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Current management of the grizzly bear (Ursus arctos) population in Yellowstone
National Park and surrounding areas requires annual estimation of the number of adult
female bears with cubs-of-the-year. We examined the performance of nine estimators
of population size via simulation. Data were simulated using two methods for different
combinations of population size, sample size, and coefficient of variation of individual
sighting probabilities. We show that the coefficient of variation does not, by itself, ade-
quately describe the effects of capture heterogeneity, because two different distributions
of capture probabilities can have the same coefficient of variation. All estimators pro-
duced biased estimates of population size with bias decreasing as effort increased. Based
on the simulation results we recommend the Chao estimator for model Mh be used to
estimate the number of female bears with cubs of the year; however, the estimator of
Chao and Shen may also be useful depending on the goals of the research.

Key Words: Beta distribution; Chao estimators; Closed population estimation; Indi-
vidual heterogeneity; Model Mh; Negative binomial distribution; Ursus arctos.

1. INTRODUCTION

There is a rich literature on estimating closed population size using capture-recapture
designs (Otis, Burnham, White, and Anderson 1978; Seber 1982). Initial attempts ignored
capture heterogeneity but in recent years parametric and nonparametric methods have been
proposed that account for heterogeneity over time and among individuals as well as het-
erogeneity due to behavioral changes caused by the capture process. Capture heterogeneity
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has been typically quantified by the coefficient of variation (CV) in probabilities or other
parameters (e.g., Poisson means) that determine counts of individual animals in a sample.

Monte Carlo methods have been used to assess the statistical performance of estima-
tors even when analytical methods exist for calculating bias and variability (Chao and Lee
1992). Such methods are useful for comparing the performance of different estimators (Ash-
bridge and Goudie 2000; Wilson and Collins 1992). Typically, authors simulate data from
a random process with a known CV, then draw conclusions about estimator performance
based on these simulations. This approach assumes that CV adequately quantifies capture
heterogeneity—an assumption that may not be true, as we show below.

In our work we have attempted to estimate the number of adult female grizzly bears
with cubs of the year (FCOY) in the Greater Yellowstone Ecosystem (GYE) based on
the frequency of sightings of unique individuals. Knight, Blanchard, and Eberhardt (1995)
developed a rule set to distinguish pairs of sightings of FCOY among those coming from
two unique females or repeated observations of the same female. Tallies of unique females
provided a minimum annual estimate of FCOY in the GYE grizzly bear population. These
counts were then used to estimate minimum total population size and establish limits of
annual allowable human caused mortality (USFWS 1993). Because tallies of unique females
were used, the method returned a minimum rather than a total population estimate. Keating,
Schwartz, Haroldson, and Moody (2002) evaluated several nonparametric estimators that
use sighting frequencies to estimate the total number of FCOY. The CV of the probability
of the ith individual being selected in the next sampling episode p̃i was used as a measure
of capture heterogeneity. They recommended Chao’s sample coverage estimator (Chao and
Lee 1992) as a reasonable method of estimating total FCOY based on their simulations
and results in Chao and Lee (1992). Lee and Chao (1994) also recommended the sample
coverage estimator for model Mh under a multinomial sampling setting.

We identify two problems with the recommendations of Keating et al. (2002). First, the
simulations on which their recommendations were based all assumed CVs < 1, but recent
empirical data (Haroldson 2005) strongly suggest that CV sometimes exceeds 1. Second,
further work has shown that CV is not adequate by itself to quantify capture heterogeneity.
Specifically, two different distributions of p̃i’s can yield identical CVs, yet be associated
with dramatically different estimator performances. As we show below, the sample coverage
estimator recommended by Keating et al. (2002) is not robust to this problem. Our concern
is that, absent information about the true underlying distribution of the p̃i values, use of
this estimator could lead to overestimating FCOY thereby setting annual mortality limits at
unsustainably high levels.

We have two objectives in this article. First, we explore the effect of the particular method
of data simulation on Monte Carlo based assessments of nine estimators of population size.
Second, we update the recommendations of Keating et al. (2002) regarding estimation of
the number of FCOY in the GYE.
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2. METHODS

2.1 Notation

We use the notation of Keating et al. (2002). We draw a series of independent obser-
vations of n individual animals from a closed population of N animals, with m ≤ n of
these animals being unique. The identity of each is recorded and we assume all animals are
correctly identified. The probability of the ith individual being selected in the next sampling
episode is denoted by p̃i , i = 1, . . . , N with

N∑
i=1

p̃i = 1.

For convenience we will refer to the p̃i’s as sighting probabilities. Let ni, i = 1, . . . , N be
the number of times the ith individual is seen. We let fj denote the number of individuals
seen exactly j times, j = 0, . . . , r ≤ n. Observable quantities are ni > 0, fj , j = 1, . . . , r
and

m =
r∑

j=1

fj .

Note that

n =
N∑
i=1

ni =
r∑

j=1

jfj .

