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ABSTRACT

The effects of Ekman Jayers on generalized Eady waves (i.e., height-varying static stability and shear)
are examined. The non-constancy of N (z) and #, modify the classical Eady results but do not introduce
any new effects. Thus, a short-wave cutoff is always found for flows with double Ekman layers but never

for flows with a single Ekman layer.

By comparing the analytical solutions with a numerically simulated annulus wave, we are able to categor-

ize the latter quite accurately.

1. Introduction

The baroclinic waves that occur in laboratory an-
nulus experiments are thought to be essentially Eady-

type waves. There are, however, two major modifying

influences that alter the classical Eady description.
These are the effects produced by Ekman layer friction
and by the vertical variation in the static stability.
The separate influence of each of these factors on
baroclinic waves has been studied by Barcilon (1964)
for the double Ekman layer effect and by Williams
(1974) for the static stability effect.

In this paper we examine the influence of the com-
bined processes of static-stability-shear variation and
Ekman layer friction on baroclinic waves and use the
results to analyze the annulus waves, This is done by
comparing the phase-amplitude distributions of the
theoretical solutions with those of a numerically
simulated annulus wave. This differs from the custom-
ary procedure of comparing stability transition curves,

2. Mathematical formulation

The formulation of the baroclinic instability problem
is well-known. The extension of Eady’s analysis to
cover the case of mutually height-varying static sta-
bility and shear has been given by Williams (1974),
referred to hereafter as W. We will draw on that paper
in outlining the following formulation.

We consider small-amplitude, inviscid adiabatic per-
turbations to a parallel flow, %(y,3), in the x direction
of a channel limited by boundaries at z=0, H and y=0,
L on which the normal velocities must vanish. The
Cartesian coordinates (x,y,2) are in a frame of reference
rotating about the vertical z axis with angular velocity
f/2. We take 8. and 9. to be characteristic values of
the shear #. (a frequency) and of the gravitational
(Brunt-Viisild) frequency N (z)=(8gdT./dz)} for a

stably stratified Boussinesq fluid. Thesubscript ¢ de-
notes, for reasons that will become apparent, the non-
constancy of these frequencies with respect to z.

For this particular baroclinic instability problem the
followihg scaling is most appropriate:

NH/f  the horizontal coordinates (x,y)

H the vertical coordinate z

9N/ (fS.) the time ¢ .
SH the horizontal velocities (x,v) . (D
JHR? the vertical velocity w

H*3t8.  the Boussinesq pressure p/p

HNS8,  the Boussinesq buoyancy o[ = —3gT]

In the quasi-static, quasi-geostrophic state the Rossby-
Kibel number Re=8./9. (being the reciprocal of the
square root of the Richardson number) is small and the
governing equations are those for the conservation of
quasi-geostrophic potential vorticity, ¢q, and for the
advection of buoyancy, o. When these equations are
linearized to describe normal-mode perturbations of the
basic state, they can be written, on transposing all the
variables [except N (z)] to nondimensional form, as

g+ (u—c)~'g, =0, (2)
é= (F‘Z/‘z)z'*' @w*aztf/, (3)
qy=—(Fuz)s—u,, 4)

w=iaF[uf— (u—c)f.], )

where §, ¥, 1 are the complex amplitude functions for a
perturbation of the form y =Ref(y,2)e*=—<, The non-
dimensional wavenumber « is a real variable whereas
the nondimensional phase velocity c¢=c¢,+ic; can be
complex. The streamfunction ¢ for the dimensionless
horizontal velocities is also the quasi-geostrophic pres-
sure whereas its gradient y,, by virtue of the hydro-
static relation o= —y,, describes the quasi-geostrophic
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F16. 1. Associated distributions of the normalized static-stability-shear function #2(z) = (1 —e2)™#3/72, and the nondimensional mean
flow u(z) [Eq. (9)], with intercepts indicating the steering level z, of inviscid waves, for values of ¢ as indicated.

temperature. The parameter F(3)=92/N?(z) is the
basic baroclinic instability parameter, sometimes called
the rotational Froude number.

