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solutions are obtained for the baroelinie instability problem for sitnations in
which the static stability and mean shear vary geminately with height. The simple
solntion given by Bady 1= shown to be a special limiting case of a elass of exact
solutions for lows whose basic states have o vanishing interior potential vorticity
aradient, The generalized solutions show that the temperature amplitude dis-
tribution iz particularly sensitive to vertical variations in statie stability bnt
that phases and other amplitudes ave only slightly influenced by such variations.
When the static stahility and shear increase (deerease) with height an enhanced
tepperature maximum oceurs at the upper (lower) surface in comparison with
the standard Eady golution,

The generalized solutions also help to explain the character of annulus
waves and predict a short-wave cut-off that is the same as that given by
Eady's theory provided that it is based on the vertically averaged gravitational
1"1'1_‘-111]{'!“('.}'.

1. Introduction

The theary of baroelinie instability has mainly been developed for idealized
mean onrrents that have o eonstant shear aud statie stability. This elementary
configuration makes it possible for the problem to he solved analytically, The
simplest such salution 1s that given by Eady (1949) in terms of hyperbolic
fanetions.

The purpose of this paper is to show that simple analytieal solutions exist,
also in the form of hyperbolic functions, when the static stability and shear are
nan-constant but have the same flunetional varintion with height. Sueh distribu-
tions maintain the vanishing interior polential vortieity gradient and the
mathematical simplicity of the original Eady problem. The solutions allow us to
examine the offeets of vavigtions in statie stahility and shear on the charaeter
of this particular set of baroclinie waves.

This analysis was originally made to try to explain the baroelinic annulus
wave diseussod earlier by the author (Williwms 1971). Although these annulus
waves are very similar in many respects to the standard Eady wave, they do,
however, display o quite different temperature amplitude distribution, having
o maximum in the lower fluid and a minimom at the upper surface. Because
annulug waves ave so similae in many respeets to the elassioal Eady wave, vet
have n significant deviation, they suggest the existence of a wider elass of solu-
tions that have the Bady solution asa particular case. Suclisolutions were sought,
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The generalized solutions support the hypothesis that the deviation of the
annulus wave from the Eady wave is due to the vertical variation in the statie
stability. The solutions also have possible geophysical relevance, particularly
for the oeean, & system in which the static stability undergoes large variation
with height,

2, The generalized Eady problem

The formulation of the baroclinic instability prohlem and the derivation of the
governing equations have been well documented; see, for example, Melntyre
(1070) for an up-to-dute discussion. The problem is outlined below to introduce
thenotation.

We consider small amplitude inviseid adinbatic perturbations to a parallel
flow uly, z) in the # direction of a channel limited by boundaries at 2= 0, #
amd ¥ = 0, L on which the normal velocitics must vanish. The Cartesian co-
ordinates (x,y.z) are in a frame of reference rotating about the vertieal 2 axis
with angular velocity 1f. We take # and 4] to be characteristic values of the
shear w, (a frequency) and of the gravitational (Brunt—Viisili) frequency
Niz) = (BgdT Jdz3t for a stably stratified Boussinesq fluid. The subseript ¢
denotes, for reasons that will become apparent, the non-constancy of these
frequencies with respect to z.

For this partieular baroelinic instability problem the following sealing is most
appropriate:

ACH|f for the horizontal co-ordinates (x, ¥), o scaling suggested by
Stone's (1969) analysis,
H for the vertical co-ordinate z,
AT for thetimeld,

FH for the horizontal velocities (#,v), ()

fHE* for the vertical velocity w,

H2ATY  for  the Boussinesq pressurep/p,

HAY  for the Boussinesq buoyaney o = — fgT. J

In the quasi-static quasi-geostrophic state the Rossby—Kibel number R = &[.47
{the reciproeal of the square root of the Richardson number) is small and the
poverning equations are those for the conservation of guasi-geostrophic potential
vortieity ¢ and for the advection of buoyancy o.

