-002 VGG-003	Buil Caryon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Syenite	Pink: 1-aik.fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Ouartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Kf(microcline)-Amph(blue)-Oz-Opaq.	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq , fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Barite Phenos with bast.rims/interstitial;vcg More Fe stain; brecclated, acc. Opaq. about 2% opaq., qz interstitial, fsp - vcg	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.?	Yes:	
ps ps ps ps ps ps ps other Ar ts ts-f	08Y-3 07WP126a 07WP126a 07WP127A 07WP127A 07WP127A 07WP127A2 07WP127A2 07WP127A2 07WP127A3 DC 07WP127A3 DC 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3	VOV-008 VOV-007 UOS-11 UOS-12 UJK-003 UJK-003 UJK-004 VGG-12 VGG-13 VGG-14 VGG-15 VGG-01 VGG-001 VGG-002 VGG-003	Bull Canyon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Syenite	Pink: 1-aik.fsp. qz, ZirCMZ?, Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq- Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Kf(microcline)-Amph(blue)-Oz-Opaq.	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Barite Phenos with bast.rims/interstitial; vcg More Fe stain; brecclated, acc. Opaq. about 2% opaq., qz interstitial, fsp - vcg	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.?	Yes: WSU Frest	
ps ps ps ps ps ps ps ps other Ar ts ts ts-f	08Y-3 07WP126a 07WP126b 07WP127b 07WP127b 07WP127B 07WP127A2 07WP127A2 07WP127A2 07WP127A3 DC 07WP127A3 DC 07WP127A3 DC 08MPc-1a 08MPc-1b 08MPc-1b 08MPc-1b	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-003 VGG-12 VGG-14 VGG-14 VGG-15 VGG-001 VGG-001 VGG-002 VGG-003	Bull Canyon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Syenite	Pink: 1-aik.fsp. qz, ZircMZ?, Purple: O2, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Kf(microcline)-Amph(blue)-Oz-Opaq. Mineralogy	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Abund. More Fe stain; brecclated, acc. Opaq. about 2% opaq., qz interstitial, fsp - vcg	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.? Comments	Yes: WSU Frest	
ps ps ps ps ps ps ps other Ar ts ts-f	08Y-3 07WP126a 07WP127B 07WP127B 07WP127B 07WP127B 07WP127B 07WP127B 07WP127A2 07WP127A2 07WP127A3 DC 08MPc-1a 08MPc-1a 08MPc-1a 08MPc-1a 08MPc-1a UBMPc-1 LH-4a	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-003 VGG-12 VGG-13 VGG-13 VGG-14 VGG-15 VGG-01 VGG-001 VGG-002 VGG-003	Buil Caryon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Syenite Mtn. Pass Syenite Mtn. Pass Syenite	Pink: 1-aik.fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Ouartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Bartle?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Mineralogy Oz?-Kf-Biot-allanite-Apat-Mz	spars altering to opaq + Musc.: Matrix to sericite? Check Mz Red brown opaq., fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Banded and altered; supergene: Act retro on Trem? Barite Phenos with bast.rims/interstitial;vcg More Fe stain; brecclated, acc. Opaq. about 2% opaq., qz interstitial, fsp - vcg Alteration/Mineralization Potassic(microcline), 25% Monazite	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.? Comments Schistose Qtzt, sutured; Strong Kstain	Yes: WSU Fresi	
ps ps ps ps ps ps ps other Ar ts ts-f	08Y-3 07WP126a 07WP126a 07WP127B 07WP127B 07WP127B 07WP127B 07WP127A2 07WP127A2 07WP127A2 07WP127A3 DC 07WP127A3 DC 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A4 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A3 07WP127A4 07WP1	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-003 UJK-004 VGG-12 VGG-13 VGG-14 VGG-15 VGG-01 VGG-001 VGG-002 VGG-003 VGG-003	Bull Caryon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Syenite Mtn. Pass Syenite Mtn. Pass Syenite Mtn. Pass Syenite Mtn. Pass Syenite	Pink: 1-aik.fsp. qz, ZirCMZ?, Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Kf(microcline)-Amph(blue)-Oz-Opaq. Mineralogy Oz?-Kf-Biot-allanite-Apat-Mz Otzt-Mica; Fsp-Biot-Hm-allanite	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Alteration/Mineralization Potassic(microcline), 25% Monazite vein MZ, allanite in grn mica; multiple Bxas	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.? Comments Schistose Qtzt, sutured; Strong Kstain relook	Yes: WSU Frest	
ps ps ps ps ps ps ps ps ts-f Other Ar	08Y-3 07WP126a 07WP126b 07WP127b 07WP127b 07WP127B 07WP127A2 07WP127A2 07WP127A3 DC 07WP127A3 DC 07WP127A3 DC 07WP127A3 DC 08MPc-1a 08MPc-1b 08MPc-1b 08MPc-1b 08MPc-1b 08MPc-1b 08MPc-1b 08MPc-1b 08MPc-1b 08MPc-1b 08MPc-1b	V0V-008 V0V-007 U0S-11 U0S-11 UJK-003 UJK-003 UJK-003 VGG-12 VGG-12 VGG-13 VGG-14 VGG-14 VGG-15 VGG-001 VGG-002 VGG-003 VGG-003 Kcv-1 kcv-2 kcv-3	Buil Caryon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Lee Buck - Carbonatite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Syenite Name Black Breccia Black Breccia Duartite-Host Rock	Pink: 1-aik.fsp. qz, ZirCM2?; Purple: O2, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite-amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Kf(microcline)-Amph(blue)-O2-Opaq. Mineralogy O2?-Kf-Biot-allanite-Apat-Mz Otzt-Mica: Fsp-Biot-Hm-allanite O2-tr. Biot, (K), zircon, abite?	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Abund. Monazite Barite Phenos with bast.rims/interstitial; vcg More Fe stain; brecclated, acc. Opaq. about 2% opaq., qz interstitial, fsp - vcg Alteration/Mineralization Potassic(microcline), 25% Monazite vein MZ, allanite in grn mica; multiple Bxas Strained, slicified, very little Kf	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.? Comments Schistose Qtzt, sutured; Strong Kstain relook	Yes:	
ps ps ps ps ps ps ps other Ar ts ts-f Older Th Box B Sts-f OTS ts-f	OBY-3 O7WP126a O7WP126b O7WP127B O7WP127B O1UB-1 O1WP127A2 O7WP127B2 O7WP127A2 O7WP127A3 DC O7WP127A3 DC O8MPc-1a O8MPc-1b O8MPc-1b O8MPc-1b O8MPc-1 In Sections In Sections LH-4a LH-4a LH-48 LH-5 LH-7	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-003 VGG-12 VGG-13 VGG-13 VGG-14 VGG-15 VGG-01 VGG-001 VGG-001 VGG-002 VGG-003 Kcv-1 kcv-2 kcv-3 kcv-4	Buil Caryon Stock-pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatile Roberts South - Carbonatile Lee Buck - Carbonatile Roberts South - Carbonatile Roberts South - Carbonatile Diamond Crk PC Granite Mtn. Pass Carbonatile Mtn. Pass Carbonatile Mtn. Pass Syenite Mtn. Pass Syenite Mtn. Pass Syenite Mtn. Pass Syenite Mtn. Pass Carbonatile Mtn. Pass Carbonatile	Pink: 1-aik.fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Ouartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Bartle?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite	spars altering to opaq + Musc.: Matrix to sericite? Check Mz Red brown opaq., fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Banded and altered; supergene: Act retro on Trem? Banded and altered; supergene: Act retro on Trem? Alteration/Mineralization Potassic(microcline), 25% Monazite vein MZ, allanite in grm mica; multiple Bxas Strained, silicified, very little Kf Weak K, mica, silicified veins	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.? Comments Schistose Qtzt, sutured; Strong Kstain relook 10-15% Kf stain, Hi Na Geochem	Yes: WSU Fresi GET	
ps ps ps ps ps ps ps ps ps other Ar ts ts-f Older Th Box B ts-f OTS ts-f ts-f	08Y-3 07WP126a 07WP126a 07WP127B 07UP127B 07UP127B 07UP127B 07UP127A2 07WP127A2 07WP127A2 07WP127A3 DC 07WP127A3 DC 08MPC-1a 08MP	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-003 UJK-004 VGG-12 VGG-13 VGG-14 VGG-15 VGG-01 VGG-001 VGG-002 VGG-002 VGG-003 VGG-003 Kcv-1 kcv-2 kcv-3 kcv-4 kcv-5	Bull Caryon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Syenite Name Black Breccia Diak Breccia Quartzite-Host Rock Tan Rock, bx'd Specularite	Pink: 1-aik.fsp. qz, ZirCM2?; Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-TremAct-Opaq-Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-field Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-field Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-field Calcite-bastnaesite-barite Calcite-field Calcite-bastnaesite-barite Calcite-field Calcite-bastnaesite-barite Calcite-field Calcite-f	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Barite Phenos with bast.rims/interstitial; vcg More Fe stain; brecciated, acc. Opaq. about 2% opaq., qz interstitial, fsp - vcg Alteration/Mineralization Potassic(microcline), 25% Monazite vein Mz, allanite ing rn micz, multiple Bxas Strained, silicified, very little Kf Weak K, mica, silicififed veins	again Opaq. May be ilmenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.? Comments Schistose Qtzt, sutured: Strong Kstain relook 10-15% Kf stain, Hi Na Geochem Nice Pressure Shadows, struct.	Yes: WSU Fresi GET GET Yes:	
ps ps ps ps ps ps ps ps ps other Ar ts ts-f Older Th Box B ts-f Older Th Sts-f oTS	08Y-3 07WP126a 07WP126b 07WP127b 07WP127b 07WP127B 07WP127A2 07WP127A2 07WP127A3 DC	V0V-008 V0V-007 U0S-11 U0S-12 UJK-003 UJK-004 VGG-12 VGG-13 VGG-13 VGG-14 VGG-14 VGG-15 VGG-001 VGG-001 VGG-002 VGG-003 VGG-003 kcv-1 kcv-2 kcv-3 kcv-4 kcv-5 kcv-6	Buil Caryon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Lee Buck - Carbonatite Diamond Crk PC Granite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Syenite Name Black Breccia Black Breccia Black Breccia Black Breccia Black Breccia Specularite	Pink: 1-aik.fsp. qz, ZirCM2?; Purple: Oz, Fsp, Hm Ouartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-Trem-Opaq-tarite?? Calcite-Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-TremAct-Apat-Biot-Allan-Opaq Calcite-Act(bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-bastnaesite-barite Calcite-tastnaesite-barite Calcite-bastnaesite-barite Calcite-tastnaesite-tastnaesite-barite Calcite-tastn	spars altering to opaq + Musc.; Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Calc-silicate Carbonatite Banded and altered; supergene; Act retro on Trem? Banded and altered; supergene; Act retro on Trem? Alteration/Mineralization Potassic(microcline), 25% Monazite vein MZ, allanite in grn mica; multiple Bxas Strained, silicified, very little Kf Weak K, mica, silicified veins	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.? Comments Schistose Otzt, sutured; Strong Kstain relook 10-15% Kf stain, Hi Na Geochem Nice Pressure Shadows, struct.	Yes: WSU Fresi GET GET Yes:	
ps ps ps ps ps ps ps ps ps ps ps ts-f ts-f Older Th Box B ts-f OTS ts-f Sts-f	08Y-3 07WP126a 07WP125b 07WP127B 07WP127B 07WP127B 07WP127B 07WP127B 07WP127A2 07WP127A2 07WP127A3 DC 08MPC-1a 08MPC-1a 08MPC-1a 08MPC-1a 08MPC-1a 08MPC-1a 08MPC-1a 08MPC-1a UH-4a LH-4B	VOV-008 VOV-007 UOS-11 UJS-012 UJK-003 UJK-003 VGG-12 VGG-13 VGG-14 VGG-14 VGG-15 VGG-01 VGG-001 VGG-001 VGG-002 VGG-003 VGG-003 VGG-003 KCV-1 kCV-2 kCV-3 kCV-4 kCV-5 kCV-6 kCV-7	Buil Caryon Stock - pink/purpl Yearian Vein/Peg? Roberts adit - Carb Bxa Roberts South - Carbonatite Roberts South - Carbonatite Roberts South - Carbonatite Lee Buck - Carbonatite Roberts South - Carbonatite Diamond Crk PC Granite Diamond Crk PC Granite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Carbonatite Mtn. Pass Syenite Ntn. Pass Carbonatite Mtn. Pass Carb	Pink: 1-aik.fsp. qz, ZirCMZ?; Purple: Oz, Fsp, Hm Quartz, opaques Calcite (vcg)-Trem-Opaq-tr. Mica, Mz Calcite (vcg)-Trem-Opaq-Barite?? Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-Amph-MZ-Apat Calcite-Act (bluegrn)-Allan-Opaq Calcite-Act (bluegrn)-Allan-MZ-Apat Calcite-bastnaesite-barite Calcite-bastnaesite-bar	spars altering to opaq + Musc.: Matrix to sericite? Check Mz Red brown opaq, fractured qz. Check chem - dead? Calc-silicate Carbonatite Calc-silicate Carbonatite Abund. Monazite Abund. Monazite Calc-silicate Carbonatite Banded and altered: supergene: Act retro on Trem? Barite Phenos with bast.rims/interstitial;vcg More Fe stain: brecclated, acc. Opaq. about 2% opaq., qz interstitial, fsp - vcg Alteration/Mineralization Potassic(microcline), 25% Monazite vein MZ, allanite in grm mica; multiple Bxas Strained, silicified, very little Kf Weak K, mica, silicified veins Sutured qz, crenulated mica, weak potassic?	again Opaq. May be limenite (lit) NO deformation - rosettes of amph. geochem No Hint of metamorphic fabric, Hydrothermal Apat, Mz cores rimmed by Allanite WOW. Had intrusive contact in field WOW. Had intrusive contact in field Perthite; amph blue-brwn pleo. Alkali Amph.? Comments Schistose Qtzt, sutured; Strong Kstain relook 10-15% Kf stain, Hi Na Geochem Nice Pressure Shadows, struct. Very little Kf, Colorless Musc/Biot	Yes: WSU Fresi GET GET GET GET	

ps	LH-12	kcv-9	Specularite Schist	Hm-Biot-Mz-Th-Apat	Sent to Umass, about 25% monazite	Try Grain Mount to find Monazite	Yes:	
OTS	CQ-1	kcv-10	Quartzite, Cu vein	ED: Qz-Mica-Ep?-Apat; VN: Qz-ChI-Epid-Trem?-late Car	RELOOK; Deformed Qz double extinct+Opaq	Vn center: Epid?+Trem?Late Calcite		
Box B								
	LH-12c2*	LAW-2	Spec. Schist	Hm-Mz-Biot-Apat-Allanite			Yes:	
ts	LH-12a	unc	Spec. Schist	Hm-Biot-Mz (lots)-Apat	Apatite boudins	Very Schistose, pressure shadows	TO T	
ts	LH-12b	unc	Spec. Schist	Hm-Biot-Mz	Section too thin		white	
ts	LH-4b	unc	Black Breccia	Kf-Biot-Allanite	Kink lamellae in feldspars		TO T	
	LH-12c1*	unc	to Brent Miller?	Hm-Mz-Apat		Section too thin, biot ground out		
Box C	2001							
ps	LH-12c1*	LAW-1	Spec. Schist	Hm-Biot-Mz-Th	Biot-MZ bands; late mica pullaparts	Mz growing on Apat?	also	
ps	LH-12c2	LAW-2	Spec. Schist	Hm-Biot-Mz-Allanite-Th	lots small MZ; veins cut bxa also	photos 6-15-01, LPTS 2	Yes:	
ps	LH-8c	LAW-3	Specularite	Hm-Allanite-Chlor-MZ	90% Hematite; chlorite alteration	Photos, check for allanite	Uma	
ps	LH-4ac	LAW-4	Breccia/Cataclasite	Qz-Kf-Biot-Th-Mz-(Allanite)	rounded clasts, sutured Qz; pale Biot	check for apat., zircon		
ps	LH-4ac	LAW-5	Breccia/Shear Zone	Qz-Fsp-green mica	Pale green Biot	Pressure Solution	Prob	
ps	LH-4bc	LAW-6	Quartzite- cataclasite	Qz-Hm-green biot/chl-allanite-Mz	lineated qz?, colorless	Show to CJ	Prob	
Box D	LP 6-03							
ps	LH-12	OHI-001	Specularite Schist	Hm-Mz-brown Biot	HOT; green biotite	Intact Monazite layer	Send	
ps	LH-12d	OHI-002	Specularite Schist	Hm-Biot	Supergene alt., less Mz			
ps	LH01-1a	OHI-003	Breccia	Biot-ApatHm-Mz-Kf (tan areas)	Biot-ApatHm-Mz-Kf (tan areas) Retrograde mica, lots Mz		Yes:	
ps	LH01-1b	OHI-004	Breccia/Shear	Oz-Kf-Biot-Mz-Hm Hm-Mz intergrown, to green mica		send to MJJ	Prob	
ps	CA01-1a(s)	OHI-005	Quartzite - deformed	Qz-Hm veins Th; check for Mz	Hm Vein, Thorite?; clay centerline to vein	s= small piece		
ps	CA01-1a(L)	OHI-006	Quartzite- strained	Qz-Kf-Hm; zoned qz	Brown Rhomps-Rutile, thorite, Mz?	I=large piece; crossing vns?? Deformed	Shov	
ps	CQ-2a	QHQ-1	Quartzite - sutured	Qz-Pyrox. Vein	Bn-Cp with carbonate-qz	Carbonate overprint?		
ps	CQ-2b	QHQ-2	Quartzite/Hornfels	Qz-Pyroxopaq-Fsp?	Bn-Py-Moly, Pyrox to CcFeOxQz,	retrograde?, acc. Zircon	Get I	
Box E								
ps	04LH-b	QDG-001	Specularite Breccia	Hm-Fsp-MZ-Musc-Apat	cataclasite- Fsp broken; Bi-MZ clast?	kinked musc grains/mylonite; get photos		
ts-f	04LH-b	QDG-001	Breccia	Allanite?	feldspar			
ps	04LH-C1	QDG-002	Spec. Schist/Breccia	Hm-Mz-Musc-Fsp-Apat-Qz?	Some Musc repl Fsp, lat quartz veinlet?	clast = Fsp aggreg.,		
ps	04LH-C1	QDG-003	Specularite Breccia	same as QDG-002		Sent to Umass		
ps	04LH-C2	QDG-004	Umass			Umass		
ps	04LH-C2	QDG-005	Breccia					
ps	04LH-E	QDG-006	Umass			Umass		
	04LH-E	QDG-007	Aleinikoff			Aleinikoff		
ps	04LH-F	QDG-008					Tony	
ts-f	04LH-F	QDG-008	Breccia		Potassic			
Other (ex	ktras)							

APPENDIX C1 - Representative Mineral Compositions, Formulas and End-Members: Blackbird Mining District Samples Determined by Electron Microprobe, Washington State University

Sample RMe	t1, pt. E3	RAM deposit		Sample	BZ-06A1, pt	tE1
Wt. % Oxides	Garnet Core	Garnet - Int.	Garnet Rim	Garnet Core	Garnet - In (Garnet Rim
SiO2	35.36	35.84	35.4	34.55	34.87	35.18
TiO2	0.06	0.19	0.06	0.04	0.06	0.03
AI2O3	19.77	19.84	20.16	19.43	20.2	19.94
FeO t	32.41	32.82	33.57	37.06	38.49	39.36
MnO	2.58	2.04	0.83	2.55	1.92	1.28
MgO	0.26	0.33	0.71	0.37	0.47	0.46
CaO	6.42	7.02	6.59	1.56	1.81	1.51
Na2O	0	0	0	0.01	0.04	0.04
K2O	0	0.01	0	0	0.01	0
F, Cl zero						
Total	96.86	98.08	97.32	95.57	97.87	97.81
	Cations					
Si	2.982	2.982	2.962	2.985	2.946	2.973
Ti	0.004	0.012	0.004	0.003	0.004	0.002
AI -IV						
AI-VI	1.964	1.945	1.988	1.979	2.011	1.986
Fe	2.286	2.284	2.348	2.678	2.72	2.782
Mn	0.184	0.144	0.058	0.186	0.138	0.092
Mg	0.033	0.04	0.089	0.047	0.059	0.058
Са	0.58	0.625	0.591	0.144	0.164	0.137
Na	0	0	0	0.002	0.006	0.007
К	0	0.002	0	0	0.001	0
Formula Total	20.032	20.034	20.04	20.024	20.048	20.036
Fe/(Fe+Mg)	0.99	0.98	0.96	0.98	0.98	0.98
APPENDIX C1 - Representative Mineral Compositions, Formulas and End-Members: Blackbird Mining District Samples

													PROBE				corr						SiAl													Sum	(OH,
MICAS	line	SiO2	Al2O3	TiO2	FeO	MnO	MgO	CaO	Na2O	K2O	F	Cl	SUM	Fe3+	Fe2+	%Fe3+	F,Cl	H2O	Total	2	Si	Al	-8	Ti	Fe3+	Fe2+	Mn	Mg	Sum Y	Ca	Na	Κ	F	Cl	Н	cation	F,Cl)
Average, Yac-06A, biotite goo	od analy	32.82	16.39	2.72	23.77	0.30	5.97	0.00	0.04	9.59	0.24	0.65	92.23	13.22	11.89	0.50	-0.25	3.51	97.07		5.20	3.06	0.26	0.32	1.58	1.57	0.04	1.41	5.18	0.00	0.01	1.94	0.12	0.17	3.70	15.13	4.00 Average, Yac-06A, biotite good analyses
Average, RMet1, biotite good	analyse	31.71	16.90	2.10	26.75	0.04	4.39	0.00	0.13	9.35	0.25	0.42	91.85	14.88	13.38	0.50	-0.20	3.51	96.86		5.09	3.20	0.29	0.25	1.80	1.79	0.01	1.05	5.18	0.00	0.04	1.91	0.13	0.11	3.76	15.14	4.00 Average, RMet1, biotite good analyses
Average, BZ-06A1, biotite goo	od anal.	30.29	17.30	1.38	29.58	0.04	2.32	0.01	0.06	9.25	0.13	0.78	90.90	16.44	14.79	0.50	-0.23	3.38	95.94		4.99	3.36	0.34	0.17	2.04	2.04	0.01	0.57	5.16	0.00	0.02	1.94	0.07	0.22	3.72	15.13	4.00 Average, BZ-06A1, biotite good anal.
Average, He-06A, biotite brow	∕n to gr€	31.03	17.13	0.70	28.28	0.03	4.33	0.00	0.07	9.38	0.32	0.78	91.74	15.72	14.14	0.50	-0.31	3.34	96.66		5.04	3.28	0.32	0.09	1.92	1.92	0.00	1.05	5.29	0.00	0.02	1.94	0.17	0.22	3.62	15.26	4.00 Average, He-06A, biotite brown to green
Average (2)Muscovite RMet1		45.07	33.57	0.26	2.64	0.00	0.62	0.00	0.49	10.44	0.31	0.00	93.28	1.47	1.32	0.50	-0.13	4.23	97.66		6.17	5.42	3.59	0.03	0.15	0.15	0.00	0.13	4.04	0.00	0.13	1.82	0.13	0.00	3.86	14.00	4.00

Determined by Electron Microprobe, Washington State University

Sample Average	Yac-06A,	RMet1, biotite	BZ-06A1, biotite	He-06A, biotite	RMet1, Muscovite
Wt. % Oxides - Averages	Biotite	Biotite	Biotite	Biot. brown/grn	Muscovite
SiO2	32.82	31.71	30.29	31.03	45.07
AI2O3	16.39	16.90	17.30	17.13	33.57
TiO2	2.72	2.10	1.38	0.70	0.26
FeO if 50% Fe+2	11.89	13.38	14.79	14.14	1.32
Fe2O3 calc at 50%	13.22	14.88	16.44	15.72	1.47
MnO	0.30	0.04	0.04	0.03	0.00
MgO	5.97	4.39	2.32	4.33	0.62
CaO	0.00	0.00	0.01	0.00	0.00
Na2O	0.04	0.13	0.06	0.07	0.49
K2O	9.59	9.35	9.25	9.38	10.44
F	0.24	0.25	0.13	0.32	0.31
CI	0.65	0.42	0.78	0.78	0.00
(H2O)	3.51	3.51	3.38	3.34	4.23
TOTAL - w/ corrections	97.07	96.86	95.94	96.66	97.66

formula based on 24 O,OH,F,Cl

Average, BZ-06A1, Chloritoid (6)

PROBE corr SiO2 Al2O3 Na2O SUM TiO2 MnO K2O Fe3+ %Fe3+ F.Cl H2O FeO MgO CaO Fe2+ 21.01 38.96 0.01 26.06 0.00 86.77 0.00 26.06 6.68 93.45 0.58 0.01 0.01 0.02 -0.01 0.01 0.00 using anorthite as Si std - structure works out a little better

Average, Yac-06A, Scapolite (4) 50.61 22.93 2.48 1.95 0.17 0.00 10.25 7.50 0.69 0.07 2.17 98.30 0.00 1.95 0.00 -0.52 0.39 98.69

Yac samples from exposure on Deep Creek road of unmineralized Apple Creek Formation with visible scapolite ovals, Waypoint 7.

