text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
 
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 


Press Release 98-031
Automatic Observatories Watch Upper Atmosphere From Antarctica

May 21, 1998

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

A network of six unmanned Antarctic Geophysical Observatories (AGOs) housing instruments to collect data about the earth's ionosphere and magnetosphere at high latitudes is now up and running in the remote reaches of Antarctica. The AGOs operate all year long, including over the long polar winter.

These small trailer-like observatories measure eight-by-eight-by-sixteen feet and provide 50 watts of electrical power to the experiments. They store data to be retrieved later during the Antarctic summer. The AGOs also report on weather and their own status via satellite.

"Antarctica is the only place on earth where there's a landmass to base these instruments to study the upper atmosphere at very high magnetic latitudes--and at many different magnetic longitudes," said Louis Lanzerotti of Bell Laboratories, Lucent Technologies. Lanzerotti uses the observatories to house magnetometers which measure changes in the earth's magnetic field caused by electrical currents in the upper atmosphere. Naturally changing currents can induce secondary currents in long-distance telephone lines, for example, sometimes causing damage or interference.

"Data from the AGOs, added to observations from the inhabited Antarctic stations and from AGOs of the British Antarctic Survey, are beginning to give us a wealth of information about the ionosphere at high geomagnetic latitudes--the region around the earth's geomagnetic pole," said John Lynch, National Science Foundation (NSF) program director for polar aeronomy and astrophysics.

"This is where magnetic-field lines and ionized particles come down from space to intersect the earth's atmosphere, so we can study the outer parts of the earth's magnetosphere," Lynch said. "The AGOs are also helping to foster better understanding of the earth's response to solar activity."

Knowing the physics of the magnetosphere helps to predict geomagnetic storms that can disrupt power grids and satellite communications.

The long, dark Antarctic winter permits optical observations of the aurora around the clock. The extremely cold, dry air of the East Antarctic plateau also lends clarity to such observations. These measurements cannot be done at similar latitudes in the north which are located above the Arctic Ocean--not a stable observing platform. Besides magnetometers, the AGOs contain VLF-HF (very low frequency/high frequency) receivers, riometers, and all-sky cameras.

The AGO network is the result of years of planning how to use stable, earthbound sites to acquire data on the upper atmosphere and space. The network had to overcome the challenge of operating in the harsh environmental extremes of Antarctica.

Editors: Louis Lanzerotti will discuss present and future AGO results at a press conference at the Spring Meeting of the American Geophysical Union in Boston, Mass. Ted Rosenberg, University of Maryland; Roger Arnoldy/University of New Hampshire, and Jack Dolittle, Lockheed Martin Company, will also participate.

-NSF-

For further information, including photos of an AGO and a map showing the AGO network in Antarctica, see: http://www.polar.umd.edu and http://sprg.ssl.berkeley.edu/atmos/data/

Media Contacts
Lynn T. Simarski, NSF (703) 292-8070 lsimarsk@nsf.gov

Program Contacts
John Lynch, NSF (703) 292-8045 jlynch@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Print this page
Back to Top of page
  Web Policies and Important Links | Privacy | FOIA | Help | Contact NSF | Contact Webmaster | SiteMap  
National Science Foundation
The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel:  (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749
Last Updated:
June 14, 2007
Text Only


Last Updated: June 14, 2007