When these equations are linearized to deseribe normal-mode perturbations
of the basic state they can be written on transposing the variables to non-
dimensional form as

G+lg, fie—e)l =0, (@)
, . 7 o ;
r:|I = I:j' ﬁ:]:-i_y_rfy_ad‘lrf! [‘;]

g, =—{Ful—u {4)

ey

i = 1o [a, F — {u—c) ﬁ:], ()
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where §, i and @ are the complex amplitude funetions for a perturbation of the
form 3 = Reff(y, z) = The non-dimensional wavenumber « is a real vari-
able, whereas the non-dimensional phase velocity ¢ = ¢, +1¢; ean be complex.
The stream funetion o for the dimensionless horizontal veloeitivs is also the
guasi-geostrophio pressure, whereas ita gradient o, by virtue of the hydrostatic
relation ¢ = — %, deseribes the quasi-geostrophie temperature. The parameter
Fiz) = A" NYz) is the basic baroclinic instability parameter, sometimes called
the rotational Froude number.

For the problem in hand u s assumed to be independent of the lateral co-
ordinate y so that g, is independent of y and solutions of the form J(y, 2) = VIEY
w sinmy exist to satisly the lateral boundary conditions, Then equation (2) for
1 {z) becomes, for any F(z) and u(z),

(Fods— [(Fut).f(w —e) + (P +m?)] f = 0. (13}

The standard Eady approximation eliminates the singular term (u—c)™! by
assuming that Fiz) and u, are both constant., This, however, is a redundant
idealization for it is only necessary to assume that the produect Fu, is constant in
order to make ¢, = 0 and eliminate the singular term. We shall make this latter
assumption and refer to the subsequent problem for the sake of definition as a
generalized Hady problem.
To satisfv the generalized constraint the = variation of the basie state is taken
to be of the form
Niz) = AMynfz),  ulz) = Fale)f e, (7}

such that n%z) = s.(2).7 Thus the ensuing analysis 1z valid only for Hows in
which the mean shear and the static stability have parallel distributions in =z,
The constants 4} and & are the characteristic frequencies for a uniform basie
state, denoted as e = 0, It no longer suffices in the case ol a z-dependent basic
state to base the characierisiic values on single representative values of the
parameters, Instead it is necessary to introduce characteristic values based on
integrals of the hasic state. Hindsight indicates that the appropriate integral
sealing factor is the mean value of n (z), 1.e.

1
i, = Jn nfz)dz.

Thus the charmeteristio values are taleen to be such that

TP WY NV SR
NN =S =T
BEguation (6) for the conservation of potential vorticity in the fuid interior
can then be written as

[ﬁ:-'l'i‘tfi;}]: - ['Lﬁzn'lj:ﬁ i':f", (5]

t Despite this egquivatency, both functions aee relained to facilitate physical identifiea-
L.

¥ This introduces integral factors @, L7, %2, % 7l and o into the seales of (1),
Alternatively, some simplification could be realized by nonmalizing the function &z}
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where 442 = o* 4+ m® The variation in the shear enters the problem through
the boundary eondition, @ = 0, ie.

wf — (u—e)if, = 0, (4)

that deseribes the temperature adveetion on the horizontal boundaries 2 = 0, L.

3. Approximate and exact solutions

Tosolve (8) a new independent variable g isintrodueed such that Thdy = n¥z)dx
Then (8] can be transtormed into the normalized Bturm-Liouville equation

oy = Bln)ib, (10)

where Ein) = 52720 %z}, This equation has solutions expressible in terms of
the funetions of classical physies for various idealized forms of E(7). However, to
find a slass of simple exact solutions to this problem we use only the results of
WK theory and choose E(y) profites such that the WKB error term vanishes.
For E(n) = 0 approximate solations to (1) are given by the WKB method in
the form

i = EHA exp| J’ﬁfid?;]+_43!‘-x]r| —L|'E%rr‘:l.l]_}. {11)
where there is an agssociated error given by the expression
FEAE),, (12)

Although these equations would allow approximate solutions to be obtained
for any u,(z) consistent with the WKEB method we wre mainly interested in using
{11y and (12) to reveal the most general form of stmple conet solutions of this type.
The exactsolutions provide a simpler illustration of the offeets of the z variation
of the basic state, The more complex elgenvalue problem for the arbitrary = (z)
case 15 dizeussed in the appendix.