BZ sample is from the Blacktail Zone, exposed in theor Blacktail Pit, W015 HE is from the Hawkeye 7080' portal, underground. (Waypoint 18) R Met1 is from the RAM Deposit, drill core from Metallurgical Hole 1. (get depth and location from Formation)

formula based on 24 O,OH,F,Cl Sum (OH, Fe2+ Cl Al Mn Mg cation F,Cl) Total Fe3+ Sum Y Ca Si 1.89 0.00 0.00 1.96 0.00 0.01 0.00 4.00 8.05 4.12 formula based on 12 (Si,Al) Sum (OH, cation Al Fe3+ Fe2+ Mn Mg F,Cl) Si Ca 7.82 4.18 0.34 0.00 0.29 0.03 0.00 1.70 2.26 0.04 0.57 0.40 16.75 0.14 1.00

4.01 Average, BZ-06A1, Chloritoid (6)

												PROBE				corr				
Amphiboles Line	SiO2	A12O3	TiO2	FeO	MnO	MgO	CaO	Na2O	K2O	F	Cl	SUM	Fe3+	Fe2+	%Fe3+	F,Cl	H2O	Total		
Average, CQ06-30A1, Amphibole, red brown (12)	35.63	13.13	5.70	10.89	0.12	11.92	11.95	2.12	1.35	0.33	0.05	93.03	7.26	4.35	0.60	-0.15	1.76	95.53		
Average, CQ06-30A1, brown Amph, (12) rerun, but F not working	38.45	13.43	5.78	11.15	0.13	12.20	12.05	2.20	1.36	0.00	0.06	96.81	0.00	11.15	0.00	-0.01	1.98	98.78		
Average, CQ06-30A1, Colorless Amph (10) - alteration replacing olivine?	55.50	0.95	0.02	7.85	0.23	19.22	12.85	0.22	0.04	0.00	0.01	96.90	2.18	5.89	0.25	0.00	2.12	99.24		
										B site	e	_		A site					G	
			SiAl						leftover		В	Tot	А		А				Sum	(OH,
	Si	Al	-8	Ti	Fe3+	Fe2+	Mn	Mg	from C	Ca	Na	Na	Na	K	total	Н	F	Cl	cation	F,Cl)
Average, CQ06-30A1, Amphibole, red brown (12)	5.519	2.397	-0.084	0.663	0.847	0.564	0.016	2.752	-0.241	1.984	0.016	0.637	0.621	0.266	0.888	1.823	0.163	0.014	15.647	2.000 Average, CQ06-30A1, Amphibole, red brown (12)
Average, CQ06-30A1, brown Amph, (12) rerun, but F not working	5.784	2.382	0.166	0.654	0.000	1.404	0.017	2.735	-0.024	1.943	0.054	0.642	0.588	0.262	0.850	1.985	0.000	0.015	15.823	2.000
Average, CQ06-30A1, Colorless Amph (10) - alteration replacing olivine?	7.834	0.158	-0.008	0.002	0.232	0.696	0.027	4.042	-0.009	1.944	0.047	0.061	0.014	0.007	0.021	1.997	0.000	0.003	15.003	2.000

APPENDIX C2: Microprobe Analyses, Lemh	ni Pass Silio	ates																										formula ba	sed on 24 O,O	OH,F,Cl							
														PROBE				corr					SiAl													Sum	(OH,
	line	SiO2	A120	D3 T	iO2 Fe	eO N	MnO	MgO	CaO	Na2O	K2O	F	Cl	SUM	Fe3+	Fe2+	%Fe3+	F,Cl	H2O	Total	Si	Al	-8	Ti	Fe3+	Fe2+	Mn	Mg	Sum Y	Ca	Na	Κ	F	Cl	Н	cation	F,Cl)
Representative Mineral Compositions: I	Lucky Ho	rseshoe	Mine, Le	emhi Pa	ss Distric	t																															
	,		,											PROBE				corr																			
BIOTITES	line	SiO2	A120	D3 T	iO2 Fe	eO N	MnO	MgO	CaO	Na2O	K2O	F	Cl	SUM	Fe3+	Fe2+	%Fe3+	F,Cl	H2O	Total																	
Lucky Horseshoe Th-REE deposit																																					
Average, LH-12c, biotite brown (18)	Th ore	38.	19 11	.24	0.19 9	9.88	0.10	19.64	0.02	0.03	10.24	4.03	0.02	91.87	5.50	4.94	0.50	-1.70	1.98	94.41	5.88	2.04	-0.08	0.02	0.64	0.64	0.01	4.51	5.74	0.00	0.01	2.01	1.96	0.01	2.03	15.77	4.00 Average, LH-12c, biotite brown (18 good pts)
Average, LH-12c2, Mica, green (6)	Th ore	38.	23 11	.11	0.12 10	0.05	0.11	19.97	0.12	0.05	10.28	4.84	0.02	92.86	5.59	5.02	0.50	-2.04	1.61	95.03	5.87	2.01	-0.12	0.01	0.65	0.64	0.01	4.57	5.76	0.02	0.02	2.01	2.35	0.01	1.64	15.81	4.00 Average, LH-12c2, Mica, green (6)
Average, LH01-1a, Biotite, green/brown	(11)	41.	67 11	.72	0.28 11	1.06	0.10	19.31	0.05	0.05	10.47	NA	0.03	94.73	6.15	5.53	0.50	-0.01	4.13	99.47	6.04	2.00	0.05	0.03	0.67	0.67	0.01	4.17	5.60	0.01	0.01	1.94	0.00	0.01	3.99	15.56	4.00
Un 118 LH-8a, Biotite-dark brown, C5	252	41.	41 12	.44	0.49 11	1.13	0.09	19.51	0.00	0.02	10.25	NA	0.01	95.35	6.19	5.56	0.50																				
Svenite																																					
Average, BL06-05, biotite, brown (15)	Syenite	32.	25 11	.24	1.96 32	2.02	0.78	1.18	0.28	0.03	8.68	0.90	0.53	89.36	17.81	16.01	0.50	-0.50	2.96	94.11	5.49	2.26	-0.25	0.25	2.28	2.28	0.11	0.30	4.98	0.05	0.01	1.89	0.48	0.15	3.36	14.93	4.00 Average, BL06-05, biotite, brown

		<u>Biotites</u>			<u>Amphiboles</u>	
	Syenite	Th ore	Th ore	Th ore	Px Porphyr	y Phenos
Sample (Averages)	BL06-05	LH-12c	LH-12c2	2 LH01-1a	CQ06-30A1	CQ06-30A1
biotite:	brown	brown	green	gn/brwn	red brown	clear -alt.
Wt. % Oxides						
SiO2	32.25	38.19	38.23	41.67	35.63	55.50
AI2O3	11.24	11.24	11.11	11.72	13.13	0.95
TiO2	1.96	0.19	0.12	0.28	5.70	0.02
FeO if 50% Fe+2	16.01	4.94	5.02	5.53	4.35	5.89
Fe2O3 calc at 50%	17.81	5.50	5.59	6.15	7.26	2.18
MnO	0.78	0.10	0.11	0.10	0.12	0.23
MgO	1.18	19.64	19.97	19.31	11.92	19.22
CaO	0.28	0.02	0.12	0.05	11.95	12.85
Na2O	0.03	0.03	0.05	0.05	2.12	0.22
K2O	8.68	10.24	10.28	10.47	1.35	0.04
F	0.90	4.03	4.84	NA	0.33	0.00
CI	0.53	0.02	0.02	0.03	0.05	0.01
(H2O)	2.96	1.98	1.61	4.13	1.76	2.12
TOTAL - w/ corrections	94.11	94.41	95.03	99.47	95.53	99.24

Feldspars Syenite	Line Numb Na	a2O Oxide A	Al2O3 Oxi F	e2O3 OxicK2	20 Oxide I Ca	O Oxide F SiC	02 Oxide P BaO	Oxide Percer Oxid	e Totals Na	a Formul: Al	l Formula F	e Formul: K	FormulaC	a Formul: S	i Formula B	a Formul: F	ormula Totals	
Average of 5 cores (BL06-05) Average of 5 rims (BL06-05)		0.45 11.24	19.04 20.58	0.06 0.10	16.20 0.41	0.01 0.22	63.28 67.08	0.21 0.01	99.24 99.65	0.041 0.957	1.049 1.066	0.002 0.003	0.966 0.024	0.001 0.010	2.958 2.948	0.004 0.000	13.020 13.008	Average Core, BL06-05 Average Rim, BL06-05
label	Line Numb Na	a2O Oxide A	Al2O3 Oxi F	eO Oxide K2	20 Oxide I Ca	O Oxide F SiC	02 Oxide P Oxid	e Totals Na F	ormula At Al	Formula Fe	e Formul: K	Formula C	a Formul: S	i Formula T	otals			
Un 79 JA06-01C, Feldspar Trav., rim, pt. B1	197	7.72	19.57	-0.01	5.91	0.00	66.66	99.85	0.668	1.030	0.000	0.336	0.000	2.976	13.011			
Un 80 JA06-01C, Feldspar Trav., rim/core, pt. B2	198	0.35	18.71	0.01	16.37	-0.01	62.53	97.95	0.032	1.044	0.000	0.989	0.000	2.962	13.027			
Un 81 JA06-01C, Feldspar Trav., core, pt. B3	199	0.38	19.08	0.11	16.53	-0.02	63.49	99.57	0.034	1.048	0.004	0.983	-0.001	2.958	13.026			
Un 82 JA06-01C, Feldspar Trav., core middle, pt. B4	200	0.75	18.59	0.63	16.04	0.00	63.60	99.61	0.067	1.022	0.024	0.954	0.000	2.966	13.034			
Un 83 JA06-01C, Feldspar Trav., core, pt. B5	201	0.39	18.94	0.03	16.76	0.00	64.44	100.55	0.035	1.030	0.001	0.986	0.000	2.972	13.023			
Un 84 JA06-01C, Feldspar Trav., rim/core, pt. B6	202	11.76	19.76	0.01	0.12	0.05	67.51	99.21	1.005	1.026	0.001	0.007	0.003	2.976	13.017			
Un 85 JA06-01C, Feldspar Trav., rim, pt. B7	203	9.73	19.84	0.03	3.06	0.02	67.70	100.38	0.830	1.028	0.001	0.172	0.001	2.977	13.009			
Copper Veins																		
Average CQ-06C, swx-2, Vein Feldspar (12) Copper Qn vein cuts qtzt.		0.39	19.02	0.01	16.20	0.00	64.17	99.79	0.03	1.039	0.000	0.958	0.000	2.973	13.004			
label	Line Numb Na	a20 Oxide A	1203 Oxi F	eO Oxide K2	20 Oxide I Ca	O Oxide F SiC	02 Oxide P Oxid	e Totals Na F	ormula At Al	Formula Fe	e FormulaK	Formula C	a Formul: S	i Formula T	otals			
Thorium Veins																		
Average, CA06-B1, swx-4, orangy Feldspar, pts. A,C,D Average, CA06-B1, swx-4, Na-rich feldspar by brown rk	,E,H nombs loc (0.34 10.93	18.87 20.62	0.09	16.36 0.13	-0.03	64.52 70 91	100.14 102.67	0.03 0.90	1.027 1.028	0.003 0.001	0.964 0.007	-0.001 0.003	2.980 3.001	13.004 12 937			
Woldge, entre DT, awx 4, Na horreadpar by brown in	1011103, 100. 0	10.00	20.02	0.00	0.10	0.00	70.01	102.07	0.00	1.020	0.001	0.007	0.000	0.001	12.007			
Un 148 LH01-1a pt 1 of 2, Orange Patch, G1, un 148	283	0.17	18.89	0.03	16.11	-0.02	66.34	101.47	0.02	1.009	0.001	0.932	-0.001	3.008	12.962			
Average LH01-1a, Orange Feldspar (3) late??		9.87	20.39	0.17	0.16	0.08	70.50	101.18	0.82	1.028	0.006	0.009	0.004	3.017	12.883			
Feldspars	Line Numb Na	a2O Oxide A	1203 Oxi F	e2O3 Oxic K2	2O Oxide I Ca	O Oxide F SiC	02 Oxide P BaO	Oxide Percer Oxid	e Totals									
Feldspars	Cores Ri	ms	C)rangv cle	earer/outer?													
Sample Number	BL06-05 BL	_06-05	C	A06-B1 C/	A06-B1													
Wt. % Oxides	syenite		C	ago Th ve Er	nvelope?													
SiO2	63.28	67.08		64.52	70.91													
AI2O3	19.04	20.58		18.87	20.62													
Fe2O3	0.06	0.10 a	s FeO	0.09	0.03													
CaO	0.01	0.22	_	-0.03	0.06													
Na2O	0.45	11.24		0.34	10.93													
K2O	16.20	0.41		16.36	0.13													
ВаО	0.21	0.01		na	na													
Total	99.24	99.65		100.14	102.67													

Wei	ght	Percent Oxide on Grain Traverse	Na2O	K2O
Un	79	JA06-01C, Feldspar Trav., rim, pt. B1	7.72	5.91
Un	80	JA06-01C, Feldspar Trav., rim/core, pt. B2	0.35	16.37
Un	81	JA06-01C, Feldspar Trav., core, pt. B3	0.38	16.53
Un	82	JA06-01C, Feldspar Trav., core middle, pt. B4	0.75	16.04
Un	83	JA06-01C, Feldspar Trav., core, pt. B5	0.39	16.76
Un	84	JA06-01C, Feldspar Trav., rim/core, pt. B6	11.76	0.12
Un	85	JA06-01C, Feldspar Trav., rim, pt. B7	9.73	3.06

PROBE Muscovite line Average, CQ-06C, swx-2, Mica in host rock (8) 46.97 29.51 0.57 3.84 0.05 2.14 -0.01 0.19 10.58 0.00 0.00 93.84 2.13 1.92 0.50 0.00 4.39 98.45 Average, LH01-1a, Sericite Vein, late (3) 47.51 32.79 0.71 3.84 0.01 1.12 0.01 0.11 9.31 0.00 0.02 95.42 2.13 1.92 0.50

formula based on 24 O,OH,F,Cl Sum SiAl SiO2 A12O3 TiO2 FeO MnO MgO CaO Na2O K2O F C1 SUM Fe3+ Fe2+ %Fe3+ F,C1 H2O Total Si A1 -8 Ti Fe3+ Fe2+ Mn Mg Sum Y Ca Na K F C1 H cation F,C1) 6.412 4.750 3.161 0.058 0.219 0.219 0.005 0.436 4.100 -0.001 0.050 1.844 0 0.000775 3.999225 13.99216 4 0 0.004209 3.995791 13.75801 0.00 4.51 100.15 6.303 5.129 3.432 0.213 0.213 0.001 0.222 4.152 0.001 0.029 1.577 0.071

0.01 0.04 0.85 0.25 0.17 0.00 0.03 0.00 0.91 1 80 0.00

Appendix C3: LP Monazite	Y2O3 Oxi La	1203 Ox Ce	e2O3 Oxi(P)	r2O3 O	Nd2O3 O	Sm2O3 O: Eu	Gd2O3	ThO2	UO2 Oxi	PbO Oxi	CaO Oxi	SiO2 Oxi A	Al2O3 O	P2O5 Ox (Oxide Totals
Sample															
LH12c2 Average (27 points)	0.88	3.40	16.19	5.44	34.94	5.01 NA	1.43	0.63	0.09	0.08	0.31	0.32	0.05	29.29	98.05
LH06-24A Average (14 points)	0.62	2.77	15.16	5.50	36.59	5.08 NA	1.32	0.56	0.09	0.17	0.15	0.35	0.08	29.13	97.57
LH-8a Average (12 points)	0.44	3.44	16.25	5.50	36.38	4.77 NA	1.40	0.49	0.09	0.15	0.31	0.22	0.01	29.49	98.94
LH-12, kcv-9 Average (18 points)	0.81	3.63	16.67	5.58	35.17	4.89 NA	1.52	0.52	0.09	0.18	0.16	0.16	0.01	29.49	98.90
Sunshine Lode VSG92005 Aver. (12 points)	1.09	13.89	31.39	4.23	12.86	2.40 NA	2.14	0.26	0.22	0.17	0.08	0.34	0.24	29.87	99.19
07WP127B Roberts S Average (14 points)	0.03	25.18	32.87	4.10	6.71	0.30 NA	0.58	0.65	0.11	0.09	0.09	-0.01	-0.01	30.49	101.17

APPENDIX C3 - Lemhi Pass Monazite Analyses - Averages to Plot

LH12c2, LH-6-24A, LH-8a, and LH-12 are all from the Lucky Horseshoe mine, Lemhi Pass District Sunshine Lode VSG92005 is from Blackbird District 07WP127B is from Roberts South carbonatite near North Fork/Shoup, Idaho

