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ABSTRACT

~

The stability and genesis of the vortices associated with long solitary divergent Rossby waves—the Rossby
vortices—are studied numerically using the single-layer (SL) model with Jovian parameters. Vortex behavior
depends on location and on balances among the translation, twisting, steepening, dispersion and advection
processes. Advection is the main preserver of vortices. The solutions provide an explanation for the origin,
uniqueness and longevity of the Great Red Spot (GRS).

In midlatitudes, stable anticyclones exist in a variety of sizes and balances: from the large planetary-geostrophic
(PG) and medium intermediate-geostrophic (IG) vortices that propagate westward, to the small quasi-geostrophic
(QG) vortices that migrate equatorward. These vortices all merge during encounters. Geostrophic vortices in
the fo-plane system adjust toward symmetry by rotating; those on the sphere adjust by rotating and propagating.
Stable cyclones exist mainly at the QG scale or on the fy-plane.

In low latitudes stable anticyclones exist only when a strong equatorial westerly jet and a significant easterly
current are present to eliminate the highly dispersive equatorial modes. The permanence of a GRS-like, low-
latitude vortex in a Jovian flow configuration is established by a 100-year simulation. At the equator, stable
anticyclones exist only when they have the Hermite latitudinal form and the Korteweg-DeVries longitudinal
form and amplitude range as prescribed by Boyd (1980). Soliton interactions occur between equatorial vortices
of similar order.

Vortices can be generated at the equator by the collapse of low-latitude anticyclones. In mid or low latitudes,
unstable easterly jets generate vortices whose final number depends mainly on the interaction history. Stochastically
forced eddies cascade by wave interactions into zonal currents and by eddy mergers into a single Rossby vortex
that thrives on the turbulence. Directly forced ageostrophic jets can make vortex drift more westerly and can
change it from free state values of —10 m s™* to forced state values of —5 m s™* (as the GRS) or of +5 m s™*
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(as the Large Ovals).

1. Introduction

Planetary motions are all predominantly geostrophic
but they can take on different forms, depending on
their scale relative to the Rossby deformation radius,
L. Quasi-geostrophic (QG), intermediate-geostrophic
(IG), and planetary-geostrophic (PG) motions occur at
the small, medium, and large scales, respectively. These
flow regimes are subsets of a general geostrophic system
and can coexist if their scales are sufficiently separated
(Williams, 1985a).

Rossby vortices occur in the single-layer (SL) system
at the larger (IG, PG) planetary scales, both in mid-
latitudes and at the equator. Vortices in the two regions
are related through their basis on the long solitary di-
vergent Rossby wave, hence their name. Their different
characteristics stem from their different forms of
Rossby wave and nonlinearity (Boyd, 1980; Williams
and Yamagata, 1984, hereafter WY84). Only anticy-
clones achieve a balance and a permanence and they
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merge during encounters in midlatitudes but behave
like solitons at the equator.

The initial numerical study of Rossby vortices in
WY84 was primarily concerned with examining their
relevance to Jupiter’s Great Red Spot (GRS) and Large
Ovals. The solutions showed that vortices can exist in
low latitudes for about 500 days in the absence of zonal
currents and for about 5000 days in the presence of
Jovian-style currents. They also showed that a single
vortex can be generated by a weak shear instability and
multiple vortices by a strong instability. Thus zonal
currents appear to be essential to the stability and gen-
esis of the GRS and the Large Ovals. But as a study of
basic vortex properties, the WY 84 research was com-
promised by three factors: 1) numerically, the com-
putational diffusion was relatively strong and contrib-
uted to vortex decay; 2) physically, the vortices were
simulated only in the highly dispersive low-latitude re-
gion; 3) diagnostically, there was no quantitative pro-
cedure for defining the dynamics. '

Vortices can now, however, be defined accurately
using the recently derived geostrophic potential-vor-
ticity (GPV) equation. This equation describes the var-
ious processes acting on a vortex on a sphere: trans-
lation, twisting, steepening, dispersion and advection
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(Williams, 1985a). In WY 84 the importance of twisting
was underestimated relative to the Korteweg-DeVries
(KdV) elements (steepening and dispersion), even
though its role in destroying low-latitude vortices was
revealed by its elimination in a process model which
allows gravity to vary as sin’f to make the angular phase
speed independent of latitude. In this paper, other pro-
cess models, based on linearized height or momenta
~ equations, allow selective examination of steepening
and advection. The role of advection is most easily
isolated in the fy-plane system where it is the only pro-
cess acting.

Our aim in this paper is to examine the stability,
genesis, and interaction of Rossby vortices in all regions
using a more accurate, less-dissipative SL prediction
model and a more incisive, GPV diagnostic equation.
In particular, we need to understand how stability de-
pends on the size, strength, and spherical location of
the vortex and on the existence of currents. We also
need to know what factors control the number of vor-
tices generated by shear instability or by stochastic
forcing. For the GRS we would like to know when and
how single vortex states arise and how vortex drift rates
can be modified—the GRS mostly propagates west-
ward, the Large Ovals mostly eastward. Because of this
planetary interest we use “Jovian™ parameters in the
computations, but the results apply to any system with
a small Rossby radius.

The connection between vortices in SL fluids and
in continuously stratified atmospheres remains unclear
despite attempts at isolating coherence regimes for
baroctinic systems (Anderson and Killworth, 1979;
Petviashvili and Yankov, 1982; Flierl, 1984; Roma-
nova and Tseytlin, 1985). Although the SL model can
be used to represent either barotropic or baroclinic
modes in the ocean (Gill, 1982), its interpretation for
Jupiter cannot be made precise in the absence of data
about static-stability variations below the clouds. For
now it is sufficient to regard the SL vortices as the sim-
plest prototype of coherence relevant to the planet.

The study of geostrophic coherence began with the
finding that solitary Rossby waves disperse in a baro-
tropic model (Yeh, 1949) but that-this dispersion is
significantly slowed by linear divergence in the equiv-
alent barotropic model (Bolin, 1956). Later it was found
that this dispersion could be balanced completely by
nonlinear momentum advection in the barotropic
model to give the Rossby shear-soliton (Long, 1964),
and by nonlinear divergence in the SL model to give
the Rossby density-soliton (Clarke, 1971). The appli-
cation of similar ideas to Jupiter began with the sug-
gestion by Golitsyn (1970) that the GRS could be a
free vortex because the planet has such a low dissipation
rate. This proposal was explored for modons in QG
barotropic and equivalent-barotropic models stabilized
\by zonal currents (Ingersoll, 1973; Ingersoll and Cuong,
1981), and for shear-solitons in QG baroclinic models
(Maxworthy and ‘Redekopp, 1976; Redekopp 1977).
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Circulation studies, however, suggested that QG scale
modes are turbulent, not coherent, on Jupiter (Wil-
liams, 1979).

Analyses of the SL equations quickly resolved this
impasse by showing that coherence occurs more nat-
urally at the larger (IG, PG) scales and that it can co-
exist, by virtue of scale separation, with the turbulence
occurring at the smaller (QG) scales (Petviashvili, 1980;
Charney and Flierl, 1981; Yamagata, 1982; WY84).
The large-scale SL coherence exists through the action
of nonlinear divergence and produces vortices related
to Clarke’s (1971) density-soliton and Boyd’s (1980)
equatorial-soliton. Our numerical studies show these
SL vortices to be stable and to be easily generated by
shear instability or eddy forcing. Rossby vortices have
also been produced in laboratory experiments (Antipov
et al., 1981, 1986; Sagdeev et al., 1981). For a detailed
discussion of the basic theory of planetary solitary
waves, the review by Malanotte-Rizzoli (1982) is rec-
ommended. '

We begin in §2 by describing the numerical SL. model
and in §3 by reviewing geostrophic wave and vortex
theory for midlatitudes and the equator. The stability
and interactions of Rossby vortices in current-free en-
vironments are examined for midlatitudes in §4 and
for the equator in §6, with the midlatitude dynamics
analyzed in detail using the GPV equation in §5. Sec-
tion 7 describes the influence of stable zonal currents
on low-latitude vortex behavior; §8, the genesis of vor-
tices by unstable currents and by the mergers of sto-
chastically forced eddies. A summary of this study is
given in a review paper that describes the planetary
observations and problems in greater detail (Williams,
1985b). ‘

2. Numerical model

The basic equations for hydrostatically balanced
motion in the shallow-water or single-layer (SL) system
on a sphere can be written in the invariant form pre-
ferred for numerical representation:

w—(f+Ov=-m7(gh+ K),+ D), (1)
v+ (f+ Hu=—(gh + K), + D(v), (2)
h, + m~\(uh), + m~'(mvh), = D(h), 3)

where g represents either the full or reduced gravity; ¢
= m™{v, — (mu),}, the vorticity; K = 1v-v, the kinetic
energy; f = 2Q sinf, the Coriolis term; m = cos#f, the

. sphericity; (x, ¥) = a(A, 8) and (u, v), the longitudinal

and latitudinal coordinates and velocities; and D, the
small-scale diffusion operator.

A finite-difference representation suffices in solving
(1)-(3) for vortices and also makes domain variation
easy. To achieve the accuracy, stability and precision
needed for very long, near-inviscid, divergent flow
simulations, we use the formulation of Arakawa and
Lamb (1981) which conserves potential enstrophy and
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total energy. The velocities are defined on a staggered
latitude-longitude grid centered on the height field and
all variables are advanced using a leapfrog time-step-
ping and a weak Robert smoothing with a coefficient
of 0.005. For calculating the GPV balances (see §3b
and the Appendix), we switch to the simpler Sadourny
(1975) formulation because it gives an exact geo-
strophic wind, whereas the complex Arakawa-Lamb
scheme does not.

To control numerical instabilities, the small-scale
enstrophy is removed by applying the biharmonic dif-
fusion operator D = v,V* (where v, is negative) to all
three variables. The biharmonic operator only mini-
mally dampens kinetic energy and essentially leaves
the large scales inviscid. The diffusion coefficient used
in most of our calculations implies decay times (74
= [*/4(27)*|v4|) of 1 day and 10* days for the gridscale
and vortex scale, respectively. To avoid arbitrary ad-
Jjustment the initial velocity vy and height A, are chosen
to be in geostrophic balance in midlatitudes and to be
governed by Boyd’s (1980) analytical solutions at the
equator (see §3f).

We examine the vortices using parameter values be-
lieved to be appropriate to Jupiter’s atmosphere
-(WY84), but the results apply to any system with a
small Rossby radius. The primary SL scale, Lz
= (gH)?/f, depends upon the choice of g and H (the
mean thickness). For Earth’s atmosphere, the values g
= gg/6 and H = Hg (or equivalently, ¢ = gg and H
= Hg/6) are often used and give Lz = 1000 km, where
ge and Hg are Earth’s gravity and scale height. For
Jupiter, similar relative values appear to be useful. De-
fining a normalized gravity g* = g/g;, most calculations
are made with g* = 0.1, H = Hy = 10 km, a; = 7.14
X 10%km, Q5 = 1.763 X 107*s7!, gy = 26.4 m s 72, and
v4 = —1 X 10* km*s™!. Only deviations from this stan-
dard J set will be documented in figure captions.