To ohtain the most general exact =olutions, (12) is solved for the ease of zoro
errar, The only forms of E(y) that satisfy this eondition are the polynomials
{my + e )1, where a, and a, are arbitvary constants. The associated solutions are

(ay+asmiexp| £ plalay+aq)]. {13)
Thus simple cxact solutions for the generalized Eady problem exist when nz)
takes the form (my+a,2) % where ey and @, ave arbitrary constants, (This is
ahtained on transforming to the originad variables.) Therefore we assunme that
niz) = (1—e2)°% g0 ae to obtain the most general exaet hyperbolic solutions
to the modified Eady problem, The standard Eady problem corresponds to the
ease o = 0. The significanee of the subscript £ is now apparent.,

4. Solution of the generalized exact Eady problem

The generalized Eady problem can be defined for the exaet ease as being the
study of Lhe stability of o mean flow which has o statie-stability—shear functional
variation n2(z) = 4, (z) = (1 —ez} P and & mean current given by (upon integra-
ting)

ulz) = FF-1(1—ez) = 1]/]e, {14)
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Fiocrer 1. Distribution of (o) the static-stabiligy shear funetion nliz) = sz) = (1 - ex)¥
nnck {8 thedimensional meancorrent ez 5, equation (14) with &5 = 1, with theinterespts
indioatime the atearise lovel 2, cquation (26), for representative valies of 6 ss indieated,

where w(0) = 0 is imposed, The forms of 23z} and w(z) are shown in figure 1

for cases of inereasing (& > () and decreasing (e < 0) statio stability nnd shear. The
selected values of @ give static stabilities that increase or decrease by w factor of
up to L0.F Clearly the funetional forms represent simple but realistic distributions

{2,{z) has an almost linear hehaviour in = for moderate ¢ values),
The solution of (8) for this basic fow ig, as sugoested by (11) und (13),

. ¥ I e S IR
g ="*_—[;J[zil 111("r 2 {Z}) # Ayexp (ﬁ],%{”}n (1o}
ne L i
where K = 2kand
afiz) = [_nu{z}dz = [1— (1 —ez)h]/{e,
0

so that n*{1-0) = .. The standard Eady solution for the How & = 2 ceewrs in
the limit £ — 0. It is important to note that ¢ is not necessarily small but lies in

the range —2 < e < 1.
T This negative ¢ value corrigponding o positive € valoe ia given by —e (14,1,
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The eigenvalue problem
Applieation of the boundary condition, equation (9), to the expression in {15)
vields a secular equation for the complex wave speed e, The equation is most
convenicntly written as
A2+ Bi+0 =0, [16)
where
Ad=agli+la-1)2, B= —K'—2{a—1)C, =KeothK—1,

E=Fel#m, and a=(1-et The algebraic identity %, = (1—a)/i¢ has
been used to simplify (16) to this simple algebraic form. The diseriminant

&= (440 — Bk
of this equation ayreeably has the familiar, e-independent, form
§ = 4k[{k — tanh k) {coth & — ]k (17)

Amplifying unstable waves oceur when the imaginary part of ¢ is positive and
non-zero. This seenrs when & < &y, the eritical neutral short-wave eut-off
wavenumber being given by £y = coth by from (17), ie, &y = 1-1997, That this
condition should be independent of ¢ and thus the same as in Eady's theory is
due to the particular choice of A7H [f as the length seale for o and to the choice of
7 as the integral seale faetor. Thus the dimensional short-wave cut-off is the same
as Eady's provided that it is hased on the vertically averaged value of the graviti-
tional frequency Niz),