Appendix C3b: MonazitesLiUn15 LH12c2-A MZcore	ne Numbe S 1624	iO2 Oxi 8 0.14	5.10 Sm2O3	12O3 Ox (34.80	Ce2O3 I 16.13	La2O3 Ca 3.61	aO Oxi Tl 0.24	hO2 O Y2 0.33	203 Ox Pi 1.05	r2O3 G 5.46	d2O3 U 1.47	O2 O Pb 0.10	O Oxid A 0.05	12O3 Ox P2 -0.01	205 Oxi Oxi 29.63	ide Totals 98.08	Si Form Si 0.005	m Form N 0.070	d Formu Co 0.497	e Form La 0.236	• Formu Ca 0.053	a Form T 0.010	h Form Y 0.003	Formu P 0.022	r Form G 0.080	d Form U 0.019	Formu P 0.001	b For A	l Form P -0.001	Form For 1.002	rmula Totals 5.999
Un 16 LH12c2-A MZswRim Un 17 LH12c2-A MZseRim	1625 1626	0.24 0.21	4.78 4.68	35.49 35.72	17.05 16.84	3.76 3.70	0.12 0.18	0.41 0.56	0.57 0.66	5.79 5.56	1.26 1.26	0.07 0.12	-0.03 0.06	0.02 -0.01	29.67 29.15	99.20 98.71	0.009 0.008	0.065 0.065	0.503 0.512	0.248 0.247	0.055 0.055	0.005 0.008	0.004 0.005	0.012 0.014	0.084 0.081	0.017 0.017	0.001 0.001	0.000 0.001	0.001 0.000	0.997 0.990	5.999 6.004
Un 18 LH12c2-A2 MZCore Un 19 LH12c2-A2 MZint	1627 1628	0.29 0.18	4.97 5.26	34.95 35.38	16.15 16.65	3.58 3.59	0.11 0.07	0.61 0.58	1.07 0.75	5.35 5.68	1.43 1.38	0.08 0.12	0.04 0.05	0.01 -0.02	29.39 29.63	98.02 99.29	0.012 0.007	0.069 0.072	0.500 0.502	0.237 0.242	0.053 0.053	0.005 0.003	0.006 0.005	0.023 0.016	0.078 0.082	0.019 0.018	0.001 0.001	0.000 0.001	0.000 -0.001	0.997 0.997	5.998 5.999
Un 20 LH12c2-A2 MZswRim Un 22 LH12c2-A3 MZwRim	1629 1631	0.14 0.28	4.87 5.06	35.31 34.44	17.19 15.98	3.81 3.45	0.11 0.26	0.45 0.68	0.64 1.25	5.43 5.60	1.31 1.49	0.07 0.14	0.09 0.02	-0.01 0.00	29.50 29.39	98.91 98.04	0.006 0.011	0.067 0.070	0.504 0.492	0.251 0.234	0.056 0.051	0.005 0.011	0.004 0.006	0.014 0.027	0.079 0.082	0.017 0.020	0.001 0.001	0.001 0.000	-0.001 0.000	0.997 0.996	6.000 6.001
Un 23 LH12c2-A3 MZswRim Un 24 LH12c2-B MZcore	1632 1633	0.19 0.38	5.21 4.70	36.48 35.60	15.24 17.22	3.10 3.64	$0.07 \\ 0.10$	0.81 0.54	0.74 0.62	5.42 5.57	1.49 1.15	0.12 0.05	0.05 0.13	0.02 0.05	29.06 29.29	97.99 99.04	0.007 0.015	0.073 0.065	0.526 0.507	0.225 0.251	0.046 0.053	0.003 0.004	0.007 0.005	0.016 0.013	$0.080 \\ 0.081$	0.020 0.015	0.001 0.000	0.001 0.001	0.001 0.002	0.994 0.989	6.000 6.003
Un 25 LH12c2-B1 MZsRim Un 26 LH12c2-B2 MZCore	1634 1635	0.10 0.13	4.71 4.58	35.30 34.83	17.19 17.69	3.60 3.86	0.10 0.20	0.40 0.37	0.73 0.69	5.62 5.63	1.26 1.14	0.11 0.08	0.16 0.16	0.00 0.01	29.15 29.36	98.44 98.70	0.004 0.005	0.065 0.063	0.508 0.498	0.253 0.259	0.054 0.057	0.004	0.004	0.016 0.015	0.082 0.082	0.017 0.015	0.001 0.001	0.002 0.002	0.000	0.994 0.995	6.003 6.004
Un 27 LH12c2-B2 MZ Erim Un 28 LH12c2-B2 MZ Wrim	1636 1637	0.17	4.97 4.23	34.74 35.29	16.01 18.27	3.29 3.98	0.22	0.45	0.90	5.29 5.76	1.41	0.05	0.06	0.02	31.65 29.22	99.23 98.97	0.007	0.066	0.477	0.226	0.047	0.009	0.004	0.018	0.074	0.018	0.000	0.001	0.001	1.031	5.979 6.008
Un 29 LH12c2-B2 MZ Nrim Un 30 LH12c2-C1 MZ core	1639 1639	0.28	4.88	34.16	16.71 16.35	3.46 3.34	0.12	0.31	0.90	5.42 5.45	1.32	0.12	0.10	0.03	29.52 29.52 29.26	97.32 98.39	0.011	0.068	0.490	0.246	0.051	0.005	0.003	0.019	0.079	0.012	0.001	0.001	0.001	1.003	5.995
Un 31 LH12c2-C1 MZ NE rim Un 32 LH12c2-C2 MZ int	1640 1641	1.74 0.34	4.92 4.85	34.85 34.24	15.48	3.23	0.11	1.10	0.78	5.16 5.39	1.46	0.11	0.20	0.51	30.69 28.53	100.33	0.066	0.064	0.471	0.214	0.045	0.005	0.009	0.016	0.071	0.019	0.001	0.002	0.023	0.983	5.988
Un 34 LH12c2-C2 MZ SWint	1641 1643	1.20	4.58	34.31 35.18	16.51	3.66	0.11	0.49	0.54	5.53 5.35	1.25	0.06	0.05	0.00	27.96	96.52 97.30	0.049	0.064	0.498	0.239	0.051	0.005	0.000	0.012	0.082	0.017	0.001	0.000	0.002	0.962	6.009 5.008
Un 37 LH12c2-D1 MZ Cole Un 37 LH12c2-D1 MZ Wint	1645 1646	0.12	5.50 5.54 5.73	35.89 35.36	15.39	3.07	0.12	0.44	1.02	5.40 5.35	1.70	0.10	0.02	0.02	29.58 29.52 29.57	98.53 97.50	0.005	0.074	0.500	0.225	0.044	0.005	0.007	0.022	0.079	0.021	0.001	0.000	0.001	0.999	6.000 5.000
Un 40 LH12c2-D1 MZ SWrim	1647 1649	1.13	5.08 5.32	34.20 35.16	15.23	3.17	0.27	1.53	0.92	5.22 5.43	1.54	0.10	0.10	0.28	27.89	96.64 97.58	0.007	0.079	0.303	0.219	0.043	0.012	0.003	0.025	0.078	0.023	0.001	0.000	0.000	0.961	6.010 6.000
Un 42 LH12c2-D1 MZ with Un 42 LH12c2-D1 MZ Nint	1650 1651	0.19	4.78	32.96 34.15	15.01	3.09	3.25	0.44	0.90	5.13	1.39	0.13	0.17	0.00	27.69	95.26 97.64	0.008	0.074	0.485	0.229	0.043	0.144	0.000	0.020	0.030	0.021	0.001	0.001	0.000	0.967	6.068 5.008
Un 44 LH12c2-D2 MZ Erim	1652 1653	0.20	5.30	35.05	15.25 16.05	3.20	0.40	0.61	1.14	5.40	1.75	0.09	0.04	0.04	29.49	97.04 98.24	0.008	0.073	0.489	0.225	0.040	0.017	0.012	0.024	0.077	0.023	0.001	0.000	0.002	0.994	6.005
LH12c2 Average (27 points)	1055	0.13 0.32	5.09 5.01	34.23 34.94	16.19	3.40	0.43 0.31	0.63	0.93 0.88	5.20 5.44	1.04 1.43	0.00 0.09	0.03 0.08	0.01	28.95 29.29	97.08 98.05	0.000	0.071	0.497 0.50	0.231 0.24	0.050	0.019	0.013	0.020	0.078	0.022	0.001	0.000	0.000	0.995 0.99	6.00
Sta Dev LH12c2	1656	1.21	5 15	26.29	14.00	0.50	0.39	0.54	0.21	5.42	1.22	0.03	0.00	0.12	20.02	09 19	0.01	0.00	0.514	0.01	0.00	0.007	0.00	0.00	0.00	0.00	0.001	0.00	0.020	0.072	6.002
Un 48 LH06-24A-A1 MZ int	1650 1657	0.24	5.15 5.14	36.27 27.60	14.90 14.24	2.64 2.45	0.17	0.36	0.79	5.43 5.27	1.35	0.12	0.03	0.43	29.05 28.60 28.70	98.18 95.14	0.048	0.070	0.514	0.216	0.038	0.007	0.003	0.017	0.078	0.017	0.001	0.000	0.020	1.000	5.997
Un 50 LH06-24A-A1 MZ Shin Un 51 LH06-24A-A1 Red Opaque	1658	1.47	4.93	35.36	15.18	2.03	0.11	0.46	0.54	5.35	1.32	0.14	0.29	0.13	29.01	98.31 97.79	0.018	0.070	0.343	0.224	0.039	0.003	0.004	0.012	0.082	0.018	0.001	0.003	0.008	0.985	6.002
Un 51 LH06-24A A2 MZor apat Un 52 LH06-24A B1 MZ core	1660	0.19	5.04	36.94	15.14 15.36	2.89	0.08	0.66	0.67	5.63	1.45	0.08	0.20	-0.02	29.03 29.66	97.92 98.64	0.008	0.074	0.534	0.224	0.040	0.003	0.008	0.014	0.081	0.019	0.001	0.002	-0.001	0.994 1.004	5.997
Un 53 LH06-24A B1 MZ Ecore Un 54 LH06-24A B1 MZ Eint	1662	0.17	5.35	36.33	14.85 14.61	2.40	0.11	0.41	0.93	5.49 5.45	1.55	0.10	0.26	-0.02	28.92 29.49	96.96 97.81	0.007	0.075	0.528	0.221	0.036	0.005	0.004	0.023	0.081	0.021	0.001	0.003	-0.001	0.997 1.003	5.997
Un 57 LH06-24A C1 MZcore Un 58 LH06-24A C1 MZrim	1666 1667	0.10	4.98 4.70	35.86	15.79 16.63	3.00	0.37	0.67	0.54	5.69 5.68	1.20	0.11	0.27	-0.02	29.33 29.39	97.89 97.92	0.004	0.069	0.516	0.233	0.045	0.016	0.006	0.012	0.083	0.016	0.001	0.003	-0.001	0.999	6.003 5.998
Un 59 LH06-24A DI MZint Un 60 LH06-24A DI MZrimmy	1668 1669	0.12	4.81 4.89	36.24 36.71	16.16 15.25	3.46 2.87	0.11	0.35	0.41 0.43	5.52 5.56	1.12	0.08	0.03	0.00	29.49 29.01	97.91 97.68	0.005	0.067	0.520	0.238	0.051	0.005	0.003	0.009	0.081	0.015	0.001	0.000	0.000	0.995	5.997 6.002
Un 63 LH06-24A D3 MZint Un 64 LH06-24A D3 MZrim	1672 1673	0.15	5.23 5.14	38.29 36.86	14.42 14.46	2.60 2.68	0.08 0.10	0.33 0.51	0.31 0.52	5.51 5.42	1.22 1.33	0.08 0.07	0.14 0.00	0.02	29.03 29.05	97.41 96.35	0.006	0.073 0.072	0.555 0.537	0.214 0.216	0.039 0.040	0.003 0.004	0.003 0.005	0.007 0.011	0.081 0.080	0.016 0.018	0.001 0.001	0.002	0.001 0.001	0.998 1.002	6.000 5.995
LH06-24A Average (14 points) Std Dev LH06-24A		0.35 0.41	5.08 0.19	36.59 0.83	15.16 0.65	2.77 0.30	0.15 0.09	0.56 0.24	0.62 0.20	5.50 0.11	1.32 0.12	0.09 0.03	0.17 0.11	0.08 0.17	29.13 0.29	97.57 0.86	0.01 0.02	0.07 0.00	0.53 0.01	0.22 0.01	0.04 0.00	0.01 0.00	0.01 0.00	0.01 0.00	0.08 0.00	0.02 0.00	0.00 0.00	0.00 0.00	0.00 0.01	0.99 0.01	6.00 0.00
Un 67 LH-8a - A1 MZrim Un 70 LH-8a - A2 MZ Sint	1680 1683	0.14 0.17	3.59 4.87	34.39 38.45	19.29 15.37	4.31 3.08	0.45 0.20	0.37 0.37	0.30 0.36	6.11 5.45	0.84 1.29	0.10 0.10	0.04 0.31	-0.01 0.01	29.45 29.71	99.38 99.73	0.006	0.049	0.489 0.544	0.281 0.223	0.063 0.045	0.019	0.003	0.006	0.089 0.079	0.011 0.017	0.001	0.000	0.000	0.992 0.997	6.009 6.002
Un 72 LH-8a - B1 MZ int Un 74 LH-8a - B3 MZ core	1685 1687	0.51 0.15	4.56 6.12	34.13 37.46	16.88 13.80	3.30 3.02	0.24 0.03	0.42 0.55	0.54 0.55	5.82 4.93	1.17 2.25	0.12 0.06	0.12 0.21	0.17 0.00	29.13 30.01	97.12 99.15	0.021 0.006	0.063 0.084	0.490 0.530	0.249 0.200	$0.049 \\ 0.044$	0.010 0.001	0.004 0.005	0.012 0.012	0.085 0.071	0.016 0.030	$0.001 \\ 0.001$	$0.001 \\ 0.002$	$0.008 \\ 0.000$	0.992 1.007	6.001 5.993
Un 75 LH-8a - B3 MZ NErim Un 76 LH-8a - B3 MZ Nrim	1688 1689	0.15 0.21	5.52 6.16	37.06 37.44	15.43 13.48	3.34 2.78	0.02 0.23	0.51 0.30	0.52 0.92	5.25 4.96	1.70 2.33	0.11 0.15	0.25 0.31	-0.01 0.01	31.32 28.21	101.16 97.47	0.006 0.009	0.073 0.087	0.509 0.549	0.217 0.203	0.047 0.042	0.001 0.010	0.004 0.003	0.011 0.020	0.074 0.074	0.022 0.032	$0.001 \\ 0.001$	0.003 0.003	0.000 0.000	1.019 0.980	5.985 6.013
Un 77 LH-8a - C1 MZ core Un 78 LH-8a - C1 MZ Srim	1690 1691	0.31 0.17	4.58 4.27	35.34 35.92	16.72 17.56	3.55 3.62	0.99 0.21	0.73 0.52	0.39 0.34	5.42 5.74	1.20 1.08	0.10 0.08	0.09 0.17	-0.01 0.01	28.63 29.77	98.05 99.47	0.013 0.007	0.064 0.058	0.510 0.508	0.247 0.255	0.053 0.053	0.043 0.009	0.007 0.005	$0.008 \\ 0.007$	0.080 0.083	$0.016 \\ 0.014$	0.001 0.001	0.001 0.002	0.000 0.000	0.980 0.999	6.022 6.000
Un 79 LH-8a - C2 MZ Core Un 80 LH-8a - C2 MZ Wrim	1692 1693	0.20 0.14	4.26 3.65	35.72 34.29	17.30 18.42	3.67 4.44	0.19 0.79	0.54 0.28	0.40 0.21	5.82 5.93	1.16 0.93	0.10 0.05	0.00 0.09	0.00 0.00	29.62 29.64	98.96 98.86	0.008 0.006	0.058 0.050	0.508 0.486	0.252 0.268	0.054 0.065	0.008 0.034	0.005 0.003	0.008 0.004	0.084 0.086	0.015 0.012	0.001 0.000	$0.000 \\ 0.001$	0.000 0.000	0.998 0.996	6.000 6.011
Un 81 LH-8a - D1 MZ core Un 82 LH-8a - D1 MZ Wrim	1694 1695	0.26 0.23	5.32 4.32	40.91 35.45	13.61 17.11	2.54 3.68	0.02 0.37	0.69 0.55	0.36 0.40	5.18 5.38	1.61 1.18	0.06 0.09	0.09 0.12	0.00 0.01	29.26 29.12	99.91 97.98	0.010 0.009	0.073 0.060	0.583 0.510	0.199 0.252	0.037 0.055	0.001 0.016	0.006 0.005	0.008 0.009	0.075 0.079	0.021 0.016	0.001 0.001	$0.001 \\ 0.001$	0.000 0.001	0.988 0.993	6.003 6.005
LH-8a Average (12 points) <i>Std Dev LH-8a Average</i>		0.22 0.10	4.77 0.82	36.38 1.91	16.25 1.83	3.44 0.54	0.31 0.29	0.49 0.14	0.44 0.17	5.50 0.37	1.40 0.46	0.09 0.03	0.15 0.10	0.01 0.05	29.49 0.73	98.94 1.09	0.01 0.00	0.07 0.01	0.52 0.03	0.24 0.03	0.05 0.01	0.01 0.01	0.00 0.00	0.01 0.00	0.08 0.01	0.02 0.01	0.00 0.00	0.00 0.00	0.00 0.00	0.99 0.01	6.00 0.01
Un 83 VSG-9-2005, N34 Sunshine test Un 84 VSG92005, Sunshine B1 MZint	1696 1697	0.00	2.28 2.37	13.01 12.64	31.74 31.83	13.92 14.30	0.06 0.04	0.23 0.07	1.10 1.04	4.28 4.24	2.20 2.29	0.20 0.15	0.05 0.13	0.04	30.10 30.11	99.21 99.20	0.000	0.031	0.183 0.178	0.457 0.459	0.202	0.003	0.002	0.023	0.061	0.029 0.030	0.002	0.001	0.002	1.003 1.004	5.998 5.997
Un 85 VSG92005, Sunshine B1 MZrim Un 86 VSG92005, Sunshine B2 MZint	1698 1699	0.03 1.65	2.46	13.16	31.71 30.55	14.22 13.61	0.05	0.12	1.08	4.37	2.18	0.13	0.06	1.31	30.32 29.03	99.89 98.61	0.001	0.033	0.184	0.454	0.205	0.002	0.001	0.023	0.062	0.028	0.001	0.001	0.000	0.949	5.998 6.013
Un 87 VSG92005,Sunsh B2 MZ rim Un 88 VSG92005,Sunsh C1 MZint	1700 1701	0.02	2.42 2.49	12.83 12.94	31.85 31.52	14.22 14.56	0.03	0.05	1.04 1.05	4.28 4.22	2.15 2.04	0.20 0.24	0.15	-0.02 0.01	30.12 30.48	99.37 100.19	0.001	0.033	0.180	0.459 0.449	0.206	0.001	0.000	0.022	0.061	0.028	0.002	0.002	-0.001 0.001	1.003	5.998 5.997
Un 90 VSG92005,Sunsh C1 MZint2 Un 91 VSG92005,Sunsh C1 MZ	1711 1712	0.03 0.01	2.41 2.53	12.93 12.83	31.94 31.06	14.22 13.77	$\begin{array}{c} 0.10\\ 0.14\end{array}$	0.39 0.50	1.09 1.12	4.20 4.22	1.95 2.15	0.36 0.24	0.26 0.30	$\begin{array}{c} 0.00\\ 0.04 \end{array}$	29.79 29.68	99.68 98.62	$0.001 \\ 0.000$	0.033 0.035	0.182 0.182	0.462 0.452	0.207 0.202	$0.004 \\ 0.006$	0.004 0.005	0.023 0.024	0.060 0.061	$0.026 \\ 0.028$	$0.003 \\ 0.002$	0.003 0.003	$0.000 \\ 0.002$	0.995 0.999	6.003 6.001
Un 92 VSG92005,Sunsh D1 MZint Un 93 VSG92005,Sunsh D1 MZtip	1713 1714	$\begin{array}{c} 0.01 \\ 0.00 \end{array}$	2.50 2.47	12.74 12.83	31.24 31.32	13.51 13.52	0.13 0.10	0.50 0.32	1.30 1.35	4.22 4.31	2.18 2.32	0.33 0.23	0.13 0.24	-0.01 -0.02	30.24 30.03	99.03 99.04	$0.001 \\ 0.000$	0.034 0.034	0.179 0.181	0.450 0.452	0.196 0.197	0.005 0.004	0.004 0.003	$0.027 \\ 0.028$	$0.060 \\ 0.062$	0.028 0.030	$0.003 \\ 0.002$	0.001 0.003	0.000 -0.001	1.006 1.003	5.995 5.999
Un 94 VSG92005,Sunsh D1 MZSrim Un 96 VSG92005,Sunsh E1 MZ	1715 1717	2.23 0.03	2.29 2.41	12.41 13.10	30.40 31.53	13.19 13.64	0.06 0.05	0.27 0.17	0.84 1.11	4.02 4.31	2.00 2.29	0.24 0.23	0.26 0.22	1.63 -0.04	28.29 30.28	98.13 99.33	0.086 0.001	0.031 0.033	0.172 0.184	0.431 0.453	$0.188 \\ 0.198$	0.002 0.002	0.002 0.002	0.017 0.023	0.057 0.062	0.026 0.030	$0.002 \\ 0.002$	0.003 0.002	0.075 -0.002	0.928 1.007	6.020 5.996
Sunshine Lode VSG92005 Aver. (12 point Std Dev Sunshine Lode	5)	0.34 0.73	2.40 0.10	12.86 0.19	31.39 0.48	13.89 0.39	0.08 0.04	0.26 0.15	1.09 0.13	4.23 0.10	2.14 0.13	0.22 0.07	0.17 0.08	0.24 0.55	29.87 0.60	99.19 0.55	0.01 0.03	0.03 0.00	0.18 0.00	0.45 0.01	0.20 0.01	0.00 0.00	0.00 0.00	0.02 0.00	0.06 0.00	0.03 0.00	0.00 0.00	0.00 0.00	0.01 0.03	0.99 0.02	6.00 0.01
Un 100 07WP127B A1 MZint Un 101 07WP127B A1 MZint2	1721 1722	-0.03 -0.02	0.39 0.26	6.60 6.30	33.09 32.81	24.91 25.50	0.06 0.06	0.58 0.71	-0.02 0.00	3.90 3.99	0.67 0.66	0.14 0.14	0.06 0.10	0.01 0.01	30.87 30.61	101.23 101.14	-0.001 -0.001	0.005 0.004	0.091 0.087	0.467 0.465	0.354 0.364	0.003 0.003	$0.005 \\ 0.006$	$0.000 \\ 0.000$	0.055 0.056	0.009 0.009	0.001 0.001	0.001 0.001	0.000 0.001	1.007 1.002	5.995 5.997
Un 102 07WP127B A2 MZ Un 103 07WP127B A3 MZ	1723 1724	0.02 -0.04	0.48 0.36	7.15 6.32	32.23 33.17	24.55 24.95	0.15 0.08	0.74 0.88	0.11 0.03	4.11 4.03	0.67 0.51	0.12 0.10	0.11 0.04	-0.02 -0.02	30.44 30.66	100.85 101.07	0.001 -0.001	0.006 0.005	0.099 0.087	0.458 0.470	0.351 0.356	0.006 0.004	$0.007 \\ 0.008$	0.002 0.001	0.058 0.057	0.009 0.007	0.001 0.001	$0.001 \\ 0.000$	-0.001 -0.001	1.000 1.004	5.999 5.996
Un 104 07WP127B A4 MZ Un 105 07WP127B A5 MZcore	1725 1726	-0.02 -0.01	0.19 0.13	6.98 6.09	33.33 32.25	24.40 27.44	0.07 0.02	0.59 0.16	0.05 0.00	4.13 4.14	0.53 0.53	0.09 0.07	0.03 0.05	-0.02 -0.03	30.56 30.57	100.92 101.42	-0.001 0.000	0.003 0.002	0.097 0.084	0.473 0.456	0.349 0.391	0.003 0.001	0.005 0.001	0.001 0.000	0.058 0.058	0.007 0.007	0.001 0.001	$0.000 \\ 0.000$	-0.001 -0.001	1.003 1.000	5.998 6.000
Un 106 07WP127B A5 MZrim Un 109 07WP127B B2 MZint	1727 1730	0.00 -0.03	0.27 0.33	6.47 6.89	32.86 33.05	26.05 24.92	0.05 0.05	0.28 0.65	-0.03 0.02	4.14 4.25	0.46 0.70	0.13 0.13	0.11 0.21	-0.01 0.00	30.82 30.31	101.61 101.48	0.000 -0.001	0.004 0.004	0.089 0.096	0.463 0.470	0.369 0.357	0.002 0.002	0.002 0.006	-0.001 0.000	0.058 0.060	0.006 0.009	0.001 0.001	0.001 0.002	0.000 0.000	1.003 0.996	5.998 6.002
Un 110 07WP127B B2 MZrim Un 111 07WP127B C1 MZrim	1731 1732	-0.03 0.05	0.29 0.24	7.11 6.60	33.50 32.92	24.70 25.14	0.04 0.17	0.66 0.87	0.00 0.07	4.10 4.13	0.50 0.49	0.09 0.09	0.18 0.15	-0.02 -0.03	30.60 30.76	101.73 101.67	-0.001 0.002	0.004 0.003	0.098 0.091	0.473 0.463	0.352 0.357	0.002 0.007	$0.006 \\ 0.008$	0.000 0.002	$0.058 \\ 0.058$	0.006 0.006	0.001 0.001	0.002 0.002	-0.001 -0.001	1.000 1.001	5.999 5.999
Un 112 07WP127B C2 MZcore Un 114 07WP127B C4 MZ	1733 1735	-0.02 0.00	0.24 0.30	6.60 6.63	32.65 32.79	25.53 25.08	0.04 0.07	0.75 0.83	0.02 0.04	4.13 4.29	0.55 0.45	0.15 0.06	0.11 0.07	0.00 -0.02	30.27 29.71	101.02 100.29	-0.001 0.000	0.003 0.004	0.092 0.093	0.465 0.473	0.366 0.364	0.002 0.003	0.007 0.007	0.000 0.001	0.059 0.062	0.007 0.006	0.001 0.000	0.001 0.001	0.000 -0.001	0.997 0.991	6.000 6.005
Un 117 07WP127B D3 MZ Un 118 07WP127B E1 MZ	1738 1739	-0.03 0.06	0.29 0.38	7.30 6.89	33.04 32.47	24.62 24.71	0.07 0.26	0.65 0.74	0.01 0.13	4.07 3.99	0.68 0.72	0.09 0.12	0.06 0.04	-0.02 -0.01	30.38 30.26	101.21 100.76	-0.001 0.002	0.004 0.005	0.101 0.096	0.470 0.462	0.353 0.354	0.003 0.011	0.006 0.007	0.000 0.003	0.058 0.057	0.009 0.009	0.001 0.001	$0.001 \\ 0.000$	-0.001 -0.001	0.999 0.996	6.000 6.003
07WP127B Roberts S Average (14 points) <i>Std Dev 07WP127B</i>		-0.01 0.03	0.30 0.09	6.71 0.34	32.87 0.36	25.18 0.76	0.09 0.06	0.65 0.20	0.03 0.05	4.10 0.10	0.58 0.09	0.11 0.03	0.09 0.05	-0.01 0.01	30.49 0.29	101.17 0.38	0.00 0.00	0.00 0.00	0.09 0.00	0.47 0.01	0.36 0.01	0.00 0.00	0.01 0.00	0.00 0.00	0.06 0.00	0.01 0.00	0.00 0.00	0.00 0.00	0.00 0.00	1.00 0.00	6.00 0.00
Un 119 LH-12, KCV9-A MZint Un 120 LH-12, KCV9-A1 MZint	1740 1741	0.11 0.07	5.05 4.80	35.31 35.38	16.79 17.12	3.75 3.71	0.10 0.06	0.29 0.19	0.96 0.77	5.69 5.53	1.57 1.39	0.10 0.13	0.14 0.14	$0.00 \\ 0.00$	29.81 29.57	99.67 98.83	0.004 0.003	0.069 0.066	0.499 0.505	0.243 0.250	0.055 0.055	0.004 0.003	0.003 0.002	0.020 0.016	0.082 0.080	0.021 0.018	0.001 0.001	0.002 0.001	0.000 0.000	0.998 1.000	6.000 6.000
Un 121 LH-12, KCV9-A2 MZcore Un 122 LH-12, KCV9-A2 MZint	1742 1743	0.04	4.85 5.19	35.48	16.95 16.23	3.67 3.44	0.04 0.04	0.24 0.33	0.67 0.77	5.78 5.55	1.33 1.69	0.11	0.16	0.02	29.82 29.61	99.18 98 90	0.002	0.066	0.503	0.247 0.237	0.054	0.002	0.002	0.014	0.084	0.018	0.001	0.002	0.001	1.003	5.998 5.999
Un 123 LH-12, KCV9-A2 MZrim Un 124 LH-12 KCV9-A2 MZWrim	1744 1745	0.10	5.13 4.89	36.20 35.10	15.85 16.95	3.22 3.74	0.11	0.29	0.94	5.45 5.73	1.73	0.00	0.29	0.00	29.15 29.82	98.47 99.51	0.004	0.071	0.520	0.234	0.048	0.005	0.003	0.020	0.080	0.023	0.000	0.003	0.000	0.994	6.005 5.998
Un 125 LH-12, KCV9-A3 MZint Un 126 LH-12 KCV9-A3 MZin	1746 1747	0.11	4.74	34.76 35.86	16.80 17.19	3.69	0.49	0.39	0.80	5.67 5.58	1.47	0.02	0.24	0.01	29.80 29.10	98.98 99.81	0.004	0.065	0.492	0.244	0.054	0.021	0.004	0.012	0.082	0.019	0.000	0.003	0.000	1.000	6.005 6.018
Un 127 LH-12, KCV9-B1 MZcore Un 128 LH-12, KCV9-B1 MZint	1748 1749	0.26	4.68	35.42	16.99 15 35	3.55	0.04	0.57	0.79	5.77 5.44	1.34 1.64	0.09	0.06	-0.01	29.13 29.63	98.65 97.58	0.010	0.065	0.508	0.250	0.052	0.002	0.005	0.017	0.084	0.018	0.001	0.001	-0.001	0.990	6.002 5.996
Un 129 LH-12, KCV9-B1 MZrim Un 130 LH-12 KCV9-B1 MZNrim	1750	0.17	4.34 4.93	33.99 35.43	18.05 16.36	4.21	0.15	0.57	0.63	5.75 5.42	1.27	0.12	0.14	0.02	29.17 29.53	98.59 90 35	0.007	0.060	0.487	0.265	0.062	0.006	0.005	0.013	0.084	0.017	0.001	0.002	0.001	0.992	6.004
Un 131 LH-12, KCV9-B1 MZErim Un 134 LH-12 KCV9-D1 MZerra	1752	0.21	4.83 4.99	35.25	16.79 16.55	3.67 3.73	0.10	0.67	0.87	5.53 5.47	1.53	0.12	0.09	0.01	29.13	98.79 98.60	0.008	0.067	0.505	0.247	0.054	0.004	0.006	0.019	0.081	0.020	0.001	0.001	0.000	0.990	6.004 6.005
Un 135 LH-12, KCV9-D1 MZrim Un 136 LH-12 KCV9-D2 MZrore	1756	0.31	4.64	33.85	16.89 16.22	3.77 3.57	0.09	1.35	0.70	5.46 5.42	1.50	0.13	0.34	-0.02	29.60 29.26	98.61 98.04	0.012	0.064	0.482	0.247	0.055	0.004	0.012	0.015	0.079	0.020	0.001	0.002	-0.001	1.000	5.994 6.004
Un 137 LH-12, KCV9-D2 MZrim	1758	0.15	5.18	35.08 35.11	16.23 16.44	3.61 3.52	0.09	0.40	0.94	5.42 5.59 5.64	1.04 1.70	0.13	0.27	-0.02	29.20 29.89 20.69	99.05	0.003	0.071	0.498	0.230	0.053	0.004	0.004	0.020	0.079	0.022	0.001	0.002	-0.001	1.005	5.996 5.998
LH-12, kcv-9 Average (18 points) Std Dev LH-12	1/00	0.16 0.16 0.08	4.92 4.89 0.22	35.12 35.17 0.58	10.59 16.67 <i>0.56</i>	3.35 3.63 0.21	0.12 0.16 0.16	0.45 0.52 0.27	0.81 0.81 0.14	5.00 5.58 0.12	1.34 1.52 0.14	0.10 0.09 0.04	0.11 0.18 0.08	0.00 0.01 <i>0.03</i>	29.08 29.49 0.28	98.76 98.90 0.49	0.000 0.01 <i>0.00</i>	0.007 0.07 0.00	0.499 0.50 0.01	0.24 2 0.24 0.01	0.05 0.05 0.00	0.003 0.01 0.01	0.004 0.00 <i>0.00</i>	0.017 0.02 0.00	0.082 0.08 0.00	0.020 0.02 0.00	0.001 0.00 <i>0.00</i>	0.00 0.00	0.00 0.00	1.00 0.01	6.00 0.01
AVERAGES:																															
Li	ne Numbeı S	iO2 Oxi(S	5m2O3 O No	12O3 Oxi (Ce2O3 C I	La2O3 () Ca	aO Oxi Tl	hO2 Ox Y2	2O3 Oxi Pi	r2O3 O G	d2O3 C U	O2 Ox Pb	O Oxid A	12O3 Ox P2	205 Oxid Oxi	ide Totals	Si Formı S	m Formu N	d Formu Co	e Formı La	n Formul Ca	a Formu T	h Formu Y	Formul P	r Formu G	d Formt U	Formul Pl	b Form A	l Form P	Formt Fo	rmula Totals
LH12c2 Average (27 points) LH06-24A Average (14 points)		0.32 0.35	5.01 5.08	34.94 36.59	16.19 15.16	3.40 2.77	0.31 0.15	0.63 0.56	0.88 0.62	5.44 5.50	1.43 1.32	0.09 0.09	0.08 0.17	0.05 0.08	29.29 29.13	98.05 97.57	0.01 0.01	0.07 0.07	0.50 0.53	0.24 0.22	0.05 0.04	0.01 0.01	0.01 0.01	0.02 0.01	$\begin{array}{c} 0.08\\ 0.08\end{array}$	0.02 0.02	$0.00 \\ 0.00$	$0.00 \\ 0.00$	$0.00 \\ 0.00$	0.99 0.99	6.00 6.00
LH-8a Average (12 points) LH-12, kcv-9 Average (18 points)		0.22 0.16	4.77 4.89	36.38 35.17	16.25 16.67	3.44 3.63	0.31 0.16	0.49 0.52	0.44 0.81	5.50 5.58	1.40 1.52	0.09 0.09	0.15 0.18	0.01 0.01	29.49 29.49	98.94 98.90	0.009 0.007	0.066 0.067	0.518 0.501	0.237 0.244	0.051 0.053	0.013 0.007	0.004 0.005	0.009 0.017	0.080 0.081	0.018 0.020	0.001 0.001	0.002 0.002	0.001 0.000	0.995 0.996	6.004 6.001
Sunshine Lode VSG92005 Aver. (12 points) 07WP127B Roberts S Average (14 points)		0.34 -0.01	2.40 0.30	12.86 6.71	31.39 32.87	13.89 25.18	0.08 0.09	0.26 0.65	1.09 0.03	4.23 4.10	2.14 0.58	0.22 0.11	0.17 0.09	0.24 -0.01	29.87 30.49	99.19 101.17	0.01 0.000	0.03 0.004	0.18 0.093	0.45 0.466	0.20 0.360	0.00 0.004	0.00 0.006	0.02 0.001	0.06 0.058	0.03 0.007	0.00 0.001	0.00 0.001	0.01 -0.001	0.99 1.000	6.00 5.999
Y	2O3 Oxide L	a2O3 O: (Ce2O3 O: Pr	•203 Oxic)	1d2O3 (S	Sm2O3 (E1	u G	d2O3 () Th	O2 Oxi U	O2 Oxi Pl	bO Oxi C	aO Ox Si(O2 Oxid A	12O3 Ox P2	205 Oxid Oxi	ide Totals															
LH12c2 Average (27 points) LH06-24A Average (14 points)	0.88	3.40 2 77	16.19 15 16	5.44	34.94 36 59	5.01 N	A	1.43	0.63	0.09	0.08	0.31	0.32	0.05	29.29 29.13	98.05 97 57															
LH-8a Average (12 points) LH-12, kcv-9 Average (18 points)	0.44 0.81	3.44 3.63	16.25 16.67	5.50 5.58	36.38 35.17	4.77 N 4.89 N	A A	1.40 1.52	0.49 0.52	0.09 0.09	0.15 0.18	0.31 0.16	0.22 0.16	0.01 0.01	29.49 29.49	98.94 98.90															

Ell'12, kev 9 Hveluge (10 points)	0.01	5.05	10.07	5.50	55.17	4.07 101	1.52	0.52	0.07	0.10	0.10	0.10	0.01	27.47	20.20
Sunshine Lode VSG92005 Aver. (12 poin	1.09	13.89	31.39	4.23	12.86	2.40 NA	2.14	0.26	0.22	0.17	0.08	0.34	0.24	29.87	99.19
07WP127B Roberts S Average (14 points	0.03	25.18	32.87	4.10	6.71	0.30 NA	0.58	0.65	0.11	0.09	0.09	-0.01	-0.01	30.49	101.17

