text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 99-041
'Altered State' May Be Responsible for Creating Important Brain Chemicals

June 10, 1999

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

Twenty years after visualizing a surprising left-handed form of the DNA double helix, Massachusetts Institute of Technology researcher Alexander Rich has found that this altered form of genetic material is involved in some important biological activities, including creating proteins essential for normal brain function. Rich's work is funded in part by the National Science Foundation (NSF).

In the 1970s, when Rich and his colleagues solved for the first time the three-dimensional structure of a DNA crystal fragment, they were puzzled. Instead of looking like the right handed double helix Watson and Crick had described in 1953, the structure was a left-handed double helix with an irregular zig-zag backbone.

Is this unusual form of DNA, dubbed Z-DNA by the researchers, an oddity or is it biologically significant? In this week's issue of the journal Science, Rich and colleagues partly resolve the issue. They describe how the three-dimensional structure of Z-DNA binds to a portion of an enzyme. The enzyme binds to Z-DNA with great specificity, leading scientists to conclude that the two serve a biological function. The enzyme creates a modified protein that is used by the brain as a receptor for serotonin, among other things. Yet another striking example of nature's ability to perform many functions with the same materials, the protein bound to Z-DNA is closely related in three-dimensional structure to a family of proteins known to bind to right-handed DNA.

"This work clearly demonstrates that DNA structure is not symmetric or regular," explains Kamal Shukla, program director for biophysics at NSF. "Rich's results will be important to a better understanding of gene expression, viral DNA packaging and many other important biological functions."

Adds Rich, "Twenty years after first visualizing a left handed form of the DNA double helix, it may now be possible to see ways in which nature uses this altered form of the molecule to carry out important biological activities."

Much has been learned about Z-DNA since it was first discovered. It turns out that Z-DNA is found only transiently when genes are actively being transcribed. It occurs mainly in specialized sequences of nucleotides, the building blocks of genetic material, and is stabilized by processes that partially unwind the normal right-handed DNA double helix. The main process that produces such an unwinding is transcription (the synthesis of messenger RNA), which is used as a template for assembling proteins in biological systems.

The system works this way: When the enzyme making RNA, called RNA polymerase, moves along the DNA double helix, it leaves behind underwound DNA. Selected sequences in this DNA temporarily become left-handed Z-DNA, like a stretched phone cord coiling backwards on itself.

When the RNA polymerase stops moving, other enzymes relax the DNA and it reverts to its normal right-handed form. Like a stretched phone cord that is released, it snaps back into its usual shape.

Rich's work is also funded by the National Institutes of Health.

-NSF-

Media Contacts
Cheryl L. Dybas, NSF (703) 292-8070 cdybas@nsf.gov

Program Contacts
Kamal Shukla, NSF (703) 292-7131 kshukla@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
March 30, 2007
Text Only


Last Updated: March 30, 2007