The computational domains are atmospheric chan-
nels of sufficient width and breadth to isolate the main
modes from the boundaries. Boundary conditions as-
sume longitudinal periodicity and, on the lateral walls,
no inflow and field symmetry (for the biharmonic dif-
fusion). Higher resolutions are used for the smaller
vortices and narrower jets, and for those flows subjected
10 a geostrophic potential-vorticity analysis (Table 1).
Smaller values of », are used for the very small vortices.

3. Theory for Rossby vortices

We now briefly review the elementary linear and
nonlinear theories that form the basis of our under-
standing of Rossby vortex dynamics. These ideas also
guide the design and interpretation of the calculations
in §4-8.

a. Linear modes

The natural linear oscillations of the SL system gov-
ern the propagation and dispersion character of Rossby
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TABLE 1. Resolution systems R1-R8 for longitude and latitude
(in degrees) and for time (in minutes). Diffusion in 10* km* s™'.
Referred to by figure captions.

Al Ad At —v4
Rl 20 1.0 30 1.0
R2 2.0 0.5 - 15 1.0
R3 1.0 0.5 15 1.0
R4 0.75 0.75 15 1.0
RS 0.5 0.5 13 1.0
R6 0.5 0.4 10 1.0
R7 0.4 0.2 6 0.1
R8 0.15 0.1 3 0.01

vortices. Large-scale linear modes are best represented
by the skewed functions of the general or equatorial
B-planes. These eigenfunctions arise on introducing the
general $-plane approximation f= f; + 8y into the SL
Egs. (1)-(3), linearizing and assuming wavelike dis-
turbances of the form exp{i(kx — «t)} in longitude and
time (Lindzen, 1967). This leads to the well-known
Schroedinger equation for the latitudinal amplitude
distribution v(y):

Bk] 0, ®

and solutions in the form of parabolic cylinder func-
tions. The classical midlatitude B-plane assumption,
that f is constant except when it is differentiated, cannot
be made for the large-scale motions and its trigono-
metric eigenfunctions apply only to the small (QG)
scales.

The representation defined by (4) simplifies when
the B-plane is centered at the equator and the eigen-
modes become Hermite functions. The Rossby wave
solutions for the equatorial 8-plane then have the form
H,(y*) exp(—0.5y*?) and the dispersion relation w
= —Bk/{k*+ (2n + 1)(Lg) %}, when the o’ term in (4)
is neglected, where H, is the Hermite polynomial of
order n and where y* = y/Ly defines the latitudinal
scale in terms of the equatorial deformation radius, Lg
= (cg/B)"?, based on the reduced-gravity wavespeed
¢, = (gH)"2. The long Rossby waves propagate at
speeds ¢ = w/k = —¢,/(2n + 1) that increase rapidly
as n decreases. When the S-plane is centered in mid-
latitudes the solutions tend toward the trigonometric
or WKB form only for modes with a small lateral
scale. Such Rossby waves have the form exp(ily) or
172 exp(i [ Idy) and the dispersion relation w = —gk/
(k2 + I* + Lg%, where Lg = ¢,/f defines the midlati-
tudinal deformation radius. Their long waves propagate
at speeds c; = —Lg’ that increase toward the equator.

The equatorial S-plane modes have a wavelike lat-
itudinal variation whose largest amplitude occurs in
the last oscillation before exponential decay sets in at
the turning points y, = a[(2n + 1)/€]'/2, where é = (a/
Lg)* = 2Qa/c, is the Lamb parameter. Only as n be-

1
vyy—v&-{(fz—wz)+k2+

w
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comes large do the eigenfunctions span all latitudes.
Eigenfunctions with (2n + 1) < (w/2)%, i.e., with y,
< an/2, do not extend beyond the pole and so provide

a valid representation of the lower-order Rossby waves

(Lindzen, 1967). The midlatitude S-plane eigenfunc-
tions then provide a reasonable representation of the
higher-order modes. For Earth, the Lamb parameter
is small (é = 3), so the equatorial 8-plane remains valid
only for modes up to n = 3 and the midlatitude S-

‘plane then provides a better representation of the pre-

L

dominantly QG-scale motions. For Jupiter, however,
the Lamb parameter is large (¢ = 140), so the equatorial
B-plane remains valid up to # = 150 and the midlati-
tude B-plane then is accurate only for modes with a
very small (<3°) latitudinal extent. This structural dif-
ference between the two planets was first noted by Gol-
itsyn and Dikii (1966) and Lindzen (1967), and leads

to a major problem in Jovian meteorology: what pre- -

vents the GRS, a large low-latitude disturbance, from
generating the highly dispersive, low-order equatorial
modes and thereby collapsing?

b. The geostrophic potential-vorticity equation

To describe large-scale nonlinear motions on a
sphere we require the full SL equations. Fortunately,
when geostrophy prevails, these equations can be re-
duced to a potential-vorticity equation that applies to
all (PG, IG, QG) scales but involves only the height

variable (Williams, 1985a). To obtain this geostrophic.

potential-vorticity (GPV) equation, (1) and (2) are in-
verted and the velocity is written as the sum of the
geostrophic and ageostrophic components:

_8 oLy [2Y_
vg—kaVh, v ka[Dt D(v)], (5)

where k is the vertical unit vector. Then the height
equation (3) can be split into a geostrophic-ageo-
strophic form

by + AV vE+ V- (hve) = D(h), 6)

"containing the five basic processes

AV . yE = % Bhy(f7Y),, ()
V-(hv")=V-;(ka,)-V-(;fv)
h
v.Zkxvk)-v.2 .
+ 92k X VK) FEX D). @

If we assume that geostrophy holds at O(1), then v

may be approximated by v# in (8) to reduce the exact -

Eq. (6) to an O(é?) equation that involves only the
height variable

" JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 45, No. 2

g -
ht + ; hhx(f l)y -

L h
) e
J(f )— —(kxn(vgn—D(h) ©)

where { = gV -(f~'Vh) and K = g% Vh|*/2 f* are now
geostrophic quantities; € is the Rossby number and J(A,
¢) = m~\(h.¢, — hy¢,) is the advection Jacobian for
any scalar ¢. The terms in (6)-(8) have the same iden-
tity as those in (9): the geostrophic divergence reduces
10 a translation and steepening, while the ageostrophic
divergence splits into a dispersion, vorticity advection,
kinetic-energy advection, and vorticity dlffusmn all
weighted by A.

To identify the different balances that occur at the
different planetary scales, we nondimensionalize (9)
by writing 2 = H + n for the mean and deviation thick-
nesses, introducing the scales (U, L, L/U, LUfy/g, fo)
for the variables (v, y, £, 1, /), and deﬁmng the Rossby,
stratification and sphericity parameters: ¢ = U/Lf;, §

= (Lg/LY, B = BL/fy. The GPV equation then has the
nondimensional inviscid form

: 1 ~
[fz( =+ ﬂ)Vm] sz (1 + 2'77)7/,\‘
@) Gi) (3ii)
A - 22
SRS o
(iv) v)

which has three basic parameters and three major dy-
namical regimes (Charney and Flierl, 1982; Malanotte-
Rizzoli, 1982; WY84; Williams, 1985a). At the QG
scales (§ ~ 1), the terms (ii)—(v) drop out, so there is
no steepening; at the PG scales (§ ~ €), the terms (i)
and (ii) drop out, so there is no dispersion; and at the
IG scales (5% ~ ), the terms (ii), (iv), (v) drop out but
all major processes remain. The GPV equation holds
in mid- and low latitudes but it cannot describe phe-
nomena—such as Boyd’s (1980) solitons—that require
the matching of contributions from both hemispheres.

In analyzing the numerical solutions, it is easier and

_more accurate to evaluate the exact implicit Eq. (6)

than the approximate explicit Eq. (9); the latter is used
only to interpret the former. To get a precise balance,

“the terms in (7) and (8) must be evaluated from their

finite-difference counterparts in the prediction code.
As noted in §2, using the Sadourny (1975) scheme sim-
plifies both the extraction of accurate v# and v* values
and the definition of the divergence components; see
the Appendix for details.

¢. Nonlinear response in midlatitudes

To simplify our discussion of vortex theory, we retain
only the most important terms of (10), set their coef-
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ficients to unity, and create the representative 3-plane
equation: '

me— 1 — 1 — V(1 + ))Vn,
+ 2yn, — J(n, Vzn)= 0. (11)
AN

The nonlinear dispersion term Vn - V7, is found to be
significant in the numerical solutions even though it
does not appear in the formal analysis. Equation (11)
forms a modified IG equation and describes very strong
vortices at the intermediate scale. The first two terms
dominate and describe Rossby long-wave propagation,
where ¢ = —1 nondimensionally. The twisting term
2ym, comes from the latitudinal variation in ¢4 caused
by the f 2 factor: ¢g varies from —1.5 m s~ at 8 = 45°
to —8.4 m s! at = 20° for the Jovian parameters.

Although twisting prevents simple KdV balances,
the KdV terms in (11) do control the size, strength,
shape and speed of many vortices. To be more precise,
the first four terms in (11) control such features and
they constitute a regularized long-wave (RLW) equa-
tion (Benjamin et al., 1972), modified by a nonlinear
dispersion term, rather than a pure KdV equation. The
difference is significant when the vortices are strong.
For convenience we refer to the first four terms of (11)
as the Rossby-RLW equation.

The simple one-dimensional RLW equation

N = Nx = Mx — N = 0, (12)
reduces to the KdV differential equation
1
(1+ cne = cm — 5 % (13)

on writing n, = (1 + ¢|)nx, and so has solitary wave
solutions of the form

172

1= 3¢ sechz{z(l—ci;c—l),,—2 (x+(1+ cl)t)} , (14)

where ¢, is the westward phase speed gain due to the
finite amplitude and nonlinearity. The full Rossby-
RLW equation reduces to what we call the Rossby-
KdV equation:

[+ el + n)l[{ (rn,),] |

1, (d+ca)m)
T T (15)

if the nonintegrable term [ n,V25dx is small. Compared
to the standard radial-KdV equation (Flierl, 1979), (15)
has extra factors (1 + ¢,)(1 + n) on the left side and an
extra term (,)? on the right side. The equation shows
that steepening and dispersion balance radially even
though changes are forced by a unidirectional propa-
gation.

The Rossby-KdV and radial-KdV eigenfunctions in
Fig. 1, obtained by solving (15), with and without the

=en—
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FIG. 1. Eigenfunctions of the radial-KdV (dashed lines) and Rossby-
KdV (solid lines) equations, for vortices with amplitudes of 3, 6, 10
km, Corresponding eigenvalues (nondimensional ¢;) are (0.192, 0.389,
0.657) and (0.284, 0.577, 0.974).

extra terms, as an eigenvalue problem for ¢, have
quasi-Gaussian forms and differ more strongly from
each other as the amplitude increases. The Rossby-
KdV soliton is almost twice as wide and fast as the
radial-KdV soliton when the amplitude equals 10 km.
Most of the gain comes from the nonlinear dispersion
factors (1 4+ ¢;)(1 + 7): the large amplitude makes ¢,
~ 1 even though 7 decreases away from the vortex
center. The nonintegrable term makes a negligible
contribution to these solutions.

