



# Automating Stream Selection: National Atlas and Global Map Hydro from NHD

### Robin H. Gary and Zachary D. Wilson USGS Texas Water Science Center-Austin

U.S. Department of the Interior

U.S. Geological Survey

# ¿Our Challenge?

To develop and implement a repeatable method for generalizing the 1:100,000-scale National Hydrography Dataset (NHD) to create a 1:1,000,000scale networked hydro dataset for the entire United States that fulfills both National Atlas and Global Map data needs.



# **Project Background**

#### National Atlas

- A cooperative effort by many agencies of the Federal government to provide a National Atlas that is truly national in scope and breadth.
- Data layers include: Agricultural, Commerce, Environmental, Health, Census, Infrastructure, Land Use, Transportation and Hydrography data.
- On-line link: http://nationalatlas.gov/about.html

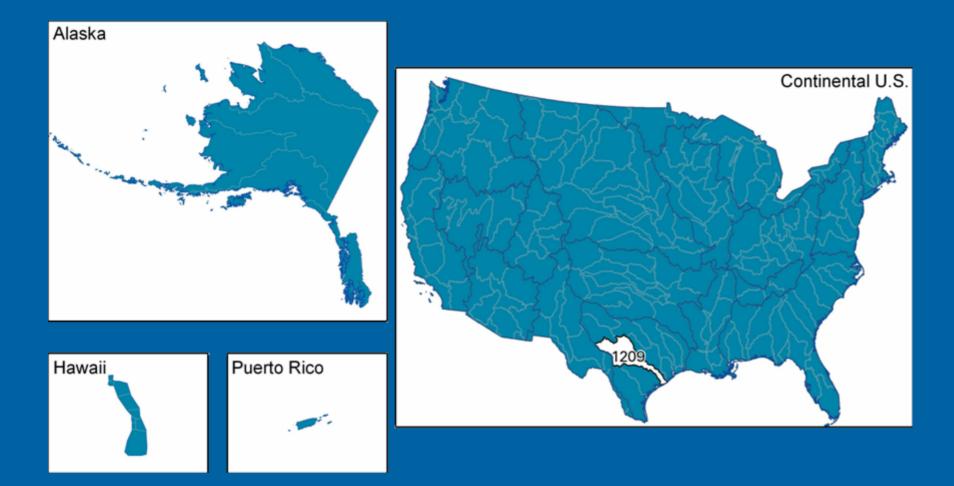
#### • Global Map

- The Global Mapping Project is an international effort to develop and integrate 1:1,000,000-scale (1:1M) geospatial data that will facilitate environmental research at spatial scales ranging from continental to global.
- Data layers include: Boundaries, Drainage, Transportation, Population Centers, Elevation, Land Cover, Land Use, and Vegetation.
- On-line link: <u>http://www.iscgm.org/</u>



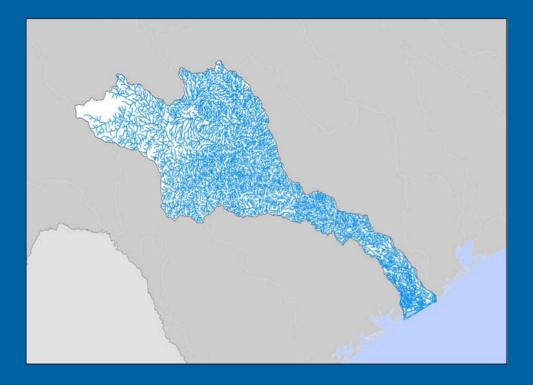
# **Project Approach**

Use ancillary data to identify reaches in the National Hydrography Dataset (NHD) that should be included in the 1:1,000,000-scale (1:1M) dataset.