We wish to estimate N or, equivalently, f0.

2.2 Data Simulations

Nine estimators were compared using Monte Carlo simulation methods for population
sizes of N = 20, 40, 60, and 80, following Keating et al. (2002). We generated data using
two different procedures: a beta cumulative distribution (cdf) based procedure as per Keating
et al. (2002) and a negative binomial based procedure as per Boyce et al. (2001). For both
procedures, heterogeneity of captures was measured by the CV of theN individual sighting
probabilities (p̃i values). We investigated values of CV = 0 to 1.75 in increments of 0.25
except that for the negative binomial model, a CV = 0.01 was used instead of CV = 0 which
is impossible for this model. Details are in Appendix A.1 (p. 211).

One thousand simulated datasets were generated for each of 256 combinations of CV,
n, and N for the simulations using the beta cumulative distribution function and CV, the
mean of n, and N for the negative binomial based simulations. We used n/N as a measure
of sampling effort. With each dataset, nine estimators of population size were computed
from the resulting fi statistics.

2.3 Estimators

We examined five nonparametric and four parametric estimators. The five nonparamet-
ric estimators included two versions of an estimator due to Chao (1984, 1987, 1989); an
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asymptotic version (Chao1) and a nonasymptotic version (Chao1Mod), a bias corrected
version of Chao1 (Chao2) due to Chao (1989), a sample coverage estimator (Chao and
Lee 1992; Lee and Chao 1994) hereafter referred to as SC2, and a modification of SC2
(SC2Mod) due to Chao and Shen (2004). The four parametric estimators were based on
Poisson mixture models (Norris and Pollock 1998). Details are in Appendix A.2 (p. 212)
along with additional references.

The nonparametric estimators were based on the previous work of Keating et al. (2002),
who were looking for a nonparametric estimator that was robust over the range of con-
ditions they believed held for the GYE grizzly bear population. We did not include other
nonparametric estimators, either because previous work had ruled them out, for example, the
jackknife estimators of Burnham and Overton (1978) (Ashbridge and Goudie 2000; Keat-
ing et al. 2002) or because they were not appropriate, for example, the additional sample
coverage estimators of Ashbridge and Goudie (2000) which require fixed, defined detection
occasions.

Our choice of parametric estimators was based on similar concerns. Recent work by
Dorazio and Royle (2003, 2005) and Pledger (2005) also assumed fixed detection occasions.
We used a Poisson-based mixture maximum likelihood approach because the usual Pledger
(2000) or beta-binomial models do not work. Link (2003) showed theoretically that you
cannot use the data to determine which of the underlying models might be appropriate,
that is, the exact same data can be generated from two different underlying models (say
beta-binomial and logit-normal), but with quite different population sizes. However, all
model-based population estimators have an implicit assumption that the model is at least
reasonable. We simulated data under different models and used those to estimate population
size, and we have recommended the estimator that performs best over that range of simulated
data. 

2.4 Simulation Summaries

Simulation results were summarized as the percent relative bias (PRB) for the number
of simulations (l) being reported:

PRB = 100

[
1

l

l∑
i=1

N̂i −N

N

]

and mean squared error (MSE) is computed for the number of simulations (l) being reported:

MSE = 1

l

l∑
i=1

(
N̂i −N

)2
.

2.5 Comparison of Empirical Data to Simulated Data

Simulation results ultimately form the basis for recommendations to applied settings.
Ideally, such recommendations are valid when observed data are assumed to have been pro-
duced by the given simulation method(s). It seems likely, however, that different simulation
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methods could produce data consistent with observed data, but with differing results for
estimator performance. Our comparison of empirical and simulated data was an attempt
to show that the simulation results are consistent with our data providing confidence that
the results can be used to help in the choice of a statistically valid estimator of FCOY. We
attempted to determine this in two ways.

First we compared the sighting frequencies from the 1986–2004 data to the simulated
data. The fi statistics for the 19 years were summed across years, and these values stan-
dardized to sum to 1. The result was a mean proportion of animals observed 1, 2, . . . , times
across the 19 years. Equivalent standardization was performed with the expected fi of sim-
ulated data, and sums of squared errors were used to quantify the discrepancy between the
observed and simulated datasets to provide a measure of agreement between the average
observed data and the simulated data. Hence,

SS =
∑
i

(
f sim
i − f observed

i

)2

was computed for each of the simulated scenarios to determine which sets of parameters
generated data that most resembled the observed data.