If vortices are initialized using solutions to (15) in
SL models from which twisting has been removed (see
§3d), their adjustment is minimal and confirms that
the Rossby-KdV terms control the speed, size and
shape. Generally, however, the twisting cannot be ig-
nored and in the linear version of (11)

(exn + 2yn — my) = 0; (16)

it leads to Airy eigenfunctions and the equatorward
propagation of long waves. Such asymmetric meridi-
onal dispersion breaks a local KdV balance and acti-
vates the advection Jacobian, which may or may not
reestablish equilibrium.

We can get some idea of how the various processes
react to a simple asymmetry by considering the ellipse

T
n = 1o €Xp 2X|2 ylz .

For such a storm, the propagation (P), dispersion (D),
steepening (S), twisting (7') and Jacobian (J) of (11)
may be evaluated as

Xxn
P=——2, D=+— St = =il a7

3 1 x* y?
1 x12 X W X1 14
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and

2xy* ., )
P (CT )

(18)

. The P, S, D terms are bipolar (about x = 0) and could
adjust the amplitude into a KdV-like balance. The 7,
Jterms, however, are quadrapolar (about x =0, y = 0)
and disrupt such a balance. The T term acts to stretch
the vortex along a southwest—-northeast axis, while J
counters it in all four quadrants to restore radial sym-
metry. The J, S terms can balance the 7, D terms only
for anticyclones (3o > 0) as the latter pair switch sign
for cyclones. Only the Jacobian is sensitive to the shape
of the vortex and can easily change sign and form. On
the fy-plane, the Jacobian is the only geostrophic process
acting and restores symmetry (x; = ;) by rotating an-
ticyclones clockwise and cyclones anticlockwise
(sce §4).

2
7=+
X

1 1

, J=

d. Process models

We can illustrate the action of the various terms by
solving special forms of the SL model. The twisting,
steepening, and advection can be eliminated either
singly or together by mathematical devices.

The first process model, illustrated in Fig. 2a, re-
moves the twisting from the SL model by varying the
gravity (or H) as sinf to cancel /2 variations and make
the angular velocity cz/(a cosf) independent of latitude.
On the B-plane this is equivalent to setting g = go(1
+ Gy) so that (11) becomes

= n— (1 + G — V(1 + 9)Vy,
+ 2y(1 - g)nx— Jin, V') =0, (19)

with the steepening tripling and twisting vanishing for
G = 2. The initial vortex is given by the geostrophic
Gaussian state

el A P o

-8 =&
f hOya Vo mthx’

Uo 21
where Hj is the vortex amplitude; (6A, 66) the half
widths; and (A, 6,) the center. The P1 solution con-
firms that, in the absence of twisting, vortices have the
form predicted by the Rossby-KdV Eq. (15) and are
stable and long lived. The vorticity and kinetic-energy
Jacobians vanish because the radial shape is maintained
but they reenter during collisions and produce mergers,
not KdV-like soliton encounters, unless they too are
mathematically removed, as in the next example.
The second process model, illustrated in Fig. 2b,

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 45, No. 2

. fa) g~SIN’0

{c) LINEARIZED HEIGHT EQUATION

—45° 00 ' o
0 45

LONGITUDE

FIG. 2. Process solutions P1-P3: Vortices in special models. Height
n has shaded negatives. Resolution: R3. Initial state: geostrophic
Gaussian vortex as (20), (21). Cases: (a) P1, no twisting, CI = 0.25
km, Hy = 3 km, 6A = 3.5°, 68 = 3°, Ay = 0°, 8, = 30°; g* = 0.1
sin’6/sin’f,. Properties at 30°: ¢ = —4.4ms™', ¢ = —3.6 ms™', Ly
= 920 km. (b) P2, no advection, CI = | km, initially as (c). (c) P3,
no steepening, CI = 1 km, Hy =10 km, A = 6°, 68 = 3°, Ao = 0°,
00 = 450.

A

eliminates the advection Jacobians from the SL model
by linearizing the momentum equations, omitting ¢
from the Coriolis terms and K from the pressure gra-
dients in (1)=(3). The twisting then distorts the large
vortex along the southwest—-northeast axis without
constraint. The vortex cannot achieve a local KdV-like
balance and migrates equatorward, steepening and
shrinking to reduce the twisting and retain its strength.
The corresponding vortex in the full SL model is shown
in Fig. 4. Clearly, an anticyclone subjected to twisting
cannot exist without the advection Jacobians.

The third process model, illustrated in Fig. 2c, lin-
earizes the SL height Eq. (3) to the form -

“h+ HV-v=D(h) 22)
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to eliminate the steepening. This device also simplifies
the other geostrophic processes in (9), but they retain
their essential character. Although the vortex no longer
has a KAV component, it survives easily. Evaluating
the various GPV terms shows them to be small and to
have the elliptic-vortex forms of (17) and (18), with
the Jacobian balancing the dispersion and twisting
(Table 3). This anticyclone behaves almost like a prop-
agating f;-plane vortex, in that all processes tend to-
wards zero and the vortex can have any size. (The fy-
plane process model is discussed in §4c).

The fourth process model uses a low-amplitude (lin-
ear) vortex to illustrate the character of long-wave dis-
persion (Fig. 3). We place the vortex in low latitudes
where the dispersion is more rapid and harder to con-
trol, but a similar dispersion occurs in midlatitudes. In
the P4 solution, weak low-latitude vortices disperse
equatorward because of the latitudinal variation in the
long-wave phase speed (twisting), in keeping with (16).
The vortex creates a wave train that propagates at a
rate given by the meridional group velocity (cf. Kill-
worth, 1979). The cross-equatorial flow is more clearly
seen in the u field because the geostrophic height dis-
turbances are small near the equator. The theoretical
solution to the linearized equatorial 8-plane equations,
obtained by decomposing the initial vortex into a Fou-
rier-Hermite set of Rossby modes and multiplying each
coefficient by its respective exp[—iw,(k)t] (see Boyd,
1983), matches this solution and confirms the geo-
strophic character of the linear dynamics.

These four process solutions suggest that Rossby
vortices lie between the two dynamical extremes rep-
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resented by the Rossby-KdV solitons and the f;-plane
vortices. Steepening and dispersion dominate the first,
advection controls the second, and twisting prevents
both from being realized simply. Equatorial anticy-
clones also remain stable in the linearized v, or 4, mod-
els, provided that the corresponding advection or
steepening contributions to Boyd’s coeflicients in (27)
are omitted when defining the initial state. Such omis-’
sions alter the vortex size. Low-latitude vortices are
subject to a strong asymmetric dispersion and stabiliz-
ing them poses a major problem, one relevant to
the GRS.

e. Process summary

Stable vortices can exist on a sphere in a variety of
balances because the nonuniform propagation activates
the various processes in ways that depend on the vortex
scale. How the processes act may be summarized as
follows:

1) LINEAR TWISTING

When anticyclones are large, the linear twisting (cg
— ¢®)ny is large and provides the main destabilizing
process. The twisting destabilizes by dispersing long
waves in the equatorward direction and thereby
stretching vortices along the southwest-northeast axis.
The tilt decreases as the vortex disperses. Twisting is
stronger in low latitudes but is absent from equatorial
vortices because each is based on a single meridional
mode. Twisting is revealed by the initial adjustment
of low-amplitude vortices, and by its absence in fy-plane

~30° 00 ' 3
MOVING LONGITUDE

-30° o 30°
MOVING LONGITUDE ’

FI1G. 3. Process solution P4: Meridional dispersion of a weak anticyclone in low latitudes. (a) Height » with CI = 10 cm, (b) u with CI
= 0.1 cm s™}; with axes moving at ¢, = ¢,(20°) = —8.4 m s™'. Resolution: R1. Initial state: geostrophic Gaussian vortex with Ho = 5 m, 8\

=6°,080 = 3° A = 0°, 6 = 20°.
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or g(sin?f) cases. It can also be eliminated by special
zonal currents—see §7c.

2) STEEPENING AND NONLINEAR TWISTING

When anticyclones are large and strong, the steep-
ening cg(y)nn, has a nonlinear twisting factor that en-
-hances vortex asymmetries. When unchecked, steep-
ening breaks anticyclones on the western edge, cyclones
on the eastern. Stable vortices can exist without it.
Steepening is revealed by its dominance in strong or
g(sin’f) vortices, and by its absence in linearized-, or
Jfo-plane cases.

"3) DISPERSION

Short-wave dispersion is the main destroyer of small
and midsize vortices, but it can be checked by advection
or steepening if the vortex is strong. The dispersion of
energy is revealed by the waves radiating from small
low-amplitude vortices and by its absence on the f;-
plane. Short waves propagate toward the west, pole,
and equator.

4) ADVECTION

+ Vorticity advection J(h, h$/f?)is the main'presex"ver
of vortices. It possesses a great flexibility, an ability to
adjust in form and sign about the limiting radial state

to restore symmetry and counter imbalances forced by .

other processes, but it rarely forces the balance. Its flex-
ibility allows a variety of balances: in large vortices, it
matches steepening; in small, dispersion; and in me-
dium, it combines with steepening to match dispersion
and twisting. Kinetic-energy advection becomes sig-
nificant only in very small, strong vortices or in low
latitudes. Symmetrization is revealed by the fy-plane
and g(sin?6) adjustments and by its absence in the lin-
earized-v, model. '

f. Nonlinear response at the equator

At the equator, stable vortices are limited to the nar-
row class of anticyclones described by Boyd (1980).
The vorticity advection, rather than the height steep-
ening, produces most of the equatorial KdV-concen-
tration term through the self interaction of components
lying on both sides of the equator. The GPV equation
lacks a simple connection with Boyd’s KdV equation
because it cannot describe processes that act across the
equator.

~ To see which processes are involved in the equatorial
vortices, we summarize Boyd’s analysis and evaluate
the terms contributing to his KdV equation. For equa-
torial disturbances measured relative to a reference
frame moving at the linear long-wave speed c, the zero-
order equations on the equatorial 8-plane can be solved
in terms of Hermite polynomials of order » and. the
first-order v! equation can be written as
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1
Uy — (; + )’2)1’1 =i+ 0+ Qs (23)

where the functions of the zero-order teris are given
by '

, 19
0 = _(y e 5)(uz° +u%u’ + 0%)0),  (24)

Q.

+He? = Doy, (25)

I}
0= -(JZ) + 5})[11? + @10, + (0°1%),), (26)

and where quantities are nondimensioned with respect
to ¢;, Lg and H. The Q, , ; terms originate in the u, v,
7n equations, respectively. On substituting the zero-order
solution into these expressions and applying the or-
thogonality condition to eliminate the secular term,
the Q terms regroup into tendency, concentration and
dispersion terms to give a KdV equation for v(x, f):

Av, — Bvv, — Cvy = 0. 27)

The positive coefficients 4, B, C depend on integrals

of the terms in (24)-(26) weighted by the Hermite
functions. :

To identify which terms in (24)-(26) make the most
important contribution to the KdV dynamics, we
compute the various integrals forming the coefficients
1, 3, -+, 15 modes. All KdV
concentration terms originate in the advection of u°
and 1% all KdV tendencies, in the «° and n° tendencies;
and all dispersion, with v°. The results in Table 2 show
that the u° advection (items 7 and 8) dominates and
contributes at least twice as much as the 5° steepening
to the concentration term. Some of the terms active in
midlatitude vortices do nothing here and the others are
grouped differently. On forming the sum of the terms,
defining o, = B/A and v, = C/A, and allowing for
Hermite-function normalization (which keeps «, near
unity), we find that the coefficients in Table 2 agree
with Boyd’s (1980, 1983) values.

