Contribution of NOAA to the U.S. and International Global Ocean Observing System (GOOS)

Dr. Richard Spinrad

Assistant Administrator,

NOAA Office of Oceanic and Atmospheric Research (OAR)

GEOSS and IOOS Societal Goals Match NOAA's Mission Goals

GEOSS Goals

- 1) Improve Weather Forecasting
- 2) Reduce Loss of Life and Property from disasters

AND ATMOSA

NOAA

ARTMENT OF CO

NATIONAL OCE.

- 3) Protect and Monitor our ocean resources
- 4) Understand, Assess, predict, mitigate, and adapt to climate variability and change
- 5) Support Sustainable Agriculture and Combat Land Degradation
- 6) Understand the effects of environmental factors on human health and well-being
- 7) Develop the capacity to make ecological forecasts
- 8) Protect and monitor water resources
- 9) Monitor and manage energy resources

IOOS Societal Goals

- 1) Improve predictions of climate change and weather and their effects on coastal communities and the nation;
- 2) Improve the safety and efficiency of marine operations;
- Mitigate the effects of natural hazards;
- Improve national and homeland security;
- 5) Reduce public health risks;
- 6) Protect and restore healthy coastal marine ecosystems; and
- 7) Enable the sustained use of marine resources.

NOAA Mission Goals

Integrated Ocean Observing System

T.I.

MBARI MUSE

Monterey Bay Aquarium Research Institute, MOOS Upper-water-column Science Experiment

Global Component

Reasons for Global Ocean Observing System

NOP

c

Global Observing Systems

Argo Floats •Temperature & Salinity profiles •2240 active floats

XBT •Upper Ocean temperature & salinity •39 occupied lines

Global Observing Systems

TAO/TRITAN & PIRATA •Sea surface temperature •Sea Surface winds •Air temperature •Humidity •Rainfall •Radiation

Tide Gauges •Water Levels •Sea Surface Temperature •Winds •Air Temperature •Barometric Pressure •143 real-time stations

Ocean Reference Stations •Meteorological & ocean profile data •42 active stations

International Partnerships

A global system by definition crosses international boundaries.

NOAA

SPARTMENT OF CON

NATIONAL

Global IOOS contributions are managed in cooperation with the Joint WMO/IOC Technical Commission for Oceanography and Marine Meteorology (JCOMM) -- presently 66 nations.

U.S. Coastal Component

Reasons for Coastal Ocean Observing System

AND ATMOSE

NOAA

NATIONAL OCE.

SAFE AND EFFICIENT NAVIGATION avoid groundings avoid collisions Increase throughput

PUBLIC HEALTH

NATURAL HAZARDS warnings for high winds/waves rip currents/storm surge

ECOLOGICAL FORECASTING

PROTECTION OF OCEAN & COASTAL RESOURCES

IOOS Observing Subsystem Components: NOAA's Contributions

Designed to meet IOOS societal goals and all 5 NOAA Mission Goals

ND ATMOSPHER

NOAA

EPARTMENT OF COM

NATIONAL OCEN

- Also supports other agency and partner efforts to manage our Nation's oceans, coasts, and Great Lakes
- Coordinated nationally and regionally focusing on partnerships.
- System 25 35% complete.
- Better defining objectives and working on developing strong GPRA measures.
- NOAA capacities:
 - 24 programs contribute, 8-9 major contributors
 - Project Office in NOS AA's office coordinates NOAA-wide activities
 - NOAA contributes 55 -65% of the present national effort.

Physical Oceanographic Real-Time System (PORTS)

Deep Ocean Assessment and Reporting of Tsunamis (DART)

National Water Level Observation Network (NWLON)

Coastal Observing Systems

Commerce & Transportation

- Hydrographic Surveys (includes bathymetry)
- National Current Observations
- National Water Level Observation Network (NWLON)
- Physical Oceanographic Real Time System (PORTS)
- Shoreline Surveys

Weather & Water

- Coastal Marine Automated Network (C-MAN)
- DART
- Voluntary Observing Ships
- Weather Buoys
- SEAWIFS*

Mission Support

- NOAA Ships
- NOAA Aircraft*
- NOAA Satellites

Ecosystems

- Coastal Change Analysis Program (C-CAP)*
- Coral Reef Ecosystem Integrated Observing System (CREIOS)
- Commercial Fisheries-Dependent Data
- Economic/ Sociocultural Observing System*
- Ecosystem Surveys
- Fish Surveys
- National Observer Program
- Protected Resource Surveys
- Recreational Fisheries-Dependent Data
- System-Wide Monitoring Program (SwiM) for Marine Sanctuaries*
- System-Wide Monitoring Program (SWMP) for National Estuarine Research Reserves
- Passive Acoustics Observing System*
- National Status and Trends Program*

Data Management & Communications

NOAA's Observation System Target Architecture

Target Architecture Principles:

• Utility

NATIONAL OCEN

AND ATMOSPHE

NOAA

EPARTMENT OF COM

- Focus on societal benefits
 Requirements-based
 All data archived and accessible
- Interoperability

 Full and open data sharing
 Standards-based
- Flexibility
 Leverages new technology
- Sustainability
 Build on existing systems
- Affordability
 Effectively use non-NOAA systems

DMAC Work Areas

- Metadata
- Discovery
- On-Line Browse
- Transport
- Access
- Archive
- IT Security
- QA/QC
- System Design

Modeling & Analysis

Role of Modeling & Analysis

NATIONAL OCE

NOAA

EPARTMENT OF C

Mechanism to

- Optimize observations
- Generate products

Includes

- Observing System Simulation Experiments (OSSE)
- Data assimilation
- Coupled ocean models

Observing System Simulation Experiments (OSSE)

X nature track

AND ATMOSPHA

NOAA

NATIONAL OCEN

■ forecast beginning 63 h before landfall using current data

• circles denote the improved forecast for same period using simulated lidar data.

Observing System Simulation Experiments (OSSEs) provide an effective means to:

- Evaluate the potential impact of proposed observing systems
- Determine tradeoffs in their design
- Evaluate new data assimilation methodology

Provide quantitative information on observing system impacts

- New instrumentation
- Alternate configuration of existing instrumentation
- Data assimilation system diagnosis and improvement

Next Steps – FY06 Milestones

- Complete IOOS Conceptual Design
- Develop NOAA IOOS Project Plan
- Complete Interoperability Plans for NOAA's IOOS Systems
- Continue implementation with other IOOS and GOOS partners

The Big Picture: A Product & Service Delivery Tool

November 10, 2015

ND ATMOSPHER

NOAA

OCE

NATIONAL

IOOS is:

- •A federally-led, NOAA-managed partnership
- •Web-based
- •Fully interoperable
- •A data and information delivery tool
- •Integrates physical, biological, chemical, geological observations
- •Scaleable to regional needs
- •Addresses a wide range of applications – both internal and external
- •Enables improved decision making through national and regional models
- •A prime example of "One NOAA"

Questions?