> <u>Base Data:</u> NHD (1:100K)

#### **Ancillary Data:**

National Atlas (1:2M) VMAP0 (1:1M) IMW (1:1M) EDNA (30m resolution)

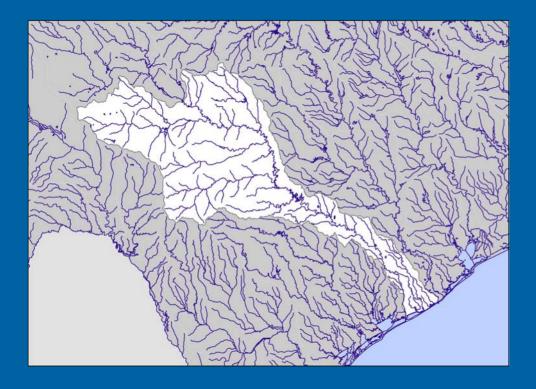



#### NHD Hydrologic Regions and Subregions





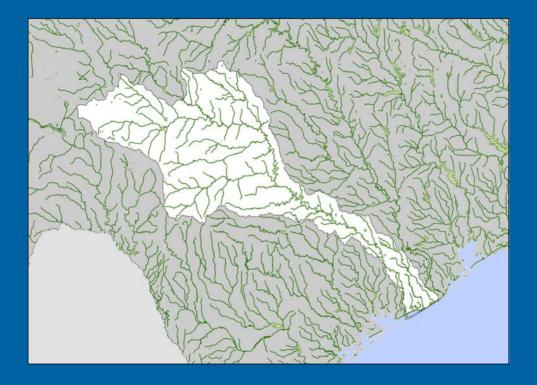
### Existing Data: National Hydrography Dataset (NHD)




- 1:100,000 (1:100K)
- Preserves a traceable network where segments have a flow direction
- Classifies flowlines as streams, canals, shorelines, connectors, or artificial paths
- Contains Geographic Names Information System (GNIS) names

USGS NHD Data: http://nhd.usgs.gov/data.html




#### **Existing Data: National Atlas Streams**



- 1:2,000,000 (1:2M)
- Compiled by the National Atlas of the United States of America
- Designed specifically for cartographic purposes

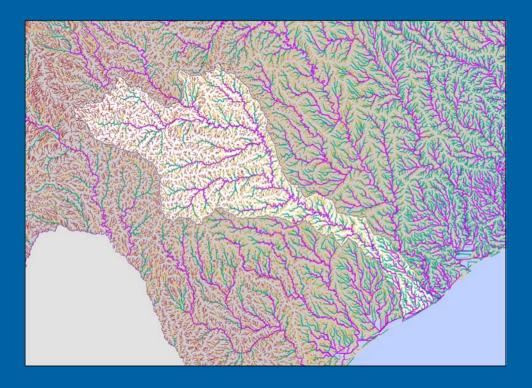


#### Existing Data: VMAP0



- 1:1,000,000 (1:1M)
- Compiled by the National Imagery and Mapping Agency (NIMA), now known as the National Geospatial-Intelligence Agency (NGA)
- Used data collected from 1972 to 1992




### Existing Data: International Map of the World (IMW)



- 1:1,000,000 (1:1M)
- Compiled by numerous organizations
- Paper maps produced from the 1920s to the 1970s
- Available for all of the United States, Canada, and Mexico



#### Existing Data: Elevation Derivatives for National Applications (EDNA)

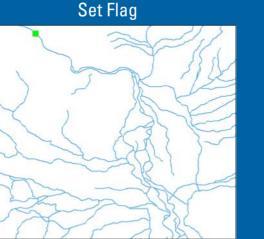


- 30-meter resolution
- Provides a synthetic stream network derived from a 30-meter National Elevation Dataset (NED) raster
- Estimates mean annual stream flow from precipitation and flow accumulation data

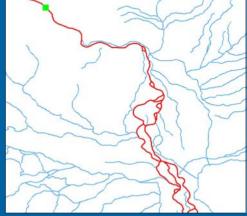


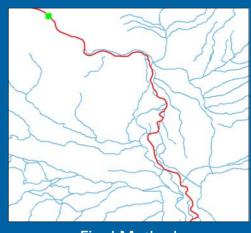
# **Methods testing**

(trial and error)


- Utility Network Analyst
   GNIS Names Hierarchy
   Hydrologic Derivatives
- 4. Final Method




### **Utility Network Analyst**


- Allows the user to trace downstream on any dataset which contains a geometric network.
- The geometric network stores the directionality of each line feature with the feature class.
- By placing a flag on a headwater reach, one can trace flow downstream to the outlet of the network.