APPENDIX C4 - Lemhi Carbonates	Line	MgO Ox H	FeO Oxi M	InO Ox C	CaO Oxi I	BaO Oxi S	SrO Oxi S	SiO2 Oxi (Ce2O3 O (Oxide Tot	Mg For	Fe Form I	Mn For	Ca For	Ba For	Sr Form	Si Form	Ce Form l	Formula Totals
Un 6 07WP127B C1 carbonate- Roberts South	38	11.02	4.18	1.58	37.83	0.04	0.17	-0.01	0.09	100.10	0.266	0.057	0.022	0.656	0.000	0.002	0.000	0.001	5.001
Un 7 07WP127B C3 carbonate-	39	17.54	6.16	1.86	27.72	-0.03	0.34	-0.03	0.03	99.80	0.415	0.082	0.025	0.472	0.000	0.003	0.000	0.000	4.999
Un 8 07WP127B C4 clear carb	40	17.28	6.39	1.53	28.01	-0.03	0.32	-0.01	0.08	99.74	0.410	0.085	0.021	0.477	0.000	0.003	0.000	0.000	4.998
Un 9 07WP127B C1 clear carb	41	5.77	2.79	1.68	44.54	0.05	0.20	0.00	-0.03	99.60	0.142	0.038	0.023	0.787	0.000	0.002	0.000	0.000	4.996
Un 10 07WP127B C5 MZ?	42	-0.03	-0.42	-0.05	0.06	-13.59	0.09	0.02	35.85	73.34	-0.001	-0.007	-0.001	0.001	-0.103	0.001	0.000	0.255	4.509
Un 11 07WP127B A5 clear carb	43	0.06	0.90	2.42	54.40	0.05	0.05	-0.01	0.00	101.16	0.001	0.013	0.034	0.975	0.000	0.001	0.000	0.000	5.012
Un 12 07WP127B A5 dusty carb	44	17.43	6.56	1.57	27.76	0.02	0.28	-0.02	0.03	99.80	0.413	0.087	0.021	0.473	0.000	0.003	0.000	0.000	4.998
Un 13 07WP127B A6 dusty carb	45	0.37	0.44	1.13	53.25	0.01	0.10	-0.01	0.15	99.43	0.009	0.006	0.016	0.955	0.000	0.001	0.000	0.001	4.994
Un 14 07WP127B B5 dusty carb	46	1.12	0.93	1.07	51.92	-0.05	0.13	0.42	0.05	99.76	0.028	0.013	0.015	0.924	0.000	0.001	0.007	0.000	4.991
Un 15 07WP127B B6 dusty carb	47	0.45	1.40	0.90	51.60	0.03	0.09	1.85	0.03	100.63	0.011	0.019	0.013	0.908	0.000	0.001	0.030	0.000	4.976
Un 16 07WP127B B7 big clear carb	48	17.02	6.11	1.97	28.21	-0.09	0.22	-0.05	0.00	99.60	0.404	0.081	0.027	0.481	-0.001	0.002	-0.001	0.000	4.997
Un 17 07WP127B B8 clear pink?carb	49	17.02	6.04	1.68	28.26	0.00	0.18	-0.03	0.11	99.50	0.404	0.080	0.023	0.482	0.000	0.002	0.000	0.001	4.995
Un 18 07WP127B B9 small Ce min	50	-0.06	-0.23	0.07	0.31	-12.86	-0.02	0.14	35.54	73.78	-0.002	-0.004	0.001	0.006	-0.098	0.000	0.003	0.254	4.515
Un 19 07WP127B B10 dusty carb	51	16.70	6.59	1.66	27.79	0.05	0.19	-0.04	0.04	99.21	0.397	0.088	0.022	0.475	0.000	0.002	-0.001	0.000	4.993
Un 20 07WP127B F1 dusty carb	52	0.28	0.69	1.52	52.40	-0.01	0.18	0.17	0.06	99.32	0.007	0.010	0.022	0.940	0.000	0.002	0.003	0.000	4.990
Un 21 07WP127B F2 clear carb	53	15.97	7.72	1.76	27.66	-0.05	0.59	-0.06	0.03	99.47	0.383	0.104	0.024	0.476	0.000	0.006	-0.001	0.000	4.996
Un 22 07WP127B F2 big clear carb	54	16.38	6.96	2.09	27.71	0.02	0.39	-0.07	0.04	99.48	0.391	0.093	0.028	0.475	0.000	0.004	-0.001	0.000	4.996
Un 23 07WP127B F3 big clear carb	55	16.81	6.77	1.71	27.89	0.05	0.36	-0.05	0.14	99.68	0.400	0.090	0.023	0.477	0.000	0.003	-0.001	0.001	4.997
Un 24 07WP127B F4 semi clear carb	56	14.05	5.93	2.02	32.31	0.00	0.35	0.00	0.13	100.22	0.337	0.080	0.027	0.557	0.000	0.003	0.000	0.001	5.002
Un 29 07WP120b A3 unk clear rim LH sill	61	30.07	19.20	0.47	1.89	-0.01	0.00	1.71	0.04	100.92	0.684	0.245	0.006	0.031	0.000	0.000	0.026	0.000	4.983
Un 31 07WP120b B1a unk dusty rim	63	28.08	15.37	0.33	0.76	0.04	0.05	6.60	-0.01	100.71	0.615	0.189	0.004	0.012	0.000	0.000	0.097	0.000	4.910
Un 36 07WP120b C1 Carbonate Vein	68	17.49	6.31	0.37	28.88	0.11	0.30	-0.02	-0.05	99.72	0.413	0.084	0.005	0.490	0.001	0.003	0.000	0.000	4.998
Un 37 07WP120b C2 Carbonate Vein	69	17.21	6.23	0.34	29.67	-0.02	0.31	-0.05	-0.04	99.90	0.407	0.083	0.005	0.504	0.000	0.003	-0.001	0.000	5.000
Un 38 07WP120b C3 Carbonate Vug Xstal	70	18.42	4.83	0.62	29.09	-0.01	0.04	0.05	-0.05	99.72	0.432	0.063	0.008	0.490	0.000	0.000	0.001	0.000	4.997
Un 39 07WP120b C4 Carbonate Vug Xstal	71	18.06	5.38	0.55	28.82	0.02	0.10	-0.01	0.04	99.56	0.425	0.071	0.007	0.487	0.000	0.001	0.000	0.000	4.996
Un 40 07WP120b C5 later Carbonate Vug fill	72	18.35	5.34	0.58	28.14	0.04	0.11	-0.02	-0.08	99.25	0.431	0.071	0.008	0.476	0.000	0.001	0.000	0.000	4.993
Un 41 07WP120b C6 innermost Carbonate Vug	fi 73	18.11	5.21	0.74	29.38	-0.01	0.09	-0.01	0.00	100.00	0.425	0.069	0.010	0.496	0.000	0.001	0.000	0.000	5.000
Un 42 LH06-23B A1 unk gray LH sill	74	31.50	18.04	0.26	1.14	-0.02	0.01	2.28	0.00	101.24	0.707	0.227	0.003	0.018	0.000	0.000	0.034	0.000	4.978
Un 43 LH06-23B A1a unk gray	75	31.19	18.37	0.47	0.58	0.02	-0.01	0.14	0.00	98.77	0.718	0.237	0.006	0.010	0.000	0.000	0.002	0.000	4.986
Un 45 LH06-23B B1 unk gray rhomb	77	29.88	19.51	0.48	1.48	0.07	0.07	1.06	-0.07	100.03	0.686	0.251	0.006	0.024	0.000	0.001	0.016	0.000	4.984
Un 46 LH06-23B B1a unk gray rhomb	78	29.07	16.69	0.65	4.41	0.03	0.04	1.30	-0.09	99.92	0.664	0.214	0.008	0.072	0.000	0.000	0.020	0.000	4.980
Un 47 LH06-23B B1b unk gray rhomb tip	79	16.44	5.24	0.75	29.99	0.04	0.29	0.22	0.00	99.39	0.389	0.070	0.010	0.510	0.000	0.003	0.004	0.000	4.991
Un 48 LH06-23B C1 unk gray replace	80	17.06	4.99	0.05	24.84	0.08	0.38	8.23	0.08	103.75	0.374	0.061	0.001	0.391	0.000	0.003	0.121	0.000	4.915
Un 50 LH06-23B D1 Vug carb	82	23.15	28.24	0.55	2.95	-0.02	0.02	0.00	0.03	100.06	0.559	0.383	0.008	0.051	0.000	0.000	0.000	0.000	5.001
Un 53 LH06-23B E1 Unk gray clear	85	29.27	19.22	0.24	0.37	0.01	0.05	4.69	0.10	102.07	0.651	0.240	0.003	0.006	0.000	0.000	0.070	0.001	4.950
Un 54 LH06-23B F1 Unk gray clear	86	31.64	11.94	0.24	6.00	0.12	0.04	1.98	-0.01	100.65	0.705	0.149	0.003	0.096	0.001	0.000	0.030	0.000	4.977
Un 55 LH06-23B F2 Carb vein	87	17.05	5.19	0.72	29.36	0.04	0.40	-0.01	-0.08	99.19	0.403	0.069	0.010	0.499	0.000	0.004	0.000	0.000	4.992

Analyses include CO2 in the oxide weight percent (by stoichiometry) and the structural formula

APPENDIX D1 - Sample Locations - SHRIMP Detrital Zircon and Syenite Samples at Lemhi Pass

Sample No.	Lithology	Waypoint	NAD 27 Zone (NAD 27) Ea	asting (m)	Northing (m)	Comments	
DZ-LP1	Quartzite - wk. rust; not analysed	73	3 12	304616	4981581	Gunsight Fm. ?	Copper Qn FT Stop 6 (wk. alt.)
DZ-LP2	Quartzite - fresher	74	1 12	304590	4981545	5 Gunsight Fm. ?	Copper Qn FT Stop 6 fresher
DZ-LP3	Silicified arg. Siltite?	77	7 12	303405	4984801	Apple Creek/Gunsight	??? Lucky Horseshoe Adit 2 portal
DZ-LP4	ArgillSiltite; not analysed	87	7 12	306102	4983918	3 Siltite-Argill.	Lemhi Pass/Horseshoe Bend Crk. Outcrop
JA06-01	Syenite - fresh feldspars	88	3 12	306554	4981060) Large trench, N end, S cut by sparse quartz-s	Sec. 23, W of Cont. Divide road specular hematite veins
	DZ samples collected by Virginia C JA sample collected by Jeremy Ale	Gillerman, 200 exander, 2006	6				

Description

- DZ-LP-2 Quartzite-gray, planar laminated. Gunsight Fm. (Lund)
- DZ-LP-3 Quartzite-silicified, veined, LuckyHorseshoe Adit. AppleCrk?? Or Gunsight??
- JA-06-01 "Syenite" Intrusive-abund.FeOx, K-feldspar alteration alkali feldspars fresh

APPENDIX D2: LEMHI PASS SAMPLE JA06-1 : SYENITE WITH ZIRCONS

JA06-1

APPENDIX D2: SHRIMP JA06-1

Table xyz. Summary of SHRIMP U-Pb zircon results for sample JA061.

								Total I	Ratios			Ra	adiogen	ic Rati	os		_		Age (I	Ma)				Preferr	ed Ag	je <u>(</u> Ma)	Total	Ratios	Ra	adiogeni	c Ratio	S				
Grain.	U	Th	Th/U ²	²⁰⁶ Pb*	²⁰⁴ Pb/	f ₂₀₆	²³⁸ U/		²⁰⁷ Pb/		²⁰⁶ Pb/		²⁰⁷ Pb/		²⁰⁷ Pb/		_	²⁰⁶ Pb/	20	⁷ Pb/	%		Grain.		9	6 ²³⁸ U/		²⁰⁷ Pb/		²⁰⁷ Pb/	:	²⁰⁶ Pb/			²⁰⁷ Pb/	
spot	(ppm)	(ppm)	((ppm)	²⁰⁶ Pb	%	²⁰⁶ Pb	±	²⁰⁶ Pb	±	²³⁸ U	±	²³⁵ U	±	²⁰⁶ Pb	±	ρ	²³⁸ U	± 20	⁰⁶ Pb ±	E Disc	-	spot		± Di	sc ²⁰⁶ Pb	±	²⁰⁶ Pb	±	²³⁵ U	±	²³⁸ U	±	ρ	²⁰⁶ Pb	±
1.1	506	485	0.96	38	0.000064	0.10	11.557	0.125	0.0590	0.0005	0.0864	0.0010						534	6				1.1	534	6	11.557	0.125	0.0590	0.0005			0.0864	0.0010			
2.1	329	290	0.88	25	0.000009	0.01	11.334	0.378	0.0585	0.0007	0.0882	0.0030						545	18				2.1	545	18	11.334	0.378	0.0585	0.0007			0.0882	0.0030			
3.1	512	440	0.86	38	-	0.08	11.589	0.127	0.0587	0.0006	0.0862	0.0010						533	6				3.1	533	6	11.589	0.127	0.0587	0.0006			0.0862	0.0010			
4.1	135	53	0.39	55	0.000071	0.10	2.110	0.026	0.1624	0.0013	0.4735	0.0057	10.545	0.155	0.1615	0.0013	0.825	2499	25	2472	14 -1	1	5.1	532	6	11.563	0.140	0.0624	0.0008			0.0860	0.0011			
5.1	263	241	0.92	20	0.000457	0.53	11.563	0.140	0.0624	0.0008	0.0860	0.0011						532	6				6.1	529	6	11.677	0.127	0.0588	0.0005			0.0856	0.0009			
6.1	664	710	1.07	49	800000.0	0.10	11.677	0.127	0.0588	0.0005	0.0856	0.0009						529	6				7.1	519	6	11.897	0.130	0.0592	0.0005			0.0839	0.0009			
7.1	505	490	0.97	36	0.000082	0.18	11.897	0.130	0.0592	0.0005	0.0839	0.0009						519	6				8.1	530	6	11.665	0.129	0.0588	0.0007			0.0856	0.0010			
8.1	427	344	0.81	31	0.000103	0.10	11.665	0.129	0.0588	0.0007	0.0856	0.0010						530	6				9.1	531	6	11.645	0.130	0.0581	0.0006			0.0859	0.0010			
9.1	405	430	1.06	30	0.000042	0.01	11.645	0.130	0.0581	0.0006	0.0859	0.0010						531	6				10.1	537	6	11.513	0.121	0.0582	0.0004			0.0869	0.0009			
10.1	995	1440	1.45	74	0.000034	<0.01	11.513	0.121	0.0582	0.0004	0.0869	0.0009						537	6				11.1	538	6	11.482	0.137	0.0592	0.0008			0.0870	0.0011			
11.1	218	206	0.94	16	0.000136	0.12	11.482	0.137	0.0592	0.0008	0.0870	0.0011						538	6				12.1	521	6	11.864	0.135	0.0586	0.0006			0.0842	0.0010			
12.1	344	243	0.71	25	0.000042	0.10	11.864	0.135	0.0586	0.0006	0.0842	0.0010						521	6				14.1	526	6	11.685	0.125	0.0639	0.0026			0.0850	0.0010			
13.1	325	142	0.44	128	0.000098	0.14	2.178	0.024	0.1629	0.0005	0.4584	0.0050	10.217	0.119	0.1616	0.0006	0.943	2433	22	2473	7 2	2	15.1	518	6	11.929	0.142	0.0599	0.0008			0.0836	0.0010			
14.1	1068	1633	1.53	78	0.000565	0.73	11.685	0.125	0.0639	0.0026	0.0850	0.0010						526	6				16.1	515	6	12.027	0.135	0.0582	0.0006			0.0831	0.0009			
15.1	298	255	0.86	21	0.000041	0.28	11.929	0.142	0.0599	0.0008	0.0836	0.0010						518	6				17.1	532	6	11.624	0.135	0.0575	0.0007			0.0861	0.0010			
16.1	614	774	1.26	44	0.000038	0.07	12.027	0.135	0.0582	0.0006	0.0831	0.0009						515	6				17.2	526	6	11.755	0.130	0.0577	0.0006			0.0851	0.0010			
17.1	339	301	0.89	25	-	<0.01	11.624	0.135	0.0575	0.0007	0.0861	0.0010						532	6				18.1	526	6	11.777	0.128	0.0574	0.0005			0.0850	0.0009			
17.2	591	549	0.93	43	-	<0.01	11.755	0.130	0.0577	0.0006	0.0851	0.0010						526	6				19.1	524	6	11.794	0.138	0.0589	0.0008			0.0847	0.0010			
18.1	709	581	0.82	52	0.000041	<0.01	11.777	0.128	0.0574	0.0005	0.0850	0.0009						526	6				4.1	2472	14	-1 2.110	0.026	0.1624	0.0013	10.545	0.155	0.4735	0.0057	0.825	0.1615	0.0013
19.1	333	280	0.84	24	-	0.13	11.794	0.138	0.0589	0.0008	0.0847	0.0010						524	6				13.1	2473	7	2 2.178	0.024	0.1629	0.0005	10.217	0.119	0.4584	0.0050	0.943	0.1616	0.0006

Notes : 1. Uncertainties given at the one level.

- 2. Error in Temora reference zircon calibration was 0.65% for the analytical session.
 - (not included in above errors but required when comparing²⁰⁶Pb/²³⁸U data from different mounts).
- 3. f_{206} % denotes the percentage of ²⁰⁶Pb that is common Pb.
- 4. For areas older than ~800 Ma correction for common Pb made using the measured Pb/²⁰⁶Pb ratio.
- 5. For areas younger than ~800 Ma correction for common Pb made using the measured*U/206Pb and 207Pb/206Pb ratios
 - following Tera and Wasserburg (1972) as outlined in Williams (1998).
- 6. For % Disc, 0% denotes a concordant analysis.

Age ± no std ± include std

529.1 2.9 0.85 4.5

Notes :

APPENDIX D3: Sample DZ_LP_2 SHRIMP DATA Detrital Zircon in Proterozoic Quartzite

APPENDIX D3 - SHRIMP Sample DZ-LP-2 Table *xyz*. Summary of SHRIMP U-Pb zircon results for sample DZ-LP-2.

					204-0		238	Total	Ratios		206-01/	Ra	adiogen	ic Rati	0S			206	Age	(Ma)					Age (N	la)	2	38	Total	Ratios	Ra	adiogeni	c Ratio	206 DL (207	
Grair	n. U	Th	Th/U ^{2°}	°°Pb*	²⁰⁴ Pb/	f ₂₀₆	200U/		²⁰⁶ Pb/		238 J		235 J		²⁰⁶ Pb/			238 J	2	²⁰⁶ D		%	G	rain.	²⁰⁶ Pb/		6 ⁻ 2	06pu		²⁰⁶ Pb/		235 J		238 J			²⁰⁶ Pb/	
spo	t (ppm)(ppm)) (r	ppm)	200 Pb	%	Pp	±	200 Pb	±	2000	±	2000	±	200Pb	±	ρ	2000	±	Pb	±	Disc	S	pot	Pb	± D	SC 2	°°Pb	±	Pb	±	2000	±	2000	±	ρ	Pb	±
1.	1 19	4 50	0.26	54	0.000092	0.14	3.071	0.037	0.1061	0.0007	0.3252	0.0039	4.703	0.069	0.1049	0.0009	0.825	1815	19	1712	15	-6		46.1	1371	21	2	4.316	0.058	0.0881	0.0009	2.792	0.048	0.2315	0.0031	0.775	0.0875	0.0010
2.	1 23	3 69	0.29	54	0.000110	0.18	3.720	0.044	0.0912	0.0006	0.2685	0.0033	3.336	0.068	0.0901	0.0011	0.855	1533	17	1428	22	-7		14.1	1375	16	-1	4.160	0.049	0.0886	0.0006	2.902	0.042	0.2401	0.0028	0.818	0.0877	0.0007
3.	1 53	8 253	0.47	139	0.000012	0.02	3.315	0.036	0.1052	0.0004	0.3016	0.0033	4.369	0.050	0.1051	0.0004	0.938	1699	16	1716	7	1		2.1	1428	22	-7	3.720	0.044	0.0912	0.0006	3.336	0.068	0.2685	0.0033	0.855	0.0901	0.0011
4.	1 12	9 61	0.48	37	0.000191	0.30	2.959	0.038	0.1026	0.0010	0.3369	0.0044	4.645	0.083	0.1000	0.0012	0.725	1872	21	1624	23	-15		15.1	1429	14	0	4.044	0.047	0.0904	0.0006	3.072	0.042	0.2472	0.0029	0.852	0.0901	0.0006
5. 6	1 40	2 73	0.22	433	0.000084	0.13	3.300	0.037	0.1054	0.0004	0.2967	0.0032	4.204	0.051	0.1042	0.0005	0.906	10/0	10	1701	9 8	-8		49.1 12 1	1434	21 17	-0 2	3.674 4.090	0.046	0.0920	0.0008	3.385	0.056	0.2717	0.0034	0.759	0.0904	0.0010
7.	1 50	7 138	0.00	141	0.000130	0.21	3.090	0.035	6.1037	0.0005	0.3234	0.0038	4.606	0.091	0.1033	0.0013	0.815	1806	18	1684	23	-7		16.1	1440	13	-1	3.966	0.046	0.0911	0.0006	3.151	0.042	0.2520	0.0029	0.863	0.0907	0.0006
8.	1 17	7 94	0.53	73	0.000018	0.02	2.094	0.025	0.1946	0.0008	0.4773	0.0057	12.795	0.162	0.1944	0.0008	0.946	2516	25	2780	7	10		27.1	1444	62	3	4.111	0.055	0.0905	0.0009	3.050	0.130	0.2434	0.0037	0.770	0.0909	0.0030
9.	1 32	0 100	0.31	83	0.000029	0.05	3.301	0.037	0.1064	0.0005	0.3028	0.0034	4.426	0.054	0.1060	0.0005	0.913	1705	17	1732	9	2		48.1	1447	18	-4	3.793	0.046	0.0919	0.0007	3.306	0.051	0.2634	0.0032	0.787	0.0910	0.0009
10.	1 45	6 271	0.59	117	0.000040	0.06	3.333	0.036	0.1059	0.0004	0.2998	0.0033	4.354	0.051	0.1053	0.0005	0.924	1690	16	1720	8	2		4.1	1624	23 ·	15	2.959	0.038	0.1026	0.0010	4.645	0.083	0.3369	0.0044	0.725	0.1000	0.0012
11. 12	1 73	3 33 D 81	0.45	18 20	0.000149	0.23	3.521	0.052		0.0025	0.2833	0.0042	4.114	0.120	0.1053	0.0026	0.505	1608	21 16	1719	46 17	6		42.1 54 1	1651 1673	29 13	-5 6	3.244	0.055	0.1032	0.0014	4.304	0.100	0.3076	0.0053	0.733	0.1015	0.0016
12.	1 38	6 128	0.33	29 102	0.000027	0.04	3.269	0.032	0.1046	0.0005	0.2444	0.0037	4.433	0.112	0.1050	0.0008	0.748	1721	18	1715	33	2		7.1	1684	23	-7	3.090	0.043	0.1032	0.0007	3.934 4.606	0.091	0.3234	0.0033	0.815	0.1027	0.0007
14.	1 21	B 117	0.54	45	0.000066	0.11	4.160	0.049	0.0886	0.0006	0.2401	0.0028	2.902	0.042	0.0877	0.0007	0.818	1387	15	1375	16	-1		50.1	1688	10	-6	3.118	0.035	0.1043	0.0005	4.573	0.057	0.3204	0.0036	0.898	0.1035	0.0006
15.	1 23	7 170	0.72	50	0.000018	0.03	4.044	0.047	0.0904	0.0006	0.2472	0.0029	3.072	0.042	0.0901	0.0006	0.852	1424	15	1429	14	0		30.1	1694	9	-4	3.188	0.036	0.1043	0.0005	4.488	0.055	0.3135	0.0035	0.910	0.1038	0.0005
16.	1 26	9 346	1.29	58	0.000031	0.05	3.966	0.046	0.0911	0.0006	0.2520	0.0029	3.151	0.042	0.0907	0.0006	0.863	1449	15	1440	13	-1		59.1	1697	7	-8	3.027	0.033	0.1042	0.0004	4.738	0.055	0.3303	0.0036	0.938	0.1040	0.0004
17.	1 38	5 88	0.23	99	0.000032	0.05	3.348	0.038	0.1061	0.0005	0.2985	0.0034	4.349	0.053	0.1057	0.0005	0.923	1684	17	1726	9	2		5.1	1701	9	2	3.366	0.037	0.1054	0.0004	4.264	0.051	0.2967	0.0032	0.906	0.1042	0.0005
18.	1 17	3 186	1.08	63 206	0.000049	0.07	2.338	0.029	0.1716	0.0008	0.4273	0.0054	10.077	0.136	0.1710	0.0008	0.933	2294	24	2568	8	11		37.1	1703	7	2	3.372	0.036	0.1051	0.0003	4.264	0.048	0.2963	0.0031	0.941	0.1044	0.0004
19. 20	1 70	3 622 1 52	0.82	206 34	0.000007	0.01	3.188	0.034	0.1047	0.0004	0.3136	0.0033	4.522	0.051	0.1046	0.0004	0.932	1/58	20	1707	8 29	-3		20.1	1705	29 8	-3	3.319	0.042	0.1050	0.0010	4.338	0.107	0.3012	0.0041	0.814	0.1045	0.0016
20.	1 191	5 196	0.40	549	0.000014	0.02	2.995	0.042	0.1050	0.0005	0.3338	0.0036	4.887	0.057	0.1043	0.0010	0.931	1857	18	1735	8	-7		43.1	1708	5	-9	2.976	0.034	0.1047	0.0003	4.848	0.052	0.3360	0.0035	0.965	0.1040	0.0004
22.	1 4	6 12	0.26	14	0.000262	0.41	2.772	0.104	0.1135	0.0043	0.3593	0.0134	5.447	0.303	0.1100	0.0045	0.673	1979	64	1799	75	-10		1.1	1712	15	-6	3.071	0.037	0.1061	0.0007	4.703	0.069	0.3252	0.0039	0.825	0.1049	0.0009
23.	1 23	5 108	0.46	60	0.000057	0.09	3.372	0.041	0.1061	0.0006	0.2963	0.0036	4.302	0.060	0.1053	0.0007	0.878	1673	18	1720	12	3		6.1	1714	8	-8	3.002	0.031	0.1052	0.0004	4.821	0.054	0.3331	0.0035	0.928	0.1050	0.0004
24.	1 43	3 195	0.45	114	0.000019	0.03	3.254	0.036	0.1040	0.0005	0.3081	0.0036	4.511	0.089	0.1062	0.0012	0.884	1731	18	1735	20	0		13.1	1715	33	0	3.269	0.038	0.1046	0.0005	4.433	0.112	0.3060	0.0037	0.748	0.1050	0.0019
25.	1 23	1 66	0.29	60 70	0.000034	0.05	3.303	0.039	0.1077	0.0006	0.3026	0.0036	4.476	0.061	0.1073	0.0007	0.868	1704	18	1754	12	3		3.1	1716	7	1	3.315	0.036	0.1052	0.0004	4.369	0.050	0.3016	0.0033	0.938	0.1051	0.0004
26.	1 28	3 92 3 85	0.33	79 26	0.000020	0.03	3.082	0.035		0.0006	0.3244	0.0037	4.863	0.061	0.1087	0.0006	0.908	1811	18 10	1778	10 62	-2		11.1 23.1	1719	46 12	6	3.521	0.052	0.1073	0.0025	4.114	0.120	0.2833	0.0042	0.505	0.1053	0.0026
27.	1 18	1 43	0.24	47	0.000320	0.33	3.296	0.033	0.1036	0.0008	0.3061	0.0037	4.703	0.130	0.0303	0.0030	0.730	1722	20	1823	30	6		10.1	1720	8	2	3.333	0.041	0.1059	0.0004	4.354	0.000	0.2998	0.0033	0.924	0.1053	0.0007
29.	1 38	1 283	0.74	185	0.000084	0.10	1.769	0.019	0.2633	0.0006	0.5648	0.0062	20.432	0.231	0.2624	0.0007	0.974	2886	26	3261	4	11		41.1	1722	6	-3	3.153	0.033	0.1058	0.0003	4.609	0.051	0.3170	0.0034	0.949	0.1054	0.0004
30.	1 37	3 123	0.33	100	0.000035	0.06	3.188	0.036	0.1043	0.0005	0.3135	0.0035	4.488	0.055	0.1038	0.0005	0.910	1758	17	1694	9	-4		53.1	1723	13	1	3.305	0.039	0.1064	0.0006	4.398	0.060	0.3023	0.0036	0.861	0.1055	0.0007
31.	1 57	3 113	0.20	156	0.000014	0.02	3.157	0.034	0.1058	0.0004	0.3167	0.0034	4.610	0.053	0.1056	0.0004	0.936	1774	17	1724	7	-3		31.1	1724	7	-3	3.157	0.034	0.1058	0.0004	4.610	0.053	0.3167	0.0034	0.936	0.1056	0.0004
32.	1 46	6 104 1 102	0.22	136	0.000065	0.10	2.940	0.032	2 0.1069	0.0005	0.3398	0.0037	4.965	0.060	0.1060	0.0005	0.913	1886	18	1731	9	-9		17.1	1726	9	2	3.348	0.038	0.1061	0.0005	4.349	0.053	0.2985	0.0034	0.923	0.1057	0.0005
33. 34	1 122	1 433 3 37	0.35	320 26	0.000008	0.01	3.210	0.034	0.1094	0.0003	0.3107	0.0032	4.004 4 956	0.050	0.1093	0.0003	0.969	1744	22	1821	5 21	2 1		57.1 44 1	1730	13	-2	3.470	0.041	0.1064	0.0007	4.205	0.056	0.2000	0.0034	0.885	0.1059	0.0008
35.	1 49	9 167	0.34	135	0.000019	0.03	3.165	0.040	0.1069	0.0004	0.3159	0.0040	4.646	0.054	0.1067	0.0004	0.933	1770	17	1743	8	-2		32.1	1731	9	-9	2.940	0.032	0.1069	0.0005	4.965	0.060	0.3398	0.0037	0.913	0.1060	0.0005
36.	1 24	9 170	0.68	94	0.000139	0.19	2.267	0.038	0.1901	0.0016	0.4404	0.0073	11.439	0.215	0.1884	0.0017	0.881	2352	33	2728	15	14		9.1	1732	9	2	3.301	0.037	0.1064	0.0005	4.426	0.054	0.3028	0.0034	0.913	0.1060	0.0005
37.	1 85	8 246	0.29	219	0.000056	0.09	3.372	0.036	0.1051	0.0003	0.2963	0.0031	4.264	0.048	0.1044	0.0004	0.941	1673	16	1703	7	2		40.1	1735	5	-2	3.160	0.033	0.1066	0.0003	4.630	0.050	0.3163	0.0033	0.962	0.1062	0.0003
38.	1 20	7 47	0.23	69	0.000031	0.05	2.582	0.031	0.1412	0.0010	0.3871	0.0047	7.516	0.106	0.1408	0.0010	0.852	2110	22	2237	13	6		21.1	1735	8	-7	2.995	0.033	0.1064	0.0005	4.887	0.057	0.3338	0.0036	0.931	0.1062	0.0005
39. 40	1 56	2 199	0.35	164 260	0.000024	0.04	2.944	0.032	2 0.1131	0.0004	0.3396	0.0037	5.278	0.060	0.1127	0.0004	0.945	1885	18	1844	7	-2		24.1	1735	20	0	3.254	0.036	0.1040	0.0005	4.511	0.089	0.3081	0.0036	0.884	0.1062	0.0012
40. 41	1 99 1 72	1 509 3 270	0.51	269 197	0.000032	0.05	3.160	0.033	0.1066	0.0003	0.3163	0.0033	4.630	0.050	0.1062	0.0003	0.962	1775	16	1735	5 6	-2 -3		35.1	1740	13	-2	3.271	0.038	0.1070	0.0007	4.486	0.062	0.3055	0.0036	0.850	0.1065	0.0008
42.	1 4	9 45	0.92	13	0.000126	0.20	3.244	0.055	0.1030	0.0014	0.3076	0.0053	4.304	0.100	0.1015	0.0004	0.733	1729	26	1651	29	-5		52.1	1745	43	-9	2.934	0.036	0.0981	0.0004	5.069	0.175	0.3443	0.0048	0.860	0.1068	0.0004
43.	1 96	4 57	0.06	278	0.000007	0.01	2.976	0.031	0.1047	0.0003	0.3360	0.0035	4.848	0.052	0.1046	0.0003	0.965	1867	17	1708	5	-9		25.1	1754	12	3	3.303	0.039	0.1077	0.0006	4.476	0.061	0.3026	0.0036	0.868	0.1073	0.0007
44.	1 26	2 109	0.42	71	0.000046	0.07	3.174	0.037	0.1066	0.0006	0.3148	0.0036	4.600	0.060	0.1060	0.0006	0.885	1764	18	1731	11	-2		60.1	1769	9	1	3.185	0.036	0.1083	0.0005	4.683	0.058	0.3139	0.0035	0.912	0.1082	0.0005
45.	1 113	6 388	0.34	302	0.000006	0.01	3.229	0.033	0.1089	0.0003	0.3096	0.0032	4.647	0.050	0.1088	0.0003	0.971	1739	16	1780	5	2		58.1	1774	13	-1	3.109	0.035	0.1083	0.0005	4.812	0.077	0.3218	0.0037	0.910	0.1085	0.0008
46.	1 11	4 61	0.53	23	0.000043	0.07	4.316	0.058	0.0881	0.0009	0.2315	0.0031	2.792	0.048	0.0875	0.0010	0.775	1342	16 20	1371	21	2		26.1	1778	10 5	-2	3.082	0.035	0.1090	0.0006	4.863	0.061	0.3244	0.0037	0.908	0.1087	0.0006
47. 48	1 14: 1 19,	5 51 4 134	0.35	41 44	0.000047	0.07	3 793	0.038	0.1105	0.0008	0.3312	0.0042	3.306	0.075	0.1099	0.0009	0.855	1644	20 16	1447	14	-3 -4		45.1 33.1	1788	5 5	2	3.229	0.033	0.1089	0.0003	4.647	0.050	0.3096	0.0032	0.971	0.1000	0.0003
49.	1 16	5 87	0.53	38	0.000116	0.19	3.674	0.040	0.0910 0.0920	0.0008	0.2717	0.0032	3.385	0.056	0.0904	0.0000	0.759	1549	17	1434	21	-8		47.1	1798	14	-3	3.018	0.038	0.1004	0.0008	5.018	0.075	0.3312	0.0042	0.855	0.1099	0.0009
50.	1 37	7 270	0.72	104	0.000060	0.09	3.118	0.035	0.1043	0.0005	0.3204	0.0036	4.573	0.057	0.1035	0.0006	0.898	1792	17	1688	10	-6		22.1	1799	75 ·	10	2.772	0.104	0.1135	0.0043	5.447	0.303	0.3593	0.0134	0.673	0.1100	0.0045
51.	1 23	6 74	0.31	62	0.000035	0.06	3.271	0.038	0.1070	0.0007	0.3055	0.0036	4.486	0.062	0.1065	0.0008	0.850	1719	18	1740	13	1		34.1	1821	21	1	3.089	0.043	0.1134	0.0010	4.956	0.090	0.3229	0.0045	0.767	0.1113	0.0013
52.	1 18	7 192	1.0	55	0.000027	0.04	2.934	0.036	0.0981	0.0006	0.3443	0.0048	5.069	0.175	0.1068	0.0025	0.860	1908	23	1745	43	-9		28.1	1823	30	6	3.296	0.042	0.1036	0.0008	4.703	0.111	0.3061	0.0040	0.730	0.1114	0.0019
53.	1 22	4 75	0.34	58	0.000068	0.11	3.305	0.039	0.1064	0.0006	0.3023	0.0036	4.398	0.060	0.1055	0.0007	0.861	1703	18	1723	13	1		39.1	1844	7	-2	2.944	0.032	0.1131	0.0004	5.278	0.060	0.3396	0.0037	0.945	0.1127	0.0004
54. 55	1 21 1 12	9 92 8 77	0.42	52 48	0.000035	0.06	3.598 2.288	0.043	0.1032	0.0007	0.2778	0.0033	3.934 9.716	0.054	0.1027	0.0007	0.869	2336	25	2470	13 10	ь 5		55 1	2231 2470	13 10	о 5	2.082	0.031	0.1412	0.0010	7.516 9.716	0.106	0.3871	0.0047	0.052	0.1408	0.0010
56.	1 12	7 15	0.12	62	0.000056	0.08	1.772	0.023	0.1999	0.0009	0.5639	0.0072	15.491	0.213	0.1992	0.0010	0.934	2883	30	2820	8	-2		18.1	2568	8	11	2.338	0.029	0.1716	0.0008	10.077	0.136	0.4273	0.0054	0.933	0.1710	0.0008
57.	1 27	8 61	0.22	69	0.000037	0.06	3.470	0.041	0.1064	0.0007	0.2880	0.0034	4.205	0.058	0.1059	0.0008	0.847	1631	17	1730	13	6		36.1	2728	15	14	2.267	0.038	0.1901	0.0016	11.439	0.215	0.4404	0.0073	0.881	0.1884	0.0017
58.	1 37	1 96	0.26	102	0.000029	0.05	3.109	0.035	0.1083	0.0005	0.3218	0.0037	4.812	0.077	0.1085	0.0008	0.910	1798	18	1774	13	-1		8.1	2780	7	10	2.094	0.025	0.1946	0.0008	12.795	0.162	0.4773	0.0057	0.946	0.1944	0.0008
59.	1 55	0 129	0.23	156	0.000012	0.02	3.027	0.033	0.1042	0.0004	0.3303	0.0036	4.738	0.055	0.1040	0.0004	0.938	1840	17	1697	7	-8		56.1	2820	8	-2	1.772	0.023	0.1999	0.0009	15.491	0.213	0.5639	0.0072	0.934	0.1992	0.0010
60.	1 33	4 114	0.34	90	0.000007	0.01	3.185	0.036	6 0.1083	0.0005	0.3139	0.0035	4.683	0.058	0.1082	0.0005	0.912	1760	17	1769	9	1	_	29.1	3261	4	11	1.769	0.019	0.2633	0.0006	20.432	0.231	0.5648	0.0062	0.974	0.2624	0.0007