For the problem in hand # is assumed to be indepen-
dent of the lateral coordinate y so that ¢, is independent
of y, and solutions of the form ¢ (y,5) =¢ (2) sinmy exist
to satisfy the lateral boundary conditions. To eliminate
the term in (#—c)™! we make the generalized Eady
constraint (see W) that the product Fu, be constant.!
To achieve this the z variability of the basic state is
taken to be of a form

N (Z) = S)lon, (Z): ug (Z) =805 (Z))

such that #o2(z) =s.(2), i.e., the vertical and horizontal
density variations are non-uniform. The dimensional
and nondimensional shears are, ¢ and u,=u¢/S,, re-
spectively. Following W, the characteristic frequencies

are based on integral forms such that
NE 8.

== ﬁfzy (6)
So

No?

where 7. is the integral of the distribution function 7.(z)
over z=0, 1; and 9o and §, are the characteristic fre-
quencies of the uniform (Eady) basic state. Introducing
the normalized distribution function #.(z)=mn.(z)/%,
Eq. (6) allows us to write #.=#%2(3) and F(z)=u,"
The equation for the conservation of potential vorticity
in the fluid interior then reduces to

G-
72(2)/ ’

where K2=4k=a’+m?.
Finally, we assume that the predominant role of
friction is in producing Ekman layer pumping—this is

@)

17t follows below that this constant is unity.

correct to O(E?), i.e., when the Ekman layers are of
infinitesimal thickness. The pumping of these Ekman
layers produces vertical velocities w= (=) (E/R)¥ on
z=(9), respectively, where ¢ is the vertical component
of vorticity. Combining with (5) this provides boundary
conditions on i which can be written:

Pu[14+i{ TG} T— (u—c).=0, onz={3}, (8)

where Q=KQ=(K*/a)(E/R.)} is the basic parameter
of this problem with E=y/(2fH? being an Ekman
number. The suffices on Q in (8) are traces that allow
us to consider either single or double Ekman layer
flows by separate specification. A formal derivation of
the O (E?) equations has been given by Pedlosky (1971).

It follows from W that (7) and (8) can be solved for
a wide variety of #.(z) distributions by using such
methods as the WKB technique [see, e.g., Richards
(1959, pp. 349-351) for this and other solution types].
However, as in W, attention will be limited to the in-
structive class of exact solutions that are obtainable for
the particular distribution #.(z) = (1 —e2)~%, — 0 < e< 1.
The standard Eady or Barcilon problem corresponds to
the case e=0.

3. The eigenvalue solution

For the generalized exact Eady problem we consider
the stability of the mean current

u(@)=[(1—ea)3—1]/[Rle/3], ©9)

where .=[1—(1—¢)¥]/[¢/3]. The form of this flow
and the associated normalized static-stability-shear dis-
tribution, #.(z), are shown in Fig. 1 for cases of in-
creasing (e>0) and decreasing (e<0) static-stability-
shear. It is the comparative stability of this functionally
related family of flows that will be examined. For the
moderate ¢ values shown, the mean flows bave roughty
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F1c. 2. Variation with wavenumber % of the growth rate 2kc;
and phase speed ¢, for values of ¢ as indicated and inviscid
waves,

similar maxima so that differences in stability behavior
will be due to differences in the skape of these profiles.

The solution to (7) and (8) for this set of flows can be
written

. Kc .
Y(2)=7z) {—_- coshKn¢(z)
Ne
— [(—:@+6—6] sinhKne(2) I (10)
3 : .

e
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where

i) = [ Fie(@)dz=[1—(1—e) ]/ [1—(1—t].

[
Thus, #;(1.0)=1.0.

The corresponding secular equation for the complex
wave speed ¢ is most conveniently written as

A2+ B+ C=0, (11)

with

A=aK4 (a—1)M

B=—K—2(a—1)M+iM (aQuta—10y)
+1(Q+0n) |

C=(1—iQy) (M —ia™'Qy)

where M=K coth(K)—1, =7, and a= (1—¢)%. The
discriminant §=B2—44C of this equation is

$= KK ~4M]— Qi1+ aM P — Qo[ 1+ - M
+200Q:12K?—1—-M(M+4—a—a)]
+2iQ[K2(aM —1)+2(1—a) M+ M2)]

+ 20 [K2(1— M)+ 20 (1 —a) M+ M2 ], (12)

This quantity is complex for the general case, but re-
ductions are possible and we discuss the important sub-
cases below.