Solutions to (27) have the classical form:

—y? , V\I2
ox, y, 1) = VCXp( Y )H,, sech? i
2 Yn 12

x (x ~a+ 33—”)] . @8

in the stationary reference frame, where the amplitude
V increases the easterly phase velocity by «,V/3 and
produces an effective wavenumber

k= (2 2)".
¥n 12
This solution is used to create the initial states for the

computations in §6. The n = 1 solution is stable for a
wide range of amplitudes but other modes become un-
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TABLE 2. Contributions to the coefficients of Boyd’s KdV equation for equatorial solitons from the zero-order terms of Eqs. (24)~(26)
multiplied by Hermite functions and integrated over y. Superscripts have been omitted.

n

Coefficient 1 3 ) 7 9 11 13 15
1 -y 0 0 0 0 0 0 0 0
2 —clu, 4.5 24.5 60.5 112.5 180.5 264.5 364.5 480.5
3 —=clym, 4.5 24.5 60.5 112.5 180.5 264.5 364.5 480.5
4 —q, 0 0 0 0 0 0 0 0
4
2=4 9.0 49.0 121.0 225.0 361.0 529.0 729.0 961.0
1
5 yuu, 0.2981 0.5012 0.6191 0.7108 0.7881 0.8558 0.9167 0.9722
6 v, 0.7950 1.0576 1.2699 1.4439 1.5934 1.7256 . 1.8452 1.9547
7 ¢ MNuw), 3.7403 7.2978 11.347 15.549 19.846 24215 28.644 33.126
8 c'vu), 0.8673 7.5168 43570 6.2960 8.3021 10.359 12.457 14.596
9 cy(un) 0.1626 1.8856 3.6592 5.5283 7.4693 9.4663 11.509 13.592
10 cly(vn), 1.0842 2.0751 3.1465 4.2427 5.3555 6.4817 7.619 8.769
1 (un)y 1.4094 1.2618 1.3955 1.5353 1.6654 1.7853 1.8960 1.9990
12 (vn), —1.0088  ~—1.1513 —-1.3320 —1.4908 -1.6312 —-1.7575 -1.8730 —1.9790
12 .
o, = (2 =B)/A 0.8161 0.3152 0.2022 0.1503 0.1202 0.1004 0.0864 0.0760
5
13 —(& - g 0.8889 0.9796 0.9917 0.9955 0.9972 0.9981 0.9986 0.9990
ya=(term 13=C)/4  0.09876 0.01999 0.00819 0.00442 0.00276 0.00189 0.00137 0.00104

stable if V is not kept small. We select V ~ 0.1 for n
= 1 to keep velocities below ¢,/2, and V =~ 0.01 for n
= 3 to maintain stability. The easterly phase speed of
equatorial vortices is based on the dimensional Rossby
long-wave speed —c,/(2n + 1), which equals —55 m
s™'and —25 m 57! for # = 1 and 3. The magnitude of
V also controls the longitudinal scale, with stronger
vortices being shorter. In our calculations, the equa-
torial vortices have 22° to 45° longitudinal scales.

The Boyd-type of vortex can also exist near the
equatorward wall of a midlatitude 3-plane and be de-
scribed in terms of parabolic cylinder functions, Clarke
(1971). Zonal flows may provide such a boundary (cf.
Fig. 19).

4. Vortices in midlatitudes (no zonal flow)

In this section, we present solutions to the SL Egs.
(1)—(3) that illustrate the main properties of Rossby
* vortices in midlatitudes: their stability, shape selection,
and merging. The figures shade negative values and
occasionally use reference frames that move westward
at speeds close to the Rossby long-wave speed. Their
captions give the computational details.

a. Long-lived anticyclone at 8, = 45°

Our calculations show that midlatitude anticyclones
are long-lived if they are strong and substantially larger
than the deformation radius, in agreement with the
analyses of Charney and Flierl (1981) and Malanotte-
Rizzoli (1982). The first midlatitude solution, M1 in

Fig. 4, illustrates this stability. As it propagates, the
vortex adjusts its size and shape towards the quasi-
Gaussian form of the Rossby-KdV balance, while
keeping the amplitude constant at 10 km. The M1 vor-
tex would only need to adjust latitudinally if it had a
more-circular initial form, with A = 4.2° and 60 = 3°
at 6y = 45°, Twisting and advection, however, concen-
trate the poleside flow and force deviations from a KdV
form. Weak Rossby waves are generated by the vortex
and propagate to the south and west.

The vortex travels steadily westward at a speed ¢(45°)
= —1.9 m s™! that exceeds the longwave speed cz(45°)
= —1.5 m s~! by an amount consistent with the Rossby-
KdV solution. (A large vortex has different propagation
velocities at different latitudes; only the central value
is given.) This westward drift produces an upflow in
the western half and a downflow in the eastern half.
The (v, u, w) velocities reach peaks of (15, 20, 0.001)
m s™!. The M1 vortex, chosen to compare with the
GRS in size, has a diameter of 17 000 km and thus
qualifies as a very large vortex relative to the Rossby
radius (Lg = 640 km). If we assume the vortex has a
length scale L equal to the diameter divided by =
and a velocity scale U = 10 m s!, then the values of
the nondimensional parameters 8 = 0.05, ¢ = 0.01,
§=0.02 imply via the crude ordering relation § ~ 8,
€ ~ B that the storm lies more in a PG, than an IG
dynamical regime (WY84, Table 1). The GPV analysis
in §5 supports this conclusion to some extent.

Additional calculations show that M1-size vortices
whose amplitudes lie below 5 km disperse at amplitude-
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FIG. 4. Midlatitude solution M1: Longevity of anticyclones. Height
7 has contour interval CI = 1 km, and axes scaled to lengths at 45°.
Resolution: R3. Initial state: geostrophic Gaussian vortex with H,
=10 km, 6\ = 6°, 80 = 3°, Ay = 0°, 6, = 45°. Properties: c = ~1.9
m sl cy(45°) = —1.5 m 57!, Lp(45°) = 640 km.

dependent rates. Calculations for M 1-size vortices at
other latitudes show that when 8, = 30° decay is very
slow, but when 6, = 20° decay occurs even for large
amplitudes, being only slightly slower for H, = 20 km
than for H, = 10 km. Smaller stable vortices can exist
at 6, = 45° and are presented in §5.

b. Cyclone collapse at 6, = 45°

The M2 solution in Fig. 5 shows the behavior of a
cyclone having an initial amplitude of —4 km and the
same size and shape as the M1 anticyclone. To keep
the flow centered, changes are shown in a reference
frame moving westward at ¢, = ¢3(45°) = —1.5ms™ L.
Cyclones, while they last, propagate at ¢z but anticy-
clones move at faster amplitude-dependent rates.

The M2 cyclone evolves by first steepening on its
eastern side. [Unequilibrated anticyclones steepen to
the west (Fig. 9).] The steepening produces short Rossby
waves which, because of dispersion, lag behind the
main vortex. The strongest of these forms an anticy-
clone around which the cyclone curves because of its
slower drift rate. More solitary waves grow at the in-
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terface and the cyclone eventually collapses completely
into four stable anticyclones.

The cyclone distorts and collapses rapidly because
the steepening and advection are the same sign as the
dispersion and twisting and so enhance the decay. Thus,
stronger cyclones collapse more rapidly than weaker
ones. The difference in stability between cyclones and
anticyclones reveals that these vortices are subject to
IG or PG, not QG, dynamics. All four major processes
act on the cyclone: twisting elongates it, advection ro-
tates it, steepening in the east breaks it into anticyclones
and generates waves that lag because of dispersion.

c. Vortex adjustment on the fi-plane

To understand how the various processes act in ad-

justing an anticyclone towards symmetry and equilib- - '

rium, it helps to consider the simpler fy-plane system
first. Advection' is the only process acting on geo-
strophically balanced fy-plane vortices and it tends to
reduce itself by symmetrizing the flow. The F1 solution
in Fig. 6 shows how an elongated Gaussian anticyclone
with a 3:1 axis ratio attains the long-lived symmetrical

- state by rotating clockwise (cyclones rotate anticlock-

wise) and shedding two minor anticyclones. In the first
phase (days 0-1000), the vortex rotates through 90°,
sheds the two minors and reduces its asymmetry. The
vortex continues to rotate until interactions with the
two minors, beginning at days 1800 and 4800, have
made it circular.

The shedding of minors by elliptical vortices con-
trasts with the shedding of thin filaments by inviscid
two-dimensional, constant-vorticity ellipses in contour
dynamics (Dritschel, 1986). It can, however, be ex-
plained as an eccentricity-dependent instability (Cush-
man-Roisin, 1986). According to (18), the shedding
occurs because the Jacobian rotates the ellipse differ-
entially. Our other calculations show that when f; is
weaker, the vortices rotate and adjust more rapidly,
and that when vortices are more elongated, with a 6:1
axis ratio, they still produce only two minors.

d. Vortex interaction on the fy-plane

Although fy-plane encounters must be forced by
placing the nonpropagating vortices in overlapping
configurations, they do provide the simplest example
of the merging process. In Fig. 7 two identical circular
anticyclones initially have centers 16° apart and a
moderate overlap up to the 2 km contour. As the pair
rotate clockwise, at a rate comparable to that of the
elongated F1 vortex, their cores merge continuously to
the 7 km level. After completing the merger, the vortex
behaves like the F1 case and sheds two minors at 90°
to the original axis. The merging corresponds to the

! Vorticity advection is normally the dominant advection; kinetic-
energy advection is weak, except in extreme cases.
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upscale energy decascade in two-dimensional turbu-
lence, while the shedding corresponds to the downscale
entrophy cascade. In the absence of a KAV coupling
between size and strength, the merger produces a vortex
of larger size rather than one of larger amplitude.

e. Vortex adjustment on the sphere

Vortex adjustment on the sphere, unlike on the f;-
plane, depends on the orientation of the asymmetry.
Figures 8 and 9 illustrate the adjustment of latitudinally
and longitudinally elongated anticyclones. In both
configurations, the initial tendency of asymmetric an-
ticyclones to rotate clockwise occurs but is modified
in different ways by the westward propagation.

As the latitudinally elongated vortex rotates, it sheds
two minors just as the fy-plane case (Fig. 8). The three
vortices then separate in longitude because phase speeds
increase for lower latitudes and for higher amplitudes.
These two factors almost compensate for the main
vortex and the southern minor which move away from
the northern minor at almost the same rate (the speed
of the reference frame). The vortices do not interact
because they propagate at well-separated latitudes.

As the longitudinally elongated anticyclone begins
to propagate westward and to rotate clockwise, its core
moves into the western half and steepens (Fig. 9). The
western minor cannot break off and is absorbed by the
speedier core vortex. Two eastern minors form in the
long tail but only one breaks off. The adjusted config-
uration consists of the main vortex, one eastern minor
and secondary blobs. The main vortex eventually laps
and reabsorbs the other elements.

The adjustments in Figs. 8 and 9 both result in a
smaller, more symmetric vortex whose final size,
strength and shape resemble that of the M1 vortex.
The vortices adjust their shape and size according to
the Rossby-KdV balance while keeping their amplitude
constant. This differs from the fy-plane case in Fig. 6
where adjustment is toward a size determined mainly
by the initial state. The adjustment in Fig. 9 corre-
sponds to the classical KAV breakdown of a large dis-
turbance into one or more solitons, arranged in am-
plitude order, plus a dispersive tail. However, the
twisting and the Jacobian prevent a full realization of
a simple KdV dynamics.