Second, we attempted to assess the discrepancy between observed and simulated datasets
for each of the 19 years separately. Comparisons were based on the N/CV/Effort triple
closest to the estimated triple for a given year. We computed the average proportions in each
of the fi categories. There were 132 such categories in the simulations for N > 20 and 80
for N = 20. We then determined the expected counts using the observed minimum count.
The expected counts were computed assuming the observed data were indeed generated by
our simulation choice. We computed

χ2 =
r∑
i=1

(
Obsi − Expi

)2
Expi

,

where r is the number of nonzero expected counts. We carried out a randomization procedure
by drawing m times from a multinomial distribution with probability vector equal to the
vector of mean proportions computed above. We computed χ2 for each of 1,000 random
draws and generated a randomization distribution of χ2’s associated with our simulation
triple and an observed sample size ofm. We then determined an approximate randomization
P value based on the observed χ2. Large P values are taken as evidence that the observed
data are consistent with the associated simulation N/CV/Effort triple.

We also attempted a comparison of estimated sighting frequencies of FCOY in the
GYE with the proportions seen in the simulated datasets. We estimated the number of times
radioed FCOY were observed independently of radio telemetry relocation flights. To do this,
we determined the number of females wearing a functional radio collar at den emergence
that produced cubs. We then determined the frequency of sightings for these marked females
that were made independent of the radio collar (they were seen without aid of telemetry
relocation). We used this frequency distribution as an indication of average sightability.
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3. RESULTS

3.1 Sighting Probabilities of Radio-Marked Bears

From 1986–2004, we monitored 85 radio-collared female bears that emerged from their
dens with cubs of the year. During our observation period (den emergence to 31 August),
51.8% of these bears were seen independent of any radio-tracking flight. Treating this as a
ratio estimate of the proportion yielded an approximate 95% confidence interval of (0.44,
0.59). Sighting frequencies included 22, 11, 7, and 1 observations of these collared bears
1, 2, 3, and ≥ 4 times. The proportion of the radio-marked population that was observed
(51.8%) is bracketed by the simulated populations (Tables 1 and 2).

Observations of FCOY were also well distributed geographically throughout the GYE.
Since 1997 the Interagency Grizzly Bear Study Team has been conducting observation
flights in 37 bear observation areas that encompass 34,700 km2 (Schwartz 1999). During
1997–2004, there were aerial observations of FCOY from 24 of 26 areas within the USFWS
(1993) Grizzly Bear Recovery Zone (RZ), and 5 of 11 flight areas outside the designated
RZ. If we include ground observations, there were sightings from 26 of 26 areas within the
RZ and 7 of 11 areas outside the RZ. Only 2.7% of 914 FCOY sightings obtained during
the period occurred outside the flight areas.

3.2 Comparison of Data From Simulation Methods

The higher the proportion of the population seen the better an estimator should perform.
The average proportion seen in our simulations was a function of both effort and CV. As
effort increased and CV decreased the average proportion seen increased (Table 1 and 2).
In general, the expected proportion seen in the sample was higher with the simulations
based on the beta cdf than with the negative binomial simulations. Note that the average
proportion seen in the samples from the negative binomial simulations is the same across
population sizes for a fixed CV and sampling effort (Table 2).

3.3 Comparison of Observed and Simulated f Statistics

The comparison of the observed and simulated f statistics suggest the beta model gen-
erated data most closely resembling the observed data when compared across all 19 years
(Table 3). The smallest sum of squares was provided by the beta model with CV = 1.75,
N = 80, and effort = 2 although these CV and N values are not similar to our observed
data. On average we had an estimated effort of about 1.7 and an estimated CV of around
0.5. The estimator of CV we used is known to be biased low (Chao and Lee 1992) im-
plying that CVs of around 0.75 are not unreasonable for our data on average. Four of the
top 12 combinations have CV = 0.75 and effort of 1.5 for N = 20, 40, 60, and 80. The
simulated data align closely with the standardized averages of the observed data (Figure
1), suggesting that our simulations are useful when making inferences about the process
of estimating FCOY. Note, however, that the proportion of the population included in the
sample for these simulated scenarios was around 70% (Table 1), compared to 51.8% for
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Table 1. Parameters of the beta distribution used to simulate data under the various population size (N) and
CV scenarios. The value of α = β for the U -shaped symmetrical beta distributions. The expected
proportion of the population that appears in the sample 1 or more times (Proportion Sampled) is given
as a function of the sampling effort, with an effort of 2 meaning that a sample of size 2N animals is
observed.

Proportion sampled with effort

N CV(p̃) α p̃ Min p̃ Max p̃ 1 1.5 2 3 4

20 0.00 1.0000 0.0500 0.0500 0.0500 0.6415 0.7854 0.8715 0.9539 0.9835
40 0.00 1.0000 0.0250 0.0250 0.0250 0.6368 0.7811 0.8681 0.9521 0.9826
60 0.00 1.0000 0.0167 0.0167 0.0167 0.6352 0.7797 0.8669 0.9515 0.9823
80 0.00 1.0000 0.0125 0.0125 0.0125 0.6344 0.779 0.8664 0.9511 0.9821