The coefficient 4 can also be written in the form

d =300 +p{(Kyaei, | % (18)

where y(K) = K*3C — 1 iz u weak dispersion parameter. Then the amplification
velocity can be written as

e = g (1 £ w1 £ yamy); (14}
where ¢, i the value of ¢, in the £ = 0 (Eady) case. The wavenmmber &, for the
maximum value of the growth rate, 2be,, has the value by = (-8031 in the e = 0
case, The associated value of Y(K) is y{ky) = 0-1606, In the & = 0 case the value
of ky; also depends on e but this dependency s relatively weak, so that to a good
approximation &y = kyy, and p(ky) = w(ky,). Use of these values in (19) pro-
vides an aceurate value for e(k,,), as does the further approximated form of
(19) e:(kap) = ellyp0). See table 1. This simple result is due to the choice of
7i; as the seale factor for %%

The real part e, of the phase veloeity ¢ iz given by

|' fi (1 —a |

= _.L] ey AT !
R R T | (20)
when & < ky. (Note that # % /e =« (1-0)). For small values of &, y—0 in
{20 and fhc resulting ex pre:‘,smn is nlgehraic{uliy equal to the vertically averaged

e enrrent ol |
o= J iz,
i

T oAlvhough s, s, 18 egual tooa, these relations are purely algabraic,
By 1 P 3
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Frovme 2. Variation with wavenumber b of {a) the normalized wave speed o, and () the
netrmalized growth rate 2be . for values of € as indieated.
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Thus & (see table 1) is a good approximation to ¢, for small &, This result is also
sugoested by the divergenee squation

-

i = — il u—c)i¥, (21)
which when integrated leads to the integral equation for ¢:

= uffif. (22)
From (22) it is elear that when ¢, < ¢, and variations in ¢ are small the result
e, = i follows,

The approximation ¢, = 4 is not particularly aceurate when b is not small.
To obhtain o good appr uxmmtmn when k = &y, requires that the f variation in
{22) be allowed for. When this is done it is found thit a good empirical approxima-
tion to {.'J_H‘_-”} of the form of (22) is given by the weighted mean velocity %,
whers

= w1 +nl)t +nk. (23)
Another expression which provides o good approximation to ¢ (£,,) and which
van also be considered as an approximation to (23] s
A T Fif 3k kN
by = wll w10, [24)
Both %, and %, seem to be equally good approximations to ¢ (&), The form a4,
however, is partienlarly valuable as it reduces algebraieally to the expression
Ty = S5, Y a:— 114, (25)
Comparing {14 and (25) suggests that u, is equal to u(z), where z, is the height at
which X{z) is equal to its mean value, i.e, where
nz) =" (26)
Thus wiz,) provides an aceurate approximation to the wave spoeed o (ky) and
a0 2, ns defined by (26}, 1s the so-called steering level of the wave.f

Valuesofz, = [1 — 71 e, by eulkye) and e, (k) together with their approximate
forms are listed in table 1. The growth rate and wave speed are shown as fune-
tions of & and e in fizure 2. It is apparent from figure 2 that . is only weakly

dependent on & and then only for moderate ¢ values. The growth rate 2ke; is
very weakly dependent on & and requires extreme e values to reveal the devia-

tiong,
herrantir of (e solulion

For unstable waves, the pressure and temperaturs can be written as

B ”:;[:} [*::_: ensh (—n*[;ﬁ) (%—%r) sinh (%w {z])-‘ (27)
5 _E.”‘FEH _ (e, e w A L
gr. = wE | 7 mh(” (el b ]) (J;Tdr) r-m-,h(; 7 {]) q _y!. (25

The most influential modifving factors in this solution are the ?i-:?{:] and ni(z)
terms that aceur in iF.. These factors arve strongly variable funetions of ez and

=-»—|

+ For waves with fsmall and g, = 4 the steering levol is givin by '.'z’}‘._.:l =
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greatly influence the amplitude of ¢F.. which thus tends to reflect the variations
in the statie stability, These factors, however, do not affeet the phase of 7.
The phase and amplitude of if are only weakly influenced by the ;reffz] factor, =0
that o is similar to that of the classical Eady solution.