[ Vortex interaction at 6, = 45°

Stronger vortices move more rapidly westward than
do weaker vortices and so interactions in which vortices
merge, partially or fully, occur readily. Figure 10 il-
lustrates the interaction between two anticyclones, ini-

FI1G. 5. Midlatitude solution M2: Collapse of a cyclone. Height n
has CI = 0.5 km and axes moving at ¢, = ¢(45°) = —1.5 m s\,
Resolution: R3. Initial state: geostrophic Gaussian vortex with Hy
= —~4 km, A = 6°, 60 = 3°, Ay = 0°, 6, = 45°.
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FIG. 6. The fo-plane solution Fi: Adjustment and longevity of anticyclones. Height # has CI = 1 km and axes relative to an arbitrary latitude (9
= 0° is not at equator). Parameters: J set but with g* = 0.2, fo = 2Q;. Resolution: R4. Initial state: geostrophic Gaussian vortex with Hy = 15 km, 8
- =12°, 680 = 4°, Ay = 0°, 6, = 0°. Properties: ¢ = 0, Lg = 640 km.

tially 22%:° apart in longitude, one of which has twice
the amplitude of the other. The stronger vortex catches
the weaker vortex in about 500 days and absorbs over
half its energy during the first encounter. Later it
catches and absorbs the residual and tail vortices, but
this takes considerable time. Although anticyclones
merge completely, they require more than one en-
counter to complete the process. The degree of merging
depends on the interaction time scale: similar vortices
propagate at similar speeds and are more likely to merge
completely in one encounter than dissimilar vortices

“traveling at different speeds. The encounters produce

complex amplitude changes but soliton-like phase
shifts.

5. Analysis of midlatitude vortices

Further insight into the dynamics of midlatitude
vortices can be gained by evaluating their steady-state
geostrophic potential-vorticity (GPV) balances. These
reveal what processes are active and in what regimes
the vortices lie. By examining vortices of different size,

we find that stability occurs for a wide range of scales
and balances. When the GPV terms in (6)—(8) are cal-
culated using a high resolution and the Sadourny (1975)
scheme, they balance precisely. Furthermore, we find
that the subgrid diffusion of momentum makes a sig-
nificant contribution but that for height does not. Table
3 gives the amplitudes of the main processes and shows
how their balance changes with vortex size. All of the

vortices have winds of the order of 15 m's™".

a. Large-vortex dynamics

Figure 11 gives the i'mbortant GPV terms for the
large, stable (M 1) vortex discussed in §4a. From left to
right, the columns contain the geostrophic, the primary

- ageostrophic, and the secondary ageostrophic terms.

The steepening-twisting field in frame (c), evaluated
by subtracting the translation from the geostrophic di-
vergence, contains two terms: —H ~'cg(¥)nn,, describ-
ing the steepening and the nonlinear twisting; and (cg®
—cs(y))ny, describing the linear twisting. The nonlinear
twisting is negligible in the S-plane analyses and only
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FIG. 7. The fy-plane solution F2: Interaction of two touching anticyclones. Height » has CI = 0.5 km
and axes relative to an arbitrary latitude. Parameters: J set but with g* = 0.2, f = 29, sin30°. Resolution:
R4, Initial state: two identical geostrophic Gaussian vortices with Hy = 7.5 km, 6\ = 4°, 6 = 4°, centered

at Np = £8°, 6p = 0°.

influences very large storms. The ageostrophic diver-
gence in frame (f) equals the sum of the dispersion,
advection, and diffusion terms in frames (d), (e), (h),
(i) and balances (&, + V - hv®),

The steepening-twisting in Fig. 11c is significantly
weaker on the poleside because of the large decrease
in ¢z(y) with latitude, and this makes the vortex asym-
metric. The asymmetric steepening also splits the vor-
tex into core and collar regions separated by strong
vorticity gradients (Fig. 11g). The collar vorticity is
stronger on the west side because the ¢{v# term in the
vorticity equation

B8

Lah, o~ %ot = —(Bo + (£+ OV -v7), @9)

f

increases { in the west and decreases it in the east.
The ageostrophic divergence in Fig. 11f counters the
changes forced by the steepening-twisting, the largest
term in the balance (Table 3). Despite its smooth
quadrapole form—a symptom of vortex ellipticity, ac-

&+

cording to (18)-—the ageostrophic divergence is made
up of four complex fields having two scales of variation.
In the core, the vorticity advection and the dispersion
combine to balance the steepening-twisting (Fig.
11e,d,c). In the collar, small-scale variations occur and
a strong dispersion balances a strong vorticity advection
and a weak kinetic-energy advection. The dispersion
field (—A¢,) follows the vorticity Jacobian rather than
the vorticity itself and is thus a response to, not a cause
of, the generation of small-scale motion. The vorticity
diffusion in Fig. 11i is needed to control the small-
scale mixing in the western collar.

This large M1 vortex is deceptive: a complex dy-
namical structure, one not described by existing theory,
underlies its smooth height field. As suggested by the
scale analysis in §4a, the vortex may be classified as
having PG, dynamics (see WY84, Table 1) because
steepening dominates, but other processes and scales
are present. Asymmetry in the propagation produces
an advection that prevents a KdV dynamics in the core
and forces a QG dynamics in the collar. When steep-
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F1G. 9. Midlatitude solution M4: Adjustment of a longitudinally
elongated anticyclone. Height # has CI = 1 km and axes moving at
¢, = —1.9 m 57!, Resolution: R3. Initial state: geostrophic Gaussian
vortex with Hy = 10 km, 6 = 24°, 60 = 3°, Ay = 0°, 6, = 45°.

ening is removed from such a vortex, as in the P3 so-
lution in Fig. 2c, the remaining processes weaken and
develop the simple elliptic-vortex forms given by (17),
(18). However, the M1 vortex is too large, too close to
the limiting size to have a simple balance and to be a
good guide to vortex dynamics.

FIG. 8. Midlatitude solution M3: Adjustment of a latitudinally
elongated anticyclone. Height # has CI = 1 km and axes moving at
¢; = —1.9 m 57!, Resolution: R3. Initial state: geostrophic Gaussian
vortex with Hy = 10 km, 6\ = 4°, 50 = 6°, \g = 0°, 6, = 45°.
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b. Medium-vortex dynamics

The stable, long-lived M6 anticyclone in Fig. 12 is
half the size of M1 and ‘has a much simpler, single-
scale dynamics because of its symmetry and its con-
centrated core. The dispersion, the strongest process
in Table 3, appears to force the dynamics and is bal-
anced by the vorticity advection and, to a lesser extent,
by the steepening-twisting (Fig. 12d,e,c). Latitudinal
asymmetries caused by the c(y) variation are apparent
in some processes but are secondary. Because { parallels
h so closely, the vorticity advection reveals a higher-
order component —{J(h, f~2) that prevents exact radial
symmetry and has a dipole distribution like the v field
(Fig. 12e).

This balance places the M6 vortex in the modified
IG regime described by (11). Although the vortex shape,
size, and speed are close to those prescribed by the
Rossby-KdV equation, the strong vorticity advection
prevents a simple KdV dynamics from operating, even
during nonencounter phases. Furthermore, the dis-
persion and advection are almost as strong as the
translation and this reduces the validity of separating
processes with slow and fast time scales, as is done in
KdV and IG theories. Other calculations show that
vortices midway in size between M1 and M6 and ini-
tially in a Rossby-KdV balance are also nearly radially
symmetric. Strong asymmetries develop only near the
M1 scale.

¢. Small-vortex dynamics

Halving the size of the M6 anticyclone moves it into
the QG regime and gives the M7 vortex of Fig. 13. At
this scale both cyclones and anticyclones are stable in
the sense that they do not collapse immediately into
waves, but are unstable in the sense that they migrate
poleward or equatorward. Small (QG) vortices tend to
move to latitudes where the ambient potential vorticity
J//H matches their initial potential vorticity, but larger
(IG, PG) vortices such as M1, M6 do not migrate be-
cause they can define their own local ¢ gradient. Large
anticyclones are stable when they possess a barotrop-
ically unstable ¢ gradient in their easterly flow region,
suggesting that a vortex is a form of contained insta-
bility.

The M7 anticyclone propagates 120° westward and
migrates 3° equatorward in 150 days, while losing am-
plitude and developing a strong core and a trailing en-
velope (Fig. 13a,g). The dispersion and vorticity ad-
vection dominate the balance to give the vortex a QG
dynamics (Table 3). The inertia—gravity waves seen in

FIG. 10. Midlatitude solution MS5: Interaction of two unequal an-
ticyclones. Height 5 has CI = 1 km and axes moving at ¢, = —1.9
m s~ Resolution: R3. Initial state: Two geostrophic Gaussian vortices
with A = 6°, 80 = 3°, 6 = 45° and (i) Hy = 10 km, Ay = 0°; (ii) H,
=5 km, Ay = —22.5°.
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FIG. 11. Analysis of M1 solution: GPV components for a large anticyclone, after 400 da)}s. Contouring: CI, CIH, CIE units are 1072 cm s™', km,
1076 s~*. Resolution: R6. Prediction domain: A = £22.5°, § = 29°-53°, Initial state (as Fig. 4): geostrophic Gaussian vortex with Ho = 10 km, 6
= 6°, 86 = 3°, 6, = 45°. Data recentered. Notation: ¢;° = ¢45°), x' = x cos(45°).

the height tendency are generated by the migration but,. is essential to the partial stability of QG storms

because of their high frequency, they do not interfere
with the internal vortex balance (Fig. 13b). Migration

(McWilliams and Flierl, 1979).
When the vortex size is halved yet again, its radius

TABLE 3. Approximate amplitudes of processes in various GPV balances; for height tendency, propagation, steepening-twisting, ageostrophic
divergence, dispersion, advection Jacobians of vorticity and kinetic energy. Units: 1072 cm s '.Values in parentheses relate to collar

region.
Vortex hy P S+T V. (hv?) D Ji Jx Type

M1 (Fig. 11) 25 20 13 8 (6) 3(10) 5(15) 2 Large
M6 (Fig. 12) 20 20 7 5 15 12 1 Medium
M7 (Fig. 13) 20 15 3 15 50 50 6 Small
M8 (not shown) 40 20 4 40 250 400 150 Very small
P3 (Fig. 2c) 15 15 1 1 1 1 0.1 Linear A,
L3 (Fig. 23) 150 100 80 50 70 30 25 In u,(6)
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FIG. 12. Midlatitude solution M6: GPV components for a midsize anticyclone, after 550 days. Contouring: CI, CIH, CIE units are 1072 cm 57", km,
1076 s~!. Resolution: R7. Prediction domain: A = +16°, 8 = 35°~51°. Initial state: geostrophic Gaussian vortex with Ho = 5 km, éA = 2°, 8 = 1.5°,

6y = 45°. Data recentered. Notation: ¢° = c{(45°), x' = x cos(45°). Properties: ¢ = —1.7 m st

then matches the deformation scale Lg. Such an an-
ticyclone (M8) behaves just like M7 but has a simpler
dipole dispersion and advection (not shown, but see
Table 3). Because of its strong winds, the kinetic-energy
advection becomes important and gives the very small
vortex a modified QG balance.