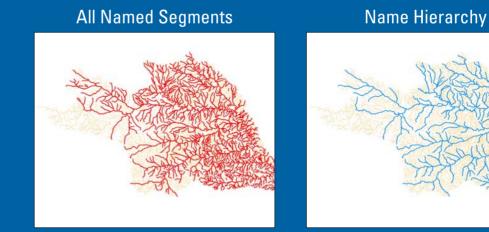
<u>Method Results:</u> In areas with low relief and areas with braided streams, all stream reaches were selected instead of only the main flow path.

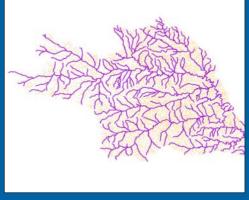


Trace Downstream






**Final Method** 



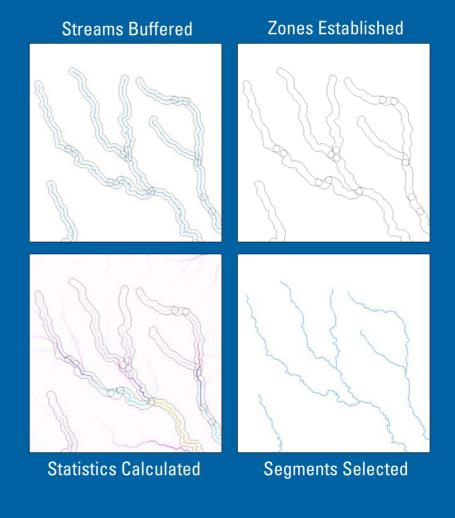

### **GNIS Names Hierarchy**

- Counts the number of stream segments with the same name, as indicated by the Geographic Names Information System (GNIS) attribute
- Aims to establish a hierarchy such that small streams with only one or two named segments are not selected
- A relative threshold value for the stream segment GNIS count is estimated by comparing density to ancillary maps compiled at 1:1M

<u>Method Results:</u> There are occasional breaks in network connectivity and inconsistent stream density.






Final Method



### **Hydrologic Derivatives**

- Zonal statistics can be calculated using a polygon feature class and raster data
- Aims to determine the most hydrologically significant reaches by calculating statistics for a buffer for each reach in the 1:100K NHD
- Uses USGS Elevation Derivatives for National Applications (EDNA) flow accumulation data

<u>Method Results:</u> This approach successfully selected reaches that correlated with the 1:1M ancillary datasets in the middle parts of watersheds but had limited success finding the important headwater reaches and reaches in areas with low relief.





## **Final Method**

- Attribute headwater reaches of streams indicated by ancillary datasets (National Atlas, VMAP0, and IMW)
- Use a trace downstream algorithm to automatically attribute streams that belong in the 1:1M dataset (written in VBA using ArcObjects)
- Consult additional ancillary datasets (digital orthoimagery, EDNA, and Digital Raster Graphics) to handle other cases that cannot be decide by algorithm
- **Generalize streams** using "Bend Simplify" and D-P algorithms (Python and the Geoprocessor object)



## Attribute headwater reaches

- GNIS names are important
- Include streams indicated by National Atlas, VMAP0, and IMW
- EDNA if ambiguous





### Trace downstream algorithm (What's it looking for?)

- Only one downstream reach
- GNIS Name
- Stream subtype
- Has flow direction





## Handle other cases

### Digital orthoimagery

#### • EDNA

### • Digital Raster Graphics





### Generalize streams (cartographic)

- Subregions appended to a regional dataset
- Bend Simplify with 500-meter tolerance
- D-P algorithm with 1-meter tolerance
- Check topology and network connectivity