Figure S illustrates the phase und amplitude disteibations for varions values of
e, The amplitudes of all variables are no longer symmetrical about 2 = L when
& < U, but tend to have maximum valuesinz = Jfore > Qandinz < Ffore < (0,
The largest effects oceur in the amplitudes of o, and @, which are considerably
enhanced at 2z = 1 (¢ = 0) and af z = 0 (o= ). Moderate varintions with ¢ are
evident in the phases of @ ane @, but the phases of F and J_ are only weakly
dependent one,

5. Baroclinic annulus waves

The solutions obtained above appear to be particularly relevant to the labora-
tory oxperiments on baroclinie instability. T In the annulus the static stability
atl shear decrease with height and thus have disteibutions corresponding to
£ < L Horizontal averages, denoted by (1, of the finite amplitude threes-
dimensiong] w0, and ) fields obtained in a numerical solution for 2 baroclinic
annulus wave (Williams 1971) arve plotted in fizure 4. The eurves indicate that
ad anel T8 have almost parallel] distributions above the region influenced by the
Elmeen layer. Thus the generalized Bady approximation Fe, constant is valid for
this flow, Both distributions seem to approach s(z}) most satisfactorily when
g~ —d

The theoretical solution for &« = —4 {(similar to the ¢ = — 5 one in figure 3)
does indeed resemble the mumerieal solution in the regsion above the Elkman
layer in the central 3 = | plane of theannulus, see figure 9 of Williams (1971).
The steering level in this plane oceurs al z, = (037 in the nomerteal solation and
this 15 close to the value 0-39 for the £ = — 4 solution. For ¢ = —4 the integral
factor @, is equal to 0:53, so that the dimensional eut-off wavenumber would
appear ta be about twiee ag large as that predieted by Bady's theory if i were
basedd oo the maximom valoe of X (z) rather than on the intecral mean valoe of
Niz). Such zeems to be the situation in the multiple lsboratory experiments
(P, Mason, personal communication), These results sugoest that some annulus
waves are o form of generalized Eady wave with @ character comparable to the
¢ = —4 solution, Although it is unlikely that the actual annulus waves could
correspond identically to these simple fonetions or that they possess o form
equivalent to a unique € the above identification of the importance of the n3(z)
virtations does provide aostep towards o more complete theory for annulus
gonveetion. Analternative approach is to use the more complex results given in
the appendix for whatever aciual atatic-stability—shear distributions are
uhstrved or postulated for the system.

T Asvatem whers § s mdependent of yand for whose flows presisa date exizt,

1 For the corresponding axisymmetrie solution this parallelism is not a3 strong, This
suppests that lnite amplitacde waves aet o as tomake g, -0 by bringing a,and o7, 2 into
line,
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Frovre 3. (o) Phose distribuetions for the generalized Eady wave, equations (23) and (24,
at ke for repeesentative values of £ as indweated and. The reference cnse ¢= 0 i the
standard Eady wave, Phases are measured pelative to that of b, at 2 = 0, which is in-
du}pm}dgnt of &, in units of 7. Por elanty, distribntions fore = {hara shovwn for the righit hatf
of the wave and For ¢ < 0 for the lefu balf ondy. (4) Amplitade distribations for the general-
ized Encdy wave at &y for represen Lamc vialues of ¢ as indicated, The reference case & = {
s thestandard Bady wave. & = b w!rx = is the nonualized vertieal veloeity aud &, = b, ﬂ% i

n. .'1.
5 the normalized . divergoneo. l‘r.f"'ﬁ-“?rf = Lhe pormalized gtream funetion and F/,—ﬁ*v‘ is
the normalized tomperatore.
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Frovrs 4. Vertical profiles of the horizontally averaged volues of the w, and T fields of the
numerieal annulos wave salution of Williams (1971} and the theoreticnl carve g0z for
£=—4. The annulus profiles are arbitrorily sealed and wre of dimensional quantities
it = Ja¥ and T, = TH0AT of the numerieal selution,