6. Vortices at the equator (no zonal flow)

We now turn to the more specific type of vortex that
occurs at the equator to see if the form prescribed for
it by Boyd (1980) is stable and soliton-like. Ifit is, then
its dynamics is fully defined and needs no further anal-
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FI1G. 13. Midlatitude solution M7: GPV components for a small anticyclone, after 150 days. Contouring: CI, CIH, CIE units are 1072 cm s~*, km,
107 57!, Resolution: R8. Prediction domain: X = £6.75°, # = 40°—48°, Initial state: geostrophic Gaussian vortex with Ho = 2 km, A = 1°, 6 = 0.75°, .
6o = 45°. Data recentered. Notation: ¢° = ¢(45°), x' = x cos(45°). Properties: ¢ = —1.4 ms™".

ysis. These solutions are needed to help us understand
the role of zonal currents in stabilizing low-latitude
vortices in §7.

a. Long-lived anticyclones at 8, = 0

The 10-year progression of the n = 1 solitary wave
in Fig. 14 illustrates the stability and probable per-
manence of such modes. The anticyclone evolves
slightly from the initial state defined by Boyd’s (1980)

zero-order solutions but it does so in keeping with
Boyd’s (1984) higher-order solutions for strong vortices.
The amplitude was chosen to make the vortex com-
parable in size and strength with the mid- and low-
latitude vortices discussed in other sections. The vortex
propagates westward at —65 m s}, considerably faster
than the linear wave speed (¢ = —¢,/3 = =54 m s
but in keeping with the amplitude factor Ve, /3 in (28).

The height extrema in equatorial vortices (1 reaches
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FIG. 14. Equatorial solution El: Longevity of an # = 1 anticyclone.
Height n has CI = 0.25 km. Resolution: R1. Initial state: Boyd’s v,°,

78 with n = 1, ¥V = 0.28, a, and v, as in Table 2, dimensioned by
¢, and H. Properties: ¢ = —65.0 ms™', ¢;/3 = 54 m s™, Lg = 5700
km.

1.5 km in Fig. 14) are considerably smaller than in
midlatitude storms of comparable kinetic energy. The
corresponding (u, v, w) velocities reach peaks of (40,
7, 0.004) m s~!. The zonal flow is mainly easterly and
strongest at the equator. The height and flow fields are
the same as if two midlatitude vortices, one in each
hemisphere, touched at the equator to produce a mo-
don (Boyd, 1984). Although the n = 1 modes, some
highly nonlinear, can exist for a wide range of ampli-
tudes, the n = 3, 5, 7, - - + modes remain stable only
for the narrow range prescribed by Boyd’s theory.

When an anticyclone of order n is overly strong, it
stabilizes itself by shedding an anticyclone of order n
— 2, something the # = 1 mode cannot do. Thus, an
overly strong # = 5 mode splits into a weaker n = 5
mode and an n = 3 mode. Anticyclones with even n
values are unstable because their «, vanish and the
KdV equation reduces to linear dispersion (Boyd,
1980).

b. Vortex interactions at 8, = 0

The interactions between two n» = 1 equatorial an-
ticyclones, one having 2.5 times the amplitude of the
other, are characteristic of solitons: the amplitudes are
maintained and the phases are shifted during encoun-
ters at days 700 and 900 (Fig. 15). By exchanging iden-
tities the stronger vortex jumps ahead approximately
10° in longitude and the weaker one falls behind. No
simple latitudinal changes are detected. The reference
frame for this g(}, £) plot moves at ¢, = —62 m s~ to
freeze the weaker vortex.

When the equatorial vortices have different latitu-
dinal forms, they obey different scaling constraints and
different KdV equations and need not interact like so-
litons. Figure 16 illustrates the stability and interaction
of the n = 3 and n = 5 solitary waves over a period
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allowing multiple encounters. Initially, the two vortices
are equally long, lie at Ay = 0, and combine into a high
centered at § = 10°. The individual anticyclones soon
emerge because of their distinct drift rates (—23 and
—15 m s7!) and are fully separated at days 180 and
460. The vortices lie at the same longitude again at
days 300 and 600 and recreate a single storm. The
encounters weaken the n = 5 mode but strengthen the
n = 3 mode, thereby transferring energy equatorward.
Interactions between the different-order modes produce
quasi-soliton exchanges and recurrences because the
encounter time is too short to allow wave-wave inter-
action. Similar mixed-mode interactions have been
studied theoretically for other types of solitary wave by
Redekopp and Weidman (1978) and Malanotte-Rizzoli
(1982).

7. Low-latitude vortices in stable currents
Low-latitude anticyclones (such as the GRS) are only

‘stable when zonal currents exist to eliminate the gen-

eration and propagation of the highly dispersive equa-
torial modes. The following solutions show that a low-
latitude anticyclone can be stabilized by an equatorial
westerly jet that limits the external wave propagation
and by a subtropical easterly jet that modifies the in-
ternal vortex dynamics.

a. Linear theory: ug(y) effect on eigenfunctions

The Jovian zonal flow configuration uy = uy(y) con-
sists of a strong westerly jet (W;) at the equator, an
adjacent easterly current (E,), and a westerly jet (W)

TIME {DAYS)

-90° ' 0 90°
MOVING LONGITUDE

FIG. 15. Equatorial solution E2: Interaction of two unequal n = 1
anticyclones. Height 5(A, £) at 8 = 5° has axis moving at ¢, = —62
m s~!, Resolution and domain as Fig. 14. Initial state: Boyd’s v,°, 5,°
withn=1and (i) V' = 0.188, Ay = —45°, (ii), V = 0.471, Ay = +45°,
dimensioned by ¢, and H. Properties: ¢ = —61.5 ms™ and —~72.5 m
sh¢/3=54ms™,
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FiG. 16. Equatorial solution E3: Interaction of n = 3and n =5
anticyclones. Height  has CI = 0.2 km and axes moving at ¢, = —14.5
m s~!. Resolution: R1. Initial state: Boyd’s v,°, 3,° with () n = 3, V
=0.05; (il) n = 5, V = 0.03, both centered at Ao = 0°, and dimensional
by ¢, and H. Properties: ¢,/7 = 23.1 ms™!, ¢;/11 = 147 ms™"..

poleward of that (Fig. 17). Associated with the currents
are the geostrophic height /4(y), the potential vorticity
-qo(y) = (f — uoy)/ho and its gradient g, = (8 — gy,
+ fgouog ")/ ho. The gy, profile changes sign in the east-
erly, indicating that the current may be barotropically
unstable (Ripa, 1983). Such easterlies are used in §8,
but in this section they are weaker and stable. Both
and #y can affect wave propagation: 1, by advecting
'short waves and A by altering the local cg of long waves.
The zonal currents influence vortex stability mainly
by modifying the propagation characteristics of the ei-
genfunctions. A detailed view of the influence of the
equatorial westerly is given by solving the linearized
SL equations for waves in the presence of the current
u(8) = U[1 + (8/66)*]"", using the spectral eigenvalue
method described by Ripa and Marinone (1983). The
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resulting eigenfunctions in Fig. 18 show that the jet
expells the high-k, low-n modes from the equatorial
region while reshaping the low-k, low-n modes there.
Clearly, only the largest-scale disturbances can occur
at the equator when the westerly jet is strong, in keeping
with the concept of scale-dependent turning latitudes.
The low-latitude easterly jet influences vortex stability
mainly by suppressing the generation of these large
modes; see §7¢.

b. Vortex plus equatorial jet

To clarify the role of the three low-latitude jets on
stability, we examine vortices in the presence of one
or more of the currents at a time. We find that only
the equatorial westerly is vital to vortex stability, but
that the easterly plays a useful support role. Figure 19
illustrates the longevity the equatorial westerly gives to
a low-latitude anticyclone. The 90° longitudinal do-
main of this L1 solution, however, excludes the longest
equatorial modes and these, as the next solution shows,
can be important. '

When the domain is extended to 180°, the vortex
appears to behave initially like an n = 5 solitary wave
and releases n = 3 and n = 1 solitary waves that elongate
the anticyclone and create a weak disturbance at the
equator (Fig. 20). By day 1700 the vortex has adjusted
and the equatorial disturbance has strengthened suf-
ficiently to detatch itself and develop into a distinctive
n =1 equatorial anticyclone that strongly decelerates
the local zonal flow by 40 m s~! (Fig. 21). The equa-
torial storm propagates westward, despite the jet, at
speeds varying from —16 to —19 m s™! and occasionally
interacts with the low-latitude vortex moving at —12
m 5!, In their first reunion, at day 2000, the two have
a recurrence encounter in which the initial state appears
to be fully recovered. The equatorial vortex reemerges
200 days later and gradually, through successive en-
counters, extracts further energy from the low-latitude
anticyclone to become predominant. .

The zonal flow influences the generation of equa-
torial anticyclones by controlling the extent to which
low-latitude vortices project onto equatorial modes of
comparable order and phase speed. When the equa-
torial jet is strong (W; = 100 m s™') the low-latitude
vortex generates one equatorial anticyclone; when the
jet is moderate (W, ~ 75 m s7') it creates two. When
the jet is weak (W; < 50 m s™!), however, the low-
latitude vortex decays, as in the current-free case of
Fig. 3. For a low-latitude vortex to be completely stable
the very long waves that it generates at the equator
must be eliminated, either by maintaining the westerly
jet at a fixed amplitude or by including the easterly
jet—as in the next case.

¢. Vortex plus westerlies and easterly

When all three currents are present, a vortex embed-
ded in the anticyclonic zone lasts indefinitely, as the
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FiG. 18. Modification of the equatorial n = 1, 3, 5 eigenfunctions by an equatorial westerly jet: (a, b) without jet; (c, d) with jet. Zonal
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FIG. 19. Low-latitude solution L1: Longevity of an anticyclone in
the presence of an equatorial westerly jet, in a short domain. Height
n has CI = 1 km. Resolution: R1. Initial state: geostrophic Gaussian
vortex with Hy = 10 km, o) = 6°, 660 = 3°, Ao = 0°, 6, = 20°, adjacent
to a geostrophic jet with W, = 100 m s™', §, = 10°. Properties: ¢
=-11.6 ms™, c420°, h) = 7.8 m 57!, h(20°) = 8.1 km.

100-year simulation (involving two million timesteps)
in Fig. 22 demonstrates. The vortex and currents
maintain their original amplitudes throughout without
forcing, but undergo small changes in form. The E,
and W, currents have to be weaker than Jupiter’s cloud-
level winds to avoid barotropic instability, but the
equatorial current has to equal the cloud-level winds
to prevent vortex collapse. These different represen-
tations suggest that separate dynamical regimes exist
in the two planetary regions. If the planet has a Hadley
regime near the equator, then the issue of low-latitude
vortex stability in the SL system may be irrelevant to
Jupiter. A Hadley regime could stabilize vortices more
easily but would require a more complex model to de-
scribe the process.