20 0.25 0.7452 0.0500 0.0416 0.0845 0.6313 0.7723 0.8583 0.9443 0.9777
40 0.25 0.7601 0.0250 0.0211 0.0482 0.6271 0.7690 0.8559 0.9432 0.9773
60 0.25 0.7656 0.0167 0.0141 0.0348 0.6258 0.7679 0.8552 0.9429 0.9772
80 0.25 0.7686 0.0125 0.0106 0.0276 0.6252 0.7675 0.8549 0.9428 0.9772

20 0.5 0.5763 0.0500 0.0351 0.1213 0.6066 0.7430 0.8301 0.9244 0.9658
40 0.5 0.6069 0.0250 0.0182 0.0742 0.6056 0.7441 0.8324 0.9268 0.9675
60 0.5 0.6189 0.0167 0.0123 0.0558 0.6056 0.7449 0.8335 0.9277 0.9681
80 0.5 0.6257 0.0125 0.0093 0.0455 0.6058 0.7454 0.8341 0.9283 0.9685

20 0.75 0.4543 0.0500 0.0298 0.1591 0.5737 0.7058 0.7948 0.8983 0.9488
40 0.75 0.4989 0.0250 0.0159 0.1014 0.5791 0.7151 0.8052 0.9071 0.9549
60 0.75 0.5169 0.0167 0.0109 0.0779 0.5819 0.7190 0.8093 0.9103 0.9570
80 0.75 0.5272 0.0125 0.0083 0.0647 0.5837 0.7213 0.8116 0.9121 0.9582

20 1 0.3609 0.0500 0.0253 0.1971 0.5359 0.6636 0.7539 0.8660 0.9259
40 1 0.4172 0.0250 0.0140 0.1291 0.5509 0.6844 0.7760 0.8848 0.9396
60 1 0.4403 0.0167 0.0097 0.1006 0.5573 0.6925 0.7841 0.8912 0.9442
80 1 0.4538 0.0125 0.0074 0.0843 0.5611 0.6970 0.7885 0.8947 0.9466

20 1.25 0.2864 0.0500 0.0212 0.2352 0.4947 0.6169 0.7074 0.8266 0.8955
40 1.25 0.3523 0.0250 0.0124 0.1569 0.5218 0.6526 0.7450 0.8598 0.9214
60 1.25 0.3799 0.0167 0.0087 0.1235 0.5326 0.6656 0.7581 0.8706 0.9295
80 1.25 0.3961 0.0125 0.0067 0.1042 0.5388 0.6728 0.7652 0.8764 0.9337

20 1.5 0.2251 0.0500 0.0176 0.2733 0.4503 0.5656 0.6546 0.7783 0.8556
40 1.5 0.2990 0.0250 0.0110 0.1848 0.4920 0.6195 0.7122 0.8319 0.9000
60 1.5 0.3303 0.0167 0.0079 0.1465 0.5079 0.6384 0.7313 0.8485 0.9129
80 1.5 0.3488 0.0125 0.0061 0.1243 0.5168 0.6486 0.7415 0.8571 0.9195

20 1.75 0.1734 0.0500 0.0142 0.3113 0.4027 0.5089 0.5942 0.7193 0.8034
40 1.75 0.2539 0.0250 0.0097 0.2126 0.4615 0.5851 0.6773 0.8008 0.8749
60 1.75 0.2884 0.0167 0.0071 0.1696 0.4832 0.6108 0.7037 0.8246 0.8943
80 1.75 0.3090 0.0125 0.0056 0.1443 0.4950 0.6244 0.7174 0.8367 0.9038
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Table 3. The level of agreement between the standardized mean observed f statistics and the top 20 simulation
scenarios.

Data simulation model CV(p̃) N Effort Sum of squares

Beta 1.75 80 2 0.0005351
Beta 1.5 60 2 0.0005736
Beta 1.25 40 2 0.0007240
Beta 1.5 80 2 0.0008256
Beta 1.5 40 2 0.0010979
Beta 0.75 20 1.5 0.0011624
Beta 1.75 60 2 0.0011970
Beta 0.75 40 1.5 0.0012626
Beta 1.75 40 2.5 0.0013654
Beta 0.75 60 1.5 0.0013832
Beta 1.25 60 2 0.0013849
Beta 0.5 20 1.5 0.0014395
Beta 0.5 40 1.5 0.0014497
Beta 0.75 80 1.5 0.0014529
Beta 0.5 80 1.5 0.0015270
Beta 0.5 60 1.5 0.0015759
Negative Binomial 0.5 80 1.5 0.0016076
Beta 1 20 2 0.0016446
Beta 1 40 2 0.0018139
Negative Binomial 0.5 20 1.5 0.0018322

Figure 1. Comparison of the standardized f statistics for the data simulation from the beta model [CV(p̃) =
1.75, N = 80,Effort = 2] with the means of the standardized observed sighting data 1986–2004.
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Figure 2. Percent relative bias of the nine estimators considered as a function of the number of the fi statistics
>0.

radio-marked bears. However, we believe the value of 51.8% should not have too much
importance attached to it because it was based on a 19-year average with a wide range of
estimated N /CV/Effort triples. The number of radio-marked bears seen in any one year is
only four or five on average and there is a good deal of uncertainty as indicated by the
confidence interval.