Notes : 1. Uncertainties given at the one σ level.

2. Error in Temora reference zircon calibration was 0.69% for the analytical session.

(not included in above errors but required when comparing ²⁰⁶Pb/²³⁸U data from different mounts).

3. f_{206} % denotes the percentage of ^{206}Pb that is common Pb.

4. Correction for common Pb made using the measured $^{204}\text{Pb}/^{206}\text{Pb}$ ratio.

5. For % Disc, 0% denotes a concordant analysis.

Notes :

APPENDIX D4: Sample DZ_LP_3 SHRIMP DATA Detrital zircons in Proterozoic Quartzite

APPENDIX D4 - SHRIMP Sample DZ-LP-3 Table xyz. Summary of SHRIMP U-Pb zircon results for sample DZ-LP-3.

Grain	. U	Th Th	′U ²⁰⁶ Pb'	²⁰⁴ Pb	/ f ₂₀₆	²³⁸ U/	Total	Ratios ²⁰⁷ Pb/		²⁰⁶ Pb/	Ra	diogeni ²⁰⁷ Pb/	c Ratio	s ²⁰⁷ Pb/		²⁰⁶ F	Ag Pb/	ge (Ma) ²⁰⁷ Pb/		%	Grai	n. 206 Pb/	Age	e (Ma) ²⁰⁷ Pb/	%	²³⁸ U/	Total Ra	atios ⁰⁷ Pb/		²⁰⁷ Pb/	Radioger 201	nic Ra [°] Pb/	tios	²⁰⁷ F	Þb/	
spot	(ppm)	ppm)	(ppm)	²⁰⁶ Pb	%	²⁰⁶ Pb	±	²⁰⁶ Pb	±	²³⁸ U	±	²³⁵ U	±	²⁰⁶ Pb	± (238	U ±	²⁰⁶ Pb	±C	Disc	spo	t ²³⁸ U	±	²⁰⁶ Pb	± Disc	²⁰⁶ Pb	± 2	²⁰⁶ Pb	±	²³⁵ U	± 2	³⁸ U	± f) ²⁰⁶ F	Pb	±
1.1	274	100 0.3	36 82	0.0004	62 0.7	73 2.872	2 0.044	4 0.1079	0.0011	0.3469	0.0056	5.010	0.139	0.1047	0.0017 0.8	841 19	20	27 1710	31	-12	47.	1 1364	13	1373	8 1	4.243	0.045 ().0878	0.0004	2.845	0.033 0.	2356	0.0025 0.4	929 0.0{	876 0.	0.0004
2.1	390	55 0.	4 106	0.0001	44 0.2	3.161	0.035	5 0.1061	0.0006	0.3157	0.0036	4.542	0.069	0.1043	0.0008 0.3	881 17	69	18 1703	14	-4	24.	1 1432	15	1448	17 1	4.007	0.045 0	0.0938	0.0005	3.124	0.046 0.	2488	0.0028 0.	779 0.09	911 0.	.0008
3.1	505	238 0.4	138	0.0000	0.0000000000000000000000000000000000000	9 3.147	0.035	5 0.1061	0.0004	0.3174	0.0036	4.607	0.057	0.1053	0.0006 0.9	904 17	77	18 1719	10	-3	50.1	2 1434	31	1452	14 1	4.014	0.097 0	0.0915	0.0006	3.133	0.079 0.	2490	0.0060 0.9	€ €9 0.0	912 0.	.0006
4.1	123	111 0.9	91 33	0.0001	81 0.2	3.191	0.042	2 0.1060	0.0008	0.3125	0.0041	4.460	0.076	0.1035	0.0011 0.	765 17	53 2	20 1688	20	-4	43.	1 1450	16	1456	22 0	3.944	0.047 (0.0958	0.0007	3.181	0.053 0.	2522	0.0030 0.7	/17 0.09	915 0.	.0011
5.1	448	156 0.3	35 124	0.0000	.0.02	04 3.095	5 0.034	4 0.1068	0.0006	0.3230	0.0035	4.741	0.058	0.1065	0.0006 0.3	895 18	04	17 1740	10	-4	51.	1 1536	14	1572	21 2	3.713	0.039 (0.0979	0.0011	3.609	0.055 0.	2691	0.0028 0.6	385 0.09	973 0.	.0011
6.1 7 1	282 537	139 0.4	19 73 19 143	- 0,000	<0.0 0 (0))1 3.332)5 3.234	2 0.038 L 0.038	5 0.1075	0.0006	0.2997	0.0037	4.400 4.468	0.097	0.1065	0.0014 0.0	978 16 918 17	90 36	18 1740 17 1712	23 9	-1	33. 37	1 1369	20	1659	17 18 15 -9	4.221	0.055 (0.1030	0.0008	3.325 4.576	0.053 0.	2300	0.0041 0.	315 0.10 845 0.1(019 0.	.0009
8.1	351	97 0.2	28 101	0.0000)38 0.0)6 2.981	0.034	4 0.1058	0.0005	0.3353	0.0038	4.865	0.061	0.1052	0.0006 0.3	899 18	64 ⁻	18 1718	10	-8	14.	1 1699	19	1673	19 -2	3.310	0.042 (0.1044	0.0008	4.268	0.069 0.	3015	0.0038 0.	782 0.10	027 0.	.0010
9.1	289	79 0.2	27 84	0.0000	0.0	04 2.961	0.034	4 0.1093	0.0006	0.3376	0.0039	5.074	0.064	0.1090	0.0006 0.9	900 18	75	19 1783	10	-5	17.	1 1728	18	1684	14 -3	3.249	0.039 (0.1043	0.0007	4.379	0.063 0.	3074	0.0037 0.{	344 0.10	033 0.	.0008
10.1	682	238 0.3	35 182	0.0000	012 0.0	3.219	0.034	4 0.1062	0.0005	0.3106	0.0033	4.539	0.053	0.1060	0.0005 0.	913 17	44	16 1732	9	-1	40.	1 1715	17	1685	10 -2	3.280	0.038 (0.1037	0.0005	4.342	0.056 0.	3047	0.0035 0.9	JO2 0.10	034 0.	.0006
11.1	724	151 0.2	21 195	0.0000	0.0	04 3.189	0.034	4 0.1045	0.0003	0.3134	0.0034	4.500	0.051	0.1041	0.0003 0.9	955 17	58	17 1699	6	-3	63.	1 1759	17	1686	9 -4	3.185	0.035 (0.1040	0.0004	4.473	0.053 0.	3137	0.0034 0.9)20 0.10	034 0.	.0005
12.1	277	30 0.°	08 67	-	<0.0)1 3.202		9 0.1092 2 0.1048	0.0007	0.3124	0.0038	4.709	0.064	0.1093	0.0007 0.0	866 17 866 15	52 01	19 1788 16 1721	12	2	4.	1 1753	20 13	1688	20 -4	3.191	0.042	1060	0.0008	4.460	0.076 0.	3125 2347	0.0025 0	844 0.10	035 0. 035 0	.0011
14.1	169	100 0.	59 44	0.0001	25 0.2	20 3.310	0.042	2 0.1040	0.0008	0.3015	0.0038	4.268	0.069	0.1027	0.0010 0.	782 16	99 ·	19 1673	19	-2	23.	1 1738	18	1690	10 20	3.230	0.038 (0.1038	0.0006	4.422	0.059 0.	3095	0.0037 0.	387 0.10	036 0.	.0006
15.1	687	439 0.0	64 182	0.0000	0.0	6 3.250	0.035	5 0.1046	0.0006	0.3075	0.0033	4.413	0.054	0.1041	0.0006 0.3	877 17	29	16 1698	11	-2	56.	1 1458	20	1691	9 14	3.935	0.060 (0.1047	0.0005	3.629	0.058 0.	2538	0.0039 0.9	∂50 0.1 (037 0.	.0005
16.1	324	122 0.3	38 90	0.0000	016 0.0	3.079	0.035	5 0.1050	0.0006	0.3247	0.0037	4.693	0.059	0.1048	0.0006 0.	905 18	13	18 1711	10	-6	49.	1 1745	127	1695	7 -3	3.214	0.266 (0.1045	0.0004	4.454	0.369 0.	3109	0.0258 0.9	999 0.10	039 0.	.0004
17.1	203	116 0.	57 54	0.0000)70 0. ⁴	1 3.249	0.039	9 0.1043	0.0007	0.3074	0.0037	4.379	0.063	0.1033	0.0008 0.	844 17	28	18 1684	14	-3	15.	1 1729	16	1698	11 -2	3.250	0.035 (0.1046	0.0006	4.413	0.054 0.	3075	0.0033 0.8	377 0.10	041 0.	.0006
18.1	266	65 0.2	24 73	0.0000	15 0.0	3.147	0.036	5 0.1061	0.0006	0.3177	0.0037	4.637	0.060	0.1058	0.0006 0.3	899 17 046 17	79	18 1729 17 1714	10	-3 1	11.	1 1758 1 1776	17	1699	6 -3	3.189	0.034 ().1045	0.0003	4.500	0.051 0.	3134	J.0034 0.9	955 0.10	041 0. 042 0	.0003
20.1	154	71 0.4	15 191 16 45	- 0.0000	0.0 0.0)1 2.937	0.03	7 0.1092	0.0004	0.3405	0.0034	5.128	0.052	0.1030	0.0004 0.	870 18	89 2	21 1787	, 13	-4 -6		1 1795	16	5 1701 5 1702	5 -5	3.150	0.037 ().1048	0.0003	4.615	0.039 0.	3210	0.0033 0.	969 0.10	043 0. 043 0.	.0003
21.1	215	87 0.4	1 58	0.0000)31 0.0)5 3.184	0.038	B 0.1073	0.0006	0.3143	0.0039	4.677	0.096	0.1079	0.0012 0.	877 17	62 ⁻	19 1765	21	0	36.	1 1755	19	1702	16 -3	3.193	0.039 (0.1055	0.0008	4.499	0.068 0.	3128	0.0039 0.1	321 0.10	043 0.	.0009
22.1	655	369 0.	6 179	0.0000	0.0	3 3.151	0.034	4 0.1053	0.0004	0.3173	0.0034	4.596	0.052	0.1051	0.0004 0.9	937 17	76	17 1716	7	-4	2.	1 1769	18	1703	14 -4	3.161	0.035 (0.1061	0.0006	4.542	0.069 0.	3157	0.0036 0.{	381 0.10	043 0.	.0008
23.1	217	63 0.2	29 58	0.0000	0.0	3.230	0.038	3 0.1038	0.0006	0.3095	0.0037	4.422	0.059	0.1036	0.0006 0.	887 17	38	18 1690	11	-3	25.	1 1730	17	1703	8 -2	3.250	0.036 0	0.1043	0.0004	4.427	0.052 0.	3077	0.0034 0.9	32 0.10	043 0.	.0004
24.1	331	327 0.9	99 71	0.0001	93 0.3	31 4.007	0.045	5 0.0938	0.0005	0.2488	0.0028	3.124	0.046	0.0911	0.0008 0.	779 14	32	15 1448	17	1	64.	1 1731	16	5 1704 4700	7 -2	3.246	0.035 (0.1047	0.0004	4.436	0.051 0.	3080	0.0033 0.9)36 0.10	044 0.	.0004
25.1	463 725	200 0	25 122 28 307	- 0.0001	.0> 0 080	25 2 032	0.030	0.1043	0.0004	0.3077	0.0034	4.427	0.052	0.1043	0.0004 0.3	932 17 960 25	30 74 '	17 1703 23 2547	8 5	-2 -1	27.	1 1710	27	1709	12 0	3.288	0.038 (0.1055	0.0006	4.387 5.010	0.058 0.	3039 3469	0.0035 0.8	377 0.10 841 0.1(047 0. 047 0	.0007
27.1	247	124 0.	50 64	0.0000)57 0.0)9 3.288	0.022	3 0.1055	0.0006	0.3039	0.0035	4.387	0.058	0.1047	0.0007 0.3	877 17	10	17 1709	12	0	32.	1 1669	16	5 1711	7 2	3.384	0.036 (0.1051	0.0004	4.268	0.048 0.	2954	0.0031 0.9	948 0.10	048 0.	.0004
28.1	966	118 0.	2 253	0.0000	0.0 0.0)1 3.274	0.035	5 0.1050	0.0003	0.3054	0.0032	4.418	0.049	0.1049	0.0003 0.9	956 17	18	16 1713	6	0	16.	1 1813	18	3 1711	10 -6	3.079	0.035 (0.1050	0.0006	4.693	0.059 0.	3247	0.0037 0.9	905 0.10	048 0.	.0006
29.1	228	72 0.3	31 59	0.0007	752 1. ⁻	8 3.293	0.041	1 0.1159	0.0011	0.3001	0.0038	4.373	0.101	0.1057	0.0020 0.	543 16	92	19 1726	36	2	7.	1 1736	17	1712	9 -1	3.234	0.035 (0.1053	0.0004	4.468	0.053 0.	3091	0.0034 0.9	918 0.10	048 0.	.0005
30.1	1428	512 0.3	36 368	0.0003	359 0.5	56 3.334	0.052	2 0.1116	0.0009	0.2983	0.0047	4.388	0.082	0.1067	0.0011 0.	835 16	83 2	23 1744	19	3	28.	1 1718	16	5 1713	6 0	3.274	0.035 (0.1050	0.0003	4.418	0.049 0.	3054	0.0032 0.9)56 0.10	049 0.	.0003
31.1	201	75 0.3	37 54 84 177	0.0000)74 0.7	2 3.225	0.038	3 0.1081 3 0.1051	0.0007	0.3097	0.0037	4.574	0.063	0.1071	0.0008 0.3	860 17 048 16	39 ·	18 1751 16 1711	13 7	1	19.	1 1788 1 1776	17	1714 1716	7 -4	3.128	0.033 (0.1053	0.0004	4.627	0.052 0.	3196 3173	J.0034 0.9)46 0.10	050 0. 051 0	.0004
33.1	185	62 0.3	33 38	0.0000)21 0.0	3 4.221	0.055	5 0.1031	0.0004	0.2366	0.0031	3.325	0.040	0.1040	0.0009 0.	815 13	69 ⁻	16 1659	17	18	8.	1 1864	18	1718	10 -8	2.981	0.034 (0.1055	0.0004	4.865	0.061 0.	3353	0.0038 0.8	399 0.10	051 0.	.0004
34.1	298	73 0.2	25 81	0.0000	0.0	3.150	0.037	7 0.1048	0.0005	0.3173	0.0037	4.561	0.059	0.1043	0.0006 0.9	908 17	76	18 1701	10	-4	57.	1 1609	15	1719	6 6	3.525	0.036 0	0.1061	0.0003	4.114	0.044 0.	2834	0.0029 0.9	∂59 0.1 (053 0.	.0003
35.1	341	130 0.3	38 96	0.0000	056 0.0	9 3.039	0.035	5 0.1067	0.0005	0.3287	0.0038	4.801	0.062	0.1059	0.0006 0.9	909 18	32	19 1730	10	-6	3.	1 1777	18	1719	10 -3	3.147	0.035 0	0.1061	0.0004	4.607	0.057 0.	3174	0.0036 0.9	904 0.10	053 0.	.0006
36.1	186	115 0.0	52 50	0.0000)83 0. ⁻	3 3.193	8 0.039	9 0.1055	0.0008	0.3128	0.0039	4.499	0.068	0.1043	0.0009 0.	821 17	55	19 1702	16	-3	13.	1 1591	16	5 1721	12 8	3.574	0.042 (0.1048	0.0006	4.068	0.055 0.	2800	0.0033 0.8	366 0.10	054 0.	.0007
37.1	147	124 0.8	34 41	0.0000)24 0.0)4 3.074	0.039	9 0.1024	0.0008	0.3252	0.0041	4.576	0.068	0.1021	0.0008 0.3	845 18 907 17	15 2	20 1662	15	-9	44.	1 1689	17	1725	9 2	3.336	0.037 ().1060	0.0005	4.362	0.053 0.	2996	J.0033 0.9)12 0.10	056 0.	.0005
39.1	301	103 0.3	300 300 34 166	0.0000)05 0.0)1 1.557	0.030	3 0.2381	0.0004	0.6420	0.0037	4.023	0.079	0.2378	0.0015 0.9	913 31	09 97 :	30 3105	19	-2 -3	29.	1 1779	19	1720	30 2 10 -3	3.147	0.041 ().1061	0.0001	4.373	0.060 0.	3177	0.0037 0.	343 0.10 399 0.1(057 0.	.0020
40.1	375	126 0.3	34 98	0.0000)27 0.0	3.280	0.038	3 0.1037	0.0005	0.3047	0.0035	4.342	0.056	0.1034	0.0006 0.	902 17	15	17 1685	10	-2	48.	1 1663	19	1729	80 4	3.381	0.044 (0.1099	0.0043	4.297	0.195 0.	2944	0.0039 0.2	292 0.1(059 0.	.0046
41.1	511	198 0.3	39 216	0.0000)75 0. ²	0 2.035	0.023	3 0.1690	0.0006	0.4909	0.0055	11.373	0.135	0.1680	0.0007 0.9	939 25	75 2	24 2538	7	-1	35.	1 1832	19	1730	10 -6	3.039	0.035 0	0.1067	0.0005	4.801	0.062 0.	3287	0.0038 0.9	<i>€</i> 909 0.10	059 0.	.0006
42.1	1476	104 0.0	07 407	0.0000	016 0.0	3.115	5 0.032	2 0.1045	0.0003	0.3210	0.0033	4.615	0.049	0.1043	0.0003 0.9	969 17	95	16 1702	5	-5	10.	1 1744	16	1732	9 -1	3.219	0.034 (0.1062	0.0005	4.539	0.053 0.	3106	0.0033 0.9	313 0.10	060 0.	.0005
43.1	219	102 0.4	48 48	0.0003	312 0.8	51 3.944	0.047	7 0.0958	0.0007	0.2522	0.0030	3.181	0.053	0.0915	0.0011 0.	717 14	50 ·	16 1456	22	0	58.	1 1525	16	5 1733 1724	12 12	3.744	0.043 (0.1065	0.0007	3.904	0.052 0.	2670	0.0031 0.8	361 0.10	061 0.	.0007
44.1	370	74 0.3	21 97 21 118	0.0000)29 0.0)7 2.546	5 0.037 5 0.287	7 0.1119	0.0005	0.3926	0.0033	4.302 6.026	0.681	0.1056	0.0011 0.	912 10 996 21	o9 35 20	05 1821	9 18	∠ -17		1 1625	10	5 1734 5 1736	19 -2	3.487	0.037 (0.1059	0.0004	4.023	0.061 0	2868	0.0030 0.	731 0.10	061 0.	.0010
47.1	715	406 0.	57 145	0.0000)15 0.0)2 4.243	0.045 0.045	5 0.0878	0.0004	0.2356	0.0025	2.845	0.033	0.0876	0.0004 0.	929 13	64 ·	13 1373	8	1	60.	1 1745	16	1738	14 0	3.219	0.034 (0.1058	0.0005	4.559	0.069 0.	3109	0.0034 0.	377 0.10	064 0.	.0008
48.1	133	37 0.2	28 34	0.0002	296 0.4	3.381	0.044	4 0.1099	0.0043	0.2944	0.0039	4.297	0.195	0.1059	0.0046 0.2	292 16	63	19 1729	80	4	6.	1 1690	18	1740	23 3	3.332	0.038 0	0.1075	0.0006	4.400	0.097 0.	2997	0.0037 0.{	378 0.10	065 0.	.0014
49.1	562	115 0.3	21 150	0.0000	0.0	07 3.214	0.266	6 0.1045	0.0004	0.3109	0.0258	4.454	0.369	0.1039	0.0004 0.9	999 17	45 12	27 1695	7	-3	5.	1 1804	17	1740	10 -4	3.095	0.034 (0.1068	0.0006	4.741	0.058 0.	3230	0.0035 0.8	395 0.10	065 0.	.0006
50.12	186	87 0.4	40	0.0000	0.0	03 4.014	0.097	7 0.0915	0.0006	0.2490	0.0060	3.133	0.079	0.0912	0.0006 0.9	959 14	34 3	31 1452	14	1	30.	1 1683	23	3 1744	19 3	3.334	0.052 (0.1116	0.0009	4.388	0.082 0.	2983	0.0047 0.8	335 0.10	067 0.	.0011
51.1 52.1	2341	360 0.°	5 542 70 132	0.0000	049 0.0	08 3.713 15 4.254	0.039 0.039	9 0.0979 6 0.1048	0.0011	0.2691	0.0028	3.609	0.055	0.0973	0.0011 0.0	085 15 844 13	36 59	14 1572 13 1689	21 13	2	31. 62	1 1739 1 1764	18	3 1751 7 1754	13 1 10 -1	3.225	0.038 (0.1081	0.0007	4.574 4.656	0.063 0.	3097 3148	0.0037 0.8	360 0.10 933 0.10	071 0. 073 0	8000.
53.1	190	66 0.3	34 50	0.0000)37 0.()6 3.288	0.039	9 0.1092	0.0015	0.3039	0.0036	4.555	0.083	0.1087	0.0015 0.0	643 17	11 ·	18 1778	25	4	55.	1 1681	17	1759	10 4	3.354	0.038 (0.1082	0.0006	4.420	0.056 0.	2979	0.0034 0.	395 0.10	076 0.	.0006
54.1	414	114 0.3	28 107	0.0000	0.0 0.0	01 3.334	0.042	2 0.1089	0.0004	0.2999	0.0038	4.501	0.060	0.1088	0.0004 0.9	957 16	91	19 1780	7	5	21.	1 1762	19	1765	21 0	3.184	0.038 (0.1073	0.0006	4.677	0.096 0.	3143	0.0039 0.{	377 0.10	079 0.	.0012
55.1	258	75 0.2	29 66	0.0000	0.0	07 3.354	0.038	8 0.1082	0.0006	0.2979	0.0034	4.420	0.056	0.1076	0.0006 0.	895 16	81	17 1759	10	4	53.	1 1711	18	1778	25 4	3.288	0.039 (0.1092	0.0015	4.555	0.083 0.	3039	0.0036 0.6	343 0.10	087 0.	.0015
56.1	541	135 0.2	25 118	0.0000)77 0. ²	2 3.935	5 0.060	0.1047	0.0005	0.2538	0.0039	3.629	0.058	0.1037	0.0005 0.9	950 14	58 2	20 1691	9	14	54.	1 1691	19	1780	7 5	3.334	0.042 (0.1089	0.0004	4.501	0.060 0.	2999	0.0038 0.9	957 0.10	088 0.	.0004
57.1	1989	117 0.0)6 485 12 100	0.0000)63 0.1	0 3.525	0.036	0.1061	0.0003	0.2834	0.0029	4.114	0.044	0.1053	0.0003 0.9	959 16 861 15	09 ·	15 1719 16 1733	6 12	6 12	9.	1 1875 1 1880	19	1783	10 -5 13 -6	2.961	0.034 (0.1093	0.0006	5.074	0.064 0.	3376	J.0039 0.9	900 0.10 870 0.10	090 0. 092 0	.0006
59.1	565	155 0.2	27 270	0.0000)12 0.()2 1.798	0.043 0.019	9 0.2046	0.0007	0.5561	0.0059	15.675	0.170	0.2044	0.0004 0.9	981 28	50 ž	25 2862	3	0	20.	1 1752	21 19	1788	12 2	2.937	0.037 (0.1092	0.0007	4.709	0.064 0.	3124	0.0038 0.	386 0.10	092 0. 093 0.	.0007
60.1	776	162 0.2	21 207	0.0000	0.0 0.0)1 3.219	0.034	4 0.1058	0.0005	0.3109	0.0034	4.559	0.069	0.1064	0.0008 0.	 877 17	45	16 1738	14	0	45.	1 2135	205	5 1821	- 18 -17	2.546	0.287 (0.1119	0.0011	6.026	0.681 0.	3926	0.0442 0.1		113 0.	.0011
61.1	865	523 0.	6 213	0.0000	002 <0.0)1 3.487	0.037	7 0.1063	0.0010	0.2868	0.0030	4.201	0.061	0.1062	0.0010 0.	731 16	25	15 1736	18	6	65.	1 2124	19	2175	21 2	2.562	0.027 (0.1359	0.0017	7.308	0.119 0.	3902	0.0042 0.6	358 0.13	358 0.	.0017
62.1	721	132 0.	8 195	-	<0.0)1 3.181	0.034	4 0.1062	0.0003	0.3148	0.0034	4.656	0.064	0.1073	0.0006 0.9	933 17	64 50	17 1754	10	-1	41.	1 2575	24	2538	7 -1	2.035	0.023 (0.1690	0.0006	11.373	0.135 0.	4909	0.0055 0.9)39 0.16	680 O.	.0007
63.1 64 4	420	31 0.0	07 113	0.0000)46 0.0)/ 3.185)3 2.246	0.035	5 0.1040	0.0004	0.3137	0.0034	4.473 4 426	0.053	0.1034	0.0005 0.9	920 17 936 17	ວ ິ 31	17 1686 16 1704	9	-4 _2	26.	1 2574	23	2547	5 -1	2.032	0.022 (J.1/12	0.0005	11.432 15.675	0.129 0.	4908 5561	J.UU53 0.9	0.16 Uot	089 0.	.0005
65.1	693	209 0.3	30 232	0.0000	0.0 0.0)1 2.562	2 0.027	7 0.1359	0.0004	0.3902	0.0033	7.308	0.119	0.1358	0.0017 0.	658 21	24 ·	19 2175	21	2	39.	1 3197	20 30	3105	10 -3	1.557	0.019 ().2381	0.0004	21.048	0.314 0	6420	0.0077 0.4	913 0.20	378 0.	.0015
			. 101								=									_															- 5.	