## **Final Method Summary**

• Attribute headwater reaches

• Trace downstream algorithm

• Handle other cases

Generalize streams



### **Custom VBA/ArcObjects tools**

|                                                                                                                                  | Hydro1M        |             |
|----------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|
|                                                                                                                                  | . 💥 🗉 🖏 ғ      | ip 📵 🔸      |
| 🕄 Hydro_1M.mxd - ArcMap - ArcInfo 🗧 🗆 🔀                                                                                          |                |             |
| Eile Edit View Insert Selection Iools Window Help                                                                                | Add Edge Flags | from Points |
| 🗅 🖆 🖶 🎒 🛍 🗶 🗠 🗠 🔸 1:15,016 💽 📝 📣 🎕 🗖 🕅 🗐 🖗 🕭 Add Edge Flags from Points 刘                                                        |                |             |
| Terrain Preprocessing 🔻 Terrain Morphology 👻 Watershed Processing 👻 Attribute Tools 👻 Network Tools 👻 ApUtilities 🥣 🥙 😰 🖓 🍺 Help |                |             |
| Network: HYDRO_NET 💽 Flow 👻 🖕 Analysis 💌 📩 🔽 Trace Task: Find Common Ancestors 💽 🔨 Hydrology 🖝 🤗 😪                               |                |             |
| Editor - 🕨 🖉 - Task: Create New Feature - Target: 🔽 🗡 🗇 🗉 🖂 🥠 🌾 🕄 🐼 🏹 🔯 🙄 🚳                                                      |                |             |

- CheckFields
- AttributeDownstream
- Flip
- SelectNon1M
- ResetRunFlag
- Help

| 🚈 Microsoft Visual Basic - No     | ormal.mxt                                                                                                 |          |
|-----------------------------------|-----------------------------------------------------------------------------------------------------------|----------|
| <u>File Edit View Insert Forn</u> | mat Debug Run Iools Add-Ins Window Help                                                                   |          |
|                                   | I ♡ ♀ ▶ II ■ M 移間智沢 ② Ln 272, Col7 . □ 및 및 및 및 N 体部 合言을 /4 % % % .                                        |          |
| Project - Normal 🗙                | 🖉 Normal.mxt - ThisDocument (Code)                                                                        |          |
|                                   | AttributeDownstream  Click                                                                                |          |
| 🖃 😻 Normal (Normal.mxt)           |                                                                                                           | <u> </u> |
| 😑 😁 ArcMap Objects                | Private Sub AttributeDownstream_Click()                                                                   |          |
| ThisDocument                      |                                                                                                           | _        |
| 🗄 🧰 Modules                       | On Error GoTo EH                                                                                          |          |
| 🗄 👹 Project (BaseData.mxd)        | Set m pHxDoc = ThisDocument                                                                               |          |
|                                   | Set m_physe - misseament                                                                                  |          |
|                                   | If m intRunFlag = 0 Then                                                                                  |          |
|                                   | Dim intContinue As Integer                                                                                |          |
|                                   | intContinue = MsgBox("Is the NHDFlowline feature class at the top of the Table of Contents?", vbYesNoCano | el, _    |
|                                   | "You're about to Attribute Downstream")                                                                   |          |
| < >                               | If intContinue = 7 Then                                                                                   |          |
|                                   | MsgBox "Move it to the top and try again."<br>Exit Sub                                                    | _        |
| Properties - ThisDocument 🗙       | Elseff intContinue = 2 Then                                                                               |          |
| ThisDocument MxDocument 🖃         | Exit Sub                                                                                                  |          |
| Alphabetic Categorized            | End If                                                                                                    |          |
|                                   | End If                                                                                                    |          |
|                                   |                                                                                                           |          |
|                                   |                                                                                                           |          |
|                                   | m pID = "esriFditor.Editor"                                                                               |          |
|                                   | Set m_pEditor = Application.FindExtensionByCLSID(m_pID)<br>m pEditor.EnableUndoRedo True                  |          |
|                                   | Lepharoot induction fraction                                                                              |          |
|                                   | Dim pStatusBar As IStatusBar                                                                              |          |
|                                   | ' Dim i As Long                                                                                           |          |
|                                   | Dim pProgAnim As IAnimationProgressor                                                                     |          |
|                                   | Set pStatusBar = Application.StatusBar                                                                    |          |
|                                   | Set pProgAnim = pStatusBar.ProgressAnimation                                                              |          |
|                                   | pProgAnim.Show<br>pStatusBar.PlayProgressAnimation True                                                   |          |
|                                   | <pre>&gt; For i = 0 To 30000</pre>                                                                        |          |
|                                   | <pre>' pStatusBar.Message(0) = "Counting" &amp; Str(i)</pre>                                              |          |
|                                   | - Next                                                                                                    |          |
|                                   | pStatusBar.PlayProgressAnimation False                                                                    |          |
|                                   | pProgAnim.Hide                                                                                            |          |
|                                   | Application.StatusBar.Message(0) = "Running Attribute Downstream"                                         | -        |
|                                   |                                                                                                           | · //.    |