Comparisons based on individual years are consistent with at least one of the 256
simulation possibilities and with a simulationN /CV/Effort triple that is close to that actually
observed (estimated). Randomization P values ranged from 0.11 to 0.92 for the beta CDF
comparisons and 0.26 to 0.94 for the negative binomial based comparisons.
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Figure 3. Mean squared error of the nine estimators as a function of the number of fi statistics >0.

3.4 Estimator Performance

Some simulated scenarios generated too few data to be useful (i.e., less than 3fi > 0),
particularly for low effort values. None of the estimators performed satisfactorily when only
one fi statistic was> 0. Most notably, the Poisson mixture estimators were undefined unless
more than one fi was > 0, and generated estimates of N of infinity, causing numerical
optimization problems. Although some of the other estimators (e.g., Chao2) generated
estimates of N when only a single f value was > 0, use of such estimates seems dubious.
An ad hoc measure of the quantity and quality of data was the number of fi > 0. As a first
evaluation of the performance of the nine estimators, we evaluated the percent relative bias
and mean squared error of each as a function of the number of positive fi statistics (Figures
2–3). The poor performance of the Poisson mixture estimators for low numbers of fi > 0
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where N̂ → ∞ was highlighted in these figures, in that the y-axis was scaled to exclude
the extreme estimates from these estimators.

The number of fi > 0 in the observed data ranged from 3 to 13 with mean 5.8 (SD =
2.4). Of the 19 years, only two years had the number of fi > 0 = 3, and five years equal
to 4. Because only 2 fi > 0 is quite sparse data, we eliminated all of these simulated cases
in the remaining analyses reported here.

Figure 4. Percent relative bias of the Chao1 (diamond), Chao1Mod (square), Chao2 (triangle), and SC2Mod
(circle) estimators as a function of sampling effort for four of eight CV(p̃) values simulated for the beta (left
column) and negative binomial (right column) simulation models. Note that y-axis scales vary.
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Figure 5. Mean Squared Error of the Chao1 (diamond), Chao1Mod (square), Chao2 (triangle), and SC2Mod
(circle) estimators as a function of sampling effort for four of the eight CV(p̃) values simulated for the beta (left
column) and negative binomial (right column) simulation models. Note that y-axis scales vary.

The performance of the SC2 estimator and all of the Poisson mixture models was also
poor compared to the remaining four models (Figures 2–3), so we have only summarized
the performance of the Chao1, Chao1Mod, SC2Mod, and Chao2 estimators in the graphs
of PRB and MSE as a function of effort for the eight CV(p̃) values (Figures 4–5). These all
performed in a roughly comparable way in terms of PRB (Figure 4). This was particularly
true for higher levels of effort. With effort ≥2 these four estimators had PRB in the range
of 0–10%. Chao2 was consistently biased low whereas the other three tended to be biased
high. Other investigators have also noted the tendency of Chao2 to be biased low (Keating
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Figure 6. Comparison of estimates for GYE bear population. The Poisson additive model assumes a constant
additive effect across years between the high and low sighting means for two mixtures.

et al. 2002; Wilson and Collins 1992).
Performance of the estimators was clearly different for the two different methods of

simulating data. The Chao2 estimator demonstrates the smallest PRB, although somewhat
negative for the simulated data from the beta model. Performance of the Chao2 estimator
was poor for data simulated under the negative binomial model, particularly as heterogeneity
increased. However, because the beta model was shown to most closely mimic the observed
data, we recommend the use of the Chao2 estimator when data for only a single year are
used to compute the population estimate.

Performance of the estimators with the observed bear data (Figure 6) does not suggest
large differences between them, although the SC2 estimator does tend to produce larger
estimates than the other estimators (Figure 6).

4. DISCUSSION

We believe that evaluation of estimators of this type with simulated data must be con-
ducted more carefully than in the past. There has been an implicit assumption that a con-
clusion drawn about the performance of an estimator when CV = 1 is the same regardless
of how the data were generated. Our results show that such an assumption may not be justi-
fied. Further, comparisons of results from different studies may be inappropriate if different
simulation methods are used. At the least investigators who wish to apply such estimators
need to assess whether or not the particular method of simulating data is relevant for their
proposed application.

Although we argue that our simulation methodology produced data consistent with the
empirical data we have on grizzly bears in Yellowstone, we have implicitly assumed that
our population contains animals all of whom have a high probability of being seen one or
more times during the summer field season. Our simulations were designed with this in
mind.