Notes : 1. Uncertainties given at the one σ level.

2. Error in Temora reference zircon calibration was 0.69% for the analytical session.

(not included in above errors but required when comparing ²⁰⁶Pb/²³⁸U data from different mounts).

3. f_{206} % denotes the percentage of ²⁰⁶Pb that is common Pb.

5. For % Disc, 0% denotes a concordant analysis.

Notes :

^{4.} Correction for common Pb made using the measured 204 Pb/ 206 Pb ratio.

APPENDIX E LP Whole Rock Geochemistry A07-4811

Report Date: 20/12/2007

Analyte Symbol	C-Total	Total S	S F	- SiO	2 AI2O3	8 Fe2O3(T) MnO	MgO	CaO	Na2O	K2O	TiO2 F	205	LOI Tot	al Be	e V	Co	Ni	Cu	Cd .	Zn S	Ag	Pb	Ga	Ge	Rb	Sr	Y	Zr	Nb I	Мо	In Sr	n Sb	b Cs	Ba	La	Bi	Ce	Pr	Nd	Sm	Eu	Gd T	īb Dy	Ho	Er	Tm	Yb	Lu	Hf	Та	W T	ТΙ
Unit Symbol	%	%	6 %	6 9	6 %	5 %	6 %	%	%	%	%	%	%	%	% ppn	ppm	ppm	ppm	ppm pp	om pp	om %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm p	ppm pp	pm pp	m ppm	n ppm	n ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm p	pm pj	pm ppr	m ppm	ppm	ppm	ppm	ppm	ppm	ppm r	opm pp	pm ppm	n r
Detection Limit	0.01	0.01	1 0.01	1 0.0	1 0.01	0.01	0.001	0.01	0.01	0.01	0.01	0.001	0.01 0	0.01 0.0	1	5	1	1	1 ().5	1 0.001	0.3	5	1	1	2	2	2	4	1	2 0).2 1	1 0.5	5 0.5	3	0.1	0.4	0.1	0.05	0.1	0.1 0	0.05	0.1 0.	.1 0.1	0.1	0.1	0.05	0.1	0.04	0.2	0.1	1 0.1	.1
Analysis Method	IR	IR	R FUS-ISE	= FUS-IC	P FUS-ICF	P FUS-ICH	P FUS-ICP	FUS-ICP	FUS-ICP	FUS-ICP F	US-ICP FU	JS-ICP FUS	-ICP FUS-I	ICP FUS-IC	P FUS-ICI	P FUS-ICP	FUS-MS	D-ICP IL	D-ICP ID-I	CP ID-IO	CP ID-ICP	ID-ICP	ID-ICP FL	US-MS F	JS-MS F	-US-MS FI	US-ICP FU	S-ICP FUS	S-ICP FUS	-MS FUS-I	MS FUS-M	IS FUS-MS	S FUS-MS	S FUS-MS	FUS-ICP	FUS-MS I	FUS-MS F	-US-MS F	US-MS FU	S-MS FUS	S-MS FUS-	MS FUS-I	MS FUS-M	S FUS-MS	FUS-MS	FUS-MS F	-US-MS FI	US-MS FU	JS-MS FUS	-MS FUS-	-MS FUS-I	MS FUS-MS	S FUS
JA06-01	0.03	< 0.01	1 < 0.01	1 63.4	5 15.1 n 12.6	8.01	1 0.044	0.1	0.1	5.78	4.79	0.20	0.06 0	.76 98.4	8	18	1	11	9 (J.7	58 0.005	0.4	23	54 22	1	86	27	89	1214	199 •	<2 <0).Z 5	5 < 0.5	5 0.7	351	180	< 0.4	325	38.5	119	20 Z	2.76 1	5.8 Z.	.5 13.7 0 10E	2.9	9	1.39	8.9	1.38	25.7 1	14.8	3 0.4	4 、
BL 06-05	0.02	< 0.01	1 < 0.01	1 62	9 13.0 2 16.27	789	0.033 R 0.123	0.00	0.1	4.07	4.92	0.290	0.07 0	7/ 007	4 '0 '	18	< 1	9 10	5 (1.5 1.	46 0.002	< 0.3	20	32 //1	2	92 257	20	02 54	836	218	< 2 < 0	1.2 0	0 < 0.5 1 < 0.5	5 0.0	517	150	< 0.4	200	20.9	92.5	1/1.9 2	2.37 1.	3.9 Z. 11 1	.Z 12.0 7 8.6	2.0	7.0	0.85	7.0	0.89	21.0 I 18.1	14.0	2 0.0	
07WP129	0.04	< 0.01	1 0.05	- 02. 5 73.4	1 12.96	1.00	5 0.028	0.23	0.32	2.6	6.48	0.339	0.08 0	82 99 (8 3	, 10 1 6	2	7	5 <() 5	21 0.002	< 0.3	< 5	21	1	112	79	39	484	67 .	<2 <0	12 4	4 < 0.5	5 13.2	839	58.9	< 0.4	130	15.1	51.5	9.9	22	8 1	3 65	1.0	3.5	0.54	3.5	0.52	11.1	5.3	<1 0.5	.4
CQ06-25B	0.26	0.11	1 0.18	3 46.4	9 15.27	12.27	7 0.157	6.98	7.38	3.14	2.75	2.554	0.53 3	.39 100	9 :	220	40	107	707 0).5	82 0.109	0.3	< 5	19	1	106	730	29	229	67	2 < 0).2 2	2 < 0.5	5 6.8	958	48.6	< 0.4	92.5	11.3	38.2	7.4 2	2.34	6.2 0.	.9 4.8	0.9	2.5	0.34	2	0.28	5.1	4.5	2 0.	.7
CQ06-30B	0.33	0.13	3 0.14	4 45.2	5 13.94	i 11.1	0.186	8.94	9.78	2.78	1.91	1.86	0.51 3	.49 99.7	5 2	205	42	159	128 (0.6	99 0.133	0.8	6	16	1	71	1029	23	183	72	< 2 < 0).2 1	1 21.9	9 4.7	768	60.1	0.6	113	12.8	41.3	7 2	2.16	5.5 0.	.8 4.1	0.8	2.1	0.28	1.7	0.24	4.2	4.9	< 1 0.!	.5
BL06-03	0.04	0.02	2 0.14	44.9	6 13.44	11.7	7 0.172	10.35	10.05	2.37	1.68	2.041	0.52 2	.35 99.6	3 2	239	42	176	59 ().7	74 0.008	0.5	< 5	16	1	55	860	24	166	68	< 2 < 0).2 1	1 < 0.5	5 5.3	862	52.7	< 0.4	101	12.1	41	7.2 2	2.27	5.9 0.	.8 4.1	0.8	2.1	0.28	1.6	0.24	3.9	4.4	1 0.4	.4
LH06-23B	3.62	0.05	5 0.09	9 41.	2 10.82	2 10.07	7 0.181	10.68	8.32	1.81	1.96	0.845	0.25 13	.44 99.5	8 2	188	45	218	71 (0.6	54 0.037	0.9	7	12	1	55	885	20	115	10 •	< 2 < 0).2 < 1	1 < 0.5	5 14.1	1092	17	< 0.4	35.8	4.77	18.1	4.2 1	.22	3.6 0.	.6 3.3	0.7	2	0.29	1.8	0.26	2.8	0.5	< 1 0.?	.3
07WP120	2.45	0.07	7 0.09	9 44.6	5 11.09	10.37	7 0.193	10.28	8.91	1.83	1.95	0.871	0.26 9	.74 100	1 :	193	46	221	75 0	0.6	63 0.066	0.5	8	13	1	55	629	22	118	9 •	< 2 < 0).2 <1	1 < 0.5	5 9.1	962	17.5	< 0.4	37.5	5	18.6	4.2 1	.27	3.8 0.	.6 3.2	0.7	1.9	0.28	1.8	0.27	2.8	0.5	< 1 0.4	.4
LH06-24B	0.02	< 0.01	1 0.44	4 48.9	5 11.99	9 19.78	3 0.028	1.89	3.43	5.12	2.86	0.163	3.41 0	.77 98.3	8	126	3	21	9	1	33 0.01	< 0.3	48	62	20	124	246	251	8	52 •	< 2 < 0).2 4	4 < 0.5	5 4.6	218	658	0.5	4920	1430	8350	1220 1	165 4	448 24.	.1 60.1	8.6	28.9	< 0.05	6.9	0.15	1.4	0.3	3 0.7	7 2
07WP127B	3.93	0.13	3 0.5	5 3.9	/ 0.74	8.03	3 0.606	1.25	23.35	0.07	< 0.01	0.014 1	8.92 14	.23 /1.7	6 1	5 61	1	1	72 ().6	32 0.03	< 0.3	95	449	30	<2	1758	295	/6	4	4 < 0).2 <1	1 < 0.5	5 < 0.5	2789	87500	< 0.4	113000	9950 2	23300	1300 2	210 2	208 1	6 66.2	11.2	34	3.86	13.9	0.4	1.4 <	0.1	1 < 0.1	1 2
Sample ID	Au	As	s Bi	r C	r li	r Sb	o Sc	Se	Mass																																												
	ppb	ppm	n ppm	n ppn	n ppb	o ppm	n ppm	ppm	g		Sa	ample De	scriptio	n					Way	point #	#																																
JA06-01	-2	13.0) 4.9) -{	5 -5	0.9) 1.9	-5	1.243	JA	A06-01	Sve	enite at Lo	emhi Pas	s. near (Continent	al Divide		8	38																																	
1A06-01C	11	3.8	3 -05	5 _4	5 -5	-01	15	-5	1 345		A06-01C	SVE	nite with	specula	hematit	e vein			ş	88																																	
DL OC OF	2	1 2	0.0		5 5	0.1	27	5	1.040	07		Sve	nito with	biotito	nomaa					0																																	
BL00-05	-2	4.2	- 0.3			-0.1	2.1	-5	1.002	D	L00-05	- Sye								00																																	
07WP129	-2	-0.5	o -0.5) -:	o -5	-0.1	4.1	-5	1.329	07	7WP129	Lea	dore Gra	anite at H	awley C	eek - fres	sn		12	29																																	
CQ06-25B	-2	-0.5	5 -0.5	5 162	2 -5	5 1.1	19.0	-5	1.539	C	Q06-25B	Gre	enstone	Dike - C	ຊ adit ou	tcrop			6	53																																	
CQ06-30B	-2	20.0	0 -0.5	5 300	6 -5	32.0) 23.0	-5	1.271	C	Q06-30B	Pyr	oxene Po	orphyry -	unweath	ered sam	ple from	shaft d	ump 6	63 to w	est																																
BL06-03	9	23.0	0 -0.5	5 31	5 -5	0.7	25.0	-5	1.547	В	L06-03	Pvr	oxene Po	- vrvhara	Bluebird	area. sur	face		10)2																																	
I H06-23B	-2	10.0	0 -0 5	5 84		-01	26.0	-5	1 264		H06-23B	Luc	ky Horse	shoe ma	fic sill by	lower ad	it			20																																	
27WD400	2	14.0			- 6		20.0	5	1.204		100-200	Luc			fic all by	lower od	it. :4		10	20																																	
07WP120	-2	14.0	J -0.5	000	J -3) 1.1	27.0	-5	1.200	0/	WP120	Luc					ш.,		14	20																																	
LH06-24B	65	-1.5	5 -1.0) 2	7 -10) 2.0) 5.7	-5	1.394	LI	H06-24B	Luc	ky Horse	eshoe, hig	gh grade	Ih-REE	ore, hen	atite, fre	esh 4	10																																	
07WP127B	-400	-200	0 -50) 81	0 -150	-6.0) 7.3	-60	1.102	07	7WP127B	Car	bonatite,	Roberts	South P	rospect, N	North Fo	rk area	12	27																																	
07WP127B Split PU	-400	-200	0 -50	92	.150	-6.0) 7.7	-60	1.079																																												
BLANK	-5	-0.5	5 -0.5	5 -{	5 -5	-0.1	-0.1	-5	1.000																																												
DMMAS-104	221	1500	0 -0.5	5 102	2 -7	6.1	15.0	-5	1.111																																												

DMMAS104 Accept 229 1570.0 95 6.2 14.1

Detection limits are elevated due to Th and REEs

Final Report Activation Laboratories

ГΙ	Th	U
n	ppm	ppm
1	0.1	0.1
S	FUS-MS	FUS-MS
4	32.5	7
5	25	5.9
9	30.4	7.2
4	14.1	3.3
7	7.8	1.8
5	9.6	2.2
4	7.2	1.5
3	2.7	0.8
4	2.8	0.8
7	2510	17.9
1	2810	10.7
⁴⁰Ar/³⁹Ar step heat analysis of Idaho Geological Survey 2007 Samples

For: Dr. Virginia Gillerman DGGS

Prepared by:

Paul Layer & Jeff Drake Geochronology Laboratory University of Alaska Fairbanks

May 5, 2008

Summary of the Analysis

For 40 Ar/ 39 Ar analysis, 5 samples were submitted to the Geochronology laboratory at UAF. The samples were crushed, washed and sieved to either 100 – 250 or 250 – 500 micron size fractions, and hand picked for datable mineral phases. The monitor mineral MMhb-1 (Samson and Alexander, 1987) with an age of 513.9 Ma (Lanphere and Dalrymple, 2000) was used to monitor neutron flux (and calculate the irradiation parameter, J). The samples and standards were wrapped in aluminum foil and loaded into aluminum cans of 2.5 cm diameter and 6 cm height. The samples were irradiated in position 5c of the uranium enriched research reactor of McMaster University in Hamilton, Ontario, Canada for 20 megawatt-hours.

Upon their return from the reactor, the samples and monitors were loaded into 2 mm diameter holes in a copper tray that was then loaded in a ultra-high vacuum extraction line. The monitors were fused, and samples heated, using a 6-watt argon-ion laser following the technique described in York et al. (1981), Layer et al. (1987) and Layer (2000). Argon purification was achieved using a liquid nitrogen cold trap and a SAES Zr-Al getter at 400C. The samples were analyzed in a VG-3600 mass spectrometer at the Geophysical Institute, University of Alaska Fairbanks. The argon isotopes measured were corrected for system blank and mass discrimination, as well as calcium, potassium and chlorine interference reactions following procedures outlined in McDougall and Harrision (1999). System blanks generally were $2x10^{-16}$ mol ⁴⁰Ar and $2x10^{-18}$ mol ³⁶Ar which are 10 to 50 times smaller than fraction volumes. Mass discrimination was monitored by running both calibrated air shots and a zero-age glass sample. These measurements were made on a weekly to monthly basis to check for changes in mass discrimination.

A summary of all the 40 Ar/ 39 Ar results is given in Table 1, with all ages quoted to the +/- 1 sigma level and calculated using the constants of Steiger and Jaeger (1977). The integrated age is the age given by the total gas measured and is equivalent to a potassium-argon (K-Ar) age. The spectrum provides a plateau age if three or more consecutive gas fractions represent at least 50% of the total gas release and are within two standard deviations of each other (Mean Square Weighted Deviation less than ~2.7). All samples were run three times to check on sample consistency.

- Lanphere, M.A., and Dalrymple, G.B., 2000, First-principles calibration of ³⁸Ar tracers: Implications for the ages of ⁴⁰Ar/³⁹Ar fluence monitors, U.S. Geological Survey Professional Paper 1621, 10 p.
- Layer, P.W., 2000, Argon-40/argon-39 age of the El'gygytgyn impact event, Chukotka, Russia, Meteroitics and Planatary Science, v. 35, 591-599.
- Layer, P.W., Hall, C.M. & York, D., 1987. The derivation of ⁴⁰Ar/³⁹Ar age spectra of single grains of hornblende and biotite by laser step heating, *Geophys. Res. Lett.*, **14**, 757-760.
- McDougall, I. and Harrison, T.M., 1999, Geochronology and Thermochronology by the 40Ar/39Ar method-2nd ed, Oxford University Press, New York, 269pp.
- Samson S. D., and Alexander E. C. (1987) Calibration of the interlaboratory 40Ar/39Ar dating standard, MMhb1. Chem. Geol. **66**, 27-34.
- Steiger, R.H. and Jaeger, E., 1977, Subcommission on geochronology: Convention on the use of decay constants in geo and cosmochronology, Earth and Planet Science Letters, v. 36, p. 359-362.
- York, D., Hall, C.M., Yanase, Y., Hanes, J.A. & Kenyon, W.J., 1981. ⁴⁰Ar/³⁹Ar dating of terrestrial minerals with a continuous laser, *Geophys. Res. Lett.*, **8**, 1136-1138.

Preliminary discussion:

Hornblendes: Sample 07LOC77BP is the simplest to interpret. It shows a well-defined plateau on all three runs (although only the third run had an appropriate heating schedule to yield a statistically significant plateau). There is no evidence of argon loss on this sample. Sample 07CQ-09 also shows three reproducible runs, but the interpretation is not straightforward. As with the K-spars (see below), the age and Ca/K spectra show evidence of resetting (and alteration of the hornblende) at 250 - 300 Ma (Triassic), and then step up to early Paleozoic ages that are close to, but most likely younger than the original age of the hornblende.

K-spars: All three K-spar samples show good reproducibility for the three runs each, but the spectra are complicated and do not show recognizable 'plateaus. All show three-phase age spectrus. The first part is characterized by extremely old ages. These correlate with high Cl/K ratios and are indicative of excess argon in high Cl inclusions, seen in many K-spar samples. From these old ages, the ages drop down to a 'saddle' of low ages (late Cretaceous to Tertiary in our case) before rising up to Late Triassic to Early Jurassic maximum ages. We interpret these last two phases as reflecting approximately the original Triassic age of the feldspars (although this age might be a bit young due to argon loss), followed by a resetting event in the Early Tertiary (either complete or partial resetting). These samples would be ideal candidates for K-spar Multi-Domain modeling if more information on thermal histories was desired.

Sample	Min.	Integrated Age (Ma)	Plateau Age (Ma)	Information	Other Comments
07CQ-09	HO#1	376.3 ± 1.0	-		Maximum age: 420 Ma
	HO#2	328.6 ± 1.0	-		Maximum age: 445 Ma
	HO#3	364.4 ± 0.9	-		Maximum age: 452 Ma
07LOC77BP	HO#1	573.7 ± 1.4	-		Poor heating schedule
	HO#2	567.1 ± 1.8	564.7 ± 2.9	2 fractions 82% 39 Ar release MSWD = 2.1	Poor heating schedule
	HO#3	571.7 ± 1.4	558.3 ± 1.6	4 fractions 81% 39 Ar release MSWD = 0.2	'good' plateau

Table 1 Interpretive Details – Hornblendes

Bold: Preferred age for each sample (ages reported at ± 1 sigma) Plateau: 3+ consecutive fractions, MSWD < ~2.5, more than ~50% 39Ar release.

Table 1 Interpretive Details – K-spars

		Integrated	K-Spar		Other Comments
Sample	Min.	Age (Ma)	saddle Age (Ma)	Information	
07LH-02	KS#1	122.1 ± 0.3	55.6 ± 1.1	$\begin{array}{c} 4 \text{ fractions} \\ 29\% \ ^{39}\text{Ar release} \\ \text{MSWD} = 46.7 \end{array}$	Maximum age: 175 Ma
	KS#2	134.4 ± 0.3	55.3 ± 0.4	3 fractions 26% ³⁹ Ar release MSWD = 3.3	Maximum age: 208 Ma
	KS#3	186.0 ± 0.4	62.6 ± 1.2	2 fractions 17% ³⁹ Ar release MSWD = 19.8	Maximum age: 199 Ma
07WP119	KS#1	183.5 ± 0.4	112.3 ± 4.9	6 fractions 31% ³⁹ Ar release MSWD = 347	Maximum age: 230 Ma
	KS#2	167.3 ± 0.4	94.2 ± 1.3	3 fractions 22% ³⁹ Ar release MSWD = 16.8	Maximum age: 217 Ma
	KS#3	179.8 ± 0.4	103.5 ± 3.0	4 fractions 29% ³⁹ Ar release MSWD = 125	Maximum age: 232 Ma
CA06B1	KS#1	136.6 ± 0.3	71.3 ± 1.8	4 fractions 22% ³⁹ Ar release MSWD = 102	Maximum age: 183 Ma
	KS#2	161.9 ± 0.4	74.0 ± 1.3	3 fractions 19% ³⁹ Ar release MSWD = 14.7	Maximum age: 195 Ma
	KS#3	157.4 ± 0.4	74.7 ± 1.8	3 fractions 19% ³⁹ Ar release MSWD = 35.5	Maximum age: 210 Ma

Three hornblende runs

Three runs of each K-spar

One representative K-spar run from each sample

Lemhi Pass Th-REE District EPMA geochronology results – preliminary report

Michael J. Jercinovic

Electron Microprobe / SEM Facility Department of Geosciences, University of Massachusetts Amherst. MA 01003

Introduction and Methodology

The geochronology of the monazite – thorite deposits in the Lemhi Pass Thorium-Rare Earth District of Idaho and Montana has been difficult to assess, primarily due to the very low actinide content (below 0.5wt.% total) of the abundant monazite, and the inherent difficulties of thorite dating (difficulties chiefly due to metamictization, hydrolysis, and subsequent mobilization of radiogenic Pb). Electron probe microanalysis (EPMA) offers the potential to date such materials by measurement of total radiogenic Pb if a satisfactorily sensitive analysis can be devised. Preliminary reconnaissance work characterizing these materials by EPMA indicated that very thin (several micron) rims and fracture fillings in monazite are somewhat higher in Th (1-2wt.%), permitting better precision and accuracy if the spatial resolution of analysis is sufficient. In addition, there is the potential to find small, un-hydrolyzed domains in thorite, also requiring high spatial resolution, for attempts at accurate dating.