## Custom Python scripts 🖏

| 📣 ArcCatalog - ArcInfo - D:\Hydro1M_Toolbox                                          |                                           |                  |
|--------------------------------------------------------------------------------------|-------------------------------------------|------------------|
| <u> Eile E</u> dit <u>V</u> iew <u>G</u> o <u>T</u> ools <u>W</u> indow <u>H</u> elp |                                           |                  |
| 💪 😂 📾 🖻 X 🖻 🏦 🎆 🔠 🚳 🤹                                                                | । □   № ] @ @ @   ⊕   ⊞                   |                  |
| Location: D:\Hydro1M_Toolbox                                                         | •                                         |                  |
| Stylesheet: geoprocessing 🔄 🗐 🖆 📑                                                    | Export Schema 👻 Import Schema 👻 Utility 💌 | X I I I 2        |
| ×                                                                                    | Contents Preview Metadata                 |                  |
| 🖻 🥎 Hydro1M_Toolbox                                                                  | Name                                      | Туре 🔼           |
| Attribute_by_Quantile                                                                | Attribute_by_Quantile                     | Toolbox Tool     |
| CreateTopology_Waterbodies                                                           | S AttributeStreamsFromHeadwaters          | Toolbox Tool     |
| DomainAndAddFieldForExport                                                           | CreateTopology_Waterbodies                | Toolbox Tool     |
| ExportAndSimplifyStreams                                                             | 2 DomainAndAddFieldForExport              | Toolbox Tool     |
|                                                                                      | S ExportAndSimplifyStreams                | Toolbox Tool     |
| 💮 🕱 ExportSimplifyAndAppendBatch_20070607                                            | 🗟 ExportAndSimplifyStreamsBatch           | Toolbox Tool     |
|                                                                                      | ExportSimplifyAndAppendBatch_20070607     | Toolbox Tool     |
|                                                                                      | 🗟 GenerateEdgeFlags                       | Toolbox Tool     |
| MosaicAndExtractDEM0311                                                              | MosaicAndExtractDEM                       | Toolbox Tool     |
| MosaicAndExtractSRTM                                                                 | MosaicAndExtractDEM0311                   | Toolbox Tool     |
| SelectGNISStreamsAndCountJunctions                                                   | MosaicAndExtractSRTM                      | Toolbox Tool     |
| SummarizeGNISNames                                                                   | SelectGNISStreamsAndCountJunctions        | Toolbox Tool     |
| TerrainProcessing                                                                    | SummarizeGNISNames                        | Toolbox Tool 🛛 💌 |
|                                                                                      |                                           | >                |
|                                                                                      |                                           |                  |

- Creation of the directory structure
- Data preprocessing (add necessary fields, from/to nodes, and domains)
- Geodatabase compaction
- Export/simplify/append 1M streams
- Edge flag generation