Our “recapture rate” on collared bears was high (51.8%). Grizzly bears tend to be
crepuscular (Schleyer 1983; Harding 1985), and tend to forage on both vegetable (Mattson,
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Blanchard, and Knight 1991a) and animal matter during spring and early summer (Green,
Mattson, and Peek 1997; Mattson 1997) in meadows, open forests (Mattson et al. 1991a,b;
Green et al. 1997; Mattson 1997), and alpine habitats (Mattson, Blanchard, and Knight
1991b) making them visible from both the ground and air. The Interagency Grizzly Bear
Study Team flies a series of both radio-tracking and observation flights. Annually, from
1997–2004, two rounds of observation flights have been flown averaging 149 hours/year.
The mean sighting rate of FCOY observed on these flights was 0.20 FCOY/hr (West 2005a).
From 1997–2004, the average hours flown for telemetry relocation was 394 hr/year, with
incidental observations of 0.02 FCOY/hr (West 2005b). Additionally, each year there were
numerous aerial relocation, observation, survey, and other flights over the GYE associated
with other species occurring over most of occupied grizzly bear range. Incidental sighting
of FCOY are typically reported from these flights as well. Overall we believe there is a
high likelihood that most if not all grizzly bears in the GYE have sighting probabilities high
enough to yield a large proportion of animals sighted within a year. We cannot of course
completely rule out the possibility that there are animals with low sightability or that there
may be transient environmental conditions that render a good portion of the population
effectively unsightable in a given year.

4.1 Combining Data Across Years

Likelihood-based estimators have a theoretical advantage over the nonparametric esti-
mators considered here in that the data across years can be combined to model nuisance
parameters with a reduced parameter space by assuming some parameters are constant
across years (MacKenzie et al. 2005; White 2005). For example, parameters might be con-
sidered equal across years, or year-specific covariates could be used to model sighting
probabilities. Another benefit from combining data across years is that estimator failures
due to sparse data would occur less often, because information is borrowed across years to
generate estimates for years where estimator performance would normally be poor. Mod-
eling nuisance parameters across years will provide more precise estimates of the nuisance
parameters and potentially generate more precise estimates of population size, although
the risk incurred is some bias of the population estimates. Of the 9 estimators considered,
N̂Mh1 , N̂Mh2 , N̂Mh3 , and N̂ModAve could benefit from this methodology. In contrast, none of
the nonparametric estimators can use this approach.

The estimator Poisson Additive in Figure 6 demonstrates an application of this method-
ology for the observed bear data across 19 years. The additive model assumes a constant
additive effect (i.e., a constant difference) in the high and low mean sighting probabilities
for a two-mixture model, so reduces the number of parameters by 18.

A negative aspect of combining data across years to estimate nuisance parameters is
that adding new information each year changes population estimates for previous years.
As an example, suppose that an estimate of population size puts allowable mortality in
year t at just over observed mortality. However, with addition of data for year t + 2, the
population estimate in year t is reduced, and now the mortality threshold is exceeded. Such
behavior is likely in our application of interest, as the bear population approaches carrying
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capacity, and mortality equals recruitment complicating the decisions managers reach. A
referee pointed out, however, that in practice data would only be aggregated over a limited
time span determined in part by consideration of information on grizzly bear life history.
Such aggregation might mitigate the problem of varying mortality thresholds.

Surprisingly, the likelihood-based methods did not perform well in either of our simu-
lation scenarios. We attribute this poor performance to (1) low number of fi > 0, and (2)
general lack of numerical stability for even moderate numbers of fi > 0. The optimization
of likelihoods for mixture distributions is difficult because of multiple optima. In simulation
studies such as reported here, user intervention to assess whether a reported solution is the
global maximum is precluded. We suspect that at least some of the solutions used in these
simulations are not global maxima, and thus affect the reported results on bias and MSE.
Although a rule to discard extreme likelihood estimates was considered, this approach was
not used because of the subjectivity in defining such a rule.

5. CONCLUSIONS

We view our simulation results as applicable to estimation of population size where there
is considerable individual heterogeneity of detection probabilities and where overestimation
is to be guarded against. Management of endangered species often is conservative because
the penalty for underestimation is to increase management efforts, whereas the penalty for
overestimation could lead to extinction if a decline in population size is not detected in time.
Individual heterogeneity of detection probabilities is likely high in our example because
of the various ways bears are resighted. Our simulations likely apply to other “small”
populations where various methods of detecting individuals introduce heterogeneity.

The four nonparametric estimators (Chao1, Chao1Mod, SC2Mod, and Chao2) all per-
formed in a roughly comparable way in terms of PRB (Figure 4, p. 206). This was particularly
true for higher levels of effort. If effort was ≥2, then all the estimators had PRB in the range
of 0 to 10% for the beta cumulative distribution function based simulations, and we believe
that these simulations provided results consistent with the empirical results produced by
the varying range of conditions in the GYE. Chao2 was consistently biased low whereas
the other three estimators tended to be biased high. Given our current state of knowledge,
we recommend managers do everything possible to get effort ≥1.5. In general, with large
enough effort it appears that both SC2Mod and Chao2 perform well on average with Chao2
providing a lower bound. For our specific focus we recommend the use of Chao2 because
it is important to not overestimate the number of FCOY in the GYE.