a. Inviscid waves

For reference we recall the results obtained in W for
generalized Eady flows without Ekman layers. There we
showed that (i) unstable waves occur when £< 1.2 just
as in the Eady case, (ii) to a good approximation
ci=cyp for all b, i.e., the growth rate is the same as in the
e=0 (Eady) case, and (iii) the fastest growing wave
moves with the speed ¢, =u(z,), where the steering level
2s [=(1—7%)/¢] is defined as being the height where
#i(zs) =1 (see Fig. 1). The simple Eady type results in
(i) and (ii) are due to (and are the reason for) the
choice in (6) of scaling factors for 9. and §., respec-
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F16. 3. Double Ekman case: instability transition curve as a
function of Q7! for e as shown and m=0. Unstable region lies
above curve.
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F16. 4. Double Ekman case: variation with % of growth rate
and phase speed for ¢ and ( as shown.

tively. Thus, all the flows in Fig. 1 produce waves with
the same growth rate despite their different shapes.
The difference in profiles, however, does affect the wave
speed ¢, which is given by the mean flow speed at the
height at which N (2) is equal to its mean value. Thus,
the e<0 profiles have the larger phase speeds. These
results are summarized by Fig. 2 which shows the
growth rate and phase speed for all k. Extreme e are
needed to display differences in ¢; from the Eady case.
The phase speeds are weakly dispersive for es#0 unlike
the Eady case.

b. Double Ekman layer case

For Ekman layers of equal strength at 2=0, 1 we
have Qo=0Q:1=0 and the discriminant (12) simplifies.

When e=0, the discriminant reduces further and gives
the Barcilon (1964) result that onset of instability
occurs for a value of Q given by ¢;— 0, i.e.,

M—-k=0" (13)
For a given value of Q(k) there are two values of k at
which transition to instability occurs. These transitions
correspond to the upper and lower transition in the
annulus experiments. Numerical evaluation of the
transition curve for this and €0 cases (Fig. 3) indi-
cates that e effects appear to be secondary except
through the definition of Q which implicity contains an
e factor.

The double Ekman layers reduce the growth rates
and further stabilize the smaller scales for all ¢ as shown
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Fic. 5. Single Ekman case: variation with % of growth rate
and phase speed for e and () as shown.

in Fig. 4. The cutoffs are sharp. The effect of € on phase
speed is more marked, producing two dispersive values
of ¢, when e0. The growing waves have faster (slower)
phase speeds when >0 (<0) than the damped waves.

c. Single Ekman layer case

The eigensolutions for flows with one Ekman layer
and one free surface differ appreciably from the double
layer case. The growth rates for the single upper or
lower layer cases are very similar so we show only the
lower case in Fig. 5. This is obtained by setting Qo=0,
01=0 in (11) and (12). The most significant features
of these growth rates are the moderate e effects and the

absence of a short-wave cutoff. Thus even the smallest
waves are destabilized, if only weakly so. It can be
shown that for ¢; to be zero in this case requires

Q*M[aK*+ M (1 —a)*[K*—coth?K =0, (14)
i.e., K=0or «, so there are no meaningful roots. Thus
Barcilon’s (1964) explanation of the annulus transition
diagram does not apply to the free surface experiments.

The wave speeds in Fig. 5 are strongly dispersive
even when e=0. Here there is a difference between the
single upper and lower layer case in that growing
waves are slower than damped ones for the lower layer
case whereas the opposite holds for the upper layer case,
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F16. 6. Unequal Ekman case: variation with k of the growth rate for e=0 for unequal Ekman layers. Primary layer on
2=0 has Qp=0.1 with miscellaneous secondary layers at z=1 having J;=10"*— 0.1 as indicated. Dots denote short-wave

cutoffs.

d. Two unequal Ekman layers

The presence of a short-wave cutoff in the double
Ekman layer case but its absence in the single Ekman
layer case presents something of a paradox, particu-
larly in view of the annulus experiments for which
stability transitions are apparent in both cases. Clearly
the results must be sensitive to the idealized formulation
of friction, particularly for the single Ekman layer case
where the O(E?) equations do not seem to be sufficient
to provide the cutoff. To examine this problem further
we consider the case of a primary single lower Ekman
layer of Qy=0.1 to which is successively added a
secondary upper Ekman layer with values of §; ranging
from 10~ to0 0.1; i.e., we examine in effect the transition
from the single to the double layer case. The weak
additional friction (Fig. 6) is sufficient to produce a
cutoff in the instability at values of & close to the values
obtained in the double equal Ekman layer case.