A camplete theory for annulus waves requires a synthesis of the effects of the
major processes active in the system. Clearly the predominant mechanisis are
the haroclinic instability mechanism of the type discussed above and the
boundary-layer dynamics of the basic state. The important modifying processes
include the Ekman-layer dissipation of the wave and the nonlinearities of the
finite amplitude wave,

6. Conclusion

Eady-type solutions have been found for flows with height-varying static
stability and shear. The solutions are exact when this variation is of the form
(1 —¢z) 4, with the elassical Eady solution eorresponding to the case =1,
Coniparison between the theory and a numerical solution for annulus waves
indicates that such variations are physically significant and that annulos waves
arve generalized Eady waves compacable to the e = —4 solutions. This conelusion
is supported by the asymptotie value of the instability eriterion obtained in the
laboratory experiments. This valueis comparable to Lhe & = — 4 theoretical value
when it 1s based on the vertieally averaged gravitational frequency.

T ahowld like to thanls Dr Brian Hoskine for hig valuable comments on this
work.
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Appendix. General WKB solutions

When the static stability and shear do not have the simple funetional form
dizcussed in §4, the general WKB =olution {11} ean be used to solve the eizenvalue
problem. The results, miven below, lack the algehraic relations and reducibility
of the generalized exact solutions and are therefore more complex and their
uthinity to the Eady solution less obvions. Hovwever, the solitions have o phvsical
and practieal value, being easy to evaluate numerieally,

The general solution for F ean be written as

w2 ([K I
e E]{L 200 [e —m:r.}}l} osh (_?.F—.'nef{z})

n; C

— 1 s A0) n (0 + & w (0} [e —u(0)]} sinh (g ufiafll) } (A1)

whern it Is based on the values of the basie funetions at = = Oand wherethe aradi-
ent function w(z) = dn (2)/dz has been introdueed,
The secular equation Ae® = Be+ €' = 0 has the cocfficients

o

Ke 4 W 5 .
A = T + 3K (eoth Ky A (FE] ~4 (E] , (A2
ol . (4 s "

e STl ey L e IRl | i | B
B = ~2id" 45} = (coth fa,_"-.(h) 2 (ﬂ) ( (A3)
(= 3 4! FoX voth & 3"}2”.-'_"1 rﬂ] ) '[—- fodic ﬂ:l [Ad)

s g A0 S w—(s,n) o

where the arithmetic and geometrie means of values at the two boundaries
have been written as, for example, w% = Hu(1) +u()} and #* = L) g;.[r;_}é
respectively and the difference as; for example, Aw = w{1)—2(0). With this
notation the real wnd imaginary parts of the wave velocity e can be written as

e

& — i - :’Z { (eath M_"»( J ( ) (6 “" (A5
and
67 = rf_;ﬁ_:' + {iﬁ# %mth.‘{(%)hrli( ] '\[i . ]‘

R s (K o fa\ B !
[ () +leomoa (@) 5@ ()

e

—?cnthﬂ(?:) ( } [”P:]. (AB)

(3

Some of the quantities oceurring in (A2)-(A6) can be interpreted as being
boundury values of logal parameters, e.g, #%(2)/83(2) is o local relative Richardson
number and an inverse measure of the basic available potential energy; both of
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these quantities are independent of 2 in the standard Eady prablem, The identity
#3{z) = £z} van be used in the above equations to provide some algebraie
reduetian,

The terms in (A2}-(A6) that give the Eady solution have been marked with
a dagger. Various approximations or specializations to these equations are pos-
sible; mehuding the reduction to the exact case of §4.
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