Keating et al. (2002) determined standard errors using the bootstrap. An approximate
variance formula for the Chao2 estimator also exists (Chao and Shen 2006). An approximate
variance formula for SC2Mod is given in Chao and Shen (2004).

Additional work may produce improved estimation techniques. The modeling approach
clearly has great potential in this regard. The simpler nonparametric SC2Mod may also be
improved by further work on the choice of a cutoff value κ , although such a cutoff would
appear to be a function of factors not under the control of or even knowable by managers.
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APPENDIX

A.1 Data Simulations

Chao and Lee (1992) showed that for fixed n the CV of the p̃i is related to the sighting
frequencies (fi) as

(CV)2 = N

N∑
i=1

p̃2
i − 1 =

(
N

n∑
i=1

i(i − 1)E(fi)/[n(n− 1)]

)
− 1,

where n is the total number of captures, n = ∑
i ifi .

The vector of capture frequencies (fi) for the beta distribution simulations was simulated
using the methods of Keating et al. (2002). We calculated p̃i as the integral of a standard
beta distribution over the interval (i − 1)/N to i/N as

p̃i = Ii/N (α, β)− I(i−1)/N (α, β),

where Ix(α, β) is the incomplete beta function ratio with parameters α and β. There are an
infinite number of (α, β) pairs that yield distributions of p̃i’s with the same CV. For example,
the two (α, β) pairs (0.4172, 0.4172) and (6.1386, 6.1386) both produce distributions of
p̃i’s with CV = 1 for a population of N = 40, but the expected proportion of animals seen
in a sample of size n = 80 (effort of 2) is 0.776 (Table 1, p. 201) for α = β = 0.4172 and
0.568 for α = β = 6.13864. Obviously, estimator performance will differ for these two
scenarios. For convenience we limited ourselves to beta distributions with α = β < 1. This
restriction still allowed for simulation of data with a wide variety of distributions of p̃i’s.

We used the Solver routine in Microsoft Excel to select α = β < 1 to give the desired
CV of the p̃i’s with the additional constraint that the minimum p̃i was maximized so that
all animals in the population had nonzero p̃i (Table 1). Using the resulting p̃i values, we
randomly drew n sightings from the simulated population so that the number of sightings per
individual in the population (n/N) ranging from 0.5 to 4.0 in equal increments of 0.5 (with
this variable designated as sampling effort). After each sighting, the identity of the individual
was recorded. Results were then used to tabulate the vector of sighting frequencies, f . Data
could have been generated from any cdf but we chose the beta family because it is flexible
and because it was used by Keating et al. (2002).

Data were also generated by sampling from a negative binomial distribution although
we did not draw directly from that distribution. We assumed that the number of times an
individual animal was seen followed a Poisson process with parameter λi, i = 1, . . . , N .
The λi’s were assumed to be a random sample from a gamma distribution. Following Boyce
et al. (2001) we considered the following parameterization for the negative binomial model:

Pr(X = x) =  (k + x)

 (k)x!
Px(1 + P)−(k+x),

for x = 0, 1, . . . where k, and P > 0. The random variable X is the number of times an
animal is sighted and has mean kP and variance kP (1 + P), where k and P are the shape
and scale parameters of the gamma distribution used to generate the Poisson means. To
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obtain the appropriate CV we set k = 1/CV2, and p = (n/N)/k to provide an average
of the Poisson means as n/N . Here CV is a measure of the heterogeneity in the Poisson
means; however, this is equivalent to the CV for the p̃i’s. Note that in simulations using
the beta model, n (and hence effort) is a fixed constant, whereas for the negative binomial
model, n is a random quantity varying with each simulation. To simulate the number of
captures of the ith animal for the negative binomial model, we generated a random variable
from the gamma distribution with shape parameter k, multiplied the result by P , and used
this result as the Poisson mean to generate the observed number of captures of that animal.

A.2 Estimators

Nine estimators (five nonparametric and four parametric) of population size (N) were
compared. We first examined Chao’s (1984, 1987, 1989) estimator (hereafter referred to as
Chao1):

N̂Chao1 = m+ f 2
1

2f2
,

where m is the number of individual animals captured. This estimator assumes model Mt

(Otis et al. 1978). Using N̂Chao1, the statistical expectation for the estimate,E(N̂), equalsN
only when sighting probabilities are the same for all animals; that is, when CV = 0. When
CV> 0,E(N̂) < N (Chao 1984). This does not ensure N̂Chao1 ≤ N in all cases, but it does
suggest that N̂Chao1 might provide an inherently conservative approach to estimating N .