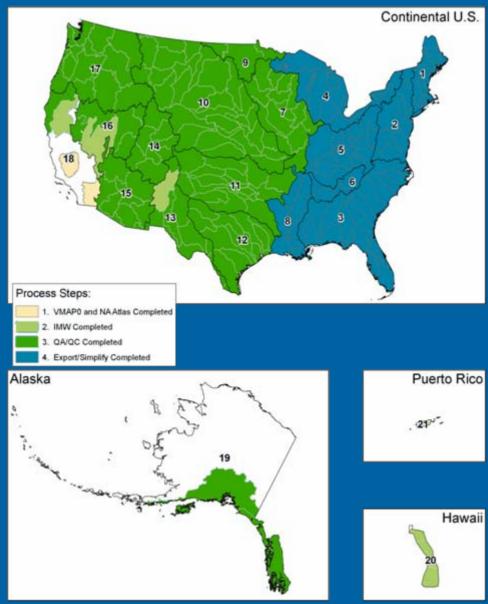


## **Density and Scale Issues**

Varying density within ancillary datasets - "What does 1:1M-scale stream network density look like?"

- Automated processing makes repeatable decisions
- Feature level metadata document why particular reaches were included

| Code_Field | Description                                |
|------------|--------------------------------------------|
| 0          | Not a 1M stream                            |
| 1          | National Atlas                             |
| 2          | VMAP0                                      |
| 3          | National Atlas and VMAP0                   |
| 4          | National Atlas and EDNA                    |
| 5          | VMAP0 and EDNA                             |
| 6          | National Atlas, VMAP0, and EDNA            |
| 7          | EDNA                                       |
| 8          | DOQQ                                       |
| 9          | Only downstream reach                      |
| 10         | GNIS_ID equivalent to upstream reach       |
| 11         | Only downstream reach with GNIS_ID         |
| 12         | Only downstream reach classified as Stream |
| 13         | Only downstream reach with Flow Direction  |
| 14         | IM/V                                       |
| 15         | DRG                                        |
| 16         | Canada                                     |
| 17         | Mexico                                     |
| 18         | Shortest segment                           |
| 99         | Manually excluded                          |




## Conclusion

- Final method fulfills our objective of creating a traceable 1:1M-scale hydro dataset that conforms to National Atlas recompilation and Global Map specifications and has a high degree of repeatability
- The NHD network is making it possible to complete the entire United States in a little over one year



### Water Courses Status Graphic





## Acknowledgments

- Jay Donnelly National Atlas of the United States
- John Hutchison USGS, Sioux Falls, S.D.
- Anna Regan and Andrew Murray Natural Resources Canada, Ottawa, Canada
- Jose Luis Ornelas INEGI, Aguacalientes, Mexico
- Sue Greenlee and Kris Verdin USGS, Sioux Falls, S.D.
- Christy-Ann Archuleta, Christina Bowden, Case Watkins, Jean Parcher, Brian Reece, Daniel Pearson, William Asquith, and Peter Bush – USGS, Austin, Tex.



## **Thanks! Questions?**

USGS Texas Water Science Center GIS Workgroup Web Site <u>http://tx.usgs.gov/GIS/</u>

> Robin H. Gary rhgary@usgs.gov

Zachary D. Wilson zdwilson@usgs.gov



Automating Stream Selection: National Atlas and Global Map Hydro from NHD

Presented by: Robin H. Gary: <u>thgary@usgs.gov</u> Zachary D. Wilson: <u>zdwilson@usgs.gov</u> U.S. Geological Survey Texas Water Science Center (<u>TxWSC</u>)

> USGS TxWSC GIS Workgroup Web Site\* http://tx.usgs.gov/GIS/

\*Global Map and National Atlas 1:1M Hydrography: The project summary, poster, and presentation are available through the GIS Workgroup Web Site.

Links Cited in Presentation:

National Atlas: http://nationalatlas.gov/about.html

Global Mapping Project: http://www.isc.gm.org/

USGS National NHD Data: http://nhd.usgs.gov/data.html

National Atlas Streams Data: http://nationalatlas.gov/mld/hydrogm.html

NGA VMAP0 Data: http://earth-info.nga.mil/publications/vmap0.html

USGS EDNA Data: http://edna.usgs.gov/Edna/datalayers/flow\_accum.asp