The L3 vortex in Fig. 22 is stable because the strong
equatorial westerly excludes all but the longest modes
from the equatorial zone, and because the height field
ho(y) associated with the easterly current reduces the
twisting in the vortex zone and thereby eliminates the
generation of the large modes. To see the latter effect,
we recall from (2.11) of WY 84 that in the presence of
currents the idealized IG equation has the form:

E—b 8-+ uo)VZEx + 2y —hy— hOyyy)gx
—J(E, V) =0, (30)

where £ = 9 — hy, measures the relative displacement.
In the easterly of Fig. 17, Ay increases uniformly as +y
and can easily reduce, remove, or reverse the twisting
term in (30). This 4, factor originates in the hh,(f ™),

term in (9) and the elimination of twisting is equivalent
" to basing the propagation speed on the local long-wave
speed cs(hp) = —gho/f? instead of on the mean cz(H)
= —gH/f?. The hy and f? variations can be made to
cancel for special currents, just as they can for special
g(sin%@) distributions.

=200 ¥ Y T

g DAY 1700

-200 4= i ¥ Sy q

DAY 2400
30°
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FIG. 20. Low-latitude. solution L2: Reduction of a low-latitude
anticyclone and the genesis of an equatorial anticyclone in the pres-
ence of an equatorial westerly jet. Height » has CI = 1 km and axes
moving at ¢, = —12 m 5™, Resolution: R1. Initial state: as Fig. 19.
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FIG. 21. Low-latitude solution L2: Zonal velocity for the flow in
Fig. 20 at Day 1700 has CI = 10 m s~! and shaded easterlies.
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F1G. 22. Low-latitude solution L3: Longevity of an anticyclone in the Jovian jet configuration.
Height 5 has CI = 1 km. Resolution: R1. Initial state: geostrophic Gaussian vortex with Hy = 10
km, 8X = 6°, 86 = 3°, Ny = 0°, 6, = 20°, embedded in geostrophic u,(8) jets with (W, E,, W)
= (100, _15, 10) m S—l and 012’3,4 = (00, 100, 200, 300).

The GPV balance in Fig. 23 shows that the L3 vortex

may be classified as having an IG dynamics modified
by the kinetic-energy advection. The processes have
the same form as for the large M1 midlatitude anti-
cyclone, but their amplitudes have a different priority.
In L3 the steepening-twisting is balanced by the dis-

persion plus some advection to make it more KdV-
like than in the M1 case, where the steepening-twisting
is balanced by the vorticity advection plus some dis-
persion. The twisting and the vorticity advection should
both be quadrapolar for this elliptic vortex, but only
the latter is. This suggests that the twisting has indeed
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FIG. 23. Analysis of L3 solution: GPV components for a low-latitude anticyclone embedded in zonal currents. Contouring: CI, CIH, CIE units are
102cm 57!, km, 107 57", Resolution: RS. Prediction domain: X = £22.5°, 8 = 0°-30°. Initial state: as Fig. 22. Notation: ¢;* = ¢5(20°), X" = x c0s(20°).

" been reduced by the éasterly 4, effect. All terms are

stronger in lower latitudes because of their f~! to f 3
dependencies, where (45°)//(20°) = 2.1, (Table 3).
Finally, we note that in the presence of stabilizing
currents, low-latitude vortices merge during encoun-
ters. Thus, the jets effectively extend the midlatitude
regime towards the equator (cf. Petviashvili, 1983).

8. Vortex genesis

We now examine how RBssby vortices are generated
by shear instability and by stochastic eddy forcing. To
help understand the origin and uniqueness of Jupiter’s
GRS, we confine our calculations to low latitudes and
concentrate on finding the simplest, most general con-
ditions under which single vortex states are produced.
We find from a.variety of calculations that the vortex
number depends primarily on the interaction history,
that the factors controlling the linear instability—the
strength of the easterly, the width of the anticyclonic

" zone, the Rossby radius—are secondary. The following

examples illustrate how similar (single) vortex states

can emerge in dissimilar environments and how dis-
similar (single, double) vortex states can emerge in
similar environments.

a. Genesis 1: Wave-packet perturbation of broad cur-
rents

The Kuo and Fjortoft criteria, that go, change sign
and that [uy ~ uy(y;)]g0, be mainly positive, describe
the necessary conditions for the unstable growth of eddy
enstrophy and kinetic energy, where go,(y;) = 0 defines
the inflection latitude y;. Waves of phase speed c¢ be-
come unstable through a quantized meridional prop-
agation between the inflection latitude and the over-
reflecting critical latitude at y,, where ug(y.) = ¢ defines
the latter, (Lindzen and Tung, 1978). In the SL model
the shear instability depends on both uy(y) and Ay(y)
through a go, gradient that varies as (8 — gy, + UpLg )
for midlatitude flows with a small divergence, and as
(B — uoyy + upfgg™") for equatorial flows and for mid-
latitude flows with a large divergence (Ripa, 1983). The
latter form allows for O(14%) and c¢;(h, f ~2) variations.
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The easterly in Fig. 17 has critical and inflection
latitudes near 8 = 12° and # = 18° that may provide
the confinement needed for instabilities to grow. Linear
long waves, however, have coincident y; and y. and are
probably stable. Thus Rossby vortices based on neutral
linear long waves cannot extract energy directly from
the basic shear and can only grow through a nonlinear
instability or an energy cascade from smaller, unstable
waves. )

The Genesis-1 calculation shows how a weak wave-
packet perturbation added to broad unstable currents
evolves through linear growth and nonlinear interac-

tion into a single vortex (Figs. 24, 25). The initial dis- °

turbance consists of ten oscillations over 180° of lon-
gitude in a sech®\ envelope. The anticyclonic zone is
10° wide in latitude and has a shear that is 25 m s™!
stronger than that in the stable L3 case of Fig. 22. In

the initial phase (visible in the v field), small-scale waves

grow near the easterly peak and transfer energy north-
ward to the A, peak.

The development of the instability only becomes
apparent in the height field when closed contours form
at day 400 (Fig. 24). The wave packet then grows into
a series of vortices of similar size but different strengths.
The strongest vortex occurs in the middle of the packet
and has a 7-km height by day 700. By day 1200 the
current has stabilized and the disturbance has matured
into two strong central vortices and three moderate
peripheral vortices. From now on, only vortex prop-
agation and interaction occur, and these are fully de-
scribed by the time section in Fig. 25. The first merger
is complete by day 1700 and produces a dominant vor-
tex that absorbs the others during encounters ending
at days 2300, 3400, 5500 and 6000. Thus the nonlinear
instability produces a single powerful vortex with a 13.5
km height, a 30° length, and a westward drift that ex-
ceeds the long-wave speed ¢z by 50%.

b. Genesis 2: Wave-packet perturbation of narrow cur-
rents .

The Genesis-2 calculation in Fig. 26 illustrates just
how strong a factor the interaction history is in deter-
mining the number of vortices. In this solution the
anticyclonic zone is narrowed to 8° of latitude but kept
centered at § = 20° by widening the equatorial jet. The
shear is kept strong and is perturbed by a wave packet.
The disturbance develops into ten unequal vortices that
strengthen and then merge through amplitude or size
pairing.

By day 1500 the mergers have reduced the set to
one strong, one moderate and two weak vortices. To
survive, the moderate vortex must absorb the weak
ones before the strong one catches it. By day 2000 the
moderate vortex has absorbed one weak vortex and
lies equally far from the strong and remaining weak
vortex. By day 3100 the moderate vortex has caught
the weak one but the large one has halved the gap to
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20° and is close on its heels. By day 3950, however,
the merger is complete and the strengthened moderate
vortex is 30° ahead and safe. The two final vortices
have almost the same size and shape and they coexist
by becoming evenly spaced and propagating at similar

" speeds.

The emergence of two vortices in this Genesis-2 case
is partly an accident of an evolution that almost results
in a single vortex, as a calculation with a slight change
in the initial conditions verifies. Note that a weak
equatorial anticyclone is also produced.

c. Genesis 3: Stochastic eddy forcing

It was shown in a paper on the role of barotropic 8-
turbulence in the formation of Jupiter’s jets (Williams,
1978) that stochastically forced eddies cascade energy
to larger scales and, by generating Rossby waves, evolve
into an alternating series of zonally aligned easterly
and westerly jets. Vortices did not develop because the
model was nondivergent and dissipative. The Genesis-
3 case in Fig. 27 shows that in a divergent fluid eddies
cascade, by wave interactions, into zonal currents and,
by eddy mergers, into a single vortex. Vortex merging,
not the vorticity source, is the main determinant of
vortex states in the SL system. The Genesis-3 solution
also shows that large vortices thrive in a turbulent en-
vironment and can be made to move eastward.

In setting up the calculation, the eddies are energized
by forcing the height field in (3) with a function F(},
8, t) whose single Fourier mode has a half wave over 6
= 20° to 30° and ten waves over A = +45°, with ran-
dom longitudinal phases defined by the Langevin
equation (15) of Williams (1978). This eddy forcing
crudely represents the baroclinic instability of the W,
jet. A part of the W, westerly jet is directly forced via
the v, equation by a term of the form F, = fu” = Wy(y)/
7. In the absence of eddies this forcing produces a basic
state filg, = ~gno, + fuF in which waves propagate at
a speed ¢ = up — [B — gomoy)/[k? + I + Lg 2}, where
B = B — ug,,. Long waves can be Doppler shifted only
if the basic state has an ageostrophic component, oth-
erwise the 1, and 7o, contributions cancel. (Note, how-
ever, that geostrophic jets can modify long-wave drift
at the equator, as in Fig. 20.) Solving the adjustment
problem (Charney, 1973; p. 185) for our Jovian pa-
rameters shows that this forcing produces a fully ageo-
strophic basic flow, 1, = uf, 7o = 0, that gives long
waves a speed ¢ = uf + ¢; and crudely represents the
baroclinic component of the westerly jet. In addition,
an equatorial jet is imposed to restrict wave propagation
into the equatorial zone. No easterly current is forced
directly.

In the Genesis-3 solution in Figs. 27 and 28, the
weak eddy forcing gradually generates a series of ten
cyclones and ten anticyclones that separate out in lat-
itude and propagate uniformly eastward—the rapid
random phase variations being filtered out. The anti-
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%% reduce the system from 10 to 2 vortices (Fig. 28). Of
the two vortices emerging at day 920, the eastern one
is 20% stronger and faster and soon catches the other
(Fig. 27). The single vortex that results from this final
encounter persists and strengthens continuously by
absorbing the disturbances created by the forced highs;

T - T T
o° 90°

-90°

MOVING LONGITUDE

FIG. 25. Time section for the Génesis-1 solution. Height 7(), #) at
9 = 20° has axes moving at ¢, = —11.2 ms™",

90°

0°

’

LONGITUDE

cyclones prevail and by day 500 have broadened, at- '
FIG. 26. Low-latitude solution Genesis 2: Generation of two long-

tained a 4-km height, and moved 5° south to the edge
of the westerlies. After this buildup, the vortices start
to interact and lose their periodicity. Mergers (pairings)
at days 640, 680, 720, 770, 780, 830, 860 and 920

lived anticyclones from a wave-packet perturbation of narrow unstable
currents. Height  has CI = 1.5 km. Resolution: R2. Initial state: as

Fig. 24 but with (W, E,, W3) = (100, —30, 14y m s! and 8,34
=(0°, 12°, 20°, 28°).’
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the amplitude grows from 7 km at day 1550 to 11 km
at day 3200. In the absence of any dissipative mech-
anism this vortex will continue to grow.

