MSHA Ventilation Summit Beaver, WV February 22, 2007

Summary of Seal Evaluation Methods at NIOSH's Lake Lynn Experimental Mine

Eric S. Weiss
Manager, Lake Lynn Laboratory
Mining Engineer

U.S. Regulations

Requires all worked out areas to be ventilated or sealed (explosion isolation)

U.S. Regulations

■All coal mine seal designs must be "deemed suitable" by MSHA

➤ Part of the suitability determination is based on full-scale explosion tests conducted within NIOSH's Lake Lynn Experimental Mine

U.S. Regulations

- ■Prior to July 19, 2006, all seals were required to:
 - Withstand a 20 psi static explosion overpressure
 - Must not leak more than 100 ft³/min at 1 in H₂O pressure differential across the seal

Lake Lynn Laboratory

Lake Lynn Experimental Mine

The unconfined explosion test method addressed the 30 CFR-horizontal "STATIC" pressure requirement

Construction of seals in crosscuts

Typical Methane Ignition

Post-Explosion Outcome

LLEM Results:

11 alternative types of seals (over 30 designs) have 'passed' this suitability determination through the unconfined explosion tests (side-on pressure loadings)

Chamber Approach for Evaluating Seals

Develop an alternative methodology for evaluating the strength characteristics of mine seals that was consistent with the intent of 30 CFR 75.335

Chamber Approach for Evaluating Seals

- Compare results between current approved method (LLEM) and alternative methodology
- Determine seal design safety factor
- Develop geometric seal sizing relationships
- Determine as-built strength in coal

Chamber Approach

Pressure Loading Methods for Closed Chamber Studies

- **Compressed air**
- Methane-Air Explosions
- Water

Chamber Evaluations

Chamber Results:

- In-situ pressure loading with water shows promise as an alternative to full-scale explosion testing of mine seals
 - Results comparable with LLEM explosion test

Chamber Results:

- Technique also allows for the determination of the ultimate strength or design safety factor
- In-situ validation of seal/strata interface within 'unique' coal mine geologies

2006 Mine Disasters

MSHA and WVOMHST requested NIOSH assistance in the investigations of seal failure at the Sago Mine

'Head-on' Pressure Loading

- Confined explosion
 - Longer duration higher impulse
- Uniformly loaded across entire seal face
- Developed a reflected pressure pulse
 - ~3 times the approaching pressure pulse

New LLEM Test Configuration

Seal Across C-Drift (Inby Side)

Results of 'head-on' explosions

50-psi overpressure

Ongoing LLEM Efforts:

NIOSH is evaluating 'generic methods' to improve the strength of in-situ seals.

Thank you

Eric S. Weiss

Manager, Lake Lynn Laboratory

EWeiss@cdc.gov

412-386-5050

The findings and conclusions of this presentation are those of the author and do not necessarily represent the views of the National Institute for Occupational Safety and Health.