It appears from these results that the stability transi-
tions obtained in the free surface annulus experiments
must be determined either by the weak Ekman layer
at the air-water interface or by the higher order (in E)
friction effects in the interior or lower Ekman layer.
Such forces are difficult to account for properly. The
sensitivity of the cutoff to secondary friction forces
shown in Fig. 6 suggests that the transition curves in
the free surface experiments may be imprecise.

4. Character of Eady-Ekman and annulus waves

There are many variations to the form of the solution
given by (10)-(12). We will present some typical solu-
tions for representative values of Q and e. The reference

cases for Q=0 are given in W. The stratifications are of
the annulus (e= —5) and ocean (e=2) types.

a. Double Ekman case

The character of the fastest growing unstable waves
for flow with a moderate frictional influence at both
surfaces is shown in Fig. 7. The main effect of Ekman
pumping is to increase the phase differences in ¢ and
w. between the top and bottom of the fluid and to com-
pletely alter the w phase distribution near the bound-
aries where the pumping forces w into phase with .
The amplitude of w at the boundaries indicates the
strength of the pumping.

b. Single Ekman case

For this type of flow, we can make a comparison
with annulus waves by using the data obtained from a
numerical integration of the complete Navier-Stokes
equations, following Williams (1971). In the numerical
solution the parameters had the values E=3.5X10~,
$§=0.1 and =05 in the central annulus region.
These give a value of =0.1 for the pumping param-
eter. The vertical variation of #, and NV (z) are the same
and correspond to an e=—4 distribution [Fig. 4 in
Williams (1974)7]. Thus, we might expect the annulus
waves to be similar to the theoretical solution for e= —4
and 0,=0.1.

In Fig. 8 we make a comparison between the phase
and amplitude distributions extracted from the finite-
amplitude, equilibrated annulus wave and the appro-
priate solution given by the above linear theory. The
phases are compared as a group by matching the w
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T1G. 7. Double Ekman case: phase and amplitude distributions for most unstable generalized exact
Eady-Ekman waves—k=0.46, 0.50, 0.47 for e= —3, 0, §, respectively, and Qo= (01 =0.05, Phases, in units
of m, are shown for right (left) half of wave when ¢>0 (<0).
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Fi16. 8. Single Ekman case: Comparative phase and amplitude distributions of (i) the most unstable
generalized Eady-Ekman wave with e=—4 and Qo=0.1 [dotted lines] and (ii) numerical annulus
solution at #/=0.5 of Williams (1971) [solid lines]. Ekman layer on 3=0 only.
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phases at z=1. The amplitudes are arbitrarily scaled
to compare shapes only. Comparison of the complete
and thecretical solutions indicates a reasonable agree-
ment. The w fields are particularly well represented in
phase and amplitude so the Ekman effect is accurately
approximated by the pumping formulation. The ¢ fields
are reasonably similar but there are significant differ-
ences in y,. These differences are partly due to
the annulus basic state not being identically of the
e=—4 type in lower levels but.are mainly due to
the finite-amplitude configuration of the annulus wave.
The temperature field is the most nonlinear annulus
field.

Fig. 5 indicates that for this case of 0=0.1, the
frictional pumping effects are moderate so the wave
growth rate is only slightly reduced from its inviscid
limit.

Thus, despite the fact that the annulus wave has a
complex basic state, a finite amplitude, finite Ekman
layers, side walls that limit pumping, and is equilibrated,
it nonetheless still possesses many of the character-
istics of the unstable waves described by the above
O(E?) linear theory. Improved descriptions would
seem to require the inclusion of the effects of finite
development.
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5. Conclusions

We have reexamined the Eady-Ekman problem
allowing for g variations in static stability and shear.
This leads to a variety of solution forms about the
classical ones but the physics remains basically un-
altered, being determined by the constraint g,=0. This
class of solutions to the baroclinic instability problem
appears to be particularly relevant to the annulus ex-
periments (at least at #’=0.5) and a comparison with
a complete annulus solution indicates that the annulus
waves are essentially a type of Eady wave that has
been modified by height-varying static stability and
the Ekman layer. The possibility of structural changes
in the form of baroclinic waves in the atmosphere
could be an important item in climate modeling.
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