The various mergers reduce the westerly drift of the
anticyclones, but a significant easterly drift arises only
with the emergence of the two-vortex state at day 920.
The drift rates of the double- and single-vortex states,
at —2m s~ ' and —5 ms™!, are considerably less easterly
than in unforced flows. The drift is made more westerly
by the direct interaction between each vortex and the
ageostrophic W, current rather than by an indirect in-
teraction via the waves, as a selective switching off of
the two forcings confirms. In other Genesis cases, the
vortex drift is not modified because the currents are in
geostrophic balance. The vortex can even be made to
move in the opposite direction (eastward) by increasing
the W, forcing: e.g., boosting the jet to 50 m s~ at day
3500 changes the drift from —5m s to +5 ms™! (Fig.
29). The present drift rates of the GRS (—3.5 m s7})
and the Large Ovals (+4 m s™!) encompass a similar
range.

9. Conclusions

Our numerical single-layer model, based on the Ar-
akawa-Lamb conserving scheme and using a very weak,
biharmonic friction, allows vortices to exist virtually
indefinitely when they are physically capable of doing
so. We find that stable anticyclones can exist at all
latitudes but under constraints that vary from midlat-
itudes to low latitudes to the equator. They occur in a
variety of sizes, most much larger than Lg, and in a
variety of balances involving the propagation, steep-
ening, dispersion, advection and twisting processes.

Of the various processes involved in vortex dynam-
ics, the vorticity advection proves to be the most flexible
and the most effective in stabilizing the flow, which it
does by trying to restore radial symmetry. Twisting is
the most disruptive process for a large vortex and it
limits the development of radially symmetric states.
The Rossby-KdV elements, however, still control the
storm’s size, strength, and speed. Previous studies un-
derestimate the role of twisting and advection in vortex
dynamics and display a historical bias towards KdV
dynamics.

In midlatitudes, the largest Rossby vortices are
dominated by a planetary-geostrophic (PG,) balance
in which the tendency to break by steepening is coun-
tered by vorticity advection. The midsize vortices are
dominated by an intermediate-geostrophic (IG) balance
in which steepening and advection match dispersion
and twisting. The small vortices, unlike the larger vor-
tices, migrate in latitude and allow a stable cyclonic
form; they are dominated by a quasi-geostrophic (QG)
balance between vorticity advection and dispersion.
Very small vortices have a'modified QG balance be-
tween dispersion and the advections of vorticity and
kinetic energy.
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At the equator, anticyclones are stable only when
they have the Hermite latitudinal form and the KdV
longitudinal form defined by Boyd (1980). These re-
strictions exclude twisting and limit interactions. The
n = 1 mode is the most stable and exists for a wide
range of amplitudes. The n = 3, 5, - - -+ modes are
limited to weaker amplitudes for stability; stronger -
amplitudes lead to the ejection of lower-n modes. So-
liton interactions occur between anticyclones with the
same meridional order (#); quasi-soliton interactions
occur between those with closely related meridional
orders, e.g., n = 3 and 5. Equatorial vortices exist in a
balance between the dispersion and the KdV-nonlinear
term provided by the latitudinally-integrated vorticity
advection and height-steepening. Equatorial vortices
can exchange energy with and be induced by low-lat-
itude vortices when an equatorial westerly jet exists to
(almost) stabilize the latter.

In low latitudes, vortex evolution is dominated by
a long-wave meridional dispersion that cannot be
countered by advection but can be reduced by zonal
flows. Currents stabilize low-latitude vortices by setting
up a wave guide in which the equatorial westerly ex-
cludes all but the largest modes and the easterly elim-
inates the twisting and mode generation.

Strong easterly jets become unstable and energize
periodic waves that evolve into solitary waves when
their wavelength is much larger than the Rossby radius.
Wave-packet perturbations develop into unequal an-
ticyclones that merge into a single vortex when the
anticyclonic zone is broad, and into double or triple
vortex states when the zone is narrow. Stochastically
energized small vortices also merge, by pairing, into a
single, strong, stable vortex that continues to grow in
a turbulent environment. Ageostrophic (pseudo-baro-
clinic) westerly jets make vortex drift less easterly, or
even westerly.

The SL Rossby vortices provide a simple prototype
for Jupiter’s Great Red Spot. They imply that the GRS
was generated by the barotropic instability of the east-
erly jet or by the baroclinic instability of the westerly
jet and is maintained by a continuing instability and
by eddy absorption. The GRS could exist freely if dis-
sipation were negligible. Evolution (interaction history)
mainly determines the number of vortices in a zone,
but the uniqueness of the GRS is also due to its large
size and extensive longitudinal influence, features al-
lowed by the broad anticyclonic zone. The Large Ovals
are smaller because they lie in a narrower zone and are
multiple because they have a limited longitudinal in-
fluence. The stochastically forced solution suggests that
the GRS should be stable in a turbulent environment
and could absorb some of its energy. The Ovals and
Rossby vortices have similar developmental timescales:
about 10 years. The hemispheric asymmetry and strong
eastward propagation of Jupiter’s Plumes (at # = 8°N)
eliminate any connection with the equatorial Rossby
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FI1G. 29. Time section for an extension to the Genesis-3 solution:
Development of westerly propagation. Height 5(], ) at 6, = 20° has
stationary axes. Direct forcing of the W, jet is increased four-fold at
day 3500.

vortex, but their size is consistent with the view that
only the longest modes can propagate in this region.

Changes in the GRS size could be due to either a
change in the zone width or a change in the energy
level. Although the GRS has only half the length it had
a century ago, it could be stronger. The GRS drift rate,
represented by ¢ = u¥ — (8 — u,,)Lg*(1 + Hy/3H) in
the SL system, could vary because of changes in either
the vortex amplitude (Hy), the forced (baroclinic) com-
ponent of the westerly jet («F), the static stability de-
fining the mean thickness () and the Rossby radius
(Lg), or the lateral shear (u,,).

Four stages of GRS behavior have been observed:
1) in the high-drift Cassini phase, the vortex was small
(14 000 km) and moved rapidly westward at —10 m
s~!in 1665 and at —8 m s~! in 1670; 2) in the low-
drift phase (1840-1880), the vortex was large (40 000
km) and propagated uniformly at —1.5 m s™!; 3) in the
transitional phase (1880~1940), the vortex shrank to
a medium size (26 000 km) and its drift rate ranged
from —5 m s7! to +1 m s~! while averaging —2.7 m
s7!; and 4) in the medium-drift modern era (1940-
1986), the vortex propagated almost uniformly at —3.5
m s~! and shrank slightly to 25 000 km.

Our solutions cover all of the observed variations in
GRS size and drift and imply that: 1) the Cassini vortex
was the GRS in an early stage of development, with
its drift rate close to cg because u” was weak or lacked
influence on a small storm; 2) the low-drift phase oc-
curred because larger vortices are influenced more by
u*; 3) during the transitional phase, the changes in the
drift rate and uf were correlated, going from —2.7 and
50 m s~! for the 1900-1945 period to —3.5 and 35 m
s7! for the 1945-1965 period; and 4) the increased
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easterly drift of the modern era is due to the increased
amplitude of the vortex. These variations in the drift
rate suggest that GRS behavior is modulated by a global
energy cycle with a period of O(50 years)—changes are
imminent—and by a W, westerly jet whose 40 m s
flow has a 10 m s™! baroclinic component.

The Large Ovals (at § = —33°) arose at the same
time (1939) as the GRS increased its easterly drift to
—3.5 m s™%. This coincidence suggests that both phe-
nomena were energized by the same energy release at
the end of the transitional era. The Large Ovals’ re-
duction in drift and size, from +7.5 m s~! and 70 000
km in 1941 to +4 m s~! and 12 000 km in 1986, is
consistent with an increase in amplitude. A stronger
uF influence (baroclinicity) could account for the drift
being more westerly than in the GRS case. The Small
Ovals (at # = —41°) have a size (6000 km) that may
be close to the minimum for vortex stability; the critical
size lies between 5000 km and 10 000 km for SL vor-
tices at § = 45°.

The GRS is a low-latitude vortex and its stability
depends on the existence of the equatorial westerly and
low-latitude easterly jets. The storm may lie in a tran-
sitional zone between the geostrophic regime that pro-
duces the alternating jets in midlatitudes and the quasi-
Hadley regime that produces the westerly jet near the
equator. Geostrophic potential-vorticity analyses sug-
gest that both the GRS and the Large Ovals exist in an
IG dynamical balance.
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APPENDIX
Numerical GPV Equation

To balance accurately, the discrete geostrophic po-
tential vorticity (GPV) equation must be carefully de-
fined using the following Sadourny (1975) formulation
of the basic equations:

st — m\@PoY = —m~6.(gh + K) + D(u), (Al)
80 '+ guy = —d,(gh+ K)+ D(v), (A2)
8,8 + m~\ (8 uy + 6,0,) = D(h), (A3)
where
=fat b= (f+0)
q * * %xy f]
¢ =m'[6,0 — 5,(mu)), (A4)
and
X Ty
Uy = Uh, Uy, = moh . (AS)

To evaluate the terms in the exact GPV equation
(6), the geostrophic momenta must be extracted from
(A1) and (A2) in the form
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—5 Xy b4 — Xy
uy =—=8,h vi

5
where f, is the Coriolis term weighted by #~! and m
factors. [The Arakawa-Lamb (1981) scheme does not
allow such an exact extraction.] The (A6) expressions
‘give u$ at the v gridpoint and v} at the u gridpoint.
Ageostrophic momenta are defined at the same grid-
points using the expressions

— oy —exy
a . —_ a
uy = uy —ug o, v§

=E5.h  (a6)
*

=xy _ TEXV

= Uy — 0% (A7)

The terms of the GPV equation are then evaluated
at { gridpoints using the averaged height equation
8R4+ m[b,u% + 8,08 ]

+ m 5l + 5,02

= D(h™). (A8)

Although the geostrophic divergence simplifies in the
continuum [see (7)] the discrete form

'V-(hvg)=—gm_‘[ [(}h} By[g}], (A9)

does not. The steepening-twisting is extracted from
(A9) by subtractlng the uniform translation term
cdm ', h™

To examine the four components of V-(Av?) in
(A8), the ageostrophic velocity. balances are written
from (A1) and (A2) as

m e = 5,0 — mT'E0y + mT'6 K — D(u),

(A10)

Frut® = —5,0' — Tatly — 8,K + D(v). (All)

The processes can then be evaluated at the ¢ gridpoints
from the following expressions.

(i) Dispersion:
V-(k % Jﬁfv,) = m"'[ —5 {‘2 } +6 [m;;" ” , (A12)
(ii) Vorticity advection:
hy
.
(7) }
-1 { * -x f
=—-m~![§, 4y
o [fﬁ ] {ﬁ
(iii) Kinetic energy advection:

h
V-(k X —f—‘VK)

(iv) Vorticity diffusion:
v, h D(v) mD(u)

o) )52
(A15)

” , (A13)

? D(V)) .=
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Although v must be replaced by v# to interpret
(A12)-(A15) in terms of the GPV processes of (9), the
approximation is not needed in the numerical evalu-
ation. In the analysis figures, however, the advections
are labeled with their simpler Jacobian forms. Calcu-
lations show that the formulation gives an accurate
balance if the vorticity diffusion is included and if the
resolution is high.
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