The estimator N̂Chao1 is an asymptotic version of the nonasymptotic estimator:

N̂Chao1Mod = m+ f1

(n−m1)2 +m2 −m2
1

[
(n−m1)

3

nm1 −m2
+ m2 −m2

1

n

]
,

where m1 = 2f2
f1

and m2 = 6f3
f1

(Chao 1984).
We also considered an estimator developed by Chao (1989) for model Mh. When the

sample unit is the individual animal, this estimator (Chao2) is given by (Wilson and Collins
1992):

N̂Chao2 = m+ f 2
1 − f1

2(f2 + 1)
.

Chao and Lee (1992) proposed an estimator based on sample coverage (C), where C is the
sum of the p̃i values for the m individuals actually observed in the sample. Lee and Chao
(1994) offered two estimators of C (SC1 and SC2) that, in the notation of our sampling
model, are given by

Ĉ1 = 1 − f1

n
,

and

Ĉ2 = 1 − f1 − 2f2/(n− 1)

n
.

For model Mh of Otis et al. (1978), Lee and Chao (1994) then estimated N as

N̂SCi = m

Ĉi
+ f1

Ĉi
CV2,
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where i = 1 or 2, and CV is a measure of the coefficient of variation of the pi’s. Where
the sample unit is the sighting of an individual animal, CV2 is calculated as (Chao and Lee
1992),

CV2 = max

{
N̂

n∑
i=1

i(i − 1)fi
n(n− 1)

− 1, 0

}
.

Calculation of CV2 requires an initial estimate of N . Following Chao and Lee (1992),
we used Darroch and Ratcliff’s (1980) estimator, N̂DR = m/Ĉi which assumes equal
sightability among all animals in the population. We only evaluated the N̂SC2 estimator
here.

A modification of N̂SC2 (SC2Mod) was given by Chao and Shen (2004). Individuals
are partitioned into two groups, those with high probabilities of appearing in the sample
(high p̃i values) and those with low probabilities (low p̃i values). Individuals commonly
seen are those observed more than κ times. Define Srare = ∑κ

i=1 fi and define C̃rare =
1 − f1/

∑κ
i=1 ifi . The number of “rare” individuals not seen during sampling is estimated

by

f̂0 = Srare

C̃rare
+ f1

C̃rare
γ̂ 2 − Srare.

The squared coefficient of variation γ̂ 2 is estimated by

γ̂ 2 = max

{
Srare

C̃rare

∑κ
i=1 i(i − 1)fi(∑κ

i=1 ifi
)2 − 1, 0

}

if the sample size n is fixed and

γ̂ 2 = max

{
Srare

C̃rare

∑κ
i=1 i(i − 1)fi

C̃rare
(∑κ

i=1 ifi
) (∑κ

i=1 ifi − 1
) − 1, 0

}

if the sample size varies. The population size is estimated by

N̂SC2Mod = m+ f̂0.

It is not clear that there is a single cutoff value for κ that is appropriate for general use. Chao
and Shen (2004) applied their estimator to simulated data using κ values of 5, 10, and 15 and
found that it made little difference under conditions of homogeneity but was more important
for heterogeneous populations. Setting κ equal to 10 seemed to yield estimates closest to
the truth in their simulations and we also chose that as the cutoff for our simulations.

Keating et al. (2002) used a bootstrapping method to estimate standard errors. They
determined that bootstrapped standard errors were comparable to the standard deviations
of repeated simulations. We do not further evaluate that method here. Standard deviations
presented for the five nonparametric estimators are determined from the simulation results.

The last four estimators are based on the maximum likelihood estimator ofN computed
from Poisson mixture distributions. Norris and Pollock (1998) developed a mixture model
of the number of animals captured i times, i = 0, 1, . . . , based on the Poisson distribution
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with likelihood

L(N, πa, λa|A, fj ,m) = N!

(N −m)!
∏max(j)
j=1 fj !

max(j)∏
j=0



(

A∑
a=1

πa
e−λaλja
j !

)fj ,
for a fixed value of A. A is the number of mixtures for the mean of the Poisson parameter,
λ, with

∑A
a=1 πa = 1, where πa is the probability of inclusion in mixture a. Estimator

N̂PoissonA was computed forA = 1, 2, and 3, giving 2, 4, and 6 parameters estimated for the
three models. Optimization of these likelihoods was conducted with the NLP procedure of
SAS Institute (2003) to obtain maximum likelihood estimates and SEs from the variance-
covariance matrix obtained by inverting the negative of the information matrix. Note that
the N̂PoissonA models can be derived from the estimator proposed by Pledger (2000) by
replacing the binomial likelihood with the Poisson likelihood.

Model averaging as described by Burnham and Anderson (2002) was applied using the
AICc values from these three likelihood-based models to obtain N̂Poisson ModAve. SEs were
computed using the formulas provided by Burnham and Anderson (2002).

[Received October 2005. Revised December 2006.]
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