The unique Cameca SX-Ultrachron at the University of Massachusetts is an electron probe designed specifically for trace element microanalysis at high spatial resolution, with an emphasis on Th-U-total Pb geochronology related to monazite, xenotime, thorite, and other natural chronometers. The relatively low common Pb concentrations in these phases, along with high concentrations of actinides (and resulting high radiogenic Pb concentrations) generally allow accurate analysis by this technique. The power of the technique resides in the high spatial resolution afforded by electron probe microanalysis (EPMA), and the in-situ, non-destructive nature of the analysis. Analyses are typically performed on petrographic thin sections, preserving the textural relationships necessary for relating age information with mineral paragenesis, reaction textures, and/or deformation features (e.g., Terry et al., 2000; Shaw et al., 2001; Dahl et al., 2005; Mahan et al. 2006a,b; Dumond et al., 2008). In this way, reactions and kinematic processes can be directly constrained temporally, and polygenetic mineral growth can be evaluated on the micro-scale.

Modern use of EPMA for geochronology was re-introduced by Suzuki and Adachi (1991), Suzuki et al. (1994), and Montel et al. (1996). Compositional mapping, age mapping, and application to tectonic problems by direct, in-situ thin section analysis were discussed by Williams et al. (1999), Williams and Jercinovic (2002), and Goncalves et al. (2005). A recent review of the technique and applications is presented by Williams et al. (2007), and details of analytical issues, strategies, and protocols are presented in Jercinovic and Williams (2005), Jercinovic et al. (2008), Pyle et al. (2002; 2005), and Williams et al. (2006).

Monazite is efficiently located in thin section by full-section compositional mapping. Once locations are documented, all monazite to be analyzed must be compositionally mapped in order to

delineate compositional domains. Nearly all natural monazite is compositionally zoned, with zones corresponding in some cases to different ages. The details of compositional zoning are critical for conducting subsequent quantitative analysis, and are also significant for understanding the chemical evolution of the system and correlating reactions to ages (e.g., Williams et al., 2006; 2007). Once mapping has been completed, quantitative analysis can be carried out. Table 1 lists the general EPMA protocol for monazite in thin section.

Quantitative analysis of monazite (REE phosphate) for EPMA geochronology requires the measurement of trace concentrations of Pb and U, and, as is sometimes the case with the monazite in the Lemhi Pass area, minor or trace levels of Th. In most cases, monazite contains Th as a major constituent, but the Lemhi Pass monazite is unusually low in Th, and nearly devoid of U, making analysis particularly challenging. In addition, all major elements must be measured in order for accurate matrix corrections to be applied. The quantitative settings used for this analysis are listed in Appendix A. The PbM α line is used for analysis of Pb in order to maximize count precision (and resulting age precision – see Pyle et al., 2005). The intensity of PbM α , however, must be corrected for overlaps of ThM ζ 1 and M ζ 2, YL γ , and LaL α (2nd order). UM β is the analytical line for the uranium analysis as the Th interference with UM α is very severe, but there is also Th interference on UM β that must be corrected for. Therefore, interference calibrations are performed using brabantite for the Th interferences on Pb and U (ThLy, and family on UM β), Y-Al-garnet, for interference of YLy on PbM α , LaPO₄ for interference of La on Pb, and K-feldspar, for interference of K K α on UM β . Careful selection of peak and background positions for REE analysis avoids most overlaps, however, an overlap of Nd LB3 on EuLa must still be accounted for, therefore, an overlap calibration for the Eu measurement is done using synthetic NdPO₄.

Background intensities for Pb, Th, and U are obtained by careful WDS scanning (see Jercinovic and Williams, 2005; Jercinovic et al., 2008). Scans for each compositional domain are noise filtered, and selected background wavelength regions are regressed using exponential modeling (see Williams et al., 2007; Jercinovic et al, 2008 for details). The high concentrations of LREEs in the Pb M region of PET, plus occurrences of other interfering lines, sometimes generated by fluorescence at a distance, requires careful evaluation and background modeling to extract appropriate background intensities in monazite. Linear interpolation for background determination will result in very large errors on net intensities for trace element analysis due to both background curvature and potential interferences.

Thorite analysis proceeds by characterizing each potential grain in via backscattered electron imaging to find regions which are not hydrolyzed. Thorite is readily rendered metamict due to very high α -dose, and is then subject to hydrolysis and Pb loss (Lumpkin and Chakoumakos, 1988). High backscatter-brightness regions in thorite tend to remain relatively stoichiometric, and Pb loss is expected to be minimized in these areas. Analyses are confined to these regions. For thorite, Th is present in very high concentration and represents a major element analysis. Radiogenic Pb will reach major element proportions in a few hundred m.y., so peak net intensities are expected to be relatively high. Th interference on PbM α is extreme, so the PbM β line is selected as the analytical line. The other major issue with thorite analysis relates to the uranium analysis. With such high Th concentrations, the absorption edges corresponding to the Th MIV and ThMV levels will be very significant (Jercinovic and Williams, 2005). The only accurate means of background measurement in this case is to do a single estimate between the two edges, near the low wavelength side of the ThMY

peak. The Th interference on the UM β line is very large, but can be corrected by interference correction.

Step	Procedure	Explanation
1	Full section map	Carbon coat thin section (vacuum evaporation to ~250Å) and collect map of Ce (and / or La or Nd), Y, and Th, along with base-map reference element (Mg, Al). Typically 1024X512 pixels, 35 μ m pixel step size, defocused beam (~ 35 μ m). 300 nA, 15kV, 20 msec count time / pixel.
2	Process maps for accessory mineral selection	Import raw maps into image analysis program (Adobe Photoshop or equivalent). Adjust I/O levels to highlight Ce (or La) spots and import adjusted maps as layers into Adobe Illustrator or equivalent. Mark spots from REE, Y and / or Th maps on separate layer with circles, dots, etc. Overlay marked layer on base map (Mg or Al) to identify accessory phases in textural context.
3	Map minerals at high magnification	Map selected grains, usually beam rastering at resolution giving step size <1 μ m. Generally YL α , ThM α , UM β , and CaK α , (and / or other geochemically important elements). 200nA, 100msec/pixel, focused beam.
4	Remove carbon coat, then apply high conductivity coat	Lightly polish section (≤0.3 µm polishing compound) to remove C-coat. Apply Al coat to thin section(s) and standards (stripped of coatings) by high-vacuum thermal evaporation. Should be ~200Å. Follow with ~80Å evaporated carbon. Coated materials must be kept under high vacuum.
5	Collect backgrounds for trace element analysis	Acquire wavelength scans of regions around ThM α , UM β , and PbM α (8-sin θ steps over 8400 sin θ range, 1500msec/step, 200nA, 15kV, focused beam, differential mode PHA). Collected counts are converted to dead-time corrected cps/nA. Backgrounds should be acquired for each identified compositional domain, particularly guided by thorium variation. All critical domains should have direct background characterization.
6	Extract background intensity from scans	Apply digital noise filter to scan data (Savitsky-Golay ~4% data window with order 3 polynomial), select appropriate background regions (avoiding interferences), and regress included data (exponential best-fit in most cases). Apply regressed line to peak position to calculate intensity of background under peak of interest.
7	Obtain integrated trace and major element analyses.	Calibrate (at 20nA, 15kV, focused beam), YLα, ThMα, UMβ, and PbMα, (see Appendix A). Enter background intensities obtained via above regressions into analysis settings files for each domain. Analyze unknowns (200nA, 15kV, focused beam, 600-900 sec. per point). UMass Moacyr monazite (506 Ma via ID-TIMS and SHRIMP) is analyzed prior unknowns, and is periodically analyzed during the quantitative session to monitor data consistency. For details, see Appendix A for monazite, Appendix B for thorite. Identified compositional domains should be individually analyzed as per Williams et al. (2006). Concentrations are modified by empirical corrections for overlaps (cps-subtraction, matrix iterated). Such corrections are done by interference calibration on appropriate standards. Final concentrations are done via PAP for matrix effects.
8	Calculate ages	Calculate age by iteration (calculating Pb as a function of age with Th and U known, converge to the measured Pb concentration). Analyses confined to a single compositional domain are evaluated for compositional heterogeneity and appropriate errors are calculated using accumulated analyses and propagation of counting statistics (see Williams et al., 2006).

Table 1.	Summary of analytic	al procedure for EPM	A geochronology as	currently implemented	l at UMass.
TUDIC II	Summary of unaryth	an procedure for Er Mi	· Scocill ollology as	, carrently implemented	

The analytical strategy for both monazite and thorite follows that of Williams et al. (2006). Analyses (individual data points) are confined to a defined compositional domain within a grain.

Points are accumulated within the particular domain in order to build an appropriate statistical precision. Histograms are constructed assuming a normal distribution to illustrate age precision. Weighted means of age populations are calculated for an improved estimate of the age when appropriate. A consistency standard (Moacyr monazite, 506 Ma by ID-TIMS and SHRIMP-II) is analyzed before the unknowns are analyzed as a check of calibration and is run periodically during each session as a consistency standard (Williams et al., 2006).

Detection limits for the geochronologically relevant elements in monazite and thorite are listed in Table 2 for single point analyses and in Table 3 for a population. Approximately 20 points would be required in a domain to obtain population detection limits for Pb in monazite of 5 ppm.

	Th	U	Pb
Monazite	58	30	25
Thorite	755	91	116

Table 2. Single point detection limits (Ancey, 1978) in ppm.

Table 3. Example population detection limits (Ancey, 1978) in ppm. Numbers reported are formonazite N = 8 points, and thorite N = 5 points.

	Th	U	Pb
Monazite	21	12	10
Thorite	417	40	62

Instrumentation used includes both the Cameca SX-Ultrachron and Cameca SX50 electron microprobes in the Department of Geosciences at the University of Massachusetts. Mapping was done on all monazite-bearing thin sections and grain mounts using the SX50. This is a 5-WDS spectrometer instrument (with PGT EDS) with LaB₆ cathode, automated via Cameca's SXrayN50 software on a Unix platform. Monazite full section search maps were done using a 15 kV accelerating potential, 200nA beam current, and 35 micron pixel step size. Sections were mapped for Y, Nd (Ce in some cases), Th, and Si. High resolution maps of individual monazite grains or areas were done at 15 kV and 200 nA, with pixel dimensions sufficient to generally achieve sub-micron resolution. Elements mapped include Y, Th, U, and Ca. All quantitative analysis was performed using the Ultrachron. This is also a 5-WDS spectrometer instrument with EDS (Bruker X-Flash SDD), LaB₆ cathode and specially modified gun and optics to achieve optimum beam diameter (smallest possible) over a range of voltage and current, with particular attention to the high current, relatively low voltage requirements for EPMA geochronology. This unique instrument also has two specially constructed VLPET (verylarge PET) monochromators with commensurately large flow-proportional counters. These spectrometers have approximately 4x the count rates of traditional PET spectrometers. Automation is done via the PC-based PeakSight[™] software. See Appendices A and B for analytical parameters for monazite and thorite.

Samples supplied by Virginia Gillerman were mapped and analyzed. Samples selected for quantitative EPMA geochronology are listed in Table 4 (monazite) and Table 5 (thorite), also listing specific domains analyzed.

	sample	monazite	domain
Grain mount	LH06-24B	M15	central core
			central low Y core
			high Th rim right
			high Th rim SE
			high Y core SE
			low Th core S
Thin section	06CTCAr	m2a	
		m2b	
		m4a	
		m4b	
Thin section	JA06-01C	m4	SW
		m7	
Thin section	LH06-25	m2	high Th core right
			low Th core
		m3	high Th fracture left
			high Th rim right
			high Y core lower
			low Y core right
Thin section	LH06-A2	m1	area center grain
			higher Th
		m3	high Th
			low Th
Thin section	LH12C	m1	low Th
			high Th
		m2	low Th
			high Th

Table 4. Samples and domains selected for quantitative monazite EPMA geochronology.

	sample	thorite	domain
Grain mount	LH06-24B	14	area 1
		16	area 1
			area 1c
		17	area 1
		18	area 1
			area 2
			area 3
Thin Section	LH06-25	1	area 1
			area 2
		2	area 1
		3	area 1
		4	area 1
		5	area 1
			area 2
			area 3
Thin section	LH06-A2	1	area 1
			area 2
			area 3
			area 4
			area 5
			area 6
		2	area 1
		3	area 1
			area 2
Thin section	LH8c	1	area 1
			area 2
		2	area 2
			area 3
		3	area 1
			area 2
			area 3
Thin section	LH12c	2	area 1
		3	area 1
		4	area 1
		5	area 1
		6	area 1
		7	area 1

Table 5. Samples and domains selected for quantitative thorite EPMA geochronology.

Results

Full thin-section monazite search maps are shown in Appendix C. Specific monazites were selected from these maps, and those individual grains were mapped at much higher magnification in order to reveal compositional microstructure. The high resolution monazite compositional maps provide the basis for quantitative analyses of monazite by EPMA as analyses are confined to individual domains (see Table 4 for list of compositional domains analyzed). Figure 1 gives an example of the mapping-based analytical strategy for LH06-25 monazite 3. Figure 2 shows a histogram representation of age results from this sample.

Monazite from the Lucky Horseshoe mine is exceptionally high in Nd and Pr (~ 35wt.% Nd₂O₃, ~ 5wt.% Pr₂O₃), and commensurately low in La and Ce compared to most monazite worldwide (see example analyses, Table 6). Thorium concentrations in the bulk monazite (by far the most volumetrically significant) in the samples for this study is generally below 0.6 wt.% (Table 6). There is also clear evidence, in most monazite samples, of higher Th rims and fracture fillings (see Figure 1). This higher Th monazite (1-2 wt.% in general, see Table 6), can be interpreted as precipitating later than the bulk, low-Th monazite via textural evidence. The Cameca SX-Ultrachron is capable of the spatial resolution necessary to cleanly analyze these relatively high Th rims and fracture fillings, and is also uniquely capable of the count precision necessary to dependably analyze the low-actinide (and very low Pb) bulk monazite. Table 7 summarizes age results from monazite-bearing samples. Table 8 presents weighted means for comparable domains in each sample.

Figure 1. X-ray compositional maps of monazite grain 3 from sample LH06-12, Lucky Horseshoe mine, left = Th, right = Y. Analyzed domains shown below images. See Tables 6 and 7 for results. See Figure 2 for age histograms from this sample. Note small thorite grains (very bright areas) in Th image (left).

Figure 2. Histogram representation of age results for LH06-25 monazite. Histograms represent age and error as normal distribution around weighted mean age of analyses in each domain. A separate weighted mean of the cumulative results of M2 monazite and M3 high Y core results is shown.

	LH12	2c M2	LH06-25 M3	
	low Th	high Th	high Y core	high Th fracture
	oxide wt.%	oxide wt.%	oxide wt.%	oxide wt.%
CaO	0.228	0.349	0.310	0.233
К2О	0.011	0.043	0.025	0.039
SiO2	0.198	0.242	0.231	0.285
SrO	0.033	0.031	0.038	0.024
P2O5	28.867	28.963	29.600	29.834
As2O3	0.194	0.044	0.001	0.065
ThO2	0.480	1.838	0.501	1.809
UO2	0.000	0.002	0.000	0.001
Y2O3	1.147	0.800	1.382	0.614
La2O3	3.680	3.493	2.417	2.950
Ce2O3	16.873	16.420	14.275	15.768
Nd2O3	34.774	35.097	35.780	35.460
Pr2O3	5.031	5.018	4.942	5.130
Sm2O3	2.937	2.930	4.243	3.762
Tb2O3	0.000	0.000	0.000	0.000
Gd2O3	1.557	1.605	2.076	1.844
Dy2O3	0.000	0.000	0.028	0.000
Ho2O3	0.020	0.016	0.014	0.000
Er2O3	0.045	0.019	0.037	0.008
Eu2O3	1.213	1.177	1.468	1.342
Tm2O3	0.572	0.583	0.649	0.610
Yb2O3	0.001	0.012	0.005	0.011
SO3	0.106	0.120	0.047	0.068
PbO	0.009	0.010	0.009	0.008
Total	97.979	98.814	98.078	99.865
	ppm	ppm	ppm	ppm
Y	9033	6299	10885	4836
Th	4492	17197	4687	16925
U	3	22	4	7
Pb	82	83	78	70

Table 6. Example analyses from low and high Th domains, Lucky Horseshoe mine monazite.

	sample	monazite	domain	Age (Ma +/- SOM)*
Grain mount	LH06-24B	M15	central core	376 +/- 28
			central low Y core	336 +/- 29
			high Th rim right	80 +/- 9
			high Th rim SE	(included in above value)
			high Y core SE	351 +/- 30
			low Th core S	349 +/- 55
Thin section	06CTCAr	m2a		334 +/- 18
		m2b		(included in above value)
		m4a		333 +/- 34
		m4b		(included in above value)
Thin section	JA06-01C	m4	SW	**
		m7		102 +/- 12
Thin section	LH06-25	m2	high Th core right	334 +/- 23
			low Th core	334 +/- 25
		m3	high Th fracture left	81 +/- 12
			high Th rim right	127 +/- 18
			high Y core lower	364 +/- 21
			low Y core right	277 +/- 13
Thin section	LH06-A2	m1	area center grain	341 +/- 36
			higher Th	365 +/- 20
		m3	high Th	343 +/- 30
			low Th	**
Thin section	LH12C	m1	low Th	358 +/- 28
			high Th	118 +/- 15
		m2	low Th	365 +/- 21
			high Th	83 +/- 16
*Age reported = w	eighted average	ge of analyses	+/- 1 standard error of the	mean of population of analyses.
** Unacceptable d	ata array			

Table 7. Summary of monazite Erivia geochronology results	Table 7.	Summary of	monazite EPMA	geochronology	results.
---	----------	------------	---------------	---------------	----------

	sample	monazite	domain	Weighted mean age (Ma +/- 2σ)*
Grain mount	LH06-24B	m15	central core	
			central low Y core	/
			high Y core SE	359 +/- 20
			low Th core S	
1				
Thin section	LH06-25	m2	high Th core right	
			low Th core	/
		m3	high Y core lower	355 +/- 20
	LH06-25	m3	high Th fracture left	101 +/- 12
			high Th rim right	101 1/ 12
Thin section	LH06-A2	m1	area center grain	
			higher Th	352 +/- 31
		m3	high Th	
Thin section	LH12C	m1	low Th	364 +/- 22
		m2	low Th	304 17 22
	LH12C	m1	high Th	a- / //
		m2	high Th	95 +/- 11
*Age reported =	weighted avera	ge of analyses	+/- 2 Std Dev.	

Table 6. Weighted means of monazite EPIVIA age results	Table 8.	Weighted	means of	monazite	EPMA	age result	s.
--	----------	----------	----------	----------	-------------	------------	----

Thorite is intergrown with monazite in the Lemhi Pass thin sections from the Lemhi Pass area. Backscattered electron (BSE) imaging reveals small areas in some grains which are clearly of higher average atomic number (significantly brighter in BSE – see Figures 3 and 4) compared to the bulk thorite. Although generally small, these areas are analytically accessible by EPMA, and yield nearly stoichiometric thorite when quantitatively analyzed. Hydrolysis in accompanied by uptake of Ca (Figure 4) and Fe in thorite. Ages obtained by EPMA geochronology for this "unaltered" thorite are given in Table 9.

Figure 3. Backscattered electron image of thorite from Lucky Horseshoe (LH06-25, thorite 5). BSE bright areas are remnant, un-hydrolyzed regions (thorite is susceptible to hydrolysis after metamictization). Note scalloped edges of the bright regions, typical of hydrolytic reconstruction front. See Table 9 for results on thorite EPMA geochronology.

Figure 4. Thorite 3 from LH12c. BSE (left), and compositional maps. BSE bright area in upper left of grain is LH12c Thorite 3 analysis Area 1 in Tables 5 and 9. Note higher Ca in BSE darker (hydrolyzed) areas.

	sample	thorite	domain	Age (Ma +/- SOM)*
Grain mount	LH06-24B	14	area 1	268 +/- 17
		16	area 1	334 +/- 3
			area 1c	323 +/- 6
		17	area 1	350 +/- 12
		18	area 1	344 + /- 6
			area 2	351 +/- 5
			area 3	346 +/- 4
Thin Section	LH06-25	1	area 1	408 +/- 4
			area 2	383 +/- 2
		2	area 1	94 +/- 5
		3	area 1	403 +/- 9
		4	area 1	**
		5	area 1	344 +/- 2
			area 2	334 +/- 2
			area 3	102 +/- 1
Thin section	LH06-A2	1	area 1	100 +/- 1
			area 2	120 +/- 7
			area 3	124 +/- 5
			area 4	139 +/- 8
			area 5	263 +/- 8
			area 6	174 +/- 10
		2	area 1	159 +/- 6
		3	area 1	339 +/- 3
			area 2	332 +/- 2
Thin section	LH8c	1	area 1	288 +/- 15
			area 2	328 +/- 4
		2	area 2	324 +/- 8
			area 3	285 +/- 6
		3	area 1	292 +/- 7
			area 2	289 +/- 12
			area 3	**
Thin section	LH12c	2	area 1	136 +/- 18
		3	area 1	344 +/- 8
		4	area 1	295 +/- 11
		5	area 1	355 +/- 8
		6	area 1	160 +/- 10
		7	area 1	332 +/- 11

Table 9. Summary of Thorite EPMA age results.

** Unacceptable data array

Summary

Evidence of two episodes of monazite growth is preserved in samples from the Lemhi Pass Th-REE District of Idaho and Montana, illustrated in Figure 5. The initial episode, at which time the major Th-REE mineralization appears to have taken place, occurred ca. 350 Ma. The actinide content of this monazite is exceptionally low, and the Nd-Pr content exceptionally high, relative to typical igneous or metamorphic monazite (for example, see Williams et al., 2007). Thorium concentrations are generally below 6000 ppm, and concentrations of U generally below 100 ppm in the Lemhi Pass region bulk monazite. This monazite is, however, associated with major mineralization of thorite (ThSiO₄). A second episode of ca. 100 Ma monazite growth is also suggested. This monazite occurs generally as thin (less than 5 micrometers) rims on the bulk monazite or as fracture fillings. The later monazite is significantly higher in Th, generally 1-2 wt.% Th, but reaching nearly 5 wt.% in some samples (06CTCAr). There is no suggestion of mineralization older than late Devonian based on monazite EPMA geochronology, and a second episode (although volumetrically minor) of cretaceous mineralization is implied.

EPMA of thorite from the Lemhi Pass Th-REE District yields data compatible with ages suggested by monazite. Although easily rendered metamict with subsequent hydrolyzation (Lumpkin and Chakoumakos, 1988) some small (generally below 10 micrometer) areas within some thorite grains remain. Analysis of these areas yields ages similar to coexisting monazite, and are compatible with mineralization at ca. 350 Ma and ca. 100 Ma (see Figure 5). Radiogenic Pb concentrations in thorite are expected to be somewhat variable due to the effects of metamictization, therefore the spread of apparent ages is correspondingly larger for thorite relative to monazite in Figure 5. There is no suggestion of ages appreciably older than ca.350 Ma, or significantly younger than ca. 100 Ma based on thorite analyses.

Figure 5. Summary of EPMA geochronology results, analyses from all domains, all samples (see Tables 4 and 5). Monazite data are from Table 8, representative of 2 σ errors of weighted means. Thorite values are from Table 9.

Geosciences

References

- Ancey M., Bastenaire F., and Tixier R. (1978) Applications of statistical methods in microanalysis. In:
 Microanalysis and scanning electron microscopy. Pp. 319-343 in *Proceedings of the Summer School at St-Martin-d'Heres*. Maurice, F., Meny L., and Tixier, R. eds. Les Editions de Physique, Orsay, France.
- Dahl, P.S., Hamilton, M.A., Jercinovic, M.J., Terry, M.P., Williams, M.L., and Frei, R. (2005) Comparative isotopic and chemical geochronometry of monazite in metamorphic rocks from the eastern Wyoming province (USA), with implications for U-Th-Pb dating by electron microprobe. *American Mineralogist* **90**, 619-638.
- Dumond, G., McLean, N., Williams, M.L., Jercinovic, M.J., and Bowring, S.A. (2008) High-resolution dating of granite petrogenesis and deformation in a lower crustal shear zone, Athabasca granulite terrane, western Canadian Shield. *Chemical Geology* **254**, 175-196.
- Goncalves, P., Williams, M.L., and Jercinovic, M.J. (2005) Electron microprobe age mapping. *American Mineralogist* **90**, 578-585.
- Jercinovic, M.J., and Williams, M.L. (2005) Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: Background acquisition, interferences, and beam irradiation effects. *American Mineralogist* **90**, 526-546.
- Jercinovic, M.J., Williams, M.L., and Lane, E.D. (2008) In-situ trace element analysis of monazite and other finegrained accessory minerals by EPMA. *Chemical Geology* **254**, 197-215.
- Lumpkin, G.R. and Chakoumakos, B.C. (1988) Chemistry and radiation effects of thorite-group minerals from the Harding pegmatite, Taos County, New Mexico. *American Mineralogist* **73**, 1405-1419.
- Mahan, K.H., Williams, M.L., Flowers, R.M., Jercinovic, M.J., Baldwin, J.A., and Bowring, S.A. (2006) Geochronological constraints on the Legs Lake shear zone with implications for regional exhumation of lower continental crust, western Churchill Province, Canadian Shield. *Contributions to Mineralogy and Petrology* **152**, 223-242.
- Mahan, K.H., Goncalves, P., Williams, M.L., and Jercinovic, M.J. (2006) Dating metamorphic reactions and fluid flow: Application to exhumation of high-P granulites in a crustal-scale shear zone, western Canadian Shield. *Journal of Metamorphic Geology* **24**, 193-217.
- Montel J., Foret S., Veschambre M., Nicollet C., Provost A. (1996) Electron microprobe dating of monazite. *Chem. Geol.* **131**,37–53.
- Pyle J.M, Spear F.S, and Wark D.A. (2002). Electron microprobe analysis of REE in apatite, monazite and xenotime; protocols and pitfalls. See Kohn et al. 2002, pp. 337–62.
- Pyle J.M, Spear F.S, Wark D.A, Daniel C.G, and Storm L.C. (2005). Contributions to precision and accuracy of chemical ages of monazite. *American Mineralogist* **90**, 547–577.
- Shaw, C.A., Karlstrom, K.E., Williams, M.L., Jercinovic, M.J., and McCoy, A.M. (2001) Electron microprobe monazite dating of ca. 1.71 – 1.63 Ga and ca. 1.45-1.38 deformation in the Homestake shear zone, Colorado: Origin and early evolution of a persistent intracontinental tectonic zone. *Geology* 29, 739-742.
- Suzuki K, Adachi M. (1991) Precambrian provenance and Silurian metamorphism of the Tsubonasawa paragneiss in the South Kitakami terrane, Northwast Japan, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. *Geochem. J.* **25**:357–76.
- Suzuki K, Adachi M, Kajizuka I. (1994) Electron microprobe observations of diffusion in metamorphosed detrital monazites. *Earth Planet. Sci. Lett.* **128**:391–405.
- Terry, M.T., Robinson, P., Hamilton, M.A., and Jercinovic, M.J. (2000) Monazite geochronology of UHP and HP metamorphism, deformation, and exhumation, Nordoyane, Western Gneiss Region, Norway. *American Mineralogist* **85**, 1651-1664.

Williams, M.L., and Jercinovic, M.J. (2002) Microprobe monazite geochronology: Putting absolute time into

microstructural analysis. Journal of Structural Geology 24, 1013-1028.

- Williams ML, Jercinovic MJ, Terry M. (1999). High resolution "age" mapping, chemical analysis, and chemical dating of monazite using the electron microprobe: A new tool for tectonic analysis. *Geology* 27:1023–26.
- Williams, M.L., Jercinovic, M.J., Goncalves, P. and Mahan, K. (2006) Format and Philosophy for Collecting, Compiling, and Reporting Microprobe Monazite Ages. *Chemical Geology* **225**, 1-15.
- Williams, M.L., Jercinovic, M.J., and Hetherington, C.J. (2007) Microprobe Monazite Geochronology: understanding geologic processes through integration of composition and chronology. *Annual Review* of Earth and Planetary Sciences **37**, 137-175.

Appendix A. Quantitative settings for monazite analysis.

Common informations :

File Name : Moacyr TS 11-03-2008.qtiSet *File Date* : Nov/03/08-2:43 PM *Comment* :

Column conditions :

Cond 1 : HV (kV) : 15 I (nA) : 200 Size (µm) : 0. Scanning : Off RasterLength (µm) : 16.63

Xtal informations :

Xtal parameters:

Pb Ma 1	Sp3	LPET	(2d= 8.75	K= 0.000144)
Pb Ma 1	Sp4	LPET	(2d= 8.75	K= 0.000144)
U Mb1	Sp1	LPET	(2d= 8.75	K= 0.000144)
As Ka 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
La La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Ce La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Pr Lb 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Nd La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Sm Lb 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Eu La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Gd Lb 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Tb La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Dy La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Ho Lb 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Er La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Tm La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Yb La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Si Ka 1	Sp2	LPET	(2d= 8.75	K= 0.000144)

Sr La 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
Y La 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
P Ka 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
S Ka 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
Th Ma 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
Ca Ka 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
K Kb 1	Sp1	LPET	(2d= 8.75	K= 0.000144)

Pha parameters :

Elt. Line	Spec	Xtal	Bias	Gain	Dtime	Blin	Wind	Mode
			(V)		(µs)	(mV)	(mV)	
Pb Ma 1	Sp3	LPET	1855	864	3	560	2300	Diff
Pb Ma 1	Sp4	LPET	1865	873	3	560	2300	Diff
U Mb 1	Sp1	LPET	1320	895	2	560	4000	Diff
As Ka 1	Sp5	LLIF	1860	400	3	560	3100	Diff
La La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Ce La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Pr Lb 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Nd La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Sm Lb 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Eu La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Gd Lb 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Tb La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Dy La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Ho Lb 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Er La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Tm La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Yb La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Si Ka 1	Sp2	LPET	1850	895	3	560	2842	Diff
Sr La 1	Sp2	LPET	1850	895	3	560	2842	Diff
Y La 1	Sp2	LPET	1850	895	3	560	2842	Diff
P Ka 1	Sp2	LPET	1850	895	3	560	2842	Diff
S Ka 1	Sp2	LPET	1850	895	3	560	2842	Diff
Th Ma 1	Sp2	LPET	1850	895	3	560	2842	Diff
Ca Ka 1	Sp2	LPET	1850	895	3	560	2842	Diff
K Kb 1	Sp1	LPET	1320	895	2	560	4000	Diff

Acquisition informations :

Elt. Line	Spec	Xtal	Peak	Pk Time (S)	Bg Off1	Bg Off2	Slope/IBg (S)	Bg Time	Calibration (cps/nA)	Intensity	
Pb Ma 1	Sp3	LPET	60373	700			1.0729	350	Pyromorphite_PbSp3_PbS	p4_022	249.1
Pb Ma 1	Sp4	LPET	60349	700			0.950131	350	Pyromorphite_PbSp3_PbS	p4_022	262.5
U Mb1	Sp1	LPET	42452	600			2.17344	300	UO2_U Sp1_007	297.5	
As Ka 1	Sp5	LLIF	29194	30	-375	341		15	GaAs_AsSp5_001	59.1	
La La 1	Sp5	LLIF	66130	20	-600	600		10	LaPO4_P Sp2_LaSp5_001	84.5	
Ce La 1	Sp5	LLIF	63552	10	-1000	1000		5	CePO4_CeSp5_001	93.3	
Pr Lb 1	Sp5	LLIF	56076	30	-369	473		15	PrPO4_PrSp5_001	69.4	
Nd La 1	Sp5	LLIF	58829	20	-1000	600		10	NdPO4_NdSp5_001	115.5	
Sm Lb 1	Sp5	LLIF	49628	40	-1187	806		20	SmPO4_SmSp5_001	86.9	
Eu La 1	Sp5	LLIF	52671	40	-888	799		20	EuPO4_EuSp5_001	146.2	

Gd Lb 1	Sp5	LLIF	43356	50	-1322	1552		25	GdPO4_GdSp5_001	40.2
Tb La 1	Sp5	LLIF	49071	20	-1209	330		10	TbPO4_TbSp5_001	159.9
Dy La 1	Sp5	LLIF	47406	20	-1120	410		10	DyPO4_DySp5_001	162.7
Ho Lb 1	Sp5	LLIF	40909	20	-200	790		10	HoPO4_HoSp5_001	88.4
Er La 1	Sp5	LLIF	44318	20	-350	1078		10	Er_ErSp5_001	308.4
Tm La 1	Sp5	LLIF	42885	20	-754	813		10	Tm_TmSp5_001	321.2
Yb La 1	Sp5	LLIF	41505	20	-1642	590		10	Yb_YbSp5_001	314.4
Si Ka 1	Sp2	LPET	81514	20	-1170	853		10	Microcline_SiSp2_K Sp1_0	002146.3
Sr La 1	Sp2	LPET	78509	40	-496	351		20	SrF2_SrSp2_002	106.5
Y La 1	Sp2	LPET	73700	100	-1089	1005		50	YAG_Y Sp2_005	68.5
P Ka1	Sp2	LPET	70340	20	-1313	1505		10	LaPO4_P Sp2_LaSp5_001	73.0
S Ka 1	Sp2	LPET	61418	20	-5863	1527		10	Pyrite_S Sp2_002	498.6
Th Ma 1	Sp2	LPET	47255	500			1.1781	250	Brabantite2_ThSp2_4022	010140.4
Ca Ka 1	Sp2	LPET	38390	20	-500	500		10	Wilberforce_CaSp2_001	727.6
K Kb1	Sp1	LPET	39445	100			2.7068	50	Microcline_SiSp2_K Sp1_0	0228.4

Appendix B. Quantitative settings for thorite analysis.

Common informations :

File Name : Thorite 10-6-08.qtiSet *File Date :* Oct/09/08-12:35 PM *Comment* :

****** *****

Column conditions :

Cond 1 : HV (kV) : 15 I (nA) : 80 Size (µm) : 0. Scanning : Off RasterLength (µm) : 18.88

Xtal informations :

Xtal parameters:

Th Ma 1	Sp1	LPET	(2d= 8.75	K= 0.000144)
S Ka 1	Sp1	LPET	(2d= 8.75	K= 0.000144)
U Mb 1	Sp1	LPET	(2d= 8.75	K= 0.000144)
As Ka 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
La La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Ce La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Pr Lb 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Nd La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Sm Lb 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Eu La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Gd Lb 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Tb La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Dy La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Ho Lb 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Er La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Tm La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Yb La 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)
Si Ka 1	Sp2	LPET	(2d= 8.75	K= 0.000144)

Y La 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
P Ka 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
Ca Ka 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
Pb Mb 1	Sp2	LPET	(2d= 8.75	K= 0.000144)
Pb Mb 1	Sp3	LPET	(2d= 8.75	K= 0.000144)
Pb Mb 1	Sp4	LPET	(2d= 8.75	K= 0.000144)
Fe Ka 1	Sp5	LLIF	(2d= 4.0267	K= 0.000058)

Pha parameters :

Elt. Line	Spec	Xtal	Bias	Gain	Dtime	Blin	Wind	Mode
			(V)		(µs)	(mV)	(mV)	
Th Ma 1	Sp1	LPET	1320	895	2	560	4000	Diff
S Ka 1	Sp1	LPET	1320	895	3	560	4000	Diff
U Mb1	Sp1	LPET	1320	895	2	560	4000	Diff
As Ka 1	Sp5	LLIF	1860	400	3	560	3100	Diff
La La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Ce La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Pr Lb 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Nd La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Sm Lb 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Eu La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Gd Lb 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Tb La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Dy La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Ho Lb 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Er La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Tm La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Yb La 1	Sp5	LLIF	1860	400	3	560	3100	Diff
Si Ka 1	Sp2	LPET	1910	412	3	560	2842	Diff
Y La 1	Sp2	LPET	1850	895	3	560	2842	Diff
P Ka 1	Sp2	LPET	1850	895	3	560	2842	Diff
Ca Ka 1	Sp2	LPET	1850	895	3	560	2842	Diff
Pb Mb 1	Sp2	LPET	1910	412	3	560	2842	Diff
Pb Mb 1	Sp3	LPET	1855	864	3	560	2300	Diff
Pb Mb 1	Sp4	LPET	1865	873	3	560	2300	Diff
Fe Ka 1	Sp5	LLIF	1860	400	3	560	3100	Diff

Acquisition informations :

Elt. Line	Spec	Xtal	Peak	Pk Time (S)	Bg Off1	Bg Off2	Slope/IBg (S)	Bg Time	Calibration (cps/nA)	Intensity
Th Ma 1	Sp1	LPET	47272	20	-955	1753		10	Brabantite2_ThSp1_014	91.1
S Ka 1	Sp1	LPET	61395	30	-5863	1527		15	Pyrite_S Sp1_001	527.0
U Mb1	Sp1	LPET	42449	300	-1204	1		150	UO2_U Sp1_007	297.5
As Ka 1	Sp5	LLIF	29194	30	-375	341		15	GaAs_AsSp5_001	59.1
La La 1	Sp5	LLIF	66144	10	-600	600		5	LaPO4_P Sp2_LaSp5_001	84.5
Ce La 1	Sp5	LLIF	63567	10	-1000	1000		5	CePO4_CeSp5_001	93.3
Pr Lb 1	Sp5	LLIF	56076	30	-369	473		15	PrPO4_PrSp5_001	69.4
Nd La 1	Sp5	LLIF	58832	10	-1000	600		5	NdPO4_NdSp5_001	115.5
Sm Lb 1	Sp5	LLIF	49628	40	-1187	806		20	SmPO4_SmSp5_001	86.9
Eu La 1	Sp5	LLIF	52671	40	-888	799		20	EuPO4_EuSp5_001	146.2

Gd Lb 1	Sp5	LLIF	43356	50	-1322	1552	25	GdPO4_GdSp5_001	40.2
Tb La 1	Sp5	LLIF	49071	20	-627	813	10	TbPO4_TbSp5_001	159.9
Dy La 1	Sp5	LLIF	47406	20	-523	1100	10	DyPO4_DySp5_001	162.7
Ho Lb 1	Sp5	LLIF	40909	20	-1016	1157	10	HoPO4_HoSp5_001	88.4
Er La 1	Sp5	LLIF	44318	20	-649	956	10	Er_ErSp5_001	308.4
Tm La 1	Sp5	LLIF	42885	20	-754	813	10	Tm_TmSp5_001	321.2
Yb La 1	Sp5	LLIF	41505	20	-1642	590	10	Yb_YbSp5_001	314.4
Si Ka 1	Sp2	LPET	81454	20	-1170	853	10	Pg721_SiSp2_001	108.2
Y La 1	Sp2	LPET	73746	100	-1089	1005	50	YAG_Y Sp2_005	68.5
P Ka 1	Sp2	LPET	70391	30	-1313	1505	15	LaPO4_P Sp2_LaSp5_001	73.0
Ca Ka 1	Sp2	LPET	38390	20	-500	500	10	Wilberforce_CaSp2_001	727.6
Pb Mb 1	Sp2	LPET	57990	200	-720	734	100	Pyromorphite_PbSp2_PbS	p3_PbSp4_001
	108.7								
Pb Mb 1	Sp3	LPET	57994	340	-720	734	170	Pyromorphite_PbSp2_PbS	p3_PbSp4_001
	182.7								
Pb Mb 1	Sp4	LPET	57963	340	-720	734	170	Pyromorphite_PbSp2_PbS	p3_PbSp4_001
	195.2								
Fe Ka 1	Sp5	LLIF	48092	30	-1187	456	15	Pyrite_FeSp5_001	270.2

LH12C

LH8C

LH06-25

JA06-01C

06CTCAr

Lemhi Pass (LP) Lead Isotope Study Samples		APPENDIX H1				V.S. Giller	.S. Gillerman, December 16, 2008			
all locations from Lemhi County, Idaho										
Sample Number	Mine/Location	Rock Description	Mineral	Comments	Waypoint #	UTM Zone	Easting	Northing		
						NAD 27				
07WP129 KF-P L2	Leadore: Hawley Crk. Canyor	Leadore Granite: Pink Granite, coarse-grained, weak	c feldspar, L2		07WP129	12	325189	4947434		
07WP129 KF-M L2	Leadore: Hawley Crk. Canyor	granophyre, perthite, zircon, interstitial quartz	feldspar, L2							
07WP129 KF-C L2	Leadore: Hawley Crk. Canyor	feldspar, L2								
JA06-01A KF-M L2	LP trench W of Cont. Divide	Syenite: 70% feldspar (Or w/ Ab rims), hematite altera	t feldspar, L2	529 Ma U-Pbzircon	06WP088	12	306554	4981060		
JA06-01A KF-C L2	LP trench W of Cont. Divide	Syenite: 70% feldspar (Or w/ Ab rims), hematite altera	t feldspar, L2							
JA06-01C HM	LP trench W of Cont. Divide	Quartz-Hematite veins cutting syenite	hematite							
07WP119 KF-P L2	LP: ThO2 Mine	Th Vein: Qz-pinkKf-Hm-Th; radioactive	feldspar, L2	Dump Open Pit	07WP119	12	302327	4970507		
		· · ·								
LH06-24B KF-M L2	LP: Lucky Horseshoe, main pi	ThREE Ore Cataclasite: Fsp-Biot-Apat-Hm-Th-MZ	feldspar, L2	Open Pit - stongly deforme	06WP040	12	303357	4984816		
LH06-24B KF-C L2	LP: Lucky Horseshoe, main pi	thigh grade Th ore, radioactive	feldspar, L2							
LH06-24B HM	LP: Lucky Horseshoe, main pi	t	hematite							
CQ06-30B CP	LP: Copper Queen Dump	Qz-Cp-Ga-Po/py vein in altered Pyroxene Porphyry	chalcopyrite	Shaft Dump	surveyed	12	304825	4982275		
CQ06-30B GA	LP: Copper Queen Dump	Qz-Cp-Ga-Po/py vein in altered Pyroxene Porphyry	galena	Shaft Dump	-					
CQ06-30B PY	LP: Copper Queen Dump	Qz-Cp-Ga-Po/py vein in altered Pyroxene Porphyry	pyrite	Shaft Dump						
CQ06-52 CP	LP: Copper Queen - road?	Qz-Py-Cp in quartzite	chalcopyrite	road area	06WP045	12	304854	4982283		
1CQ-2b MO	LP: Copper Queen Dump	Quartz-Moly vein (cp-bn locally) in quartzite	molybdenite	Shaft Dump		12	304825	4982275		
07CQS-R BN	LP: Copper Queen	Quartz-sulfide vein, mostly bornite in quartzite	bornite	coll. By R. Reed						
085-F	Deep Creek Pluton: ~14 mi. V	Fresh, mg gabbro to mafic syenodiorite;	feldspar, L2	collected off Napias Crk.	06WP085	11	719253	5001925		
099-F	LP: Trench SE of Bluebird	Syenite, fresher, no veins	feldspar, L1	wk. magnetic; concealed	06WP099	12	306078	4982327		
099-F			feldspar, L2							
LH33-F	LP: Lucky Horseshoe mine	Tan Feldspar veins cutting hanging wall schist	feldspar, L2	outer zone of Th-REE ore?	06WP040 + 20	12	303357	4984836		
BC4-F	Bull Canyon Stock, 10 mi. SE	Red Granite/Syenite- highly altered; high Th, Mz	feldspar, L2	Fsp to sericite + hematite	08BC52	NAD83	W113°10'23"	N44°37'11"	collected b	y RR/SD
BC1-F	Bull Canvon Stock, 10 mi, SE	Red Granite/Svenite- highly altered: high Th. Mz	feldspar. L1	Fsp to sericite + hematite	08BC45	NAD83	W113°9'58"	N44°37'52"	collected b	v RR/SD
BC1-F			feldspar, L2							
CAC-F	LP: Cago Mine	Th vein envelope - white portion	feldspar, L2	outer white envel.	06WP055	12	303964	4980355		
102-F	LP: Trench SE of Bluebird min	Pyroxene Porphyry (same loc. As BL06-03)	feldspar, L1	Oliv altered to Trem.; propy	06WP102	12	305955	4982486		
102-F			feldspar, L2							
120-F	LP: Lower Lucky Horseshoe A	Mafic Sill: carbonate alteration; px, amph fresher	feldspar, L1	Matrix feldspar may be play	07WP120	12	303477	4984549		
120-F	, i i i i i i i i i i i i i i i i i i i		feldspar, L2							
195-H	Reese Creek Iron Mine	Vein of massive specular hematite, minor white quartz	hematite	Staatz loc. 195	07WP116	12	300690	4967107	,	
126A-I	Roberts Prospect	Carbonatite Breccia- calcite, Act., coarse ilmenite	ilmenite	North Fork Belt (Anderson,	07WP126	11	718106	5032106		
YJ-G	Yellowjacket mine - ug?	Quartz-galena vein, super fresh	galena	collected by R. Bjorklund		11	694724	4983376	unsure of	exact location
YJ1-C	Yellowjacket Open Pit	Partly oxidized breccia with FeOx, Chalcopy matrix	chalcopyrite	in quartzite, coll. 1992		11	695561	4984331	unsure of	exact location
1189-C	Napo Canyon, unnamed	Massive chalcopyrite vein, very fresh	chalcopyrite	coll. By R. Reed		12	294143	4973018		
94-18-C	Blackpine Cu-Co prospect, 15	DDH 94-18, Formation Capital, siltite w/qz-cp vein	chalcopyrite	coll. By FCC		11	11 720389 4991662 for general mine			I mine area
PS-1-C	Pope Shenon Mine	Chalcopyrite from vein, from new ug development	chalcopyrite	coll. By D. Krasowski	06WP065	12	275188	4994959	coordinate	s for reclaimed Adit 2?
B3r-H	LP: Buffalo mine	Vein of massive hematite with Th and trace cp	hematite	coll. By R. Reed	06WP083	12	304672	4983524	general mi	ne coordinates

Lemhi Pb: Gillerman		Appendix H2: Lead Isotope Results										
sample	type	208/204	%se	207/204	%se	206/204	%se	208/206	%se	207/206	%se	Notes
07WP129 KF-P L2	feldspar, L2	38.132	0.047	15.631	0.046	18.093	0.046	2.1075	0.005	0.86384	0.004	weak, ran hot at 100 mV 208
07WP129 KF-C L2	feldspar, L2	37.976	0.036	15.658	0.036	18.044	0.035	2.1049	0.004	0.86771	0.003	weak, ran hot at 100 mV 208
085-F	feldspar, L2	39.409	0.007	15.729	0.007	19.545	0.007	2.0163	0.001	0.80484	0.001	200 ratios at 500mV
BC4-F	feldspar, L2	44.754	0.009	15.963	0.009	23.879	0.009	1.8743	0.002	0.66850	0.001	200 ratios at 500mV
102-F	feldspar, L1	42.604	0.005	15.861	0.004	21.388	0.004	1.9920	0.002	0.74157	0.001	200 ratios at 1V
099-F	feldspar, L1	39.628	0.002	15.672	0.002	19.354	0.002	2.0475	0.000	0.80973	0.000	200 ratios at 3V
JA06-01A KF-C L2	feldspar, L2	40.293	0.016	1 5.809	0.015	20.361	0.015	1.9790	0.003	0.77644	0.002	weak, ran somewhat hot at 300mV 208
JA06-01C HM	hematite	42.977	0.003	15.984	0.003	22.515	0.003	1.9089	0.001	0.70994	0.001	3V, somewhat uranogenic?
LH06-24B HM	hematite	400.057	0.016	16.364	0.016	30.014	0.016	13.3286	0.001	0.54518	0.002	3V, uranogenic & thorogenic!
B3r-H	hematite	41.607	0.002	15.806	0.002	19.995	0.002	2.0809	0.001	0.79502	0.001	200 ratios at 4V
195-H	hematite	38.288	0.002	15.655	0.002	18.688	0.002	2.0488	0.001	0.83772	0.001	200 ratios at 4V
126A-I	ilmenite	38.420	0.005	15.646	0.004	18.692	0.003	2.0638	0.002	0.84049	0.001	200 ratios at 2V
LH06-24B KF-C L2	feldspar, L2	97.440	0.012	15.956	0.012	23.001	0.012	4.2364	0.001	0.69370	0.002	pretty good, 1V 208, thorogenic!
LH33-F	feldspar, L2	45.897	0.006	15.988	0.006	23.123	0.006	1.9850	0.001	0.69145	0.001	200 ratios at 800mV
CAC-F	feldspar, L2	46.264	0.011	15.871	0.010	21.370	0.010	2.1648	0.002	0.74261	0.001	200 ratios at 500mV
CQ06-30B GA	galena	41.023	0.008	15.849	0.006	20.112	0.004	2.0397	0.004	0.78803	0.002	lots of Pb, ran cold at 4V 208
CQ06-30B PY	pyrite	40.926	0.004	15.803	0.003	20.105	0.002	2.0356	0.002	0.78598	0.001	lots of Pb, ran cold at 4V 208
CQ06-52 CP	chalcopyrite	42.316	0.001	15.881	0.001	21.564	0.001	1.9624	0.001	0.73648	0.000	lots of Pb, ran cold at 4V 208
1CQ-26 MO	molybdenite	40.337	0.005	15.745	0.004	19.487	0.002	2.0700	0.002	0.80799	0.001	lots of Pb, ran cold at 3V 208
07CQS-R BN	bornite	43.577	0.002	15.964	0.002	22.317	0.002	1.9527	0.001	0.71533	0.001	lots of Pb, ran cold at 4V 208
YJ-G	galena	39.350	0.017	15.652	0.013	17.729	0.010	2.2194	0.008	0.88284	0.004	60 ratios at 0.5V
YJ1-C	chalcopyrite	39.672	0.008	15.735	0.006	18.619	0.004	2.1307	0.004	0.84507	0.002	200 ratios at 4V
1189-C	chalcopyrite	38.944	0.003	15.658	0.002	18.151	0.002	2.1455	0.001	0.86266	0.001	200 ratios at 3V
94-18-C	chalcopyrite	45.131	0.003	16.302	0.002	26.056	0.002	1.7321	0.001	0.62566	0.001	200 ratios at 3V
PS-1-C	chalcopyrite	45.109	0.003	15.987	0.003	22.307	0.003	2.0222	0.001	0.71668	0.001	200 ratios at 2V

Fractionation Model:

alpha/amu	208/204	207/204	206/204	208/206	207/206
measured*	41.0233	15.8491	20.1123	2.0397	0.7880
-0.003	40.5310	15.7065	19.9916	2.0275	0.7857
-0.0024	40.6295	15.7350	20.0157	2.0299	0.7861
-0.0018	40.7279	15.7636	20.0399	2.0324	0.7866
-0.0012	40.8264	15.7921	20.0640	2.0348	0.7871
-0.0006	40.9248	15.8206	20.0881	2.0373	0.7876
0	41.0233	15.8491	20.1123	2.0397	0.7880
0.0006	41.1217	15.8777	20.1364	2.0422	0.7885
0.0012	41.2202	15.9062	20.1605	2.0446	0.7890
0.0018	41.3187	15.9347	20.1847	2.0471	0.7894
0.0024	41.4171	15.9633	20.2088	2.0495	0.7899
0.003	41.5156	15.9918	20.2329	2.0520	0.7904

blue = best estimate of Pb isotope composition of sample

You are	asked to plot Pb	o isotope evo	lution lines fro	om 4.5 Ga to	the present fo	or a variety of	μ values on a	207Pb/204Pb	versus 206F	b/204Pb diac	jram	
We need	l an equation for	change in 206	Pb/204Pb with	time as a fun	ction of 238U/2	204Pb				= inputs		
		<u></u>										
(206Pb/2	204Pb)tot = (206F)	Pb/204Pb)o +	(238U/204Pb)*(exp(lambda2	38*to)-exp(lar	nbda238*tx))						
We need	l another equation	n for change ii	n 207Pb/204Pb	with time as	a function of 2	35U/204Pb						
	,						1					-
(207Pb/2	204Pb)tot = (207F	Pb/204Pb)o +	(238U/204Pb)*((235U/238U)*	(exp(lambda2:	35*to)-exp(lam	bda235*tx))					
	First Stage:		lambda*1e9 =	1.5513E-01	9.8485E-01	4.9475E-02				Stacy and Kram	er curve	
	g		µ=	7.19	0.05214679	33.21	= K					
			initials =	9.307	10.294	29.487						
		t (Ga) from	before									
	t (Ga) initial	initial	present	206/204	207/204	208/204	208/206	207/206				
	4.57	0	4.57	9.307	10.294	29.487	3.1683	1.1060			-	
		0.1	4.47	9.532	10.735	29.692	3.1151	1.1262				
		0.2	4.37	9.753	11.134	29.897	3.0653	1.1416				
		0.4	4.17	10.186	11.824	30.303	2.9750	1.1608		<u></u>	<u> </u>	<u> </u>
		0.5	4.07	10.397	12.121	30.504	2.9339	1.1658			Stacey and	Kran
		0.6	3.97	10.605	12.390	30.705	2.8952	1.1683				
		0.7	3.87	11.012	12.034	30.904	2.8245	1.1674		16.4		
		0.87	3.7	11.151	12.997	31.241	2.8016	1.1656		16.2 -		
									4Pb	16.1 - 16.0 -		
	Second Stage:		lambda*1e9 =	1.5513E-01	9.8485E-01	4.9475E-02	77		b/20	15.9 -		
			μ = initials =	10	0.07252683	36.84 31.271	= K.		I4	15.8 -		
			t (Ga)	11.151	12.331	51.241			<u>я</u>	15.6 -		
		t (Ga) from	before							15.5		
	t (Ga) initial	initial	present	206/204	207/204	208/204	208/206	207/206		15.4 +	18.5 19.5 2	0.5
	3.7	05	3.7	11.151	12.997	31.241	2.8016	1.1656		10.0 17.0	10.0 10.0 20	206P
		1	2.7	13.702	14.735	33.377	2.4359	1.0754				2001
		1.5	2.2	14.837	15.138	34.405	2.3189	1.0203				
		2	1.7	15.887	15.384	35.409	2.2289	0.9684				_
		2.5	1.2	16.858	15.535	36.388	2.1585	0.9215			<u> </u>	
		3.1	0.6	17.929	15.640	37.532	2.0934	0.8723				
		3.4	0.3	18.428	15.674	38.091	2.0670	0.8505				
		3.7	0	18.904	15.699	38.642	2.0441	0.8304			2.3	0
	Model Age Cal	culator									2.2	20 -
	Je se		t (Ga)									
		t (Ga) from	before									0 -
	t (Ga) initial	initial	present	206/204	207/204						2 .0	0 -
		3.197	0.503	18.093	15.652	Leadore WP1	29					
		4.226	-0.526	19.545	15.729	085 Gabbro is	s approx. 500N	NO SOLN			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
											1.8	0 -
											1.7	<u>o</u>
				Pb isoto	ope evolutior	า						0.60
						-						
		15.8 -										
			·µ=7.19									
		15.7	μ=10									
		15.6 -			0							_
	a	2										
	, Ad	15.5 -								-	-	
	202		/									<u> </u>
		15.4 -										
										+		+
		45.0										
		10.3 -	<i>,</i>							<u> </u>		
												+
		15.2	1			1				+	+	+
		15.0	16.0	17.0	206Pb/204Pb	18.0	19.0	20.0				
										<u> </u>		<u> </u>

Lemhi Pass with Hi Mu Stacey-Kramers 2-stage Model

